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Abstract We survey recent developments in multimedia signal quality assessment,
including image, audio, video, and combined signals. Such an overview is timely
given the recent explosion in all-digital sensory entertainment and communication
devices pervading the consumer space. Owing to the sensory nature of these signals,
perceptual models lie at the heart of multimedia signal quality assessment algorithms.
We survey these models and recent competitive algorithms and discuss comparison
studies that others have conducted. In this context we also describe existing signal
quality assessment databases. We envision that the reader will gain a firmer under-
standing of the broad topic of multimedia quality assessment, of the various sub-
disciplines corresponding to different signal types, how these signals types co-relate
in producing an overall user experience, and what directions of research remain to
be pursued.

Keywords Survey ·Quality assessment ·Video quality · Image quality ·Structural
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Perception

1 Introduction

Recent years have witnessed an explosion of visual and multimedia applications
across the globe. Digital television and other home entertainment applications, mo-
bile multimedia applications on cellular phones, social networking applications such
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as Facebook, personal multimedia collections, immersive multimedia and virtual
reality applications, video tele-conferencing, gaming and educational multimedia
presentations are just a few examples of multimedia applications that have become
an integral, even indispensable, part of peoples’ lives. The rising use of multimedia
applications has been paralleled by a rising increase in the quality of experience that
people demand from such applications. While significant strides are being made in
offering new and improved multimedia services, the value of such services can only
be assessed by the quality of experience that they offer to the end user. The end-
user of the multimedia service is a human being in an increasingly large number of
applications and determining the human’s opinion of quality is critical in the design
and deployment of a multimedia service.
“Quality” can be defined in a number of ways depending on the application of

the multimedia service and the end-user of the video. For instance, measuring the
“quality” of signals derived in applications such as laser range scanning or camera
image acquisition often deal with aspects of the imaging system. The definition of
“quality” in applications where the end-user is a human observer needs to consider
perception of the signal by human sensory systems. Even within the application
realm of human users, the interpretation of “quality” can depend on the multimedia
service and the task defined for the human user. For instance, “quality” can mean
detectability of image components that characterize disease in medical imaging
or readability in document imaging or intelligibility in an audio service. In the
overwhelming majority of digital multimedia entertainment applications, we are
interested in defining “quality” as the overall Quality of Experience derived by the
user from the service. This overall Quality of Experience is often a function of how
good the image or video component of the multimedia signal looks or how good the
audio component sounds, as well as the interactions between sensory perception. In
this survey, we restrict our discussion to the quality assessment (QA) of image, video
and audio components of multimedia signals.
The application realm of multimedia QA is enormous as evidenced by the

increasing interest in this field over the last decade. We depict the universe of
applications that can benefit fromQAmethods in Fig. 1. All the applications in Fig. 1
target a human end-user and can utilize QA methods in performance evaluation
and benchmarking of the multimedia system. Additionally, QA methods can be
used in perceptual optimization of the multimedia service. In other words, system
configuration parameters of a multimedia system can be manipulated to maximize
the Quality of Experience of the end-user of the system.
There are three categories of QA algorithms: Full-Reference QA, Reduced

Reference QA and No-Reference QA, also known as blind QA. Full-Reference
QA algorithms operate on distorted media signals while having a pristine, ideal
“reference” signal (of the same content) available for comparison. The vast majority
of QA algorithms fall into this category because of the relative simplicity of making
quality judgments relative to a standard. Reduced-Reference QA algorithms operate
without the use of a pristine reference, and instead, use additional (side) information
along with the distorted signal. Reduced-Reference QA algorithms use features from
the reference signal that are of lower bandwidth than using the entire reference signal
to aid the QA task. No-Reference QA algorithms attempt to assess signal quality
without using any other information than the distorted signal. This process has
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Fig. 1 Application realm of multimedia QA

proved daunting and there is little substantive work on this topic. Most of the work
on No-Reference QA so far relies on the use of prior knowledge of the distortion
process, such as degradation from compression that creates characteristic artifacts
such as blocking, blurring, or ringing, to develop an algorithm. This approach does
not generalize across different distortion types. Yet, humans perform the task almost
instantaneously, which suggests that there is hope in this direction. It is our view
that Full-Reference QA algorithms have reached a degree of maturity that make
them suitable for widespread use and deployment, while much needs to be learned
about human perception of quality before generic No-Reference QA algorithms
reach desired levels of performance. In this survey, we will focus on Full-Reference
QA algorithms for multimedia, which is an area that is of considerable practical
significance. Full-Reference QA algorithms often require a registration stage to align
the reference and test signals prior to QA. Registration methods are beyond the
scope of this paper.
While a survey of QA methods can be found in [92], that reference studies

methods developed in the 90’s when interest in QA was primarily driven by display
applications. A discussion of QA methods can also be found in several recent
books [63, 65, 85, 95]. The goal of this survey is to provide the reader with a
comprehensive view of current progress in QAmethods in the context of multimedia
applications. We review methods of objective QA of audio, image, video and
audio-visual multimedia signals in Sections 2, 3, 4 and 5 respectively. We discuss
benchmarking of objective QAmethods, publicly available databases for researchers
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and the performance of current methods in matching human perception in Section 6.
We conclude this survey in Section 7.

2 Auditory perception and quality

Computational methods of assessing the quality of digital speech and audio signals
have been studied since the 1970’s in the context of telephone applications and
remain important with the popularity of newer multimedia applications and Voice
over IP (VoIP). Many of the approaches that have been proposed for full reference
audio QA bear similarities to each other in that they use a psycho-acoustic model
of auditory perception, which is applied to the reference and test audio signals
whose quality difference is to be evaluated. The psycho-acoustic model accounts
for various stages of processing that occur in the peripheral, middle and inner ear.
These models are often constructed using psycho-acoustic experiments that study
auditory responses of humans to carefully designed stimuli. Ground truth data from
such experiments is used to construct a computational model of hearing sensitivity
to the input signal that is often closely related to neuro-scientific models of how
the human ear functions. The output of the psycho-acoustic model is considered
representative of the neural activity patterns at the output of the auditory system,
which is relayed by the vestibulocochlear nerve to the human brain via intermediate
points along the auditory pathway. The outputs of the psycho-acoustic model are
then further processed using cognitive models that account for higher stages of
auditory processing in the human brain which are less understood. The outputs of the
cognitive models are then compared using different metrics to predict the perceptual
quality of the test signal with respect to the reference. Some of the early work
on audio quality prediction focused on narrow-band speech signals and distortions
introduced by speech coders, while later work has focused on the more difficult
subject of QA for wide-band audio signals such as music.
A block diagram of a psycho-acoustically based audio QA algorithm is shown

in Fig. 2 and this block diagram is intentionally simplified to illustrate the close
similarities to psychovisually-based image QA algorithms discussed in Section 3.
Typically, processing of an audio signal is performed in small intervals of time
and a time interval of 20 ms duration has been often been used [60]. The transfer
function of the outer and middle ear is modeled to account for differences in hearing
sensitivities as a function of frequency. Sensitivity of hearing peaks in the region of 3
KHz and reduces for frequencies above and below this range, resulting in a bandpass
characteristic [43, 72]. While bandpass models of the transfer function of the ear
are an important component of most wideband audio QA systems, this step is often
approximated using a lowpass filter that bandlimits the signal to less than 5 KHz
in QA of narrowband speech signals [60]. The reference and test signals filtered
using the transfer function is considered representative of the signal reaching the
inner ear or cochlea, where a time-frequency transformation occurs. This is modeled
by passing the audio signal through a bank of bandpass filters whose frequency
response is designed to match the frequency analysis that the inner ear performs.
The frequency analysis is often modeled using the Bark scale (or modifications of
it) specified by Zwicker that has 24 bandpass filters, with center frequencies in the
range of 50 Hz to 13.5 KHz, with better frequency resolution at lower frequencies
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Fig. 2 Block diagram
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and increasing bandwidths at higher frequencies [97]. Other frequency analysis
approaches, such as the short term FFT, have also been used for computational
efficiency, while trading off accuracy in matching human auditory perception [56].
The output of the frequency analysis stage is passed through further stages that
model downstream processing that occurs in the auditory system such as conversion
to a loudness scale [60, 98]. One of the important and lesser understood components
of downstream processing is masking, which refers to the reduction in loudness of a
signal due to the presence of a second stronger signal. Masking is very important
in QA since the same amount of noise or distortion in an audio signal may be
masked to different degrees by the audio signal that carries the distortion, thereby
modifying the degree of annoyance to the human listener. Several masking models
have been proposed in the literature. The model often takes the form of a divisive
normalization of the energy/intensity of the test or noise signal by the reference audio
signal. A detailed discussion of the various masking models is beyond the scope of
this paper, but can be found in [56, 60, 76]. The quality of the test signal with respect
to the reference is then calculated using different metrics such as the noise to signal
loudness ratio [60] or a combination of multiple features computed at the output of
the psycho-acoustic model [56, 76]. Features that have been proposed for use in audio
QA include noise-to-mask ratio, signal bandwidth, detection probability, perceived
loudness and so on [76].
Several algorithms have been proposed for the quality assessment of speech and

wideband audio signals using the psycho-acoustic modeling framework presented
here [3, 5, 10, 27, 29, 34, 49, 55, 70, 75, 83]. The pioneering work of Schroeder et al.
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is particularly notable [60], in addition to early and important work by Karjalainen
and Brandenburg which has had an impact on this field [5, 34]. The International
Telecommunications Union (ITU) has adopted two standards for measurement of
full reference audio quality: the Perceptual Evaluation of Speech Quality (PESQ)
for speech signals as recommendation ITU-T Rec. P.862 adopted in 2001 [50] and the
Perceptual Audio Quality Evaluation (PEAQ) for wideband audio as recommenda-
tion ITU-R Rec. BS.1387 adopted in 1999 [44]. The PESQ and PEAQ algorithms
are the result of consolidation of much of the early work on audio quality using the
psycho-acoustic modeling framework . The PEAQ was developed as a collaboration
of six audio QA algorithms [3, 10, 27, 49, 70, 75], which in turn built upon other early
work [5, 34, 60, 98].
Other algorithms that do not utilize explicit modeling of the auditory processing

in humans have also been proposed [11, 33]. These QA algorithms take an engi-
neering approach to the problem and define features or mathematical entities that
correlate with loss of quality, without incurring the complexity and computation of
modeling the entire auditory perception pathway in humans. As an example, the
Structural SIMilarity (SSIM) index that was originally developed for still images and
described in Section 3 has been applied in audio quality evaluation with suitable
modifications and has been demonstrated to correlate quite closely with subjective
judgments [12, 33]. The Energy Equalization Quality Metric (EEQM) compares
the spectrograms of the original and test audio signals to develop a quality metric
[11]. It is worthwhile to note that such mathematically-based QA algorithms also
utilize several components or concepts that are psycho-acoustically based, such as
time-frequency decompositions or masking models, and there is no clear line of
distinction between psycho-acoustic QA algorithms and mathematically-based QA
algorithms.

3 Visual perception and still image quality

A substantial body of literature on image QA considers the psychophysics of human
vision in constructing a quality index and are similar in vein to audio QA algorithms
discussed in Section 2. Indeed, visual and auditory processing in the human being and
psycho-physical modeling of the vision and hearing pathway share some remarkable
and important commonalities, such as the bandpass nature of the sensitivity of
the auditory and visual pathways to frequency; time-frequency decomposition of
audio signals in hearing and space-frequency decomposition of still image signals
in vision; increased frequency resolution of the decomposition at lower frequencies;
increasing bandwidths at higher frequencies in the decomposition; masking effects
and much more. As with audio, low level processing of the visual input is relatively
well understood with established computational models of lower level processing in
the retina and early stages of the visual cortex in the human brain. Higher level
processing of these inputs in latter stages of the visual cortex, the extra-striate
cortex and beyond in the visual pathway remains an active area of research. The
increased dimensionality and the sheer number of neurons involved in processing the
visual input makes vision modeling a much more complex problem than modeling of
hearing.
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The approach taken by most psycho-visual based models is to determine how
the lower level physiology of the visual system limits visual sensitivity. Lower order
processing occurs in the optics, retina, lateral geniculate nucleus, and striate cortex of
the visual system [82]. Higher level processing, such as recognition and segmentation
are, either too local in their effect, or not understood well enough to be effectively
utilized. However, there have been attempts to model higher level motion processing
in the extra-striate cortex in video QA, which we discuss in Section 4. In general,
psycho-visual modeling based QA systems incorporate modeling of three types of
processes that introduce sensitivity variations: light level, spatial frequency and signal
content.
Most psycho-physically based methods for image QA are similar in philosophy to

psycho-acoustically based audio QA algorithms discussed in Section 2 and construct
a computational model of the response or sensitivity of the visual system as a function
of the stimulus. Stimuli that best enable study of visual sensitivity to the stimulus
characteristic of interest are carefully designed and displayed to human observers
in psychophysical experiments. Thresholds of visibility are often measured for the
stimuli to study various properties of vision and ground truth data from these studies
are used to propose computational models that predict the observed responses as a
function of the stimulus. Such models are often very closely related to computational
models of how the human vision system processes the visual input, which is a
wide open area of research in the field of neuro-science and visual psychology. A
QA model is then constructed by passing the reference and test images through
such a cognitive model to obtain a perceptually meaningful measure of quality. An
extremely simplified block diagram of a generic psychovisually-based image QA
system is illustrated in Fig. 5. Note the close similarity between Figs. 5 and 2. Many
psycho-visually based methods incorporate elaborate models for calibration of the
signal for viewing distances and display devices [13, 39], which are beyond the scope
of this paper.
Most image QA algorithms include a frequency analysis stage that decomposes

the reference and test images into different channels (usually called subbands) tuned
to different spatial frequencies and orientations using a set of linear filters. This
stage is intended to mimic similar processing that occurs in the human vision system:
neurons in the visual cortex respond selectively to stimuli with particular spatial
frequencies and orientations [82]. Different decompositions have been used in the
literature including the Gabor decomposition, Cortex transform, steerable pyramid,
wavelet transform and so on [15, 16, 69, 91]. While certain decompositions such as the
Gabor and Cortex transforms are perceptually motivated, certain other transforms
such as the wavelet transform are chosen for reasons of computational efficiency.
Psycho-visually based quality metrics then model different properties of low level
vision such as Weber’s law or luminance masking, contrast masking and contrast
sensitivity. A well known law governing perception known as theWeber-Fechner law
stipulates that over a large dynamic range, and for many parameters, the threshold
of discrimination between two stimuli increases linearly with stimulus intensity. This
law was discovered by Ernst Weber in the 19th century and later, Gustav Fechner
showed how Weber’s law could be accounted for by postulating that the external
stimulus is scaled into a logarithmic internal representation of sensation [18]. The
sensitivity of the human eye for sinusoidal illuminance changes as a function of
spatial frequency was systematically studied in [81] and it was shown that human
perception of brightness followsWeber’s law over a broad range of stimulus strength.
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Interestingly, the Weber-Fechner law applies not only in vision, but also in the
perception of sound and in particular, the perception of sound intensity, pitch
and musical tempo has been found to follow the Weber’s law. Spatial contrast
sensitivity of vision refers to the differences in sensitivities to stimuli of varying
spatial frequencies but with equal strength. The spatial contrast sensitivity function
shows a bandpass shape with reduced sensitivity to low and high spatial frequencies
[57, 59]. Contrast masking refers to the reduction in visibility of one signal component
due to the presence of a similar signal component. In vision, contrast masking often
occurs due to the presence of a masking signal at adjacent spatial locations, spatial
frequency or orientation. Contrast masking has been studied extensively in the
literature and psychophysical studies of this phenomenon that have influenced QA
include [22, 38, 47, 58, 92]. Similar to masking in audio signals, the masking model
often takes the form of a divisive normalization of the energy/intensity of the test or
noise signal by the reference image and predicts the level of distortion to which an
image can be exposed before the alteration is apparent to a human observer.
Several image QA algorithms have been proposed using a combination of com-

putational models, often in cascade, of one or more of the luminance masking,
contrast sensitivity and contrast masking properties of human vision. These include
the pioneering work of Mannos and Sakrison [41], the Emmy award winning Sarnoff
JNDMetrix technology based on the Lubin model [39], the Visible Differences
Predictor (VDP) [13], DCTune [92], Teo and Heeger model [73], Moving Pictures
Quality Metric (MPQM) [78], the Perceptual Distortion Metric (PDM) that builds
uponMPQM [94], a scalable wavelet-based index [42] and the Visual Signal-to-Noise
Ratio (VSNR) [7].
Recent trends in image QA have also seen a shift toward mathematically-based

QA algorithms that take an engineering approach to the problem—a trend seen
in audio QA also as described in Section 2. One of the prominent algorithms
utilizing this approach is the Structural SIMilarity (SSIM) framework for image QA
[84, 86]. Despite the apparent simplicity of the SSIM index, it has been shown to
correlate quite closely with subjective judgments of quality [86]. The simplicity of
the SSIM index also makes it fast, efficient, easy to use as a quality indicator in a
variety of applications, as well as in optimizing various image processing systems
for visual quality. The SSIM index has achieved enormous popularity over the
last few years, and is now part of publicly available software packages such as the
Wang Image Viewer, the MSU Video Quality Measurement Tool, the open source
x.264 implementation of H.264/AVC, the JM reference software implementation
of H.264 (http://iphome.hhi.de/suehring/tml/JM(JVT-X072).pdf) and VideoClarity’s
ClearView. SSIM has been utilized in a number of applications (not limited to
image processing) such as audio QA as described in Section 2, image fusion, content
retrieval/indexing, image/video compression, watermarking, denoising, chromatic
image quality, retinal and see-through wearable displays, video hashing, wireless
video, visual surveillance, radar imaging, digital camera design, infrared imaging,
MRI imaging, remote sensing, target recognition, chromosome imaging, and indus-
trial control.
SSIM hypothesizes that the visual quality of an image is related to the amount

of structural information that the visual system can extract from it and attempts
to avoid explicit modeling of visual processing. SSIM is computed locally between
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corresponding patches from the reference and test images and the SSIM index

between image patches f̃ and g̃ is defined as the product of three components:

SSIM[f̃, g̃] = l[f̃, g̃]α . c[f̃, g̃]β . s[f̃, g̃]γ

where α, β and γ are parameters used to adjust the relative importance of the three
components.

l(f̃, g̃) is a luminance comparison function:

l[f̃, g̃] =
2µf̃µg̃ + C1
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c(f̃, g̃) is a contrast comparison function:
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s[f̃, g̃] is a structure comparison function:

s[f̃, g̃] =
σf̃g̃ + C3

σf̃σg̃ + C3

where σf̃g̃ =
1

N − 1

N
∑

i=1

(

f̃i − µf̃

)

(

g̃i − µg̃

)

The luminance and contrast comparison terms of the SSIM index account for
variations in visual quality due to lighting changes in the test image with respect
to the reference such as brightening, darkening, contrast enhancement etc. The key
component of the SSIM index is the structure term that responds to distortions
that alter the structure of the image patch and is quantified using the normalized
cross correlation between the image patches. Although the SSIM index is defined by
three terms, the structure term in the SSIM index is generally regarded as the most
important, since variations in luminance and contrast of an image do not affect visual
quality as much as structural distortions [84].
The SSIM index is computed locally at each pixel of the image and can be

visualized as an image, often referred to as a SSIM map, which provides useful
information on the localization of distortions. Examples of SSIM maps are shown
in Fig. 3. This SSIM map is then pooled to obtain a single quality score for the entire
image. The original paper on SSIM used the mean of the SSIM map to compute
the overall SSIM index [86]. Several extensions of the SSIM index have also been
proposed—most notably, the Multi-Scale SSIM (MS-SSIM) index that improves
upon the SSIM index by decomposing the images into multiple scales before QA
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(a) Reference (b) JPEG (c) SSIM Map

(d) Reference (e) JPEG-2000 (f) SSIM Map

(g) Reference (h) White noise (i) SSIM Map

Fig. 3 Illustration of SSIM Maps. Left column shows reference images. Middle column shows
distorted images obtained from the reference using JPEG compression, JPEG2000 compression and
additive white Gaussian noise. Right column shows the SSIM index at each pixel displayed as an
image. Bright regions correspond to better quality and dark regions correspond to worse quality.
SSIM Maps clearly display the regions of the distorted image that are visually annoying to the human
observer

[89]. Other extensions to SSIM incorporate color information [77], rotation and
translation invariance [90] and so on.
Another recent IQA algorithm that has been shown to perform quite well in

matching visual perception is known as the Visual Information Fidelity (VIF)
criterion [68]. VIF uses information theoretic principles in defining the quality index.
An image source communicates to a receiver through a channel that limits the
amount of information that could flow through it, thereby introducing distortions.
The output of the image source is the reference image and the output of the channel
is the test image, as shown in Fig. 4. VIF utilizes two aspects of image information
for quantifying perceptual quality: the information shared between the test and the
reference image, and the information content of the reference image itself. Statistical
models for signal sources and transmission channels are at the core of information
fidelity methods, which attempt to exploit the relationship between statistical image
information and visual quality. Recent work has shown important similarities and
relationships between the VIF, SSIM and psycho-visually based indices for QA
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Fig. 4 An information-theoretic setup for quantifying visual quality using a distortion channel
model. The visual system also acts as a channel that limits the flow of information from the source
to the receiver. The VIF index is defined using a relative comparison of the information in the upper
path of the figure and the information in the lower path

[62]. This re-emphasizes the notion that mathematically based QA algorithms are
not that different from psycho-visually based QA algorithms and do incorporate
modeling and concepts from psycho-physics, which is a necessary ingredient in
achieving the end goal of predicting human responses. Other algorithms that take
a mathematically-based approach to image QA include [1, 14, 79].

4 From images to motion pictures: video quality

Much of the research on video QA builds upon image QA algorithms with additional
components to handle the temporal aspects of video. A psycho-visually based video
QA system often consists of an entire psycho-visually based image QA system, with
modifications to existing blocks or inclusion of additional blocks to account for the
temporal dimension of video. For instance, videoQA systems often utilize a temporal
filtering stage in cascade with the spatial filtering that occurs in the “frequency
decomposition” stage of image QA systems shown in Fig. 5. This is equivalent to
filtering the videos using a spatio-temporal filterbank that is separable along the
spatial and temporal dimensions. Temporal filtering typically models two kinds of
temporal mechanisms that exist in the early stages of processing in the visual cortex
that are often modeled using linear lowpass and bandpass filters applied along the
temporal dimension of the videos [23]. Psycho-visually based video QA systems
that utilize this approach include the Moving Pictures Quality Metric (MPQM) [78],
the Perceptual Distortion Metric (PDM) [94], the Digital Video Quality (DVQ)
metric [93] and a scalable wavelet based video distortion metric [42]. Typically,
simple modifications are also made to the “Psychophysical Vision Model” block
in Fig. 5 for video QA. For instance, video QA needs to account for the spatio-
temporal contrast sensitivity function of human vision that measures the sensitivity of
vision to different spatial and temporal frequencies of the stimulus. Spatio-temporal
contrast sensitivity was first studied in early work on visual psychophysics [35]. A
spatio-temporal model of contrast sensitivity was created using measurements of
the contrast sensitivity function as a non-separable function of spatial and temporal
frequencies using psychophysical experiments in [36]. Several psycho-visually based
video QA systems have also been implemented in commercial products such as
the Sarnoff JNDMetrix technology, the Picture Quality Analyzer (PQA) 200/500
systems from Tektronix (http://www.tek.com/products/video_test/pqa500/), the
Cheetah V-Factor Quality of Experience (QoE) platform (formerly Symmetricom)
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Fig. 5 Block diagram
representing a psycho-visually
based image quality metric
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(http://www.cheetahtech.com/products/products-v-factor.html) and the Video Qual-
ity Analyzer (VQA) from AccepTV (http://www.acceptv.com/) [6].
Other mathematically based video QA algorithms utilize statistics and features

computed from the reference and test videos to predict the visual quality of
the test video. The Perceptual Evaluation of Video Quality (PEVQ) model from
Opticom (http://www.opticom.de/technology/pevq_video-quality-testing.html) [2,
40] is based on an earlier model known as the Perceptual Video Quality Measure
(PVQM) developed by Swisscom/KPN Research, Netherlands [26]. PVQM mea-
sures three different quantities from the reference and distorted videos to com-
pute video quality—an edginess indicator, a temporal indicator and a chrominance
indicator. These indicators are then combined to determine the overall perceived
video quality. Another prominent video QA system was developed at the National
Telecommunications and Information Administration (NTIA) and is known as the
Video Quality Metric (VQM) or the NTIA General Model [51]. VQM and its
associated calibration techniques have been adopted as a North American standard
by the American National Standards Institute (ANSI) in 2003. The International
Telecommunication Union (ITU) has also included VQM as a normative method
for digital cable television systems [48, 74]. VQM contains seven parameters of
which four are based on features extracted from spatial gradients of the luminance
component of the video, two parameters are based on features extracted from the
chrominance component, and one parameter is based on the product of features that
measure contrast and temporal information (both of which are extracted from the
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luminance component of the video). The SSIM index for still images has also been
extended for video QA by applying it frame-by-frame on the video sequence and
using motion vectors computed from the reference video to pool local SSIM indices
into a single video quality score [87, 88].
The human eye is very sensitive to motion and can accurately judge the velocity

and direction of motion of objects in a scene. This does not seem surprising in
view of the fact that the ability to detect motion accurately is crucial to survival
and performance of tasks such as navigating through the environment, avoiding
danger and so on.Motion attracts visual attention and affects spatio-temporal aspects
of human vision. These properties of vision are a consequence of processing in
the visual system and in particular, Area MT/V5 of the extrastriate cortex, which
plays an important role in motion perception [82]. Visual data, after lower level
processing, is transported from the visual cortex along the ventral stream to Area
MT/V5. Area MT/V5 appears to integrate local motion information computed in
the cortex into global percepts of motion of complex patterns that typically occur
in video sequences [46]. Area MT/V5 also plays a role in the guidance of some eye
movements, segmentation and structure computation in 3-dimensional space [4]—
properties of human vision that play an important role in visual perception of videos.
The video QA algorithms discussed so far focus largely on spatial aspects of video
and temporal processing in the visual cortex, which represents early stages of motion
processing in the vision system. It is our view that their performance can be improved
by modeling downstream processing in Area MT/V5 that plays an important role in
motion perception in human vision and hence, visual perception of videos.
Towards this end, we have recently developed a framework for evaluating spatial

and temporal (and spatio-temporal) aspects of distortions in video [61, 64], based
on which an algorithm known as the MOtion based Video Integrity Evaluation or
MOVIE index was defined. In this framework, video quality is evaluated not only in
space and time, but also in space-time, by evaluating motion quality along computed
motion trajectories. It is our view that using motion models in video QA represents a
significant step forward in reaching the ultimate goal of matching human perception
of videos. In our motion-based framework for VQA, separate components for
spatial and temporal quality are defined [64]. First, the reference and test videos
are decomposed into spatio-temporal bandpass channels using a Gabor filter family.
Spatial quality measurement is accomplished by computing an error index between
the bandpass reference and distorted Gabor channels using models of the contrast
masking property of visual perception. This results in local estimates of spatial quality
at each pixel of the test video which is known as the Spatial MOVIE map. Temporal
quality is measured using optical flow fields computed from the reference video
using our own multi-scale extension of the Fleet and Jepson phase-based optical
flow estimation technique [21, 64]. To compute temporal quality, MOVIE computes
reference motion-tuned responses from both the reference and distorted videos using
a weighted sum of the Gabor outputs. The weights are designed based on the
direction and speed of motion in the reference video such that the weighted sum
responds strongly to similar motion trajectories in the test video as compared to the
reference, with reduced responses whenever the test videomotion trajectory deviates
from the reference video motion. This computation in Temporal MOVIE bears
similarities with computational models that have been proposed for the response of
neurons in AreaMT [69] and is perceptually motivated. Local estimates of Temporal
MOVIE computed per pixel in the test video also results in a map known as the
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Fig. 6 Illustration of the performance of the MOVIE index. Top left shows a frame from the
reference video. Top right shows the corresponding frame from the distorted video. Bottom left
shows the Temporal MOVIE map that is logarithmically compressed for visibility. Note that only
the central frame is shown in the top row for visualization purposes and that MOVIE computation
uses several frames before and after this central frame. Bottom right shows the Spatial MOVIE map.
Bright regions correspond to regions of poor quality predicted by MOVIE. Notice that the Spatial
MOVIE map responds to the blur in the test video. The Temporal MOVIE map responds to motion
compensation mismatches surrounding the man, the oar and the ripples in the water

Temporal MOVIE map. Figure 6 illustrates quality maps generated by MOVIE on
a representative video sequence. First of all, it is evident that the kind of distortions
captured by the spatial and temporal maps is different. The test video sequences in
both examples suffer from significant blurring and the spatial quality map clearly
reflects the loss of quality due to blur. The temporal quality map, however, shows
poor quality along the edges of objects and in the water where motion compensation
mismatches are evident. Of course, the spatial and temporal quality values are not
completely independent.
Finally, the spatial and temporal quality scores are pooled to produce an overall

video integrity score known as the MOVIE index. Temporal quality computation
in MOVIE is based upon computational models of neurons in Area MT that play
a critical role in motion perception and is capable of capturing the many motion-
related distortions that occur in video. MOVIE has been shown to match human
visual perception of video quality quite closely [64].

5 Combining sensory signals: audiovisual quality evaluation

Multimedia QA is the end goal of most communication systems and determines
the overall Quality of Experience (QoE) derived by the end user of the system.
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Multimedia QA examines the overall QoE, as opposed to the QA of individual
components of the multimedia signals such as audio quality or video quality.
One critical component of assessing multimedia quality is the quality of syn-

chronization between the individual media components of the multimedia signal. In
particular, lip synchronization or the synchronization between the audio and video
components of the multimedia stream has been extensively studied in the literature.
Quality of lip synchronization is sometimes viewed as an alignment problem, which
is a necessary step in most QA systems. However, alignment for synchronization is
performed or assessed between the different streams in the multimedia signal which
requires very different methods than the alignment that is performed between the
reference and test signals in a single medium QA system. The degree of lack of
synchronization between audio and video streams tolerated by humans has been
studied [19, 54, 71]. It has been found that humans can tolerate about 80 ms delay
between the audio and video signals without finding it disturbing, while a delay of
about 160ms can lead to considerable annoyance and loss of quality in conversational
applications. The perception of asynchrony is not symmetric and people are more
tolerant of video ahead of audio than when the audio stream leads the video stream
[54, 71]. It has been hypothesized that this could be due to the fact that audio lagging
video is common since light travels faster than sound [71].
Relations between the subjective quality of audio, video and multimedia signals

have been studied and it has been found that audio and video qualities have a mutual
influence. Changes in audio quality cause a change in perceived video quality and
vice versa when humans are asked to evaluate the quality of individual component
signals, as opposed to a presentation of a multimedia signal. The overall quality of
multimedia as a function of the qualities of the component signals has been studied
and it has been found that the overall quality can be predicted well using a function
of the individual qualities of the audio and video signals [3, 25]. It has been found
that video quality dominates audio quality in a number of situations such as high
motion video, while audio quality dominates overall quality for specific stimuli such
as “talking head” videos. Overall multimedia quality of an audiovisual stream has
often been predicted using the following bilinear model.

Multimedia quality = α × Audio quality+ β × Video quality (1)

+ γ × Audio quality× Video quality+ δ (2)

It has been found that the multiplicative term, in particular, contributes sig-
nificantly to predicting the overall multimedia quality [3, 25]. Although the end goal
in most applications is the prediction of the overall Quality of Experience (QoE)
derived by the end-user, the reliability of predicting overall audio-visual quality as
a function of the quality of individual component media has resulted in the bulk of
the work being performed on the subproblems of audio and video QA. While this is
true of audiovisual quality, it is conceivable that future multimedia experiences that
are not simply audio-visual, but include other media components, will require more
extensive studies of the interaction between quality perceptions of different media
components.
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6 Benchmarking and public databases

The goal of any QA algorithm or system is to predict the perceptual quality derived
by a user consuming a media signal and studying human responses to media quality
is the only way to obtain ground truth data to assess the performance of a QA
algorithm. Obtaining quality judgments of multimedia signals from humans is often
referred to as subjective QA. Subjective QA is the only reliable means of assessing
human quality judgments and continues to be used as the ultimate standard of
performance of a multimedia communication system. However, subjective studies
can be quite cumbersome and expensive due to human involvement in the process,
which greatly limit the number of videos that can be accommodated in such an
evaluation. However, subjective studies have great relevance in providing ground
truth human data that enable benchmarking of objective QA algorithms. Subjective
studies of video quality enable us to understand the level of maturity that QA
algorithms have achieved and to understand how close we are to achieving the goal
of correlating perfectly with human judgments and eliminating subjective studies
completely. It is our view that we are a long way from achieving this goal, given the
complexity of human visual processing and the challenges in understanding human
perception of the enormous variety of multimedia (stereoscopic 3D, for example)
that is constantly evolving.
Full reference algorithms are often benchmarked using subjective studies con-

ducted in a double stimulus paradigm. Double stimulus studies present the reference
and test signals to the subject, who is asked to rate his or her quality preference for
each. Difference between scores assigned by the subject is indicative of the quality
of the test signal with respect to the reference, which is considered “perfect” quality
in full reference QA, thus accounting for any preferences subjects might have for the
reference content. Since double stimulus studies can be quite time consuming due to
the presentation of the reference signal along with each test signal, single stimulus
studies obtain quality scores from a subject based on the presentation of the test
signal alone. Often, subjective preferences for reference content is accounted for by
including the reference signals in the study and obtaining quality scores for these to
use in a subtractive manner—a procedure known as hidden reference removal.
Subjective quality scores can be obtained in a number of ways. A popular scale is

known as theAbsolute Category Rating (ACR) scale that obtains quality scores from
a subject along a scale that consists of a fixed number of categories. A 5-point ACR
scale is commonly used in audio, image, video and multimedia quality assessment
[25, 31, 32] and is also recommended as part of several ITU standards for subjective
quality assessment including ITU-T Recommendation P.800 for audio [32] and ITU-
R Recommendation BT 500.11 for television [31]. The 5-point ACR scale consists of
five labels “Bad”, “Poor”, “Fair”, “Good” and “Excellent” corresponding to quality
scores ranging from 1 to 5. Quality scales with finer resolution such as a sliding bar
scale have also been used in subjective studies, since they allow for finer and better
discrimination and statistical analysis of human preferences [20, 66, 67].
Typically, a large number of subjects are recruited in a subjective study to account

for variations between subjects in the quality assessment task. The data obtained
from individual subjects is then processed using multiple means to determine a
Mean Opinion Score (MOS) for the audio/image/video/multimedia signal. Variation
between subjects in assessing quality is also captured to characterize statistical limits
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on agreement between subjects, which in turn determines the level of performance
that an objective QA algorithm is expected to achieve since it does not aim to predict
human variation. Multiple methods have been proposed to process subjective data
obtained from individual human subjects [20, 31, 32, 44, 66, 68, 74, 80] and are
beyond the scope of this paper. The results of a subjective study for full reference
QA typically consists of reference signals, test signals, MOS scores that are obtained
by processing the raw subjective scores and often, the variance in the MOS scores
that captures inter-subject variability. Different performance metrics such as the
Spearman Rank Order Correlation Coefficient (SROCC), Pearson Linear Corre-
lation Coefficient (LCC) and Root Mean Square Error (RMSE) are then computed
between algorithmic predictions of quality and the MOS scores from the subjective
study to evaluate the performance of individual QA algorithms [20, 66, 67, 74].
Statistical analysis of the data to establish that the performance of one algorithm
is statistically significantly better or worse than others is also performed to ensure
that the differences between the performance of different algorithms is not within
the scope of inter-subject variability [66, 67, 74].
Audio QA algorithms have often been benchmarked using the databased created

by the ITU that are described in detail in [44]. PEAQ was standardized based
on the good performance of this algorithm in predicting the subjective scores in
this dataset. Several benchmarking studies of state-of-the-art image and video QA
algorithms have been conducted. The LIVE image quality assessment database
is publicly available and contains over 700 images suffering from multiple dis-
tortion types (JPEG and JPEG 2000 compression, Gaussian blur, additive white
Gaussian noise, simulated errors of JPEG2000 bitstreams over lossy wireless net-
works), with associated MOS scores obtained through a large scale subjective study
(http://live.ece.utexas.edu/research/quality/subjective.htm). The LIVE image quality
database was used to study the performance of a number of publicly available image
QA algorithms in terms of correlation coefficients and statistical significance of
performance [67]. The VIF and SSIM indices emerged as the leading algorithms
in matching human perception in this study and were shown to clearly outperform
PSNR as a quality metric. The LIVE image quality assessment database has since
emerged as a de-facto standard and is widely used in the literature to evaluate the
performance of newer algorithms. Another publicly available image quality database
is known as the Tampere Image Database (TID) [52] and contains all the distortion
types in the LIVE image quality database, in addition to other distortion types such
as different types of noise. Performance of several image QA algorithms were also
tested on the TID database and the Multi-Scale SSIM index (MS-SSIM), SSIM and
VIF indices emerged as the leading algorithms in this study as well [52].
One of the oldest and widely used databases for video QA is the publicly available

VQEG FRTV Phase-I database as part of its FR-TV Phase 1 project in 2000 [20].
However, the VQEG database suffers from a number of drawbacks. There have
been significant advances in video processing technology since 2000 and the test
videos in the VQEG study are not representative of present generation encoders
and communication systems. The VQEG study targeted secondary distribution of
television and contains interlace videos. Interlaced videos are not typical of present
generation applications such as multimedia, IPTV, video viewing on computer mon-
itors, progressive High Definition Television (HDTV) standards and so on. Further,
the VQEG database was designed to address the needs of secondary distribution of
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television and hence, the database spans narrow ranges of quality scores—indeed,
more than half of the sequences are of very high quality (MPEG-2 encoded at
>3Mbps). Overall, the VQEG videos exhibit poor perceptual separation, making
it difficult to distinguish the performance of VQA algorithms. More recently, the
LIVE Video Quality Database was developed to overcome these limitations [66].
The LIVE Video Quality Database includes videos distorted by compression using
more recent and advanced codecs such as H.264/AVC, as well as videos resulting
from simulated transmission of H.264 packetized streams through error prone com-
munication channels. Videos in the LIVEVideo Quality Database are all captured in
progressive scan formats. Further, the LIVE Video Quality Database spans a much
wider range of quality—the low quality videos are designed to be of similar quality
found in streaming video applications on the Internet (Youtube, wireless videos, live
streaming of low bandwidth videos, etc.). A study of the performance of several
state-of-the-art video QA algorithms was undertaken in [66]. The study established
MOVIE as the leading algorithm for video QA and found that the performance of
the MS-SSIM index and VQM from NTIA was competitive. Performance evaluation
contests have also been performed as part of the ITU-T standardization process
for video QA. However, the subjective data, video and results of these studies are
often not released publicly, which makes it difficult to benchmark publicly available
algorithms against the results of the ITU evaluations on proprietary algorithms from
the industry. VQM from NTIA is a notable exception and is one of the few publicly
available algorithms from the industry [51]. Other video QA databases that consist
of application specific distortion types include [17] for IP video transmission and [45]
for wireless video transmission.
Audiovisual QA studies obtain subjective scores from subjects experiencing a

presentation of a synchronized audiovisual stream. Studies such as [3, 25] also
study the subjective data from individual presentations of the audio and video
substreams separately to study the interactions between perception of audio, video
and audiovisual data.

7 Conclusions

This paper presented a survey of multimedia quality assessment with a focus on full
reference methods for QA. We discussed audio, image, video and multimedia QA
and attempted to bring out the similarities between models that have been proposed
in each of these realms, and at the same time, highlight important differences that
need to be accounted for in modeling human perception of these different media
components. The similarities between perception-based approaches to image, audio
and video QA are quite remarkable and the similarities extend down to individ-
ual components of these models (such as frequency sensitivity and masking) and
computational models for these components. Indeed, given the similarities between
audio and video QA, many of the companies such as British Telecom, Opticom,
Swisscom/KPN Research etc. that develop tools for QA and participate in ITU
standardization of QA methods are involved in the development of both audio and
video QA methods.
While there has been significant progress in the areas of audio, image and video

QA, much more work needs to be done to increase our understanding of the
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many complexities of human perception. Recent work studies quality assessment
of multi-channel audio signals [24, 96]. Another interesting area of research that
has seen a lot of recent interest is the study of visual saliency and utilizing saliency
models in improving image and video QA [30, 37, 53]. Rapid proliferation of devices
enabled to display stereoscopic 3D videos has seen some nascent research in QA
for this medium [28]. Applications of QA methods in the design of image and video
processing systems is another nascent area of research that can help optimize video
processing systems for perceptual quality [8, 9]. Finally, no-reference QA remains
a wide open and much needed tool and while progress in this area remains limited
and application-specific, the knowledge that humans can perform this task almost
instantaneously gives us hope in reaching this objective in the future.
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