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Abstract. Ease of programming is one of the main impediments for the broad 

acceptance of multi-core systems with no hardware support for transparent data 

transfer between local and global memories. Software cache is a robust 

approach to provide the user with a transparent view of the memory 

architecture; but this software approach can suffer from poor performance. In 

this paper, we propose a hierarchical, hybrid software-cache architecture that 

targets enabling pre-fetch techniques. Memory accesses are classified at 

compile time in two classes, high-locality and irregular. Our approach then 

steers the memory references toward one of two specific cache structures 

optimized for their respective access pattern. The specific cache structures are 

optimized to enable high-level compiler optimizations to aggressively unroll 

loops, reorder cache references, and/or transform surrounding loops so as to 

practically eliminate the software cache overhead in the innermost loop. The 

cache design enables automatic pre-fetch and modulo scheduling 

transformations. Performance evaluation indicates that the optimized software-

cache structures combined with the proposed pre-fetch techniques translate into 

speed-up between 10% and 20%.  Evaluation is done on a set of parallel NAS 

applications. 

Keywords: Cell BE Architecture, Software Cache, Pre-fetching, Modulo 

Scheduling. 

1 Introduction 

Heterogeneity has become one particular trend in recently proposed computer 

systems. For instance, the IBM Cell BE processor [1-5] is a multi-core design that 

mixes two architectures: a traditional superscalar core based on the PowerPC 

architecture surrounded by eight cores based on the Synergistic Processor Element 

(SPE)[4]. In the IBM Cell architecture, the SPEs are provided with local memories 

and data transfers from/to main memory are explicitly performed under software 

control. In terms of programmability, this adds another level of complexity and 

programmers have to deal with the burden of explicitly program the necessary data 

transfers within applications. General compiler-based solutions [5] are difficult to 

deploy due to the lack of sufficient information at compile time to generate correct 

and efficient code. 

One global solution is that of emulating a hardware cache by software techniques. 

In software cache based environments, every memory reference is wrapped by control 

handlers to ensure correctness. Control handlers are responsible for all cache 

operations: look-up, placement/replacement, data transfers, synchronization, address 
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translation, and consistency. Figure 1 shows an example of the kind of code emitted 

by the compiler targeting a software emulated cache. 

fct1(v[], w[], N)

{ 

for (i=0; i<N; i++) {

tmp  = index[i];

w[tmp] = v[i];

v[i]++;

}

}

fct1(v[], w[], N)

{ 

for (i=0; i<N; i++) {

tmp  = index[i];

w[tmp] = v[i];

v[i]++;

}

}

r1

a) Original code example. b) Traditional software cache.
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fct1 (v[], w[], N)

{ 

for (i=0; i<N; i++) {

if (!HIT(h1, &index[i])) 

MAP(h1, &index[i]);

tmp = REF(h1, &index[i]);

if (!HIT(h2, &w[tmp])) 

MAP(h2, &w[tmp]);

if (!HIT(h3, &v[i])) 

MAP(h3, &v[i]);

REF(h2, w[tmp]) = REF(h3, &v[i]);

CONSISTENCY(h2, &w[tmp]);

REF(h3, &v[i]) = REF(h3, &v[i]) + 1;

CONSISTENCY(h3, &v[i]);

}

}

fct1 (v[], w[], N)

{ 

for (i=0; i<N; i++) {

if (!HIT(h1, &index[i])) 

MAP(h1, &index[i]);

tmp = REF(h1, &index[i]);

if (!HIT(h2, &w[tmp])) 

MAP(h2, &w[tmp]);

if (!HIT(h3, &v[i])) 

MAP(h3, &v[i]);

REF(h2, w[tmp]) = REF(h3, &v[i]);

CONSISTENCY(h2, &w[tmp]);

REF(h3, &v[i]) = REF(h3, &v[i]) + 1;

CONSISTENCY(h3, &v[i]);

}

}
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r2

r3

d) Software cache handler. 

fct1 (v [], w[], N)

{ 

i=0;

if (!HIT(h1, &index[i])) 

AMAP(h1, &index[i]);

tmp = REF(h1, &index[i]);

if (!HIT(h2, &w[tmp])) 

AMAP(h2, &w[tmp]);

if (!HIT(h3, &v[i])) 

AMAP(h3, &v[i]);

for (i=0; i<N-1; i++) {

if (!HIT(h1’, &index[i+1])) 

AMAP(h1’, &index[i+1]);

tmp’ = REF(h1’, &index[i+1]);

if (!HIT(h2’, &w[tmp’]))  

AMAP(h2’, &w[tmp’]);

if (!HIT(h3’, &v[i+1]))  

AMAP(h3’, &v[i+1]);

TSYNC(h1, h2, h3);

REF(h2, &w[tmp]) = REF(h3, v[i]);

CONSISTENCY(h2, &w[tmp]);

REF(h3, &v[i]) = REF(h3, &v[i]) + 1;

CONSISTENCY(h3, &v[i]);

h1 = h1’; h2 = h2’; h3 = h3’;

tmp = tmp’;

}

TSYNC(h1, h2, h3);

REF(h2, &w[tmp]) = REF(h3, v[i]);

CONSISTENCY(h2, &w[tmp]);

REF(h3, &v[i]) = REF(h3, &v[i]) + 1;

CONSISTENCY(h3, &v[i]);

}

fct1 (v [], w[], N)

{ 

i=0;

if (!HIT(h1, &index[i])) 

AMAP(h1, &index[i]);

tmp = REF(h1, &index[i]);

if (!HIT(h2, &w[tmp])) 

AMAP(h2, &w[tmp]);

if (!HIT(h3, &v[i])) 

AMAP(h3, &v[i]);

for (i=0; i<N-1; i++) {

if (!HIT(h1’, &index[i+1])) 

AMAP(h1’, &index[i+1]);

tmp’ = REF(h1’, &index[i+1]);

if (!HIT(h2’, &w[tmp’]))  

AMAP(h2’, &w[tmp’]);

if (!HIT(h3’, &v[i+1]))  

AMAP(h3’, &v[i+1]);

TSYNC(h1, h2, h3);

REF(h2, &w[tmp]) = REF(h3, v[i]);

CONSISTENCY(h2, &w[tmp]);

REF(h3, &v[i]) = REF(h3, &v[i]) + 1;

CONSISTENCY(h3, &v[i]);

h1 = h1’; h2 = h2’; h3 = h3’;

tmp = tmp’;

}

TSYNC(h1, h2, h3);

REF(h2, &w[tmp]) = REF(h3, v[i]);

CONSISTENCY(h2, &w[tmp]);

REF(h3, &v[i]) = REF(h3, &v[i]) + 1;

CONSISTENCY(h3, &v[i]);

}

c) Modulo scheduling.
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CONSISTENCY(handle, addr)

Update dirty-bits

HIT(handle, addr)

handle = Lookup(addr);

return handle != NULL;

REF(handle, addr)

return &handle.local

+ addr & MASK

TSYNC(handlers)

Synchronize with data trans fers 

associated with handlers.

AMAP(handle, addr)

handle = Place(addr);

if (NeedToEvict(handle))

WriteBack(handle)

Synchronize();

Readln(addr, handle);

//asynchronous MAP

MAP(handle, addr)

handle = Place(addr);

if (NeedToEvict(handle))

WriteBack(handle)

Synchronize();

Readln(addr, handle);

Synchronize();
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r3
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fct1 (v [], w[], N)
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i=0;

if (!HIT(h1, &index[i])) 

AMAP(h1, &index[i]);

tmp = REF(h1, &index[i]);

if (!HIT(h2, &w[tmp])) 

AMAP(h2, &w[tmp]);

if (!HIT(h3, &v[i])) 
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CONSISTENCY(handle, addr)

Update dirty-bits

HIT(handle, addr)

handle = Lookup(addr);

return handle != NULL;

REF(handle, addr)

return &handle.local

+ addr & MASK

TSYNC(handlers)

Synchronize with data trans fers 

associated with handlers.

AMAP(handle, addr)

handle = Place(addr);

if (NeedToEvict(handle))

WriteBack(handle)

Synchronize();

Readln(addr, handle);

//asynchronous MAP

MAP(handle, addr)

handle = Place(addr);

if (NeedToEvict(handle))

WriteBack(handle)

Synchronize();

Readln(addr, handle);

Synchronize();

r3

r3

r2

r3

r3

r2

 

Fig. 1. Overhead of traditional software cache approaches. 

The memory references r1, r2 and r3 have been transformed and the correspondent 

code is showed in Figure 1b. Before the actual use of data, it is necessary to check if 

the data is resident in the software cache. This checking is done by invoking the HIT 

runtime call. If data is not resident then miss handler MAP is invoked to serve a miss. 

The MAP miss handler is responsible for selecting a cache line to be evicted (if 

necessary, and then perform the write-back operation), and finally loads the requested 

line in a synchronous manner. When data is resident in the software cache, the actual 

access can be allowed, but this operation requires an address translation: the REF 

handler is responsible for that. For memory reference r3, it is necessary to update 

memory consistency structures, in the example this is associated to the 

CONSISTENCY handler. 

Clearly, the transformed code in Figure 1b is far from optimal, especially because 

of how memory references r3 and r1 are treated. Those references expose a high 

degree of spatial locality, but every of their instances are going to be checked at 

runtime introducing unnecessary overhead. For references which expose a high 

degree of spatial-locality, it is trivial to compute the number of useful data present in 

the current cache line along the execution of the innermost loop. For such type of 

memory references we can easily compute the number of loop iterations (within the 

iteration space of i-loop) for which the current cache line can provide data for such 

references. This would allow iterating without a miss and without any software cache 

intervention. But this optimization requires some control over the cache geometry. 
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First, we must be able to pin a cache line in the cache storage, releasing it only 

when all high-locality references are done with it. Second, the cache must have at 

least one unoccupied cache line per distinct high locality references in the loops, if we 

want to remove all checking code from the innermost loop. Third, it would be 

desirable to have a “big” cache line size in order to maximize the number of iterations 

that could be executed with no need of any cache intervention. On the other side, 

reference r2 should be treated with very different mechanisms: it exposes very poor 

spatial locality, so a small cache line would be desirable. This suggests a hybrid 

design where memory references are mapped to specific storages according to the 

locality they expose. 

Another source of significant overhead is the synchronous communication in the 

MAP handler. Whatever the implementation of the MAP handler, it is necessary to 

introduce a synchronization between the data transfer and the actual load/store 

operation the MAP is associated to. This hinders the possibilities of overlapping 

communication with computation. Pre-fetch techniques can be introduced to hide the 

memory latencies, but in the context of software cache systems, pre-fetch does not 

come for free. Pre-fetching requires execution of control code related to the lookup, 

placement/replacement and data transfer operations. Besides, it is necessary to ensure 

that the pre-fetch data is in the range of the valid address space. One well known pre-

fetch technique is the modulo scheduling execution [7-9]. In Figure 1c this technique 

has been applied to the original source code. Basically, data used in iteration i+1 is 

pre-fetched in iteration i. Now the communications in AMAP are asynchronous, 

which makes possible to overlap some computation in iteration i with some 

communication related to data used in iteration i+1.  Notice the TSYNCH call which 

is responsible that the data required for load/store operations is already in the cache 

storage. But the problem is not yet solved, since there are two undesirable situations 

that make the transformation in Figure 1c inapplicable. First, it is necessary to ensure 

that no conflict appear between the set of consecutive AMAP operations. This is 

related to the associative level of the cache design and suggests a full associative 

scheme, always limited by the look-up overheads. Second, it is possible that some 

write-back operation is triggered along an AMAP operation: this implies some 

communication that has to be performed synchronously, making useless the modulo 

scheduling transformation. 

Our main contribution is to design a hierarchical, hybrid software-cache 

architecture that is designed from the ground up to enable compiler optimizations that 

reduce software cache overheads.  We identify two main data access patterns, one for 

high-locality and one for irregular accesses. Because the compiler optimizations 

targeting these two patterns have different objectives and requirements, we have 

designed two distinct cache structures that best respond to these distinct access 

patterns and optimization requirements. In particular, our design includes: (1) a high-

locality cache with a variable configuration, lines that can be pinned, and a 

sophisticated eager write-back mechanism; and (2) a transaction cache with fast, fully 

associative lookup, short lines, and an efficient write-through policy. The cache 

design includes specific support for automatic pre-fetch and modulo scheduling code 

transformations. 
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The rest of the paper is organized as follows. Section 2 presents our software cache 

design. Section 3 describes the code transformations enabled by our approach. Section 

4 evaluates our approach using some applications of the NAS benchmarks. Related 

work is presented in Section 5 and Section 6 concludes the paper with some 

conclusions. 

2 Software Cache Design 

We describe in this section the design of our hierarchical, hybrid software cache. 

Figure 2 shows the high level architecture of our software cache. Memory references 

exposing a high degree of locality are mapped by the compiler to the High-Locality 

Cache, and the others, irregular accesses are mapped into the Transactional Cache. 

The Memory Consistency Block implements the necessary data structures to maintain 

a relaxed consistency model. The Pre-fetching Block implements necessary data 

structures to maintain pre-fetching for regular memory references. 

The cache is accessed through one block only, either the High-Locality Cache or 

the Transactional Cache. Both caches are consistent with each other. The hybrid 

approach is hierarchical in that the Transactional Cache is forced to check for the 

data in the High-Locality Cache storage during the lookup process. 
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Fig. 2. Block diagram of our software cache design. 

2.1 The High Locality Cache. 

The High-Locality Cache enables compiler optimizations for memory references that 

expose a high degree of spatial locality. It is designed to pin cache lines using explicit 

reference counters, deliver good hit ratios, and maximize the overlap between 

computation and communication.  

2.1.1 High-Locality Cache Structures. 

The High Locality Cache is composed of the following six data structures, depicted in 

Figure 3: (1) the Cache Storage to store application data, (2) the Cache Line 

Descriptors to describe each line in the cache, (3) the Cache Directory to retrieve the 

lines, (4) the Cache Unused List to indicate the lines that may be reused, (5) the 

Cache Translation Record to preserve for each reference the address resolved by the 
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cache lookup, and (6) the Cache Parameters to record global configuration 

parameters. 

The Cache Storage is a block of data storage organized as N cache lines, where N 

is total cache storage divided by the line size. The line size is described by the Cache 

Line Size parameter, and must be a power of 2. In our configuration, we can store 

between 16 to 128 cache lines of sizes from 512 to 4KB, within its 64KB cache 

storage.  

Each cache line is associated with a unique Cache Line Descriptor that describes 

all there is to know about that line. Its Global Base Address is a global memory 

address that corresponds to the base address associated with this line in global 

memory. Its Local Base Address corresponds to the  base address of the cache line in 

the local-memory cache storage. Its Cache Line State records state such as whether 

the line holds modified data or not. Its Reference Counter keeps track of the number 

of memory references that are currently referencing this cache line. Its Directory 

Links is a pair of pointers used by the cache directory to list all of the line descriptors 

that map to the same cache directory entry. Its Free Links is a pair of pointers used to 

list all the lines that are currently unused (i.e. with reference counter of zero). Its 

Communication Tags are a pair of integer values used to synchronize data transfers 

to/from the software cache.  In our configuration, we synchronize using DMA fences, 

using each of the 32 distinct hardware fences. Our communication tags thus range 

from 0 to 31. 
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Fig. 3. Structures of the High Locality Cache and Transactional Cache 

The Cache Translation Record preserves information generated by the lookup 

process and to be later used when data is accessed by the actual reference. It contains 

3 elements; the global base address of the original reference, the local base address in 

the cache storage, and a pointer to the cache line descriptor.  

We implement an efficient, fully associative cache structure using the Cache 

Directory structure. It contains a sufficiently large number of double–linked lists (128 

in our implementation), where each list can contain an arbitrary number of cache line 

descriptors. A hash function is applied to the global base address to locate its 

corresponding list, which is then traversed to find a possible match. The use of a hash 

function enables us to efficiently implement cache configurations with up to 128-way 

fully associative caches.  
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The Cache Unused List is a double-linked list which contains all the cache line 

descriptor no longer in use. Other cache parameters include parameters such as the 

Cache Directory Hash Mask, a mask used by the cache directory to associate a global 

base address with its specific linked list.  

2.1.2 High-Locality Cache Operational Model. 

The operational model for the High Locality Cache is composed of all the operations 

that execute upon the cache structures and implement the primitive operations shown 

in Figure 1, namely lookup, placement, communication, synchronization and 

consistency mechanisms. The following paragraphs describe each type of operation. 

The lookup operation for a given reference r, translation record h, and global 

address g is divided in two different phases. The first phase checks if the global 

address g is found in the cache line currently pointed to by the translation record h. 

When this is the case, we have a hit and we are done. Otherwise, we have a situation 

where the translation record will need to point to a new cache line in the local storage. 

The lookup process then enters its second phase. The second phase accesses the cache 

directory to determine if the referenced cache line is already resident in the cache 

storage.  When we have a hit, we update the translation record h and we are done. 

Otherwise, a miss occurs and we continue with placement and communication 

operations. 

The reference counter is often updated during the lookup process. Whenever a 

translation record stops pointing to a specific cache line descriptor, the reference 

counter of this descriptor is decremented by one. Similarly, whenever a translation 

record starts pointing to a new cache line descriptor, the reference counter of this new 

descriptor is incremented by one.  

The placement code is invoked when a new line is required. Free lines are 

discovered when their descriptor’s reference counter reaches zero. Free lines are 

immediately inserted at the end of the unused cache line list. Modified lines are then 

eagerly written back to global memory. When a new line is required, we grab the line 

at the head of the unused cache line list after ensuring that the communication 

performing the write-back is completed, if the line was modified. 

We support a relaxed consistency model. While it is the Memory Consistency 

Block responsibility  to maintain consistency, the High-Locality Cache is responsible 

for informing the consistency block of which subsets of any given cache line have 

been modified and how to trigger the write-back mechanism. Every time a cache line 

miss occurs, cache thus informs the Memory Consistency Block about which elements 

in the cache line are going to be modified.  

The communication code performs all data transfer operations asynchronously. For 

a system such as the Cell BE processor with a full-featured DMA engine, we reserve 

the DMA tags 0 to 15 for data transfers from main memory to the local memory, and 

tags 16 to 31 for data transfers in the reverse direction. In both cases, tags are 

assigned in a circular manner. Tags used in the communication operations are 

recorded in the Communication Tags field of the Cache Line Descriptor. All data 

transfers tagged with the same DMA tag are forced by the DMA hardware to strictly 

perform in the order they were programmed. 
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The synchronization operation is supported by the data in the Cache Line 

Descriptor, in the Communication Tags field. The DMA tags stored in this field are 

used to check that any pending data transfer is completed. The Communication Tags 

record every tag that invokes the corresponding cache line. 

When accessing data, the global to local address translation is supported through 

the translation record. The translation operation is composed of several arithmetic 

computations required to compute the reference’s offset in the cache line and to add 

the offset to the local base address. 

2.2 The Pre-Fetch Block 

The Pre-Fetch Block enables automatic pre-fetch for regular memory references. The 

Pre-fetch Block is selective in the sense that not all regular memory references trigger 

the pre-fetch. It is activated under demand according to the activity in the High 

Locality Cache. For selected references, the memory addresses are forwarded to the 

Pre-fetch Block. Then the pre-fetch can be activated and all forwarded addresses 

determine the next cache lines to be pre-fetched. 

2.2.1 The Pre-Fetch Structures. 
The Pre-Fetch Block is composed of the following four structures: (1) Pre-Fetch 

Translation Record to preserve for each reference the address resolved by the pre-

fetch operation, (2) Pre-fetch Translation Table to keep track of records being used in 

pre-fetch operation, and (3) the Pre-fetch Communication Tags to preserve DMA tags 

used for pre-fetching. 

The Pre-Fetch Translation Record structure consists of four fields: (1) the pre-

fetch global address is the base address of the cache line that triggers pre-fetch, (2) the 

pre-fetch local address is the base address of the cache line allocated to hold the pre-

fetched data in the local store, (3) the pre-fetch cache line descriptor is a pointer to the 

cache line descriptor of the pre-fetched line, and (4)  the pre-fetch distance that 

indicates the next cache line to be pre-fetched as a distance (in a number of cache 

lines) from the cache line base address that triggered the pre-fetch. 

The Pre-Fetch Translation Table is a table where each entry holds one Pre-Fetch 

Translation Record.  The Pre-fetch Counter keeps track of the number of pending pre-

fetch operations. 

The Pre-fetch Communication Tags consists of all communication tags actively 

used for pre-fetching purposes. These tags are going to be used to synchronize the 

data transfers associated to the pre-fetched data. 

2.2.2 The Pre-Fetch Block Operational Model. 
Memory references that have been selected to trigger the pre-fetch are recorded in the 

Pre-fetch Translation Table. Pre-fetch is activated from the High Locality Cache and 

this causes the Pre-fetch Block to traverse the Pre-fetch Translation Table and for 

every non empty entry performs the look-up, placement and replacement operations 

as if the cache line being pre-fetched was referenced by the actual computation. 

Along this process all the communication tags used in the data transfers are recorded 

in the Pre-fetch Communication Tags register. Under control of the High Locality 

Cache, it is possible to synchronize with the pre-fetched data using this register. 
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Introducing pre-fetch support requires reserving some of the available 

communication tags specifically for that purpose. The range of tags that was used to 

bring data in to the cache storage is split in two different ranges, one from 0 to 7, the 

other from 8 to 15. Both ranges are assigned in a circular manner and the High 

Locality Cache and the Pre-fetch block are coordinated to switch from one range to 

the other every time the Pre-fetch block is required to perform pre-fetch operations. 

2.3 The Transactional Cache 

The Transactional Cache is aimed at memory references that do not expose any 

spatial locality. Because miss ratios are expected to be high, this cache is designed to 

deliver very low hit and miss overhead while enabling overlapped computation and 

communication. The design introduces very simple structures that allow support for 

lookup, placement, communication, consistency, synchronization, and translation 

mechanisms. 

In our configuration, the transactional storage is organized as a small 4KB capacity 

cache, fully associative, and with 32 128-bytes cache lines. It supports a relaxed 

consistency model using a write-through policy. 

2.2.1 The Transactional Cache Structures 
The Transactional Cache is composed of the following four data structures, shown in 

Figure 3: (1) the Cache Directory to retrieve the lines, (2) the Cache Storage to hold 

the application data, (3) the Translation Record to preserve the outcome of a cache 

lookup for each reference, and (4) some additional cache state. 

The Cache Directory is organized as a vector of 32 4-byte entries. Each entry holds 

the global base address associated with this entry’s cache line. The index of the entry 

in the directory structure is also used as index into the Cache Storage to find the data 

associated with that entry. The directory entries are packed in memory and aligned at 

a 16-byte boundary so as to enable the use of fast SIMD compares to more quickly 

locate entries. The Cache Storage is organized as 32 cache lines, where each 128-

bytes line is aligned at a 128-byte boundary. 

To increase concurrency, the cache directory and storage structures are logically 

divided in four equal-size partitions; the Cache Turn Ticket indicates which partition 

is actively used. Within the active partition, the Cache Placement Index points to the 

cache line that will be used to service the next miss.  

At a high level, the active partition is used for buffering cache lines which are 

going to be used in the current transaction and these cache lines were pre-fetched. The 

next partition, in circular manner, is used for placing cache lines which we are pre-

fetching and which are going to be used in the next transaction in the next iteration of 

the unrolled loop. Other two partitions are used to buffer data of the two previous 

transactions while their modified data is being flushed back to the main memory. 

Based on this explanation, we defined three states in which our partitions can be: in-

use, pre-fetching and flushing. 

2.2.2 The Transactional Cache Operational Model 
In this paper, a transaction is a set of computation and related communication that will 

happen as a unit (but never rollback). Operations in a transaction happen in four 
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consecutive steps: (1) initialization, (2) communication into local memory, (3) 

computation associated with the transaction, and (4) propagation of any modified 

state back to global memory. 

During initialization, in Step 1, the Cache Turn Ticket is set to point to the next 

partition in the circular manner. The Cache Placement Index is set to point to the first 

cache line of the new partition. In our configuration, its value can be 0, 8, 16 or 24 

when the ticket is, respectively, pointing to partition 0, 1, 2, or 3. In addition, all cache 

directory entries in the new active partition are erased. 

In Step 2, the data corresponding to each global-memory reference is brought into 

the local memory, using sequences of look-up and possibly calls to the miss-handler. 

The lookup process for a given reference r, translation record h, and global address g 

first proceeds with a standard High-Locality cache lookup, since we do not want to 

replicate data in both cache structures. This first lookup can be avoided if address g 

can be guaranteed not to be found in the high-locality cache. When a hit occurs, the 

Local Base Address field in translation record h is simply set to point to the 

appropriate sub-section of the line in the high-locality cache storage. When a miss 

occurs, however, we proceed by checking the address g against the entries in 

transactional cache directory. This lookup is fast on architectures with SIMD units, 

such as the SPEs. On platforms where 4 entries fit into one SIMD register, such as the 

SPEs, we perform a 32-way address match using 8 compare SIMD instructions. When 

a miss occurs, a placement operation is executed. When a hit occurs, the look-up can 

operate in one of two ways. If the hit occurred within the active partition (partition 

where we are going to pre-fetch the data for next iteration), we simply update the 

translation record h. If the hit occurred within the next partition, in circular manner, 

then we need to do two actions. First, we need to migrate the line to the active 

partition, a placement operation is used for this operation as well. Second, we need to 

inform previous partition (partition which is in in-use state) about migrated cache line 

in order to maintain consistency between transactions. If, however hit occurred within 

the other partitions, we simply update the translation record h.  

The placement code simply installs a new directory entry and associated cache line 

data at the line pointed by the Cache Placement Index. The placement index is then 

increased by one (modulo 32). Communications generated by the miss in Step 2 

results into an asynchronous 128-byte transfer into local memory.  

Step 3 proceeds with the computation, using the same translation record as seen in 

Section 2.1.  

In Step 4, every modified storage location that was modified by a store in Step 3 is 

directly propagated into global memory. This approach to relaxed consistency 

eliminates the need for any extra data structures (such as dirty bits) and do not 

introduce any transfer atomicity issue. These asynchronous communications occur 

regardless of whether a hit or miss occurred in Step 2. Moreover, only the modified 

bytes of data are transferred into global memory during Step 4. 

In order to ensure consistency within and across transactions, every data transfer is 

tagged with the index of the cache line being used (from 0 to 31), and a fence is 

placed right after the data transfer operation. All data transfers tagged with the same 

tag are forced by the hardware to perform strictly in the order under which they were 

programmed. The synchronization code occurs in precisely two places. The first 
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synchronization is placed between Steps 2 & 3, to ensure that the data arrive before 

being used. When Partition 0 is active, we wait for data transfer operations with tags 

[0..7], for partition 1 appropriate tags are [8..15], for partition 2 tags are [16..23] and 

for partition 3 wait for tags [24..31]. For the data transfer initiated in Step 4, the 

synchronization code is placed at the beginning of the next transaction with the same 

value for the Cache Turn Ticket, synchronizing with the data transfer operations 

tagged with numbers [0..7], [8..15], [16..23] or [24..31].  

2.4 The Memory Consistency Block 

The Memory Consistency Block contains the necessary data structures to maintain a 

relaxed consistency model. For every cache line in the High Locality Cache, 

information about what data has been modified is maintained using a Dirty Bits data 

structure. Whenever a cache line has to be evicted, the write-back process is 

composed by three steps. The cache line in main memory is read, then a merge 

operation is applied between both versions, the one resident in the cache storage and 

the one recently transferred, and finally, the output of the merge is sent back to main 

memory. All data transfers are synchronous and atomic. 

3 Code Transformations 

We describe in this section the type of code transformation techniques that are now 

enabled using our pre-fetching and modulo scheduling approach in the software 

cache. With no loss of generality, the code transformation targets the execution of 

loops. 

The code transformations are performed in three ordered phases: (1) classifying of 

memory references into regular and irregular accesses; (2) transformation of the code 

to optimize regular memory accesses, and (3) transformation of the code to optimize 

irregular memory accesses. We illustrate this process in Figure 4 using the same 

introductory example presented in Figure 1a. 

3.1 Classification of memory accesses 

In Phase 1, memory accesses are classified as regular or irregular accesses. Figure 4a 

shows the classification of the references for our exemplary code. Memory accesses 

index[i] and v[i] with i=0…N are labeled as regular, while memory access w[tmp] 

with tmp=index[i] is labeled as irregular memory access.  

3.2 Regular Access Transformations 

In phase 2, original for-loop is transformed into two nested loops (Figure 4b). 

Dynamic sub-chunking of the iteration space is done by using those two nested loops. 

In each dynamic sub-chunk of iterations we are sure that all relevant data are 

permanent in the cache storage and iterating through them, in the inner for-loop of the 

transformed code, is not going to produce miss. Work done in the inner for-loop 

(related to regular memory accesses) does not have any cache overhead. In the while 

loop we are introducing necessary code transformations per each high locality 

memory reference. The lookup, dynamic sub-chunking, consistency maintaining, pre-

fetching and synchronization operation are done in the while loop. 
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for (i=0; i<N; i++) {

tmp  = index[i];

w[tmp] = v[i];

v[i]++;

}

for (i=0; i<N; i++) {

tmp  = index[i];

w[tmp] = v[i];

v[i]++;

}

TINIT_PF();

tmp = REF(h1, &index[i]);

GET_PF(h2, &w[tmp]);

tmp’ = REF(h1, &index[i+1]);

GET_PF(h2, &w[tmp’]);

for(i=i+2;i<2*[n/2];i+=2){

TINIT_PF();

tmp_pf = REF(h1, &index[i]);

GET_PF(h2_pf, &w[tmp_pf]);

tmp_pf’ = REF(h1, &index[i+1]);

GET_PF(h2_pf’, &w[tmp_pf’]);

TSYNC(h2, h2’);

REF(h2, &w[tmp]) = REF(h3, &v[i-2]);

PUT(h2, &w[tmp]);

REF(h3, &v[i-2]) = REF(h3, &v[i-2])+1;

REF(h2, &w[tmp’]) = REF(h3, &v[i-1]);

PUT(h2, &w[tmp’]);

REF(h3, &v[i-1]) = REF(h3, &v[i-1])+1;

h2 = h2_pf;   tmp = tmp_pf;

h2’ = h2+pf’;   tmp’ = tmp_pf’;

}

TINIT_PF();

tmp = REF(h1, &index[i]);

GET_PF(h2, &w[tmp]);

tmp’ = REF(h1, &index[i+1]);

GET_PF(h2, &w[tmp’]);

for(i=i+2;i<2*[n/2];i+=2){

TINIT_PF();

tmp_pf = REF(h1, &index[i]);

GET_PF(h2_pf, &w[tmp_pf]);

tmp_pf’ = REF(h1, &index[i+1]);

GET_PF(h2_pf’, &w[tmp_pf’]);

TSYNC(h2, h2’ );

REF(h2, &w[tmp]) = REF(h3, &v[i-2]);

PUT(h2, &w[tmp]);

REF(h3, &v[i-2]) = REF(h3, &v[i-2])+1;

REF(h2, &w[tmp’]) = REF(h3, &v[i-1]);

PUT(h2, &w[tmp’]);

REF(h3, &v[i-1]) = REF(h3, &v[i-1])+1;

h2 = h2_pf;   tmp = tmp_pf;

h2’ = h2+pf’;   tmp’ = tmp_pf’;

}

a) Original code example. b) High-Locality cache transform

i=0;

while (i<N){

n = N;

if (!AVAIL(h1, &index[i]))

HMAP_PF(h1, &index[i]);

n = min(n, i+AVAIL(h1, &index[i]);

if (!AVAIL(h3, &v[i]))

HMAP_PF(h3, &v[i]);

n = min(n, i+AVAIL(h3, &v[i]);

HCONSISTENCY(n, h3);

PREFETCH();

HSYNC(h1, h3);

for (;i<n;i++){

tmp = REF(h1, &index[i]);

w[tmp] = REF(h3, &v[i]);

REF(h3, &v[i])=REF(h3m &v[i])+1

}

}

i=0;

while (i<N){

n = N;

if (!AVAIL(h1, &index[i]))

HMAP_PF(h1, &index[i]);

n = min(n, i+AVAIL(h1, &index[i]);

if (!AVAIL(h3, &v[i]))

HMAP_PF(h3, &v[i]);

n = min(n, i+AVAIL(h3, &v[i]);

HCONSISTENCY(n, h3);

PREFETCH();

HSYNC(h1, h3);

for (;i<n;i++){

tmp = REF(h1, &index[i]);

w[tmp] = REF(h3, &v[i]);

REF(h3, &v[i])=REF(h3m &v[i])+1

}

}

r1

r2

r3

AVAIL(handle, addr, stride): return the number of data entries that found within 

the cache line pointed to by the handle

HMAP_PF(handle, addr, distance): communicate with Pre-Fetch Block, locate, 

determine hit, update reference counter, eagerly write back and bring in line when 

needed (using appropriate set of tags )

HCONSISTENCY(trip count, handle list): update memory consistency for each of  

the handles and for the given trip count

HSYNC(handle list): synchronize with all pending DMA recorded in the handle list and 

generated by HMAP_PF calls from current iteration of by PREFETCH call from 

the previous iteration

PREFETCH(): trigger pre-fetch operation in the pre-fetch block.

AVAIL(handle, addr, stride): return the number of data entries that found within 

the cache line pointed to by the handle

HMAP_PF(handle, addr, distance): communicate with Pre-Fetch Block, locate, 

determine hit, update reference counter, eagerly write back and bring in line when 

needed (using appropriate set of tags)

HCONSISTENCY(trip count, handle list): update memory consistency for each of  

the handles and for the given trip count

HSYNC(handle list): synchronize with all pending DMA recorded in the handle list and 

generated by HMAP_PF calls from current iteration of by PREFETCH call from 

the previous iteration

PREFETCH(): trigger pre-fetch operation in the pre-fetch block.

d) High-locality cache handler. 

c) Transactional cache transform
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for (i=0; i<N; i++) {

tmp  = index[i];

w[tmp] = v[i];

v[i]++;

}

for (i=0; i<N; i++) {

tmp  = index[i];

w[tmp] = v[i];

v[i]++;

}

TINIT_PF();

tmp = REF(h1, &index[i]);

GET_PF(h2, &w[tmp]);

tmp’ = REF(h1, &index[i+1]);

GET_PF(h2, &w[tmp’]);

for(i=i+2;i<2*[n/2];i+=2){

TINIT_PF();

tmp_pf = REF(h1, &index[i]);

GET_PF(h2_pf, &w[tmp_pf]);

tmp_pf’ = REF(h1, &index[i+1]);

GET_PF(h2_pf’, &w[tmp_pf’]);

TSYNC(h2, h2’);

REF(h2, &w[tmp]) = REF(h3, &v[i-2]);

PUT(h2, &w[tmp]);

REF(h3, &v[i-2]) = REF(h3, &v[i-2])+1;

REF(h2, &w[tmp’]) = REF(h3, &v[i-1]);

PUT(h2, &w[tmp’]);

REF(h3, &v[i-1]) = REF(h3, &v[i-1])+1;

h2 = h2_pf;   tmp = tmp_pf;

h2’ = h2+pf’;   tmp’ = tmp_pf’;

}

TINIT_PF();

tmp = REF(h1, &index[i]);

GET_PF(h2, &w[tmp]);

tmp’ = REF(h1, &index[i+1]);

GET_PF(h2, &w[tmp’]);

for(i=i+2;i<2*[n/2];i+=2){

TINIT_PF();

tmp_pf = REF(h1, &index[i]);

GET_PF(h2_pf, &w[tmp_pf]);

tmp_pf’ = REF(h1, &index[i+1]);

GET_PF(h2_pf’, &w[tmp_pf’]);

TSYNC(h2, h2’ );

REF(h2, &w[tmp]) = REF(h3, &v[i-2]);

PUT(h2, &w[tmp]);

REF(h3, &v[i-2]) = REF(h3, &v[i-2])+1;

REF(h2, &w[tmp’]) = REF(h3, &v[i-1]);

PUT(h2, &w[tmp’]);

REF(h3, &v[i-1]) = REF(h3, &v[i-1])+1;

h2 = h2_pf;   tmp = tmp_pf;

h2’ = h2+pf’;   tmp’ = tmp_pf’;

}

a) Original code example. b) High-Locality cache transform

i=0;

while (i<N){

n = N;

if (!AVAIL(h1, &index[i]))

HMAP_PF(h1, &index[i]);

n = min(n, i+AVAIL(h1, &index[i]);

if (!AVAIL(h3, &v[i]))

HMAP_PF(h3, &v[i]);

n = min(n, i+AVAIL(h3, &v[i]);

HCONSISTENCY(n, h3);

PREFETCH();

HSYNC(h1, h3);

for (;i<n;i++){

tmp = REF(h1, &index[i]);

w[tmp] = REF(h3, &v[i]);

REF(h3, &v[i])=REF(h3m &v[i])+1

}

}

i=0;

while (i<N){

n = N;

if (!AVAIL(h1, &index[i]))

HMAP_PF(h1, &index[i]);

n = min(n, i+AVAIL(h1, &index[i]);

if (!AVAIL(h3, &v[i]))

HMAP_PF(h3, &v[i]);

n = min(n, i+AVAIL(h3, &v[i]);

HCONSISTENCY(n, h3);

PREFETCH();

HSYNC(h1, h3);

for (;i<n;i++){

tmp = REF(h1, &index[i]);

w[tmp] = REF(h3, &v[i]);

REF(h3, &v[i])=REF(h3m &v[i])+1

}

}

r1

r2

r3

AVAIL(handle, addr, stride): return the number of data entries that found within 

the cache line pointed to by the handle

HMAP_PF(handle, addr, distance): communicate with Pre-Fetch Block, locate, 

determine hit, update reference counter, eagerly write back and bring in line when 

needed (using appropriate set of tags )

HCONSISTENCY(trip count, handle list): update memory consistency for each of  

the handles and for the given trip count

HSYNC(handle list): synchronize with all pending DMA recorded in the handle list and 

generated by HMAP_PF calls from current iteration of by PREFETCH call from 

the previous iteration

PREFETCH(): trigger pre-fetch operation in the pre-fetch block.

AVAIL(handle, addr, stride): return the number of data entries that found within 

the cache line pointed to by the handle

HMAP_PF(handle, addr, distance): communicate with Pre-Fetch Block, locate, 

determine hit, update reference counter, eagerly write back and bring in line when 

needed (using appropriate set of tags)

HCONSISTENCY(trip count, handle list): update memory consistency for each of  

the handles and for the given trip count

HSYNC(handle list): synchronize with all pending DMA recorded in the handle list and 

generated by HMAP_PF calls from current iteration of by PREFETCH call from 

the previous iteration

PREFETCH(): trigger pre-fetch operation in the pre-fetch block.

d) High-locality cache handler. 

c) Transactional cache transform
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into cache when needed, in pre-fetching manner

TSYNC(handle, list): synchronize with all pending 

DMAs recorded in the handle list and generated 

by GET_PF calls

PUT(handle, addr, size): generated DMA to write 

back Into global memory.

TINIT_PF(): initialize transaction for pre-fetching

GET_PF(handle, addr): locate and bring in data 

into cache when needed, in pre-fetching manner

TSYNC(handle, list): synchronize with all pending 

DMAs recorded in the handle list and generated 

by GET_PF calls

PUT(handle, addr, size): generated DMA to write 

back Into global memory.

e) Transactional cache handler. 
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Fig. 4. Example of C code and its code transformation. 

The lookup operation checks if the address &index[i] of the reference r1 is in the 

cache line pointed to by the translation record (handle) h1. This checking is done by 

using AVAIL macro. The AVAIL macro returns for reference r1 number of iterations 

for which this reference will be present in the cache line pointed to by handle h1. If 

this number is greater than zero we have hit and then we are proceeding with 

determining of the upcoming dynamic sub-chunk of the iteration space. If this number 

is equal to zero then macro HMAP_PF is invoked to serve a miss. Notice the third 

argument of the HMAP_PF macro, indicating if pre-fetch has to be considered for the 

given memory reference. This argument corresponds to the pre-fetch distance, 

indicating the next cache line to be most likely accessed by the memory reference. In 

case the distance is other than zero, pre-fetch is activated and the address is forwarded 

to the Pre-fetch Block. Next step is determining of the upcoming dynamic sub-chunk 

of the iteration space. Once we have sub-chunking factor n we can process with 

consistency and synchronization operations. Since reference r1 is read only access 

reference then consistency operation is not processed for r1 but is processed for r3 

which is read and write access reference. The PREFETCH macro triggers pre-fetch 

for all forwarded addresses. Notice that the pre-fetch code is executed before the 

synchronization with the DMA engine takes place, giving the opportunity to overlap 

the pre-fetch code to actual communication. 

3.3 Irregular Access Transformation 

In Phase 3, we transform the inner for-loop so as to optimize cache overhead for 

irregular memory accesses. The first task is to determine the transactions. In our 
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work, the scope of a transaction is a basic block, or a subset of. Large transactions are 

beneficial as they potentially increase the number of concurrent misses, thus 

increasing communication overlap. In general, a transaction can contain as many 

distinct irregular accesses as there are entries in a single partition of the transactional 

cache, 8 in our configuration. Because of our focus on loops, larger transactions are 

mainly achieved through loop unrolling. In our example, we unrolled the inner for-

loop by a factor of 2 (for conciseness) so as to include two w[tmp] and w[tmp’] 

references within a single transaction. 

The code generated for a transaction closely follows the four step process outlined 

in Section 2.2.2. As shown in Figure 4c, we first initialize the transaction using the 

macro TINIT (Step 1) and then proceed in asynchronously acquiring the data of each 

irregular reference r2 (due to loop unrolling of factor 2 we have two r2  references) 

using the GET macro (Step 2). Once all irregular references have been processed, we 

issue a TSYNC operation to synchronize with pending DMAs issued by appropriate 

GET macros. We then access the data using the REF macro (Step 3) and write-back 

the modified data using the PUT macro (Step 4). 

Conceptually, the work inside transactions in modulo scheduled loop can be 

visualized as four tasks. In the loop prologue we pre-fetch data which are going to be 

used within computation section in the first iteration of the unrolled loop. We assign 

task Step1&2 to this prologue. At the beginning of the unrolled loop body we pre-

fetch data which is going to be used in the next iteration or in the loop epilogue. In 

this part of the code we use translation records h2 and h2’. We assign task Step1’&2’ 

to this part of the unrolled loop body. After this we have a necessary synchronization 

point where we synchronize with pending DMAs determined by translation records 

h2 and h2’. When we are sure that data has arrived in the cache, we execute 

computation section and at the end, modified data is sent back to main memory (PUT 

macro). This corresponds to task Step3&4. In the steady state of the loop, partitions 

go changing of state: pre-fetch, in-use, flushing. Note that for conciseness, the loop 

unrolling has been done assuming that the number of iteration was a multiple of two. 

Figure 5 shows the evolution of each partition for three iterations of the loop. 
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Fig. 5. Sequence of events in a modulo scheduled loop. 
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4 Evaluation 

In the evaluation section we measure the impact in performance of the proposed pre-

fetching techniques: automatic pre-fetch for regular references, modulo scheduling for 

irregular references. In this evaluation we never combine these two techniques in the 

same loop. We compare two cache configurations, one where pre-fetch is enabled, 

another where pre-fetch is not active. Improvement is measured in terms of speed-up. 

We have evaluated the proposals with the CG, IS and FT parallel applications from 

the NAS benchmark suite [10] and STREAM parallel application [6], which are 

parallelized using OpenMP directives. All measurements are performed on a Cell BE 

blade with two Cell BE processors running at 3.2 GHz with 1 GB of memory (512 

MB per processor) under Linux Fedora Core 6 (Kernel 2.6.20-CBE). Only one Cell 

BE processor is used for the evaluation. 
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Fig. 6. Speed-up factors for automatic pre-fetch and modulo scheduling. Modulo scheduling is 

used in CG loop9 and IS loop3, due to CG and IS are totally dominated by irregular memory 

accesses in the mentioned loops. 

Figure 6 shows speedup factors obtained by enabling pre-fetch in a variety of loops 

from the CG-B, IS-B, FT-B and STREAM benchmarks. Overall execution times for 

CG-B, IS-B and FT-B are shown in Figure 7. For STREAM, the improvements are 

noticeable, but very predictable in the sense that the four tested kernels are not 

computationally bounded. Communications represent an important percentage of 

overall execution time. This is yet more noticeable in the differences we observe 

between the four kernels: the copy kernel which is not including any floating point 

operation doubles the performance of the other kernels. 

In the case of CG-B, the improvements range from 3% up to 10 % at most. Loops 

3 and 7 suffer from slight degradation (not even a 1% and 5% respectively). The 

reason for that is related to the differences on how deeply the loops are affected by 

communications. The CG-B loop 9 is dominated with irregular memory references 

and is the most consuming loop in the CG-B. Improvement achieved in this loop has 

good influence on overall execution time of the CG-B (Figure 7). The case of the IS-

B is different. Here the benefits are quite impressive: loop 2 improves about 15% and 

loop 3 improves about 40%. Loop 3 is totally dominated by irregular memory 

references and the introduction of the modulo scheduling transformation is what 

causes such improvement. Improvement in loop3 has good influence on overall 

execution time of the IS-B. The case of FT is very different and exposes very poor 
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improvements, ranging from slight performance degradation (2% at most) up to some 

improvement close 5%. All loops are dominated by the computation, not by the 

communication overheads. There is no improvement in overall execution time for FT. 
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Fig. 7.  Execution times of NAS benchmarks. Corresponding speedup factors in overall 

execution times are: CG - 1,082, IS - 1,203 and FT - 0,996. 

5 Related Work 

Although a different technique, tiling transformations and static buffers may be used 

to reach the same level of code optimization [5]. In general, when the access patterns 

in the computation can be easily predicted, static buffers can be introduced by the 

compiler, double-buffering techniques can be exploited at runtime, usually involving 

loop tiling techniques. This approach, however, requires precise information about 

memory aliasing at compile time, which is not always available. In general, the 

association between static buffers and memory references should be postponed until 

run time. This is what we do in this paper, since cache lines are treated as buffers that 

are dynamically allocated, solving all the difficulties related to memory aliasing. Of 

course, if the performance of a software cache approach is to match that of static 

buffers, clearly, any efficient implementation should work with a cache line size 

similar to that of the static buffers (usually 1KB, 2KB, 4KB, depending on the 

number of memory references to treat) [5]. This is the case of the software cache 

design presented in this paper. 

Specifically for the Cell BE, there has been  proposal to perform data pre-fetching 

under an inspector/executor model [12]. For indirect accesses, a slicing compilation 

technique is introduced to generate a code version that at runtime computes all 

memory addresses generated in indirect accesses. This makes possible to overlap 

DMA transfers with the slice execution. This approach has been showed to return 

considerable improvements for indirect accesses, but the technique is limited to the 

associative level in the cache design. Cache conflicts cause to switch between the 

inspector and executor code versions, diminishing the effects of this technique. 

The Memory Hierarchical Layer Assignment (MHLA) [13] is a unified technique 

which addresses the problem of optimizing the data assignments into memory layers 

and the block transfers between memory layers. This technique starts from the source 

code specification of the application and by collecting profiling information optimizes 

memory mapping and execution order of data transfers. Also, memory organization is 

potentially customized by this technique. The similarity of this technique with our 
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approach is that pre-fetching is implemented by invoking DMA operations in order to 

overlap computation and communication. In contrast to our technique, MHLA is 

aimed for buffering techniques and simple memory organizations due to application-

specific pre-fetching approach. 

Hare [14] is a pre-fetching scheme consisting of a programmable engine controlled 

by the user instructions. This technique uses hardware support for pre-fetching. 

Indeed, pre-fetching is initiated by the hardware at run-time. Programming the 

proposed engine by user code takes advantages from compile-time analyzes and 

hardware eliminates additional pre-fetch instruction overhead. In contrast with this 

proposal, in our work we do not have any hardware support for pre-fetching. 

Interrupt Triggered Software Pre-fetching (ITSP) [15] is a pre-fetching technique 

for real-time embedded systems that adds pre-fetching instructions in interrupt 

handler software to target cache misses. Pre-fetching optimizations done in ITSP 

tunes the software to be executed based on observed performance during previous 

executions. In contrast with our work, ITSP relies on profiling information collected 

during previous executions of application and hardware pre-fetching instructions are 

used. 

6 Conclusions 

This paper presents a novel hybrid software cache architecture designed for pre-

fetching purposes. Hybrid software cache architecture maps memory accesses 

according to the locality they are exposing. According to difference in mapping, pre-

fetching is organized in order to enable good overlap of communication and 

computation for both types of memory accesses. We show performances of pre-

fetching for regular and irregular memory accesses. We also show impact of 

additional instruction overhead introduced due to software implemented pre-fetching. 

We show that with our approach good speedup can be obtained in some benchmarks 

(speedup factors from 1.15 to 1.43) and also we show that additional instruction 

overhead in software implemented pre-fetching sometimes has negative impact on 

overall performances of some applications and some particular loops in the 

applications.  
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