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Abstract—The paper presents a self-commissioning procedure
for the automatic parameter estimation of three-phase induction
motor drives. The procedure consists of a step-by-step approach
with different test signals to obtain the parameter values, while
maintaining the motor at standstill. The actual implementation
is capable of mapping both inverter and motor parameters non-
linearities, providing accurate data for the tuning of common
current regulators and for advanced sensorless drives as well.
Theoretical and experimental results are provided, proving the
effectiveness of the procedure.

Index Terms—AC converter machines, Induction motors, Pa-
rameter estimation, Non-linear models, Digital control.

I. INTRODUCTION

Parameter estimation of AC machines is a research topic
in the electric drive area for almost three decades. From the
early scalar controllers to the more recent vector field-oriented
control (FOC), a precise knowledge of motor parameters has
always been a key issue.

Induction motor (IM) parameter estimation represents one
of the most widely studied topics in the electric drive literature,
mainly due to the widespread use of IMs in industry. Early
papers, as for example [1], were devoted to parameter sensi-
tivity analysis. Then, many papers discussed how to provide
constant motor parameters to FOC algorithms for IMs. Among
the presented solutions, [2] and [3] are quite representative. In
[2], one of the first standstill procedures for IM parameter
estimation was presented. The procedure exploits DC and
transient measurements on currents and references voltages
from the controllers to estimate the stator resistance, the
leakage inductance and the rotor time constant of the machine
under test. As mentioned by the Author, the procedure is still
limited to linear models. Magnetic saturation is not considered,
even for the calculation of the rotor time constant, which is
obtained through specific transient tests that do not saturate
the machine. A more comprehensive solution for parameter
estimation of FOC drives is presented in [3], which claims a
complete drive tuning within 60 s. However, the motor rotates
during the tuning process. Moreover, it requires a speed sensor
and a phase voltage measurement, which is not common in
industrial drives. The same solution is recalled in [4], where
the parameter estimation is performed at standstill using a
PWM inverter and injecting DC and sinusoidal currents. Major
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drawbacks are related to the simplifications introduced in the
estimation equations and, again, the supposed linearity of the
system.

Recently, and using a similar approach, [5] presented a
very simple and handy standstill test. The paper claims that
two standstill impedance measurements, using two sinusoidal
voltage signal injections, are mathematically sufficient to de-
termine the IM parameters of the well-known inverse-Γ four-
elements equivalent circuit. The solution is to be considered as
the simplest one in the scenario, although the least accurate. A
slightly more precise procedure, based on two sinusoidal signal
injection, is reported in [6]. The paper includes a detailed
discussion about the frequency dependence of some of the
motor parameters, but the problem of inductance saturation is
not solved yet.

More recently, a research branch focused on the realization
of reliable sensorless drives, in which AC motors are elec-
tronically speed-driven without the need of a position/speed
sensor, which is substituted by a mathematical speed observer
that heavily relies on the motor model. An accurate knowledge
of model parameters is mandatory for a stable sensorless drive
with acceptable performances. All in all, this implies that
parameter non-linearities, like magnetic saturation, should be
included.

Two different approaches exist to track parameter non-
linearities. The first approach is the on-line tracking of the
most critical parameters of the IM like stator and rotor resis-
tances, in order to update on-the-fly the tuning of sensorless
algorithms. Interesting solutions have been presented in [7],
[8] and [9].

The second approach makes use of off-line procedures,
which use test signals to compute a detailed map of IM
parameters non-linearities, prior or during the final commis-
sioning phase. [10] proposed a standstill solution which takes
into account the magnetising inductance variation. The flux
linkage-current relationship is estimated with a third-order
polynomial by means of a sinusoidal current injection and a
recursive least square algorithm. However, the procedure needs
a prior knowledge of other IM parameters. In [11], a fully-
comprehensive series of laboratory tests has been performed
on an IM, with the aim of obtaining a complete description
of the motor parameters. As a matter of fact, an excellent
self-commissioning scheme should obtain results as close as
possible as the ones shown in that work. Procedures like that
are not suitable for self-commissioning, since they are not
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executed at standstill and they need a varying mechanical load.
They also require a quite high computational effort. However,
results clearly show the dependence and the non-linearities
of every IM parameter with respect to IM state variables
(for example, the magnetising inductance as function of the
magnetising current).

This work presents a complete off-line self-commissioning
procedure for IM parameter estimation at standstill. The
algorithm is not limited to linear models and it improves
the results obtainable with the procedures of [12], [13] and
[14], by innovating and merging them all with a step-by-
step approach. The setup is composed by a conventional
induction motor fed by a three-phase PWM inverter. Several
different test signals are used in sequence, with the aim of
extracting and mapping parameter non-linearities, as proven
in the experimental section. The procedure is performed at
standstill, and without any change in motor connections, so
that it fits for motors already placed on site, too. When the
machine is supplied from an inverter, there will appear high
frequency components of the current, superimposed to the
sinusoidal signals. These higher harmonics are of few interest
here, since the goal is to get a model valid for the first
harmonic of the supply. Actually, this makes sense since any
vector controller (and sensorless scheme as well) operates to
control fundamental quantities only [15]. Of course, a model
valid also at high frequency could improve the accuracy in fast
dynamic responses (e.g. step response) but the trade-off is with
a unitary, simple and easy to handle lumped-parameter model.
The limited improvement in the accuracy that derives from
the modelling of high-frequency effects on parameters would
hardly justify the rise of complexity of the model topology.

The paper is organised as follows: Sect. II recalls the
basics of the induction motor, with particular focus on the
magnetically saturated machines and their equivalent circuit
representation at standstill. Sect. III details the theory and the
sequence of the step-by-step procedure for each parameter
of the machine. Sect. IV shows some experimental results
obtained from the implementation of the procedure in the
laboratory, by using a fast-control prototyping test bench.
Considerations and comments on the obtained results are given
as well, before the conclusive remarks of Sect. V.

II. INDUCTION MOTOR BASICS

The general IM space vector voltage balance equations for
a symmetric machine can be expressed in the stationary αβ
reference as follows [16]:

us = Rsis +
dλs
dt

0 = Rsrisr +
dλsr
dt
− jωmeλsr

(1)

In (1), the space vectors are relative to the stator phase
voltages (usa, usb, usc) and currents (isa, isb, isc), the rotor
currents referred to the stator (isra, isrb, isrc), the stator flux
linkages (λsa, λsb, λsc) and the rotor flux linkages referred to
the stator, (λsra, λsrb, λsrc). Rs is the stator resistance, Rsr
is the rotor resistance referred to the stator, and ωme is the

electromechanical speed, which is equal to pωm where p is the
pole pair and ωm is the mechanical speed. Further expansions
of (1) require some additional considerations, reported below.

A. Magnetically saturated machines

The constitutive equation of a generic non-linear inductor
is the following:

u(t) =
dλ(i(t))

dt
(2)

where u, i are the voltage and current in the bipole, and λ(i(t))
indicates the magnetic flux linkage as function of the current.
The instantaneous link between the flux linkage and the current
can be expressed by the relation λ(i(t)) = La(i(t))i(t), in
which the apparent inductance La is function of the current
only. By utilising the chain differentiation rule, it can be
expanded as:

u(t) =
dλ(i(t))

dt
=
d (La(i(t))i(t))

dt
=

=

[
La(i(t)) + i(t)

dLa(i(t))

di(t)

]
di(t)

dt
=

= [La(i(t)) + Ld(i(t))]
di(t)

dt
=

= L(i)
di(t)

dt
.

(3)

Equation (3) introduces the differential inductance Ld. The
final expression is formally similar to the linear case, with the
obvious distinction of an explicit dependence on the current
of the instantaneous inductance L

L(i) = La(i) + i(t)
dLa(i)

di
. (4)

A graphical interpretation of the apparent and instantaneous
inductances is reported in Fig. 1. The instantaneous inductance
L represents the actual inductance around the operating point
(idc, λdc, ) and it expresses the derivative dλ/di of the flux
linkage with respect to the current in that point.

Fig. 1. Graphical interpretation of L and La.

B. Inverse-Γ equivalent circuit at standstill

In case of a linear system, the IM mathematical model (1)
yields the well-known inverse-Γ electrical equivalent circuit
[16], which features a transient inductance Lt in the stator
branch and the magnetising inductance Lϕ in one of the two
derived branches (Fig. 2).
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Fig. 2. Inverse-Γ equivalent circuit for linear systems.

In case of saturation of the motor magnetic paths, establish-
ing the flux density will require an additional component of
the magnetising current iϕ, which will be a nonlinear function
of the stator flux. The combined effect of the magnetomotive
force (mmf) required by the saturated stator teeth and yoke
may be incorporated in the inverse-Γ circuit by adding an
appropriate nonlinear inductive element across the stator flux
linkage ([17]). To maintain the same circuit topology of Fig. 2,
the saturation effect has been split into the inductances Lt(is)
and Lϕ(iϕ), which then become functions of the respective
current space vectors, according to [16].

Fig. 3. Inverse-Γ vector equivalent circuit including stator iron saturation, at
standstill.

At standstill (ωme = 0), and consistently with the general
discussion of Sect. II-A, which applies also to vector quanti-
ties, the extension to the non-linear case can be obtained by
expressing the flux linkages derivatives in (1) as functions of
the instantaneous inductances:

us = Rsis + Lt(is)
dis
dt

+ Lϕ(iϕ)
diϕ
dt

0 = Rsrisr + Lϕ(iϕ)
diϕ
dt

(5)

where the dependences of the inverse-Γ circuit inductances
to the current space vectors are made explicit. The resulting
equivalent circuit is reported in Fig.3. The voltage balance
equation for the phase a is obtained by taking the real
components of (5):

usa = Rsisa + Lt(is)
disa
dt

+ Lϕ(iϕ)
diϕa
dt

0 = Rsrisra + Lϕ(iϕ)
diϕa
dt

(6)

Clearly, further simplifications to (6) are possible only if
either the system is linear, so that inductances are independent
to the currents, or in the particular case in which one phase is
disconnected, which realises the conditions

isb = −isa, isc = 0
iϕb = −iϕa, iϕc = 0

(7)

and, of course, usb = −usa, usc = 0. If this is the case,
equations (6) collapse to the following:

usa = Rsisa + Lt(isa)
disa
dt

+ Lϕa(iϕa)
diϕa
dt

0 = Rsrisra + Lϕ(iϕa)
diϕa
dt

(8)

The per-phase equivalent circuit, including saturation ef-
fects, which will be the reference for the next Sections, is
reported in Fig. 4. It is worth to recall that due to the setting
ωme = 0, the representation is valid at standstill only.

Fig. 4. Per-phase inverse-Γ equivalent circuit at standstill, including satura-
tion.

According to Sect. II-A, the inductances of the circuit are all
of instantaneous type and each of them depends on the current
that flows in its own circuit branch; in case of absence of
saturation, their differential component is null, and they reduce
to the apparent (and constant) inductance type. Once more, it
is worth to highlight that the instantaneous inductances are
suitable for writing voltage balance equations, as in (8). The
conventional nomenclature still holds, referring to Lϕ and Lt
as magnetising and transient (or total leakage) inductances
respectively. The equation set (6) is the base for the proposed
procedure of parameters estimation. As mentioned, the aim
is to make a set of measurements with different test signals,
and at different current levels, wanting to get the link between
the electrical parameters of Fig.3 and the different operating
conditions. Those parameters are essential in most of the
sensorless algorithms reported in literature, as for example thus
related to the model reference adaptive systems (MRAS) class.
In the following, the focus will be brought to the derivation
of the four-parameter set under the hypothesis (7), but the
results can be readily extended to the case of a current vector
positioned anywhere in the stationary reference frame, by the
use of (6) and the vector version of (4).

III. THEORY OF OPERATIONS

The estimation procedure refers to the model of Fig. 4
and it consists of four consecutive steps, each exploiting the
results of the preceding one. The parameters are estimated
by imposing a known voltage and measuring the current in
a single phase (let it be phase a). The constraint on the
voltages which makes valid the representation at standstill
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(a)

(b)

Fig. 5. The selected topology for induction motor voltage supply. (a) One
phase open. (b) Suitable voltage SVM reference.

(usb = −usa, usc = 0) is easily obtained by the topology
reported in Fig. 5a.

The voltage generator of Fig. 5a is computed to get a net
phase voltage (referred to the motor neutral point 0) usa =
ua0 = u∗. When the IM is fed by a conventional three-phase
space-vector-modulated (SVM) inverter, the candidate voltage
vector reference is the following:

u∗s =
2

3

(
u∗ − u∗ ej2π/3

)
(9)

It is easy to see that (9) implements the topology of Fig. 5(a).
The voltage vector u∗s is obtained by applying u∗ to the phase
a, −u∗ to the phase b and a null voltage to the phase c. The
current flows from phase a to b, while c remains virtually
open. In the stationary frame, the reference space vector is
then u∗ − ju∗/

√
3, as shown in Fig. 5(b).

As a relevant add-on feature, the motor will remain con-
nected to the plant with unmodified electrical and mechanical
connections, and this fits for a specific requirement of many
industrial applications.

A. Stator resistance estimation

The first parameter to be estimated is the stator resistance
Rs. A DC current is imposed in the circuit of Fig. 4 by
setting u∗=Usa,dc in (9). The inductances in Fig. 4 behave
as short-circuits and no current flows into the Rsr branch.
Consequently, the ratio between the phase voltage and current
returns the expected estimation of the Rs value.

Two major issues are worth consideration when performing
the stator resistance estimation, the precision and the meaning
of the results. The former is related to the precision by which
u∗ is known. A voltage sensor is usually avoided and the phase
voltage is approximated by its reference (9), provided that an
adequate compensation of inverter non-linearities is performed
[9]. Further details will be provided in the Sect. IV.

The estimation meaning depends on whether the voltage is
measured on motor or inverter terminals. In the first case, the
estimated resistance value coincides exactly with the phase
resistance Rs. In the present case, which makes use of the
voltage references, the Usa,dc/Isa,dc ratio encompasses the
whole chain of resistive elements, including cables and IGBTs
on-state resistances. This approach fits for sensorless control
algorithms, since they also use the voltage references as input
to their motor models.

B. Transient inductance estimation

The parameter Lt is estimated by means of the injection
of a high frequency sinusoidal test signal. At steady state, the
total impedance of the circuit in Fig. 4 is

Z(jΩh) = Rs + jΩhLt +
jΩhLϕRsr
jΩhLϕ +Rsr

(10)

where Ωh = 2πfh, with fh frequency of the injected signal.
It is recognised that the last term of (10) converges to Rsr
as the frequency increases. Consequently, for sufficiently high
values of Ωh the following approximation applies:

Z (jΩh) ≈ Rs +Rsr + jΩhLt (11)

In principle, the real part of the impedance could be used
for the estimation of Rs + Rsr. Since Rs is already known,
the value Rsr could be evaluated. However, this way is not
advisable, due to skin and proximity effects that increase
the resistances at high frequency, giving fake results for the
estimation [18]. On the contrary, the imaginary part gives a
straightforward estimate of Lt.

As the frequency of the test signal increases, the error
between the measured = [Z (jΩh)] /Ωh and Lt becomes negli-
gible. For a IM with a rated frequency of 50 Hz, a test angular
frequency Ωh ≥ 2π300 rad/s is appropriate.

Unfortunately, the validity of the aforementioned method
is restricted to the linear case only. Even if the transient
inductance is mainly associated to a leakage flux linkage,
nevertheless it may suffer of some saturation effects. It means
that the linearity is lost and the impedance (10) makes no
sense, since the current is distorted.

Here, a more general approach is proposed. It consists in ap-
plying a small sinusoidal voltage usa,ac(t) = Usa,ac cos(Ωht)
superimposed to a predefined set of increasing DC voltage
levels, while measuring the phase currents at each stage. The
DC component is selected so to span the whole current range
on the basis of the previous knowledge of Rs, and it sets the
working point (as for example the point P of Fig. 1). The low
amplitude nature of the AC signal permits the exploitation
of the small-signal theory, with supposed linearity around
an operating point. This approach is indicated as DC+AC
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method, and it represents a marked difference with respect
to the procedure described in [12] where only an AC method
at various current levels is exploited.

AC voltages and currents are used to compute the instan-
taneous inductance Lt. The voltage amplitude and frequency
are imposed, and thus they are known a priori. The real and
imaginary components of the fundamental AC current phasor
İsa,ac = Isα + jIsβ are provided by the Goertzel algorithm,
synchronised to the phasor U̇sa,ac of the applied voltage. The
Goertzel algorithm is a novel alternative to [12]. It is a single-
harmonic discrete Fourier transformation that is particularly
suitable for the on-line detection of one or few harmonics
(see [19] and Appendix B for details). By construction, it is
U̇sa,ac = Usα + j0 = Usa,ac + j0 and from (11) it is:

Lt =
= [Z]

Ωh
=

1

Ωh
=
[
Usα + j0

Isα + jIsβ

]
= − 1

Ωh

UsαIsβ
I2sα + I2sβ

(12)

A simulation may help in understanding the error that
would be introduced by neglecting the saturation effect. Let
us consider a simple R-L circuit where R = 1 Ω and
L is a (known) non-linear function of the current (Fig. 6).
As mentioned, the proposed DC+AC method imposes a DC
voltage to set different operating points, and a superimposed
AC voltage of 2 V at 300 Hz to detect the instantaneous
inductance, by means of expression (12). Results are shown in
Fig. 6. The proposed estimation is able to track precisely the
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Fig. 6. Effect of Lt saturation in the accuracy of the estimation methods.

original (known) outline of the saturated inductance, while the
conventional AC method, which applies only AC voltages of
increasing amplitudes, clearly fails even for medium current
levels.

C. Magnetising inductance estimation

The Lϕ estimation at standstill is based on the model
discussed in Sect. II-B. The proposed method consists of two
steps: a) impose a DC current level Isa,dc, to fix a steady state
working point; b) set a null voltage vector and integrate the
resistive component of the current, until the system reaches
the null state.

In the first step, when the inverse-Γ circuit of Fig. 4
is fed by a DC current, the inductances are short-circuits
and the magnetic energy is stored without being transformed
into mechanical energy. The flux linkages are obtained by
integrating the equation (8) using the definition (3):∫ t

0

(usa −Rsisa) dt = usa(0)−Rsisa(0)+

+λta(t)− λta(0) + λϕa(t)− λϕa(0)
(13)

At t = 0 the circuit is in a steady state DC condition, and
therefore usa(0) − Rsisa(0) = 0. Afterwards, a null voltage
usa(t) = 0 is applied to the motor (step b)) and both the
current and the motor flux linkages converge to zero, so that

lim
t→+∞

∫ t

0

(usa −Rsisa) dt = −λta(0)− λϕa(0) = −λsa(0)

(14)
At t = 0 the currents in the two inductances of Fig. 4 are the
same (isa(0) = iϕa(0) = Isa,dc) and they are linked to the
flux linkages by the apparent inductances, as outlined in Sect.
II-A. Merging this information with (14) gives:

La(Isa,dc) = Lϕa(Isa,dc) + Lta(Isa,dc) =

= − 1

Isa,dc
lim
t→∞

∫ t

0

(usa −Rsisa) dt
(15)

The expression (15) suggests the way to compute the mag-
netising apparent inductance Lϕa, which will be used in
conjunction with (4) to calculate the instantaneous inductance
Lϕ. There is an obvious advantage in considering (15), since
it is not affected by inductance saturation, allowing different
DC current values Isa,dc to be set in order to map λϕa, and
Lϕa immediately after, as function of the current.

As mentioned earlier, the computation requires the knowl-
edge of both the resistance Rs and the transient inductance
Lt, which at this point are available from the previous steps.
An effective procedure consists in prefiguring the total flux
linkage λsa(i) = λϕa(i) + λta(i) as a third-order polynomial
function of the current Isa,dc ([10], [20]) so that

La(i) =
λsa(i)

i
=
p3i

3 + p2i
2 + p1i+ p0
i

=

= p3i
2 + p2i+ p1 + p0i

−1
(16)

The coefficients (p3, p2, p1, p0) can be obtained by a poly-
nomial fitting algorithm, which elaborates the measurements
of λsa obtained from (14) by imposing different Isa,dc current
levels. Substituting the last of (16) in (4) returns

L(i) = La(i)+ i
dLa(i)

di
= 3p3i

2 +2p2i+p1 = Lϕ(i)+Lt(i)

(17)
that will be used to get Lϕ from the value of Lt obtained in
Sect. III-B.

In principle, the main drawback of expression (15) relies
in the digital implementation of a pure integrator. This is a
rather annoying and well-known problem, due to the DC offset
that always affects the integrator input, causing output drift.
Effective countermeasures, taylored on the singularity of the
proposed method, are discussed in Sect. IV.
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D. Rotor resistance estimation

The rotor resistance referred to the stator Rsr (Fig. 4) can
be obtained by exciting the system with a sinusoidal, low-
frequency and low-amplitude voltage usa = Usa cos(Ωlt).
Similarly to Sect. III-B and for an effective mathematical
elaboration, a α-β reference frame fixed to the phasor U̇sa
is chosen, so that the sinusoidal phasor İsa = Isα + jIsβ can
be extracted fairly easily by the Goertzel algorithm, which
represents a novel and distinctive feature of the proposed
method over the existing ones, as [14].

The voltage phasor U̇sra = Usrα + jUsrβ across Rsr is
given by:

U̇sra = U̇sa − (Rs + jΩlLt)İsa =

= Usα − (Rs + jΩlLt)(Isα + jIsβ)
(18)

The resistance value is the ratio between the voltage and
current amplitudes:

Rsr =
|U̇sra|
|İsra|

(19)

Due to the resistive nature of the branch, the current phasor
İsra is the component of İsa in phase with U̇sra:

İsra = İsa cos (ϑsr) (20)

where ϑsr is the angle between İsa and U̇sra. The value of
cos (ϑsr) can be obtained by the reverse expression of the
scalar product between İsa and U̇sra, as follows:

cos (ϑsr) =
UsrαIsα + UsrβIsβ

|U̇sra||İsa|
(21)

Substituting expression (21) in (19) gives:

Rsr =
U2
srα + U2

srβ

UsrαIsα + UsrβIsβ
(22)

which is the resolutive equation for the estimation of Rsr.
Different frequencies are used to map the Rsr value in

the range of interest, which is usually from zero to the
IM nominal slip frequency (5% ÷ 10% of the nominal IM
speed). Frequencies higher than the nominal slip speed are not
meaningful because they do not fall under normal the workin
conditions of a vector-controlled IM drive.

IV. EXPERIMENTAL RESULTS

A series of experimental results were performed on an
IM whose rated values and nameplate data are reported in
Appendix A. Experiments were carried out with a space-vector
modulation of 10 kHz, IGBT dead times of 4 µs and a DC
bus of 100 V, although results are not critically affected by an
increased value of the DC-bus voltage.

A. Stator resistance estimation

As illustrated in Sect. III-A, a DC test is performed to
estimate the stator resistance. It is known that the dead-
time negatively affects the phase voltage generation of the
PWM, introducing an ideally-constant voltage drop whose sign
depends on the sign of the phase current [21]. It is also well

known [13] that the voltage distortion behaviour at low current
levels diverges from the theoretical profile, being a constant
only for sufficiently high current magnitudes.

The non linear behaviour of the inverter can be mitigated
by prefiguring an input-output mapping. To this aim, different
DC current levels Isa,dc are first applied to the motor, and the
corresponding voltage references u∗sa are recorded accordingly.
Fig. 7 shows the static u∗sa = f (Isa,dc) curve measured in
laboratory.
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Fig. 7. Static usa = f (isa) for Rs estimation.

The curve accounts for both the voltage distortion effects
at low current levels and the constant voltage drop at higher
current levels. The curve of Fig. 7 can be profitably used for
an estimation of Rs, provided that the derivative is computed
on the higher-current part only. In this work, the last five u∗sa
values were used with the corresponding Isa,dc samples, and
then processed through a simple least-square method to obtain
the estimation of Rs. The final result was Rs = 0, 814 Ω,
confirmed by an off-line DC test with a high precision multi-
meter (Agilent 34401A). Of course, the resistance varies with
the temperature and, in case of sensorless control applications,
on-line tracking would be highly recommended.

Fig. 7 also reports the ideal RsIsa,dc curve, that is, the
portion which is directly related to the motor and cables linear
resistive elements. The difference between the ideal and the
measured curve represents the non-linear elements, and it is
used to compensate the voltage reference values generated by
the control algorithm (via a look-up table or a polynomial
approximation), to obtain a close match between the reference
and the real phase voltage. In absence of voltage sensors,
the outlined procedure has revealed good usability and it was
essential to perform the subsequent steps of the estimation
procedure.

B. Transient inductance estimation
The second step of the procedure, as discussed in Section

III-B, estimates the transient inductance Lt. A superimposed
AC voltage of 2 V at 300 Hz was used to investigate the
asymptotic effect of (11). Voltage and current fundamental
harmonics were acquired and processed to obtain the imagi-
nary part of the impedance Z (jΩ). Results are shown in Fig.
8.
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Fig. 8. Lt estimation by DC+AC method.

The Lt profile shows a certain degree of saturation, which
could be explained considering the saturation of the stator
slot corners in the motor for higher currents, affecting the
value of the total leakage flux linkage in the air gap. These
measurements confirm that Lt is a delicate parameter in an IM
model, since its value is very small and difficult to calculate.
On the other hand, its impact on sensorless motor models is
very low, as documented in [22]. Authors also found that
Lt values obtained with the proposed procedure are very
repeatable by changing the amplitude and/or the frequency
of the superimposed AC voltage.

C. Magnetising inductance estimation

The experimental measurement of the magnetising induc-
tance was found to be the most challenging part of the
procedure. First, a reference curve was obtained by off-
line measurements, in order to compare the results of the
procedure. The data were obtained by measuring the current of
the phase a and the differential voltage between the phases a
and b, at the inverter output. Different transients were imposed
by forcing different DC currents in the motor with a DC-power
supply. The step-down transient of both current and voltage
were recorded and post-processed numerically, calculating the
stator resistance before the transient and the integral (13) until
the current reached the zero state.

Then, the automatic detection of the magnetising inductance
was implemented by feeding the motor with the inverter
directly. As mentioned in Sect. III-C, a drawback of the
proposed approach relies in the digital implementation of a
pure integrator, which suffers of drift problems. Such issues
have been addressed in some papers like [23] and [24], but
unfortunately proposed solutions do not work in a standstill
condition, where a single motor phase is equivalent to a simple
RL circuit.

In order to reduce the drift effect, the procedure adopts
the following approach. A first transient from zero to a DC
current level is performed, by imposing a suitable phase-
to-phase DC voltage (u∗ = Usa,dc in Fig. 5). When the
DC condition is reached, the average back electromotive
force Esa,dc = Usa,dc − RsIsa,dc is calculated. In principle,
Esa,dc should be equal to zero but, in practice, the non-zero

experimental value represents the unavoidable offset which
must be subtracted from the integrator input when calculating
the stator flux linkage using (13). The current is then forced
again to zero by imposing a zero voltage, and calculating the
integral (13) over the whole transient. Different transients are
repeated for different DC current levels, in order to get the
profile of the integral in the whole IM current range. The curve
was then compared with the reference one obtained with the
DC-power supply.

Two important aspects must be considered while performing
the automatic detection of the magnetising inductance as
function of the stator current. Such aspects have not been
previously considered in [13] and are meant to improve the
overall accuracy of the procedure.

The first is related to the presence of the voltage drop ut
caused by the IGBTs and the threshold voltage ud of the
free-wheeling diodes within the inverter. During a step-down
transient of the current isa from positive values to zero, the
topology outlined in Fig. 5a becomes that depicted in Fig. 9.

Fig. 9. Step-down current transient scheme.

The phase-to-phase voltage usab is obtained by writing
twice (one for each phase a, b) the equation (8), then by taking
the difference on both sides with the assumption (7). It is:

usab = 2Rsisa + 2
λt(isa)

dt
+ 2

λϕ(iϕa)

dt
(23)

Kirchoff’s second law, applied to the mesh of Fig. 9, returns:

ud + usab + ut = 0 (24)

Substituting (23) in (24), integrating side by side and applying
exactly the same considerations carried out in Sect. III-C, one
obtains the phase flux linkage λsa(0), computed at time t = 0
and current isa = Isa,dc:

lim
t→+∞

∫ t

0

(
ud + ut

2
+Rsisa

)
dt = λsa(0) (25)

and then

La(Isa,dc) = Lϕa(Isa,dc) + Lta(Isa,dc) =

=
1

Isa,dc
lim
t→∞

∫ t

0

(
ud + vt

2
+Rsisa

)
dt

(26)

The value ud+ut can be either inferred from the data sheet
or found by means of a dedicated off-line measurement, as
specified hereafter. By imposing a voltage step-down transient,
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which forces the current to move from the steady-state rated
value to zero, and by measuring the usab voltage at the inverter
output by a differential probe, a map of ud+ut as function of
the current can be obtained. The result, for the present case, is
shown in Fig. 10. The profile was approximated by piece-wise
continuous lines and implemented into equation (26), for each
current sample.
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Fig. 10. Profile of the ut + ud curve as function of isa.

The second aspect is related to the accuracy of the current
sensor within the inverter. Even if the measurement offset can
be removed by simple automatic procedures, low-accuracy
sensors could lead to potential wrong results in the flux
linkage estimation. To this purpose, the measurements of the
inverter built-in Hall current sensor were compared, before
the activation of the estimation procedure, to the current mea-
surements obtained with a high-accuracy ammeter (QinetiQ
PPA2530). Fig. 11 shows the percentage error of the Hall
sensor, normalised to the rated motor current IN (see Table
I).
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Fig. 11. Percentage error of the current sensor measurement.

The discrepancy increases at higher current levels, po-
tentially affecting the correct estimation of the magnetising
inductance. As a rough-and-ready countermeasure, a constant
bias of +0,4% was added to the Hall sensor measurement for
the calculations of the automatic procedures. The simple use

of only a constant term was enough to obtain very reliable
results.

According to (25), the experimental measurements returned
the phase flux linkage λsa as function of the initial steady-state
current value, λsa = λsa(Isa,dc). The profile of the stator flux
closely matches the reference one obtained by means of the
DC power supply. Only low-current results deviate from the
reference profile, because it is difficult to integrate the flux
linkage at low current levels. In any case, they can be easily
replaced by a linear approximation of the curve, since the flux
is within the linear region of the magnetic B −H curve. To
have an objective verification of the result, a finite element
analysis (FEA) based on the IM geometry and windings data
has been carried out, too, as suggested in [25] and [26]. The
FEA simulation was performed by imposing growing levels of
current density to both phases a and b, while setting ic = 0,
to reproduce the conditions of the proposed procedure. The
measured and simulated flux linkages are reported in Fig.
12a, while Fig. 12b shows a flux map during computer FEA
simulations.
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Fig. 12. (a) λsa, measurement and simulation by finite element analysis, (b)
IM flux map resulting from FEA simulations.

The error between the measured and FEA-simulated flux
linkage remains within 7% of the rated one, and the small
mismatch can be largely attributed to the use of a 2-D (instead
of 3-D) finite element analysis tool. The result is therefore
quite accurate if one consider that, for example, the analysis
carried out in [27] about the influence of parameter variations
in sensorless rotor flux oriented IM, shows that a incorrect
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setting of magnetising inductance by 20% produces a speed
detuning of only 0.2% and a torque error of 8%.

For the sake of completeness, the estimation procedure has
been applied to a second motor (fed by the same inverter),
whose nameplate data are reported in Table II. The accuracy
of the results matches the expectations. In particular, it is to
stress out the importance of the correction suggested in Fig.
10, and the related discussion. The voltage drop across the
switching devices cannot be neglected, because it turns out
to play a crucial role in the integration (25), as shown in
Fig. 13, where the flux linkages (with DC power supply and
PWM inverter, respectively, as voltage sources) are compared.
The inaccuracy suggests that some countermeasures have to be
taken anyway. Of course, the finest the estimation of voltage
drops in any working condition, the better the accuracy of flux
linkage estimation.
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Fig. 13. λsα estimation with DC pwer supply and PWM inverter as voltage
sources.

The availability of the flux linkage enables the computation
of the magnetising inductance, which can be obtained by using
the equations (16) and (17) and the values of Lt (Fig. 8). The
behaviour of both the sum of the two inductances and the
magnetising inductance alone are reported in Fig. 14.
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Fig. 14. Computation of Lϕ from λsa and Lt.

D. Rotor resistance referred to the stator estimation

The last part of the procedure estimates the Rsr parameter.
Since the maximum frequency of interest for the injected sinu-
soidal signals spans over few Hertz, it would be very easy to
force hazardous values of current even with very low voltages.
This poses a potential problem, since the estimation of low-
amplitude sinusoidal voltages is rather difficult, although the

LUT for inverter non-linearities compensation could give some
benefits.

Unlike [14], here the problem is overcome by using the
same DC-bias technique presented in Sect. III-B for the
estimation of Lt. In this case, a single bias is used to shift
the reference voltage (and the current as well) so that the
superimposed sinusoidal voltage are sufficiently far from the
near-zero region, where the voltage compensation shows its
weakness. Fig. 15 reports the Rsr outline as function of
the frequency. Meaningful frequencies are from zero to the
nominal slip speed ΩslN , which from the data of Table I
corresponds to 2,5 Hz.
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Fig. 15. Rsr estimation.

It is evident that the Rsr parameter suffers of the skin effect
even in the range of interest. It is worth to note that skin effect
represents only a part of the Rsr increment during normal
operation, the other effect being the resistance increase as
function of the temperature. Therefore, the proposed procedure
is useful for an initial knowledge of the Rsr profile, but
it is advisable to exploit an on-line Rsr tracking procedure
to preserve the validity of the model during normal drive
operation.

V. CONCLUSIONS

In this paper, an automatic procedure for IM parameters
estimation was presented. The procedure is performed at
complete standstill, which is particularly appreciated when
the motor is already connected to the load. The estimation
fully identifies the parameters of the inverse-Γ model, and
it includes the non-linearities of both the motor and the
voltage inverter. The estimated parameters are ready-to-use for
conventional vector-controlled drives, thus representing a step
towards the complete self-commissioning. The procedure has
been implemented in laboratory and tested on IM prototypes.
The results were validated by comparison with an accurate
finite element analysis. Further research activity will include
extensive tests on motors of different sizes and power ratings.
The focus will be also on the on-line tracking of the temper-
ature and frequency-dependant parameters, as stator and rotor
resistances, and of iron losses influence as well.
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APPENDIX A
IM NAMEPLATE DATA

Table I
IM MOTOR PARAMETERS

Nominal power P 3,7 kW

Nominal speed ΩmN 1500 rpm

Nominal current IN 11,8 Aeff

Nominal voltage VN 280 Veff

Nominal slip speed ΩslN 150 rpm

cos(ϕ) 0,77

Table II
SECOND IM MOTOR PARAMETERS

Nominal power P 2,2 kW

Nominal speed ΩmN 1500 rpm

Nominal current IN 5,1 Aeff

Nominal slip speed ΩslN 110 rpm

APPENDIX B
GOERTZEL ALGORITHM DETAILS

The derivation of the Goertzel algorithm for single-tone
detection starts from the normalised definition of the discrete
Fourier transform (DFT):

X(k) =

N−1∑
r=0

x(r)W kr
N 0 ≤ k ≤ N − 1 (27)

where N is the number of samples, WN = e−j2π/N , x(r) and
X(k) are the sampled signal (normalised sample time T = 1)
and its frequency-domain transformation (sample frequency
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F = 1/N ), respectively. The Goertzel algorithm is obtained
by manipulating (27), considering the following identity:

W−kNN = e(j2π/N)Nk = ej2πk = 1 (28)

Using (28) into the first of (27), it follows:

X(k) = W−kNN

N−1∑
r=0

x(r)W kr
N =

N−1∑
r=0

x(r)W
−k(N−r)
N (29)

Based on (29), the following sequence can be introduced:

y(n) =

N−1∑
r=0

x(r)W
−k(n−r)
N (30)

The sequence (30) is equal to X(k) when n = N . It represents
a convolution between x(n) and W−knN or, equivalently, the
output of a linear system whose impulse response is equal to
W−knN . The Z-transform of W−knN is:

H(z) =
1

1− 2 cos(2πk/N)z−1 + z−2︸ ︷︷ ︸
IIR filter

(
1−W k

Nz
−1)︸ ︷︷ ︸

FIR filter

(31)

Expression (31) represents the transfer function between the
sequence y(n) and the input x(n), split into an IIR filter and
a FIR filter. As regards the former, let s(n) be the output of
the IIR filter and S(z) its Z-domain value. It follows:

X(z) =
(
1− 2 cos (2πk/N) z−1 + z−2

)
S(z) (32)

Back into the time domain, it is:

s(n) = x(n) + 2 cos (2πk/N) s(n− 1)− s(n− 2) (33)

With the input x(n) being sampled during real-time control,
the sequence s(n) is computed online. As regards the FIR
filter, its output y(n) is computed only for n = N , provided
that s(N) and s(N − 1) have been previously saved:

X(k) = y(n)
∣∣
n=N

= s(N)−W k
Ns(N − 1) (34)

Since W k
N is a complex number, the result of (34) is complex,

too. The real and imaginary parts are:

< [X(k)] = s(N)− cos (2πk/N) s(N − 1)

= [X(k)] = sin (2πk/N) s(N − 1)

(35)

Since x(n) is a real signal, (33) shows that the computa-
tion of s(n) requires two additions and one multiplication,
since 2 cos(2πk/N) is stored as a coefficient. Thus, s(N)
is obtained with N multiplications and 2N additions. The
calculation of < [X(k)] and = [X(k)] requires two multipli-
cations and one addition. Altogether, the Goertzel algorithm
then requires N + 2 multiplications and 2N + 1 additions.
This is a net saving, if compared to the DFT in (27) which
needs 2N multiplications and 2N additions to compute a real
and imaginary parts of X(k) from a real signal x(k) [19].
However, the real advantage of the Goertzel algorithm for
single harmonic analysis resides in its recursive definition (33).
The N + 2 multiplications and 2N + 1 additions are spread
over the whole time window, and s(n) is updated with one

multiplication and two additions in each sample period. In this
way, the algorithm can be effectively used in real time without
affecting the execution time of control routines. Moreover, the
value of N can be increased as needed with no effect on the
computational time requirements, obtaining a very high DFT
selectivity.


