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Automatic processing of high-rate, high-density multibeam
echosounder data

B. R. Calder and L. A. Mayer
Center for Coastal and Ocean Mapping and Joint Hydrographic Center, University of New Hampshire, 24 Colovos
Road, Durham, New Hampshire 03824, USA (brc@ccom.unh.edu; larry.mayer@unh.edu)

[1] Multibeam echosounders (MBES) are currently the best way to determine the bathymetry of large

regions of the seabed with high accuracy. They are becoming the standard instrument for hydrographic

surveying and are also used in geological studies, mineral exploration and scientific investigation of the

earth’s crustal deformations and life cycle. The significantly increased data density provided by an MBES

has significant advantages in accurately delineating the morphology of the seabed, but comes with the

attendant disadvantage of having to handle and process a much greater volume of data. Current data

processing approaches typically involve (computer aided) human inspection of all data, with time-

consuming and subjective assessment of all data points. As data rates increase with each new generation of

instrument and required turn-around times decrease, manual approaches become unwieldy and automatic

methods of processing essential. We propose a new method for automatically processing MBES data that

attempts to address concerns of efficiency, objectivity, robustness and accuracy. The method attributes each

sounding with an estimate of vertical and horizontal error, and then uses a model of information

propagation to transfer information about the depth from each sounding to its local neighborhood.

Embedded in the survey area are estimation nodes that aim to determine the true depth at an absolutely

defined location, along with its associated uncertainty. As soon as soundings are made available, the nodes

independently assimilate propagated information to form depth hypotheses which are then tracked and

updated on-line as more data is gathered. Consequently, we can extract at any time a ‘‘current-best’’

estimate for all nodes, plus co-located uncertainties and other metrics. The method can assimilate data from

multiple surveys, multiple instruments or repeated passes of the same instrument in real-time as data is

being gathered. The data assimilation scheme is sufficiently robust to deal with typical survey echosounder

errors. Robustness is improved by pre-conditioning the data, and allowing the depth model to be

incrementally defined. A model monitoring scheme ensures that inconsistent data are maintained as

separate but internally consistent depth hypotheses. A disambiguation of these competing hypotheses is

only carried out when required by the user. The algorithm has a low memory footprint, runs faster than data

can currently be gathered, and is suitable for real-time use. We call this algorithm CUBE (Combined

Uncertainty and Bathymetry Estimator). We illustrate CUBE on two data sets gathered in shallow water

with different instruments and for different purposes. We show that the algorithm is robust to even gross

failure modes, and reliably processes the vast majority of the data. In both cases, we confirm that the

estimates made by CUBE are statistically similar to those generated by hand.
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1. Introduction

[2] Advances in technology and more exacting

requirements for hydrographic and marine geolog-

ical and geophysical surveys have led to ever

increasing data rates and densities for multibeam

echosounder (MBES) data sets. These data sets can

provide data for constructing nautical charts and, in

different depth ranges, provide insight into the

processes that are forming and re-forming the

earth. From the study of ocean ridge formation

[Grevemeyer et al., 2002; Fox, 1996] to the for-

mation of continental margins [Gardner et al.,

2001a; Eichhubl et al., 2002; Lee et al., 2002]

and mapping for ocean exploration [Dziak et al.,

2001], baseline maps of the ocean floor provide the

geospatial foundations for most ocean studies, and

a source of innovation for new investigations

[Jakobsson, 2002; Bacon et al., 2002].

[3] While our ability to gather bigger and denser

data sets has increased dramatically, our ability to

process and make sense of these data sets has not.

Unlike single beam sonar data sets, the complex

geometry and sensor integration associated with

multibeam sonars leads to demanding processing

requirements. The time and effort involved in

manual processing (the current most common

method) is increasing in proportion to the increase

in data rates. While the hydrographic community is

drowning in data from shallow water systems, the

oceanographic community is faced with the prob-

lem of turning data into information in real time so

that logistical and scientific decision can be made

during a cruise; clearly, an automatic approach

would be beneficial. However, automatic process-

ing leads to questions of reliability, robustness and

(in certain domains) safety and liability. In this

paper, we propose a new scheme for automatically

processing multibeam bathymetry that attempts to

answer these concerns. Specifically, we examine

the fundamental question of uncertainty in predict-

ing the depth assigned to a particular point. Our

three goals are to provide a robust method of

processing MBES data, objectively and without

human intervention to the stage of a preliminary

product; to provide ‘‘value added products’’ to this

data set which indicate the expected quality of the

data and any locations which require further inves-

tigation; and to do so at least as fast as the data can

be collected, and preferably in a real-time mode

(i.e., where the data is processed as it is gathered,

rather than having to wait for all of the data to be

available).

[4] There have been a number of approaches to the

task of automatically processing high rate bathy-

metric data. The simplest examples include simple

depth and angle gates (i.e., to reject a sounding

shallower or deeper than reasonable limits based on

a general knowledge of the target area, or from

outer beams, where refraction effects are more

significant). Slightly more complex examples in-

clude filtering based on angles between points,

cross-track sounding distance, local gradient, etc.,

as implemented in the HIPS, MBsystem and

SwathEd processing suites [Gourley and Dodd,

2000; Caress and Chayes, 1995, 1996; Hughes

Clarke et al., 1996], with more recent approaches

including multiresolution tiling and surface fitting

[Gourley and DesRoches, 2001]. All of the meth-

ods are driven by the need to identify soundings

that do not correctly measure the depth (i.e., ‘‘out-

liers’’) and hence remove them from further con-

sideration. This is primarily a concern of the

shallow water community where surveys range

on the order of 107–1010 soundings. Identifying

the outliers by hand in this case is typically the

most significant time expenditure of any survey by

a very significant amount (see, e.g., Calder and

Smith [2003]) and hence is the primary candidate

for process improvement.

[5] Where data are subject to random variation, it

is often more appropriate to consider a stochastic

description of the problem, and a number of
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statistical cleaning techniques have been proposed.

Ware et al. [1992] suggest a technique to compute

mean and standard deviation estimates for entire

data sets, and therefore to eliminate some samples

based on their deviation from the weighted mean

estimated surface. Varma et al. [1989] use binned

data and an efficient database engine to implement

much the same scheme. An alternative technique is

to consider hypothesis tests based on pseudo-var-

iance estimates, which (combined with a leave-

one-out testing scheme) has been used by Eeg

[1995] to detect spikes in dense MBES data. All

of these schemes rely on an estimate of point

statistics of the data in a small area (either geo-

graphically, or swath by swath). It is also possible

to estimate sounding density, and hence attempt to

determine modes corresponding to outliers, from a

histogram. Du et al. [1996] use this technique to

construct an automatic processing scheme that is

intended to simulate how a human operator edits

data, and is shown to be functionally equivalent to

human editing on a small data set. Robust data

fitting techniques have also been used in geograph-

ic mode [Debese, 2001] in order to determine

which soundings are consistent within a local area.

This method has recently been extended to shallow

water data sets [Debese and Michaux, 2002].

[6] Most of the automatic editing schemes that

have been proposed operate in either swath mode

(i.e., causally as the data is collected), or in spatial

mode (i.e., geographically after the data has been

geo-referenced). One exception to this is the multi-

pass filtering of Lirakis and Bongiovanni [2000],

which is incorporated into the Naval Oceanograph-

ic Office’s area based editing scheme [Depner and

Hammack, 1999]. This starts with data in swath

mode, processes analogously to many of the filters

considered above, and then converts the data into

geographic mode for further filtering. This system

also adds the concept of a modifiable classification

attribute for each sounding, so that a depth can be

marked ‘‘Unknown’’, ‘‘Good’’ or ‘‘Bad’’, and

many of the tests implemented revolve around

transitions between these states.

[7] These techniques all have the same ‘‘data

flagging’’ paradigm. That is, each sounding is to

be preserved, but some may be marked as ‘‘not for

use’’ through some criteria, automatic or manual.

We depart from this standard model by focusing on

the essentially contiguous surface that we are

trying to measure, i.e., the seabed. The question

of interest, then, is not which soundings are sub-

jectively ‘‘good’’ or ‘‘bad’’ (all of them are noisy to

some extent) but how well we can determine the

depth at any given point of interest, including the

confidence with which we can report the depths

estimated.

[8] The advantages in focusing on a surface are

threefold. Firstly, working at a point of interest

reduces the complexity of estimation; if we are at a

fixed point, we should see only one real depth and

hence we only have to estimate a constant. This

allows us to take advantage of a mature body of

estimation theory, and to readily and simply ad-

dress questions of robustness in the presence of

outlier data points. Properly treating suspect data

gives us, in essence, a stochastic method for data

‘‘cleaning’’ in the sense above, but without the

subjectivity. Stochastic processing also allows us to

develop estimates of data variability and hence of

the reliability of the estimates that are produced. In

real-time processing, these value added products

can be used in survey planning and data quality

assurance.

[9] Secondly, using the concept of a continuous

surface, we can take advantage of arguments of

required continuity in the depth estimates to dis-

criminate between valid and erroneous data at the

level of an estimation node. This emphasis on a

‘best estimate’ surface simplifies our processing

stream, since we do not need to apply multiple

levels of hydrographic rounding algorithms (where

soundings are rounded to the next shoaler quantum

of depth in order to ensure safety of navigation) as

we work. We maintain and archive our best esti-

mate, at the best resolution available and/or re-

quired, rather than a surface modified multiple

times from the original data.

[10] Finally, working on a surface, or grid, of

estimation nodes allows us to produce a data

product which is more readily manipulated than

the common alternatives. For example, a gridded

surface is easily manipulated to generate smooth
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contours automatically, at any interval, and can be

readily prepared for database maintenance. A sur-

face is also ideal for future digital end products,

e.g., Electronic Navigational Charts, [Smith et al.,

2002].

[11] In the remainder of this paper, we outline the

theoretical foundation of the method and illustrate

its operation on two data sets gathered with differ-

ent instruments, in different depth regimes, and

with different processing requirements. One of the

data sets is a massively over-sampled data set

[Flood et al., 2000], which allows us to undertake

some statistical comparisons of the surfaces esti-

mated by alternative methods. We use this data set

to show that the proposed method is consistent with

simpler and more intuitive (but also more memory-

hungry and non-real time) algorithms. The second

data set is a typical commercially driven survey

operating at normal data densities; we use this to

investigate the fidelity of CUBE by comparing the

algorithmic results against a hand-edited data set.

We then conclude with some perspectives on future

developments of the method.

2. Theory

[12] We present here an intuitive description of

CUBE and its component parts, leaving the math-

ematical details to the appendix. CUBE is funda-

mentally about answering the question ‘‘what is the

true depth at this point, given that all measurements

have errors in all three dimensions?’’, with auxil-

iary question ‘‘How sure are we of that estimate?’’.

The extent to which we can answer this is a

function of the level of noise in the data, both

stochastic and systematic (for example, due to

failures of the MBES to resolve the bottom cor-

rectly, poor tide correctors, etc.)

[13] We note that focusing on an attempt to estimate

the ‘‘true’’ depth is a significant departure from

traditional hydrographic practice, where only an

actual sounding is acceptable as a depth measure-

ment for charting. This attitude is rooted in pre-

MBES practice, mandated by the issue of safety of

navigation: the shoalest sounding should be pre-

served. In MBES systems, however, that shoalest of

all accepted soundings is simply the shoaler tail of

the sampling distribution for the MBES; charted

soundings are often significantly shoaler than the

true depth in the area. Indeed, building a histogram

of selected sounding origin as a function of beam

number for hydrographic surveys typically shows

that the (less reliable) outer beams of the sonar are

heavily preferred in the product that is the primary

archive of the survey. This significant asymmetry

occurs because the outer beams are most affected by

noise due to low grazing angle and refraction, etc.

They are, therefore, more frequently shoaler than

other measurements in the same area, and are

preferentially chosen by typical (shoal-biased) hy-

drographic data reduction algorithms. A statistically

justified estimate of true depth allows us to bypass

these biases, with the caveat that the depth estimates

constructed may have to be adjusted for naviga-

tional safety should they be used for hydrographic

purposes [Smith et al., 2002].

[14] Our requirement for a ‘‘true’’ depth implies

that we have to make our estimate at a point in

space, since any area will have depth variation on

some scale. Taking a point with absolutely known

horizontal position significantly simplifies the es-

timation process, since at a point there can only be

one depth (taking the shoalest in the case of over-

hangs). If the position is assumed to be known

precisely, then the only residual error is in the

vertical axis. If we then cover the spatial area of

interest with a sufficiently dense network of these

estimation nodes, we can estimate the depth over

an entire survey area. From the point estimates, we

can then compute a continuous surface if required.

All of the theory for CUBE is based on a single

estimation node, with the understanding that a

network of such nodes will be required. CUBE

does not place any limitations on the spacing,

regularity or location of the estimation nodes, as

long as they are sufficiently dense to adequately

represent the detail implicit in the surface. Each

sounding may contribute information to more than

one node, so there is also no loss of intrinsic

resolution (as, for example, with a binned esti-

mate). In the worst case, using too many nodes will

just lead to inefficiency and sparse estimates (a

node will report no depth if no data has been

received).
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[15] Around each estimation node, at least locally,

we can assume that the soundings will report a

noisy but unbiased estimate of the same depth,

where we correct for predicted slope if required

(Figure 1). However, not all of the data is avail-

able at any one time and we have to allow the

estimate of depth to evolve as more data is

gathered. We formulate the estimation problem

by notionally assembling all of the soundings

around the node into an ordered, pseudo-time,

sequence (although the ordering is essentially

arbitrary, e.g., the order in which the soundings

are read from file). Our assumption of local

unbiasedness implies that the sequence should

simply oscillate about a constant value, namely

the depth to be estimated (Figure 2). We may then

make the system capable of running in real-time

by implementing a robust causal sequential esti-

mator of this constant value.

[16] The theory of sequential estimates is encap-

sulated here by a Bayesian Dynamic Linear Model

(DLM) [West and Harrison, 1997], configured to

estimate a constant value. In this model, only the

current estimate of depth is retained at any time; as

data is collected, this estimate is updated and the

original data is ‘‘discarded’’ (typically, inserted

into a database for further analysis and archive).

A critical advantage of this scheme is that the

uncertainty in the estimate (i.e., the posterior

variance of the estimate) is also tracked, which

can then be used for confidence checks on the

depth track (Figure 2b). Estimates of accuracy for

each individual sounding are computed using the

model of Hare et al. [1995], and depend on

detailed knowledge of the survey system, auxiliary

sensors, and configuration of the survey platform.

In essence, however, the model is an application of

the principle of propagation of variance to the

fundamental equations for depth computation us-

ing an MBES. More complex and complete mod-

els of the component that deals with the MBES

bottom detection method exist (e.g., [Lurton,

2000]), and would allow other factors, e.g., signal

to noise ratio (SNR), to be taken into account.

However, these are typically not known and the

predictions of these more complex models are well

represented by the current one as long as the SNR

is approximately 10dB or more. If the MBES is

going to report a depth at all, this is typically the

case, and we have not pursued the added com-

plexity further.

[17] Not all data exhibits solely measurement

noise; Figure 3b shows a typical problem, where

groups of soundings are present that are mutually

inconsistent, but exist in sets that are internally

consistent. It is essential that these groups of

a

b

Figure 1. Propagation strategies for referring the sounding data to the estimation nodes. In regions that are
essentially flat (a), we might use a zero-order prediction of depth, increasing the uncertainty associated with the data
as a function of distance between sounding and estimation node; in regions with significant slope (b), we might make
a first-order prediction of depth, with suitably modified confidence bounds.
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soundings are segregated from each other to avoid

cross-contamination of estimates; in the process,

we ensure that outliers are not mixed in with

‘‘true’’ soundings. This is a question of model

robustness, since these mutually inconsistent

groups of data are deviations from the model of

constant depth proposed above. Although segre-

gating the burst mode noise (or other outliers) like

this may appear to have no intrinsic value for

estimating the true depth, it is the key element in

making such estimation possible. If we do not

remove the outliers by hand (a massively laborious

part of any survey and especially so in shallow

water environments), then any estimate of depth in

this sort of region would be heavily affected by the

outliers. Removing the burst data into a sacrificial

alternate hypothesis allows us to estimate the true

depth and ignore outliers simultaneously.

a

b

Figure 2. Trace of depth estimate and uncertainty for data in a locally flat area. Note smoothing of the depth
estimate and the reduction in uncertainty as the number of samples increases. The input data uncertainty is combined
propagated uncertainty sj[n] (see section A4), scaled assuming a normal distribution, and hence includes both
horizontal and vertical uncertainty.
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[18] Robustness is implemented by extending the

DLM model to allow multiple potential depth

solutions to be tracked simultaneously (we call this

Multiple Hypothesis Tracking, MHT). As each

sounding becomes available, it is compared to each

extant hypothesis in turn using a minimum forecast

error argument (section A5), and the track to which

it is closest is selected for further testing. If the

sounding is compatible with the depth estimate in

the sense of pointwise and sequential Bayes fac-

tors, and given the prediction of uncertainty in the

data point and track, then it is assimilated into the

depth track. Otherwise, it forms the genesis of a

new hypothesis. In this way, we significantly

improve the robustness and memory length of the

estimator by checking data for validity before

Figure 3. Raw MBES data from a Reson 8101 survey in Portsmouth, NH [Glang et al., 2000]; (a) normal operation
and (b) burst-mode failure. Each sounding is represented by a cube scaled to indicate predicted vertical error (see
section A3), and color-coded according to depth (hot colors are shallower).
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assimilation and allowing the estimator to back-

track to previous estimates if the data starts to

change (Figure 4). The trade-off is slightly in-

creased complexity, memory and computational

time.

[19] CUBE’s state of knowledge about the data can

be summarized through the list of depth hypotheses

at each estimation node. Each hypothesis contains

an estimate of the depth, the Bayesian posterior

variance of this estimate, and a count of the number

of soundings that have been assimilated into the

track. However, while the extension to multiple

hypotheses gives us a significantly more robust

estimator, it also introduces ambiguity about the

true depth at any node; given a number of potential

depths, how do we determine which is the correct

one? We resolve this issue using one of a number

of disambiguation rules, typically based on a

measure of local context (i.e., assuming that the

true depth will probably be about the same as those

around it). How to best establish this contextual

guide is still an open research question, although

we are currently using either the closest node with

only one hypothesis (i.e., no ambiguity), or a

(suitably interpolated) low-resolution estimate of

depth (see section A6).

[20] The output of CUBE is thus a set of vectors

that represent the algorithm’s best estimate of the

true depth at each estimation node, the posterior

variance of the estimate and the number of poten-

tial estimates that exist. A fusion of these outputs is

used to inform the user about reliability of the

estimates, and problems with the data.

[21] We observe that CUBE cannot be expected to

make the correct hypothesis choice in every case: if

there is only noise to choose, all choices are in

error. Consequently, we wrap CUBE in a human-

driven remediation scheme that allows us to inves-

tigate the data and estimates in a 3D environment.

Currently, we correct those areas where CUBE

cannot reliably determine the true depth by flag-

ging erroneous data as ‘‘not for use’’ in the

traditional way; a re-run of CUBE assimilates these

corrections, resulting in a finalized database. (This

may be repeated as more data is added.) This

flagging paradigm may not be the best solution; a

Figure 4. Example of Multiple (MHT) and Single (SHT) Hypothesis Tracking in real data with a burst mode
failure; estimates are color coded according to the hypothesis that generated them. Note that the first hypothesis is not
corrupted by noise data, and continues to integrate data points when the noise burst disappears around sample 380,
and that the SHT track fails to estimate any valid depth. Tracking of data in the sacrificial hypotheses (2–4)
representing the noise is significantly different to that of the real data due to differences in statistical properties of the
noise.
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tool that interacts with CUBE’s multiple hypothesis

space and allows the user to remove, merge, or

nominate hypotheses may be more efficient. Such

tools are currently in development [Depner et al.,

2002].

3. Experiment

3.1. A ‘‘Reference’’ Surface: SAX’99

[22] SAX’99 was a research initiative sponsored by

the Office of Naval Research. Mainly concerned

with sediment acoustics [Richardson et al., 2001;

Thorsos et al., 2001; Chotiros et al., 2001], the

data set collected also contained a massively dense

multibeam bathymetric data set [Flood et al., 2000]

collected in the Gulf of Mexico using a Simrad

EM3000 shallow water MBES. The data density is

much higher than would be typically collected

(Figure 5), with the 1.2 � 1.2 km study area being

surveyed repeatedly over eight days. Data were

collected in tracklines running north-south, east-

west, northwest-southeast and southwest-northeast,

with data being collected at a rate controlled by the

MBES controller (typically around 10 Hz).

[23] We constructed two reference surfaces by

computing median and iteratively trimmed mean

(outliers rejected at 2s from the mean on each

iteration until the estimated mean stabilizes) surfa-

ces in 2 m bins using all of the data gathered and

measured tide correctors. All soundings were re-

duced to mean lower low water (MLLW) and

computations were done in UTM coordinates (zone

16 N) on the WGS-84 derived horizontal datum.

Visual inspection of the resulting surfaces shows

no obvious outliers or other anomalies. To quantify

the agreement between mean and median surfaces,

we use the International Hydrographic Organiza-

tion’s standards for Order 1 survey, viz. that the

95% confidence interval (CI) for soundings should

be c ¼ 1:96s ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

0:52 þ 0:013dð Þ2
q

m where d is the

reported depth. This is the predominately quoted

standard for hydrographic survey [IHO Committee,

1996], and is used in various adapted forms by all

of the U.S. Federal mapping agencies, and hydro-

graphic organizations around the world. The mean

and median estimates agree within these limits.

Since the mean (Figure 6) and median agree, and

the median is known to be robust in noise, we

conclude that this is a reasonable estimate of depth

in this special case of massively dense data.

[24] We then processed the same data using CUBE,

with nodes spaced at 2 m and co-located with the

Figure 5. Data density in the SAX’99 high-resolution bathymetric survey center section. Data is colored in
soundings/m2 (white indicates the density is greater than 150 soundings/m2). Projection: UTM (zone 16N) on
WGS-84.
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centers of the bin estimates. After hypothesis

resolution using equation (A13), we computed

point-wise differences in depth between CUBE’s

depth estimate and the mean and median surfaces;

the histograms are shown in Figure 7. The differ-

ence between surfaces is minimal, with mean

absolute difference on the order of a few centi-

meters. This is both statistically and hydrographi-

cally insignificant, and we therefore conclude that

CUBE’s estimates of depth are hydrographically

equivalent to more conventional processing strate-

gies in this case.

[25] The tremendous data density in SAX’99

makes it relatively easy to compute robust esti-

mates of depth; the important question becomes

how estimation algorithms degrade as the data

density falls to more standard levels. In order to

test this, we progressively sub-sampled the data by

survey line, and repeated the comparisons above.

We found that the errors between CUBE’s surface

and the reference surface (computed using all of

the data) increased, but that the degradation was

gradual and remained within IHO limits in all cases

down to a mean sounding density of 13.7 sound-

ings/m2, the lowest density we could construct and

still maintain full coverage of the surface. We

therefore conclude that CUBE degrades gracefully

with decreasing data density.

3.2. Shelf Survey: West Florida

[26] From 3 September until 12 October 2001, a

USGS led cruise aboard the R/V Moana Wave

mapped segments of the mid-shelf around western

Florida with the objective of geological interpreta-

tion in support of habitat studies [Gardner et al.,

2001b]. The survey system consisted of a Simrad

EM1002 MBES, and a POS/MV 320 attitude/

position sensor fed with differential GPS from a

Satloc MBX-2 receiver. Integration of data, includ-

ing sound speed profiles, refraction corrections and

time-tagging, was implemented in real-time by the

Simrad system, although some corrections for

latency in navigation were applied in post-process-

ing. Soundings were reduced to MLLW using

predicted tides from Panama City (scale factor

0.96, no time shift). Positions were recorded with

respect to WGS-84 and computations were done in

UTM projected coordinates.

[27] During the cruise, the data was examined by

hand and edits were made to flag obviously bad

Figure 6. Trimmed mean binned surface estimate for SAX’99. This uses 2 m bins in projected coordinates (UTM
on WGS-84), and represents a total of approximately 153 � 106 soundings. Surface is sun illuminated from the
northeast. Note small residual artifact in northwest-southeast direction, probably due to residual tide correction errors
in lines run in this direction.
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data as not for use. In order to compare the effect

of hand edits with CUBE’s processing, we ran

CUBE twice, once using only the data accepted

by the human operators, and once using all of

the data collected. This methodology allows us to

isolate edit effects from surface generation, since

CUBE acts as the surface generator in both

cases. Nodes were spaced at 4 m, with depths

being in the range 65–140 m; we concentrate on

a sub-section of the survey area for conciseness

(Figure 8).

[28] Visual inspection of the bathymetry shows

some small anomalies in the outer beams of each

swath, which are known to be produced by prob-

lems with the echosounder mounting position un-

der adverse weather conditions, and which occur in

surfaces constructed with and without flags. Point-

wise differences of the two surfaces, Figure 9,

show remarkable agreement, well within the

expected accuracy of the survey, with the most

significant errors concentrated in those regions of

sparse data known to be of lower quality. Figure 10

shows an example of this type of data, and the

surface estimate by CUBE; even where there are

gross errors, CUBE successfully maintains surface

lock. We therefore conclude that CUBE’s estimates

are just as good as those generated with the benefit

of hand editing, but without the subjective editing

or time requirements.

[29] CUBE’s auxiliary products, however, provide

added benefits. The map of hypothesis counts,

Figure 11, clearly shows areas of difficulty, and

may be used to improve operator efficiency by

concentrating effort where it is required, rather than

expending it equally over all of the data. In

addition, the map of estimate uncertainties, Figure

12, may be used to judge data quality. Here, it

clearly shows three distinct regimes that corre-

spond to three different stages of survey conducted

in different sea states. In addition, in the region

where conditions were the worst, CUBE shows

significant gaps between swaths, indicating regions

where the data is very sparse and of poor quality

such that the algorithm cannot form a reliable

estimate of depth. The default behavior in this case

is to leave a blank region. Since both of these

products can be constructed as the survey pro-

gresses, they could easily be used for survey

planning and quality assurance in the field, making

it more likely that data of sufficient accuracy and

Figure 7. Point-wise difference histograms between surfaces estimated with different algorithms, but using all
available data. The mean absolute difference is on the order of a few centimeters in each case, clearly
hydrographically and statistically insignificant.
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coverage is really ‘‘in the can’’ before leaving the

work site.

4. Discussion

[30] Our results show that it is possible to carry

out bathymetric data processing, including auto-

matic ‘‘cleaning,’’ without having to wait for all of

the data to be available, with minimal overhead,

and faster than nominal data capture rates. In

addition, the robustness of CUBE appears to be

sufficient to deal with typical stochastic errors

inherent in all surveys, and even some non-

stochastic errors such as datum shifts, burst-mode

sounder failure and badly ray-traced beams. The

use of Multiple Hypothesis Tracking (MHT) to

capture mutually inconsistent, but internally self-

consistent, sections of data significantly improves

robustness, and the additional surfaces resulting

from this (particularly the count of hypotheses)

give improved insight into the quality of data. The

ability of the algorithm to operate in real-time, as

the data is being gathered, means that we can use

the co-registered products to implement quality

assurance in the field.

[31] CUBE may be considered to be a robust

weighted surface construction algorithm, although

it really forms a collection of point estimates with

the surface being implicitly or explicitly con-

structed from these. However, as an alternative

surface construction algorithm, it has much to

recommend it. Rather than applying ad hoc weight-

ings, the soundings are individually processed

according to their estimated uncertainty, taking

account of both horizontal and vertical accuracy.

The data assimilation model is intuitive, and read-

ily modified and customized for particular survey

conditions; the components of the system are all

Figure 8. Bathymetric map for West Florida mid-shelf mapping. Automatically constructed by CUBE with no hand
edits, nodes at 4 m spacing, and sun illuminated from the north west. Projection: UTM (zone 16N) on WGS-84. Note
the track line oriented artifacts, most obviously in the south-west. These are caused by increasing sea-state and
attendant reduction in data quality as the survey progressed (c.f., Figures 11–12).

Geochemistry
Geophysics
Geosystems G

3
G

3
calder and mayer: multibeam echosounder data 10.1029/2002GC000486

12 of 22



well separated and hence may be readily adapted,

modified or replaced as required. Finally, with

certain limitations, the algorithm can be used in

real-time mode to provide first-pass field quality

control and estimates.

[32] In practice, the balance between depth predic-

tion and error propagation may depend on the

purpose for which the data is collected. In a strict

hydrographic processing chain we might wish to be

more conservative, shoal biasing all predicted

bathymetry, and making the error bounds increase

more rapidly. In a geoscience context, we may try

to ensure that small features are correctly repre-

sented, even if that means some higher noise levels

elsewhere that will require more interaction to

correct. In some contexts, we might need to con-

sider areas where our zero-order prediction is no

longer valid, and hence incorporate some interac-

tion terms between neighboring estimation nodes

to compensate. At present, we specify the propa-

gation terms a priori with at best a nod to a

Bayesian subjective prior argument for their val-

ues. This is a small (but unavoidable) weakness in

the algorithm.

[33] We focus on stochastic uncertainty here, rather

than any systematic effects (e.g., an incorrect align-

a

b

Figure 9. Differences between surfaces generated by CUBE with and without hand edits; (a) point-wide difference
histograms and (b) color-coded surface with difference between hand-edited and automatically generated surfaces.
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ment bias term), holding that systematic effects

should be taken care of by normal best practice.

Although CUBE does not account for them, it is a

very effective tool for illustrating the effects, since

the soundings from multiple passes with systematic

problems will disagree on depth in a manner that is

a function of the problem. If the difference is

significant then analysis of the pattern of hypothe-

ses can be used as a diagnostic tool. This is in

keeping with CUBE’s fundamental philosophy of

telling the truth about the data, in as much as it is

known (e.g., we do not report a depth if no

sounding is close enough, and report uncertainties,

etc.) We feel it is better to show the ‘warts’ in the

data during the processing stage, and resolve or

hide them (as the application demands) at a later

stage of the process.

[34] For the hydrographic community, there is a

significant paradigm shift required to consider

statistically derived surfaces as the most valid

description of the data, rather than the more tradi-

tional estimates, e.g., a shoal biased selected

sounding set. However, we would contend that a

significant proportion of the data observed in such

conventional estimates represents the upper tails of

the sampling distribution of a MBES, and hence

are not at all representative of the actual bathym-

etry. A reliance on such data is probably rooted in

the use of physical sounding methods, where if a

lead-line showed up shallower within an area than

other points, there must have been something there.

With indirect sounding methods, this is not neces-

sarily the case.

[35] The addition of MHT and the hypothesis count

surface, in addition to the uncertainty surface

strengthen the arguments for automatic processing,

at least as a preliminary processing stage. We do

not believe that any automatic data processing

algorithm will compensate for all errors in data,

stochastic or otherwise, and that manual data

examination may be required when the uncertain-

ties warrant it. However, our approach should

provide reasonable estimates for the depth in most

places, and hence reduce the processing burden on

the operators by focusing attention and effort

where it is required. The combination of fast

automatic processing in almost all areas and com-

puter directed human decisions (informed by aux-

iliary data surfaces) should significantly increase

processing efficiency.

Figure 10. Raw data, with CUBE’s estimated surface. Soundings are represented as cubes, color-coded by depth
(hot colors are shallower) and sized by predicted vertical uncertainty. Note that even in very significant noise, the
surface lock is still maintained.
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Figure 11. Count of CUBE hypotheses color-coded over CUBE’s surface estimate, sun illumination from the
northwest. The majority of the survey area is consistently estimated with a single hypothesis, although multiple
hypotheses are often seen on outer beam regions. The southwest region is more variable due to reduced data quality
caused by worsening sea conditions.

Figure 12. Predicted 95% estimate uncertainty color-coded over CUBE’s surface estimate. Three regimes are
evident, related to time of data collection and associated sea state. The foreground region was collected under adverse
conditions; the outer swath region is of low data density and high predicted uncertainty. Consequently, CUBE
declines to generate estimates in these regions, leaving data holidays.

Geochemistry
Geophysics
Geosystems G

3
G

3
calder and mayer: multibeam echosounder data 10.1029/2002GC000486

15 of 22



[36] There are a number of directions for further

investigation in implementing the algorithm out-

lined here, particularly with respect to robustness.

In real-time mode, we are somewhat limited by the

data we can obtain; for example, tide corrections

will normally be based on predicted values rather

than those measured, and we must work with data

as it arrives. However, in post-processing mode,

we can make use of all of the data, so that we

may, for example, construct surface representa-

tions at different resolutions, pushing spatial con-

text from low resolution to high resolution

versions. In some environments, the idea of a

static depth estimate at a particular point may

not be valid under any circumstances (e.g., where

there is significant tidally driven sediment dynam-

ics, or where data sets are gathered over a signif-

icant period of time). In that case, we would have

to implement a full dynamic model, although

specification of model dynamics would be com-

plex. Further input from manufacturers of sonar

equipment to define and refine error models for

particular multibeam (and single-beam) equipment

would also be beneficial.

[37] Finally, although the method relaxes the con-

straint of estimation in a regular grid, we have not

pursued the difficulties and benefits of allowing a

more general graph of nodes to be specified. In

fact, there is no reason for the nodes to be fixed in

place (our only assumption is that we know

exactly where they are). One possible extension

would be to allow nodes to be added or deleted

dynamically, to allow us to match the estimated

sampling density required for the surface under

consideration. Another possibility is to allow the

nodes to gravitate to where they are actually

required on the surface, rather than having them

fixed in place. If the total number of nodes were

constrained to be a constant, this would not have a

significant computational overhead, although it

would require significantly higher investment in

bookkeeping.

5. Conclusions

[38] We have proposed a new method for automat-

ic handling of dense bathymetric data. Based on a

simple model of the stochastic errors associated

with estimates of depth, we have constructed an

optimal estimator which tracks an estimate of the

depth, the uncertainty associated with that esti-

mate, and the number of self-consistent depths

detected at each location. Where multiple self-

consistent depth estimates are present, the algo-

rithm selects a ‘‘best’’ estimate according to

user-defined rules on what constitutes ‘‘best.’’

The method has a number of advantages to rec-

ommend it, in particular that it automatically

incorporates estimates of 3D uncertainty, allows

for optimal combination of estimates, and provides

a procedure for updating older surveys with new

data (or using older surveys to constrain interpre-

tation of new data).

[39] The method also allows us to build a low

memory overhead, real-time, on-line estimator so

that we have continually available (as data is

added), current best estimates of depth and the

associated uncertainty at that depth.

[40] Our results have shown that the estimates

generated by CUBE are consistent with other

robust estimators and with human-edited data,

and hence that in the vast majority of cases we

can avoid having to examine every sounding

gathered. Our method also provides the means

to automate and integrate the human decision

making process by linking depth and auxiliary

data surfaces.

Appendix A: Theoretical Foundations

A1. Notation

[41] In the following descriptions, bold letters

indicate vectors (e.g., x with transpose xT); hollow

letters are standard sets (e.g., R for the reals, N for

the naturals, and Z for the integers), and sans serif

letters indicate general sets. jNj is the cardinality of

a set (i.e., the number of members), and kxk
represents the Euclidean norm. In the time series

description of CUBE’s DLM s (Dynamic Linear

Models), we use Bayesian conditional notation and

square brackets to indicate a discrete time series;

hence x̂[n|n � 1] is an estimate of x at sample n

given information to sample n � 1, and x̂[njn] is
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the updated estimate including all information to

sample n, etc. For random variables, the swung

dash indicates a distribution, so x 	 N (0, s2)
indicates that x is a random variable distributed as a

normal (Gaussian) variable with mean 0 (units) and

variance s2 (units2).

A2. Foundation

[42] Our task is to estimate depth at a particular

geographical location given the sounding data in

the immediate vicinity. To quantify our estimate of

depth we must also provide an estimate of the

uncertainty in the depth. Let N = {nj 2 R
2, j 2

N}be the set of locations of estimation nodes, and

let Xj = (dj, sj
2)T be the vector of depth estimate and

uncertainty at the jth node. We have essentially two

problems: how to predict, at a node, the depth and

uncertainty implied by a sounding even if that

sounding is not itself at that location, and how to

make the estimation sufficiently robust to deal with

MBES failures.

A3. Data Preprocessing

[43] Assume a priori that the ith sounding is valid,

and the MBES reports depth zi at nominal location

xi 2 R
2. That is, assume that the depth is correctly

detected from the primary seabed reflection

through the main lobe of the sonar, and is

correctly processed for systematic offsets, refrac-

tion and dynamic effects such as platform attitude

and dynamic draft. Then, a propagation of

variance argument can be applied to the depth

solution to estimate, given the measurement

accuracies of all of the components of the solution

(see, e.g. Table A1), the expected horizontal and

vertical errors associated with the nominal sound-

ing ([Hare et al., 1995]). Let si = (zi, sH,i
2 , sV,i

2 )T be

the vector of computed depth, and horizontal and

vertical error variances. A fundamental assumption

of our method is that data for a particular location

should agree on depth to within these limits.

Conversely, if a data point does not agree with our

current estimate given this leeway, then we may

conclude that we are seeing inconsistent data and

take suitable steps. Uncertainties also play a vital

role in assimilating data with extant estimates (see

section A4).

[44] While our estimation nodes are fixed in

location with respect to some (usually projected)

coordinate system, the data soundings are essen-

tially randomly distributed with respect to the

nodes (Figure 1). However, continuity and local

smoothness of the surface imply that soundings

close to a node provide information about the

depth there, and we may express this by a function

describing the local bathymetric surface, and

hence form a prediction of Xj given si. Let dij =

kxi � njk be the propagation distance. The simplest

model is:

ej sið Þ ¼

dij

s2ij

2

4

3

5 ¼

zi

s2V ;i 1þ
dijþsHsH ;i

Dmin

h ia	 


2

4

3

5 ðA1Þ

where sH is a scale factor for worst expected

horizontal error (typically sH = 1.96), Dmin is

minimum node spacing and a is a user specified

exponent (typically a = 2.0). The increase of

uncertainty with distance dij, including the effect of

horizontal error, is a reflection of the belief that

soundings that are further from the node should be

given less credence, as should those with higher

initial horizontal or vertical uncertainty. This model

also combines separate horizontal and vertical

uncertainty into a unified effect by assuming that

Table A1. Components of the MBES Error Modela

Component Typ. Value Units

Spatial offsets between equipment 5.0 mm
Angular alignment of equipment 0.05 deg
GPS positioning (drms) 1.0 m
GPS latency 5.0 ms
Roll/pitch measurement 0.05 deg
Yaw measurement 0.06 deg
IMU latency 5.0 ms
Sound Speed Profile measurement 0.5 m/s
Surface Sound Speed measurement 0.50 m/s
Heave measurement (fixed) 0.05 m
Heave measurement (variable) 5 %
Draft measurement 0.02 m
Dynamic draft 0.02 m
Loading 0.01 m
Speed-over-ground 0.2 m/s
Tide measurement 0.02 m
Tide spatial variation 0.02 m

a
All values are typical, and are quoted at one standard deviation.

Note that these values are not the magnitude of the corrections applied,
but the magnitude of the residual after the appropriate corrections (for
tide, draft, dynamic draft, etc.) have been made.
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the sounding could be as much as sHsH,i m from

the nominal location, in the wrong direction.

A4. Data Assimilation

[45] Our ideal model of estimating a constant

depth, z, is codified in the Dynamic Linear Model

(DLM) [West and Harrison, 1997]:

z nþ 1½ 
 ¼ z n½ 
 þ w n½ 
 w n½ 
 	 N 0;W n½ 
ð Þ ðA2Þ

d n½ 
 ¼ z n½ 
 þ v n½ 
 v n½ 
 	 N 0; s2j n½ 

	 


ðA3Þ

where w[n] and v[n] represent evolution and

measurement noise variance respectively. Our

model assumes a constant depth, and hence we

set W[n] = 0 m2 8n. To maintain local dependences

we select only soundings Sj = {si : dij � Dmax(i)}

for assimilation at node j, where Dmax(i) is given by:

Dmax ið Þ ¼ max Dmin;Dmin
a
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

s2max=s
2
V ;i � 1

q

� sHsH ;i

n o

ðA4Þ

and smax is the maximum allowable sounding

accuracy for the survey in question, computed

according to IHO limits ([IHO Committee, 1996]).

[46] Let Ej = {ej(si) : si 2 Sj} = {ej[0], . . . ej[Nj �
1]} (where Nj = jSjj) be the set of propagated

soundings associated with the jth node, enumerated

by a fixed but arbitrary permutation (e.g., the order

in which they arrive from the data stream). We may

consider the soundings as a sequence of estimates

arriving at a node, which may in turn be regarded

as a pseudo-time sequence, ej[n] = (dj[n], sj
2[n])T,

0 � n < Nj. At the node, the current estimate

xj n½ 
 ¼



ẑj njn½ 
; ŝ2j njn½ 

�T

may then be updated

optimally with new data by the sequence:

ŝ2j njn� 1½ 
 ¼ ŝ2j n� 1jn� 1½ 
 ðA5Þ

ẑj njn� 1½ 
 ¼ ẑj n� 1jn� 1½ 
 ðA6Þ

Gj n½ 
 ¼
ŝ2j njn� 1½ 


ŝ2j njn� 1½ 
 þ s2j n½ 

ðA7Þ

�j n½ 
 ¼ dj n½ 
 � ẑj njn� 1½ 
 ðA8Þ

ẑj njn½ 
 ¼ ẑj njn� 1½ 
 þ G n½ 
�j n½ 
 ðA9Þ

ŝ2j njn½ 
 ¼ G n½ 
s2j n½ 
 ðA10Þ

which is equivalent to a simple Kalman filter

[Maybeck, 1979; Haykin, 1995]. This recursive

solution of the optimal estimation problem means

that we need only hold a current estimate of depth

and uncertainty rather than having to database and

manipulate all of the data for the survey at one

time. This formulation is the basis of our real-time

construction. Since the series ej[n] comes from the

immediate spatial vicinity of nj, we can interpret

equations (A5)–(A10), and particularly the weight

Gj[n], either as an area-based ‘‘editing’’ scheme, or

as a weighted gridding algorithm where the

weights are derived from propagated, combined,

error uncertainties. A typical pseudo-time sequence

in a locally flat area, and its track depth and

uncertainty, are shown in Figure 2.

[47] This model implicitly assumes that the obser-

vations taken from different beams in each ping

and from ping to ping are independent of each

other. Of course, this is not exactly the case since,

for example, all of the beams are traced against the

same sound speed profile, and are reduced to

datum with the same static and dynamic draft

measurements. At best, the data are conditionally

independent. A more realistic error description

could be introduced that accounted for these de-

pendencies at the expense of a much more complex

modeling environment. When interpreting CUBE’s

estimates, it must be kept in mind that an extra

error over and above the estimate uncertainty may

have to be included. Recall that the uncertainty

being reported is an a posteriori distribution vari-

ance for the current depth estimate, and not a

measure of the standard deviation of the input data.

A5. Model Monitoring and Robustness

[48] All acoustically derived hydrographic data suf-

fers to some extent from problems caused by stray

acoustic energy, poor bottom tracking or multiple

reflections. To account for these in a robust manner,

we must extend the model to provide a ‘‘judicious

and grudging elaboration of the model to ensure

against particular hazards’’ [Box, 1980]. Since the
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ordering of data points in ej[n] is arbitrary, we

immediately improve robustness by passing the

data through another permutation that implements

a moving median filter [Cormen et al., 1990]. This

ensures that any potential outliers are delayed in

the filter’s queue structure, protecting the DLM as

it ‘‘learns’’ about the true depth. The strength of

protection is proportional to the length of the

median filter, but so is the latency between sample

arrival and assimilation. We have found that 11

samples is normally effective. Note that this does

not imply that CUBE requires 11 samples to make

an estimate. It is possible to ‘‘flush’’ the queue into

the estimator proper if required, so that hypotheses

are formed before reconstruction. A single sound-

ing is sufficient to generate a hypothesis, although

having a small number (e.g., 3–5) within range of

the node aids significantly in robustness of the

estimation. This does not imply a reduction of

achievable resolution, since each sounding may be

used at more than one node.

[49] This extension is insufficient when there is

significant evidence for more than one depth at any

node—essentially a circumstance the model of

equations (A2)–(A3) does not allow. We extend

the model by allowing more than one potential

DLM to be present at any node, indexing the one in

use at ‘‘time’’ n by an indicator variable qj[n] 2 Z
+,

0 � n < Nj. This piecewise description is similar to

many fully Bayesian approaches to the problem

[Gerlach et al., 2000; Gamerman, 1998; Chib,

1998; Richardson and Green, 1997] except that

we continue to work recursively. We initialize each

node with no DLMs, adding them as incoming data

appears to be inconsistent with all current DLMs in

the manner described below.

[50] Let there be �j[n � 1] possible models Xj
[k][n],

1 � k � �j[n � 1] immediately prior to using

sample n, where each hypothesis has assimilated

nj
[k] samples, so �knj

[k] = Nj. Then, we choose the

best available model by a minimal forecast error

argument:

qj n½ 
 ¼
argmin

1 � k � �j n� 1½ 


�

dj n½ 
 � ẑ
k½ 

j n

k½ 

j þ 1 n

k½ 

j

�

�

�

h i	 
�

�

�

.

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ŝ
2 k½ 

j n

k½ 

j þ 1 n

k½ 

j

�

�

�

h i

þ s2j n½ 


r
�

�

�

�

�

ðA11Þ

We then check that ej[n] is compatible with this

model by one-step and sequential Bayes Factor

analysis [West and Harrison, 1997, chap. 4]. Our

alternative hypothesized model is one with at least

a four standard deviation step change in depth

(measured with reference to the one step forecast

error), and we require a log Bayes factor of ln Bj[n]

� �2 before deciding to reject the null hypothesis

that the data and model are compatible. If we

accept the null hypothesis, ej[n] is assimilated into

model qj[n]; otherwise, it is used to form the start of

a new model track. An example of MHT is shown

in Figure 4 along with the track which results from

integrating all data into a single track.

A6. Hypothesis Resolution

[51] CUBE’s remit is to estimate depths automat-

ically. Where only one hypothesis exists, we re-

construct the surface with Xj[n] = Xj
[1][n]; where we

track multiple hypotheses, we must have a method

to determine which estimate, Xj[n] = Xj
[k][n] for

some k, we think is most likely. Making this choice

correctly is the key to minimizing operator

intervention time, since the operator only has to

be involved if CUBE has multiple hypotheses, but

cannot reliably determine which one to choose.

[52] The simplest solution is to choose by number

of samples assimilated (i.e., the longest held hy-

pothesis). Thus we choose hypothesis:

k ¼
argmax

1 � i � �j n½ 

n
i½ 

j =Nj

n o

ðA12Þ

Since �inj
[i] = Nj this may be interpreted as an

approximation to the posterior model probability.

In most cases, this is sufficiently robust to deal

with noise. However, in burst mode failure this

may not be the case since the ‘‘noise’’ data may

occur more frequently than the ‘‘true’’ data.

[53] To improve matters, we utilize local contextu-

al information on depth, and assume that a single

hypothesis node is more reliable than one with

multiple hypotheses. Let gj = argmink {djk : r0 � djk
� r1, �k[n] = 1} be the closest such node to the jth

node, with estimate Xgj[n]. (We use (r0, r1) = (5, 10)

m; the minimum radius improves reconstruction in

burst noise.) A surface continuity argument
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suggests that the depth at the jth node should be

similar to that at the gjth. Hence we choose the

hypothesis closest in depth to Xgj[n]:

k ¼
argmin

1 � i � �j n½ 


n

ẑ
i½ 

j n

½i

j n

i½ 

j

�

�

�

h i

� dgj

	 

�

�

� :

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ŝ
2 i½ 

j n

i½ 

j jn

i½ 

j

h i

r
� �

�

�

�

�

ðA13Þ

[54] Finally, we can combine these two approaches

by likening equation (A12) to a prior distribution,

and equation (A13) to a likelihood. A pseudo-

Bayesian argument then suggests a log ‘‘poste-

rior,’’ and selection with:

k ¼
argmax

1 � i � �j n½ 

� ln ŝ

i½ 

j n

i½ 

j n

i½ 

j

�

�

�

h in

� ẑ
i½ 

j n

i½ 

j n

i½ 

j

�

�

�

h i

� dgj

	 


2ŝ
2 i½ 

j n

i½ 

j n

i½ 

j

�

�

�

h i.

þ ln n
i½ 

j

o

ðA14Þ

after some simplification.

a

b

Figure A1. Example of different hypothesis resolution methods. (left) Simple resolution using the number of
samples assimilated as a measure of posterior model probability; (right) context-driven hypothesis resolution
approximating likelihood of hypothesis given the best certain local node reconstruction. Note that the addition of
context significantly improves the number of correctly resolved multiple-hypothesis nodes in the presence of
significant noise.
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[55] Which method to use for hypothesis resolu-

tion depends on available time and complexity of

data. Determining gj is costly because of the spatial

search required, although the reconstruction using

spatial context is typically better. An example from

the multibeam survey of Figure 3 in Portsmouth

Harbor [Glang et al., 2000] is shown in Figure A1.

The data here was particularly noisy due to bubble

entrainment from an auxiliary instrument, leading

to significant numbers of burst-mode errors. The

simple resolution method of equation (A12) has

significant difficulties in this case since many of

the nodes have more ‘‘noise’’ than ‘‘signal.’’

However, the context-driven resolution method of

equation (A13) improves performance significant-

ly. Note that choosing a ‘‘best’’ hypothesis is

dubious in any case where there is evidence

sufficient to construct multiple hypotheses, and

the choice may change as new data is gathered

and assimilated. Multiple hypotheses are not nec-

essarily an indication of algorithm failure, merely

that an outlier of some significance has occurred;

there is only a problem if CUBE cannot determine

which hypothesis to choose. Therefore it is essen-

tial to interpret the reconstructed surface with

reference to the hypothesis count surface and other

metrics.
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