
Automatic Proof of Strong Automatic Proof of Strong 

Secrecy for Security Secrecy for Security 

ProtocolsProtocols

By Bruno Blanchet

Originally presented at:

IEEE Symposium on Security and Privacy

Oakland, California, May 2004

Presented by David Fink



OutlineOutline

1. Secrecy vs. Strong Secrecy
‣ Definitions, prior work, advantages

2. Formal Spec: Applied Pi Calculus
‣ Generic/abstract cryptography with constructors/destructors

‣ Model supports most cryptographic primitives, including 
probabilistic variants.

‣ Uses unbounded parallel composition, unbounded name creation.

3. Verification (semi)algorithm
‣ Algorithmic translation to Horn clauses representing deduction 

rules for processes and adversary for given protocol.

‣ Uses resolution with free selection to derive forbidden clause.

‣ Main ContributionMain Contribution: Unification predicate, testunif(p,p’) to test for 
distinguishability of terms p,p’.

4. Decidability and Efficiency
‣ Very efficient implementation in Prolog: ProVerifProVerif tool.

‣ However, in general proof technique may not terminate.

‣ Termination proven for taggedtagged protocols.



Standard SecrecyStandard Secrecy

Traditional secrecy is defined over 

traces if the Dolev-Yao model:

Assuming perfect cryptography, for 

any term s, s remains secret iff no 

possible (possibly infinite) trace 

results in the adversary learning s.

{A,NA}PKI
{A,NA}PKB

{NA,NB}PKA
{NB}PKI

NNBB

Weaknesses

• Deducibility of single secrets cannot model partial 

information leaks or distinguishability of ciphertexts.

• Automated proof of secrecy is already undecidable for 

arbitrary protocols1, even with bounded sessions and 

message length2, so more powerful model no “worse”

computationally. 1. Even and Goldreich 1983, Heintze & Tygar 1996
2. Durgin, Lincoln, Mitchell & Scedrov, “Undecidability of Bounded Security Protocols”, 1999.

Secrecy is nondeducability

Defined over an arbitrary secret and 

over all possible traces.



StrongStrong SecrecySecrecy

Comparative AdvantagesComparative Advantages

• Strong secrecy subsumes standard secrecy – it is a 
strictly more difficult property to satisfy.

• More refined: can model implicit flow detection 
(detecting differing process behaviors depending on 
differing ciphertexts).

• It is a type of process equivalenceprocess equivalence, so we gain 
compositionalitycompositionality, aiding proof automation.

• Closer to computational model of secrecy.

{A·NA1}PKA
{A·NA2}PKA

〈〈AA·NNA1A1〉〉 〈〈AA·NNA2A2〉〉

Strong secrecy requires that ciphertexts

containing possibly different secrets are 
indistinguishable from each other by the 

adversary. Thus, processes whose 
messages differ only in their ciphertext

contents are also indistinguishable.

Strong secrecy is observational Strong secrecy is observational 

equivalenceequivalence with respect to different 
secret values; i.e. the adversary cannot 

see if or when a secret encrypted value 
changes.

??==



Background WorkBackground Work

 This paper builds on the following by Blanchet and others:

1. Abadi & Blanchet, “Analyzing Security Protocols with Secrecy 

Types and Logic Programs” (POPL 2002).

Introduced typed constructors and destructors in the Pi calculus to 

model abstract cryptography. Proved equivalence between this 

calculus and untyped logic programs (Prolog). Presented 

verification algorithm as logic program.

2. Blanchet & Podelski “Verification of Cryptographic Protocols: 

Tagging Enforces Termination” (FOSSACS 2003)

Proved that the verification algorithm described above terminates 

for tagged protocols, proving preservation of secrecy is decidable.

More on tagged protocols laterMore on tagged protocols later……

http://www.cse.ogi.edu/PacSoft/conf/popl/
http://www.research.microsoft.com/~adg/Fossacs03/


Extended Pi CalculusExtended Pi Calculus

Elsewhere called Applied Pi Calculus

Grammar:

M,N ::= Terms (Messages)

x, y, z variables

a, b, c, k, s names

f(M1,… ,Mn) constructor application

P,Q ::= Processes

0 nil

P | Q parallel composition

!P replication

(νa)P restriction (free variable instantiation)

MhNi.P output

M(x).P input

let x = g(M1,… ,Mn) in P else Q destructor application

if M = N then P else Q conditional

Title:Creator:AFPL Ghostscr ipt 814 (epswrite)Preview:This EPS pictur e was not saved



Constructors & DestructorsConstructors & Destructors

• Constructor f used to build terms: f(M1,L ,Mn )

– Used for encryption, digital signatures, hashing, etc.

• Destructor g used to break down and analyze terms:

let x = g(M1,L,Mn) in P else Q
– Destructor process can be seen as a reduction:

g(M1,L,Mn ) ⇒ M

– Decryption, signature, verification, etc.

– Destructor arguments must be grounded

Constructors and destructors can be public or private.

Note that constructors and destructors are abstract. Any 
specific cryptosystem can be instantiated here.



From (Con/From (Con/De)structorsDe)structors

to (En/to (En/De)cryptionDe)cryption

Public key encryption as constructor:
– Public key generation constructor : pk(N) (N is private)

– Encryption constructor: pencrypt(M,N)

– Probabilistic PK encryption : pencryptprob(M,N,R)

– Example : (νr)chpencryptprob(M,pkA,r )i

Public key decryption as destructor:
– Decryption destructor : pdecrypt(M’,N’)

– Example : pdecrypt(pencryptprob(M, pk(N), R), N) ⇒ M

Constructors and destructors are similarly defined for Constructors and destructors are similarly defined for 

symmetric key encryption, digital signatures, hash symmetric key encryption, digital signatures, hash 

functions, functions, MACMAC’’ss, with or without probability., with or without probability.



Some DefinitionsSome Definitions

• fv(P) and fn(P) are the free variables and 
names in P, respectively.

• P is a closed process iff

|fv(P)| + |fn(P)|  = 0

• A term is closed (or ground) if it has no free 
variables, and a substitution is closed if its 
image consists only of closed terms.

• Process equivalence (≡) and process 
reduction relations (⇒) are only defined over 
closed processes.



Example: Corrected, Simplified Example: Corrected, Simplified 

DenningDenning--SaccoSacco

This protocol is designed to accomplish secure key exchange and 
maintain the secrecy of x, a value chosen by B, so it is free 
variable:

A → B : {{pkA,pkB,k}skA
}pkB

(k is a fresh secretk is a fresh secret)

B → A : {x}k

In the process algebra:

We want to prove the strong secrecy of x.



Strong Secrecy, FormallyStrong Secrecy, Formally

Adversary as ContextAdversary as Context: We consider the adversary 

as an evaluation context, built from [], C|P, P|C, and 
(νa)C. It can run unbounded parallel sessions with 

unbounded data.

Observational EquivalenceObservational Equivalence: : Two processes P and 
Q are observationally equivalent, denoted P ≈ Q, if no 

adversarial evaluation context exists that would allow 

the adversary to decide P ≠ Q.

Strong SecrecyStrong Secrecy: : A process P0 preserves the strong 

secrecy of its free variables iff for all closed 
substitutions σ and σ 0 of domain fv(P0), σP0 ≈ σ 0P0..

Intuition: No pair of different ground substitutions of free varIntuition: No pair of different ground substitutions of free variables results iables results 

in observably different behavior by Pin observably different behavior by P00..



Proof Technique Proof Technique -- AbstractionAbstraction

In order to reuse prior automated proof technique, the 
adversary is defined as a process (or set of processes) 
running in parallel with protocol processes.

•• IntuitionIntuition: Each reduction step of process P0 is independent of 

the values of its secrets.

•• Condition 1Condition 1: The success or failure of communications is 

independent of the secrets.

•• Condition 2Condition 2: The success or failure of destructor applications 

is independent of the secrets.



Proposition: Proof ObligationsProposition: Proof Obligations

Let process P0’ be derived from P0 by substituting 
distinct free names from a set Secr for free variables of 

P0, and let Q be any adversary s.t. fn(Q) … Secr = «

Condition 1: P0’ | Q does not communicate over a channel in 

Secr.

• If it did, adversary could see that communication succeeded. 

This assures that P0’ does not leak distinguishing secrets.

Condition 2: If P0’ | Q executes a destructor application let x = 

g(M1,…,Mn) in Q’ else R’ that succeeds for some 

value in Secr, it succeeds for all values in Secr. 

• If not, adversary could could distinguish between Q’

executing for some values of the secrets and R’ executing for 

others.

If Conditions 1 and 2 hold, PIf Conditions 1 and 2 hold, P00 preserves the strong secrecy of its fv(Ppreserves the strong secrecy of its fv(P00).).



Horn Clause RepresentationHorn Clause Representation

POPL 2002Automation of the proof is similar to Abadi & Blanchet’s paper 

“Analyzing Security Protocols with Secrecy Types”.

The algorithm is based on an a reduction to Horn clauses, which encode 

the deductive rules.

Starting from closed process P0. Each restriction (νa)P0 has a different 
name a. In order to distinguish between different copies of P0, each 

replication of P0 has a unique session identifier associated with it. 

Horn clause terms, called patterns, are generated from the following 

grammar:

p ::= x,y,z variable
e element of EVar

x element of Secr

a[p1,…,pn] name

f(p1,…,pn) constructor application

http://www.cse.ogi.edu/PacSoft/conf/popl/


Horn Clause Horn Clause RepresenatationRepresenatation

Name creation (νa)P0 under replication is replaced name function 

a [p1,…,pn]. If the name is free (unbound), the function arity is 0. 

Bound names are represented by name function of arity equal to 

the number of inputs, destructor applications, and replications 

above it. The use of name functions eliminates unbounded names 

under replication. 

The Horn clauses use the following predicates (facts)

att(p) : attacker may have p

mess(p,p’) : message p’ may be appear on channel p

com(p) : attacker may communicate on channel p

testunif(p,p’) : unification test    ← key addition

bad : derivable iff strong secrecy does not hold



TestunifTestunif

Testunif is specific to strong secrecy. It detects when a destructor 

application (usually a decryption) succeeds for some values of the 

secrets in Secr but not for others.

Let p, p’ be closed patterns, Secr be a set of secret, unbound 

names, and EVar be a set of constants disjoint from Secr.

Testunif(p, p0) is true iff:

1. p and p’ can be unified – there exists closed substitution σ from 

domain Secr ∪ EVar, such that σSecr does not contain bound 

names and σp = σp0.

2. p and p0 cannot otherwise be unified – no closed substitution σ 0

from domain EVar exists such that σ 0p = σ 0p0.

Therefore Testunif returns true iff the adversary can’t distinguish 

between encrypted secrets without knowing a secret already.

TestunifTestunif can be used to check that Condition 2 holds in the proof.can be used to check that Condition 2 holds in the proof.



RulesRules

Attacker Rules: Encoding of Dolev-Yao derivation as 
nine rules, but adds new rules for deriving bad. 

• EVar((N1,…,Nn)) is a substitution of variables for values in 

EVar.

• att(x1) ∧…∧ att(xn) ∧ testunif((x1,…xn), EVar((N1,…,Nn))) ⇒ bad

• If x ∈ Secr, then com(x) ⇒ bad.

Protocol rules: Standard encoding from prior paper, 
ensuring fresh session identifier is added for each 

replicated process.



Solving Algorithm (sketch)Solving Algorithm (sketch)

Resolution with Free Selection:

R: Rule H: Hypothesis F: Fact C: Conclusion

H ⇒ C F ∧ H’ ⇒ C’

σH ∧ σH’ ⇒ σC’

Selection function chooses which rules to apply at any point. 

Rules define protocol and adversary actions. See paper for details.

• Selection function sel used to pick which rule to apply. Picks hypothesis not of 

the form att(x) or testunif(p. p’) if possible, or the conclusion otherwise. Tries to 

avoid resolving on fact att(x).

• A set of simplification steps used to decide if testunif(x,x’) holds :

testunif does not depend on clauses.

• Repeat rule selection function / rule application / clause set simplification until 

a fixpoint is achieved.

• If fixpoint includes bad, strong secrecy fails. If not, strong secrecy is proven.



Correctness / IncompletenessCorrectness / Incompleteness

Theorem 1: The clause bad is derivable from the 
input clauses iff the algorithm generates it. 

Theorem 2: The algorithm does not generate bad iff 
the protocol preserves strong secrecy of its free vars.

Limitation: The algorithm may not terminate for all inputs.

• Fixpoint may not be found.

• Not surprising – this is automated theorem proving.

Decidable Subclass: Decidablility proven for tagged
protocols – protocols which syntactically 
disambiguate all encrypted subterms in a protocol. 

• Extension of proof from previous paper.



Tagged ProtocolsTagged Protocols

A tagged protocol in the Applied Pi Calculus is a 
process P0 with the following properties:

• All communication occurs over a single public channel.

• Each constructor in a tagged protocol adds a unique tag

(constant name) to each distinct constructor:

f(t, M1,…,MN)

• Every (honest) destructor (let x = g(…) in P else Q) must first 

check for tag equality before proceeding. If the tag is not 

equal, the process must end (fail-stop):

let y = 1thn(x) in if y = t then P’ else 0

• Extension in paper admits weaker model that handles non-empty case for 
error-handling: protocol should still not make progress in “else” process.

• Long term secrets are atomic constants – secrets are not only 

not lost, but not created by the protocol.



Tagged ProtocolsTagged Protocols

An interesting restricted class of protocols:

• Guarantees that intent of each encrypted term is unambiguous.

• Eliminates need to consider messages with unbounded length.

• Prevents all type-flaw attacks

• Used to prove:

• Completeness of model checking (Gavin Lowe, 1998)

• Decidability of secrecy (Blanchet & Podelski 2003,  Ramaujam & 

Suresh 2003, using a very different formalism).

Most security protocols can be modified to become 
tagged protocols. 

Research question: Which protocols cannot be 
tagged? Interesting subclass? Diffie-Hellman, for one.



ResultsResults

1. Corrected Denning-Sacco:

A → B : {{pkA,pkB,k}skA
}pkB

B → A : {x}k

A → B : {x’ }k

– Preserves strong secrecy of x and x’ only if encryption 

is probabilistic or if we add tags c0, c0’ to messages 2 

and 3.

2. JFKi: preserves strong secrecy of the 

initiator.
– Proof uses extensions to the proof system given in 

latest technical report version of this paper.



ConclusionConclusion

Formal definition of strong secrecy allows for the 
extension of prior results in proof automation via logic 
programming to be applied to strong secrecy.

Automated translation from Applied Pi Calculus to 
Horn clauses. 

Resolution algorithm proves or disproves strong 
secrecy. May not terminate on all protocols. 
Terminates for tagged protocols.

Does not consider weakening the term algebra 
(malleability, weak keys, RSA, etc.)

Free tool available: Proverif

See http://www.di.ens.fr/~blanchet/cryptohttp://www.di.ens.fr/~blanchet/crypto--eng.htmleng.html

http://www.di.ens.fr/~blanchet/crypto-eng.html

	Automatic Proof of Strong Secrecy for Security Protocols
	Outline
	Standard Secrecy
	Strong Secrecy
	Background Work
	Extended Pi Calculus
	Constructors & Destructors
	From (Con/De)structorsto (En/De)cryption
	Some Definitions
	Example: Corrected, Simplified Denning-Sacco
	Strong Secrecy, Formally
	Proof Technique - Abstraction
	Proposition: Proof Obligations
	Horn Clause Representation
	Horn Clause Represenatation
	Testunif
	Rules
	Solving Algorithm (sketch)
	Correctness / Incompleteness
	Tagged Protocols
	Tagged Protocols
	Results
	Conclusion

