
Technische Universität München

Lehrstuhl für Logik und Verifikation

Automatic Proofs and Refutations for

Higher-Order Logic

Jasmin Christian Blanchette

Vollständiger Abdruck der von der Fakultät für Informatik der Technischen

Universität München zur Erlangung des akademischen Grades eines

Doktors der Naturwissenschaften (Dr. rer. nat.)

genehmigten Dissertation.

Vorsitzender: Univ.-Prof. Dr. Helmut Seidl

Prüfer der Dissertation:

1. Univ.-Prof. Tobias Nipkow, Ph.D.

2. Prof. Koen Claessen, Ph.D.

Technische Hochschule Chalmers, Schweden

Die Dissertation wurde am 02.03.2012 bei der Technischen Universität München

eingereicht und durch die Fakultät für Informatik am 24.05.2012 angenommen.

Abstract

This thesis describes work on two components of the interactive theorem prover
Isabelle/HOL that generate proofs and counterexamples for higher-order conjec-
tures by harnessing external first-order reasoners.

Our primary contribution is the development of Nitpick, a counterexample gener-
ator that builds on a first-order relational model finder based on a Boolean satis-
fiability (SAT) solver. Nitpick supports (co)inductive predicates and datatypes as
well as (co)recursive functions. A novel aspect of this work is the use of a mono-
tonicity inference to prune the search space and to soundly interpret infinite types
with finite sets, leading to considerable speed and precision improvements. In a
case study, Nitpick was successfully applied to an Isabelle formalization of the C++

memory model.

Our second main contribution is the further development of the Sledgehammer
proof tool. This tool heuristically selects facts relevant to the conjecture to prove,
delegates the problem to first-order resolution provers, and, if a prover is suc-
cessful, outputs a command that reconstructs the proof in Isabelle. We extended
Sledgehammer to invoke satisfiability modulo theories (SMT) solvers as well, ex-
ploiting the existing relevance filter and parallel architecture. To address long-
standing user complaints, we developed a family of sound, complete, and efficient
encodings of polymorphic types in untyped first-order logic and looked into ways
to make proof reconstruction faster and more reliable.

Acknowledgment

I first want to express my gratitude to Tobias Nipkow, who supervised this thesis.
He guided me toward two fruitful and complementary research areas that perfectly
matched my interests. His clear thinking and vision has helped me focus on the
needs of Isabelle users, and his bug reports have led to many improvements to
both Nitpick and Sledgehammer.

To my delight, Koen Claessen accepted the invitation to referee this thesis. His
group’s work on first-order provers and model finders is closely connected to my
research. During my three-week stay in Gothenburg, he shared many insights
about finite, infinite, and nonstandard model finding, and many other things. He
took the trouble to read a draft of this thesis and made dozens of suggestions.

I had the pleasure to work with the following former, current, and future members
of the Isabelle group in Munich: Clemens Ballarin, Stefan Berghofer, Sascha Böhme,
Lukas Bulwahn, Florian Haftmann, Johannes Hölzl, Brian Huffman, Cezary Kali-
szyk, Alexander Krauss, Ondřej Kunčar, Peter Lammich, Lars Noschinski, Andrei
Popescu, Dmitriy Traytel, Thomas Türk, Christian Urban, and Makarius Wenzel.

I gratefully thank my girlfriend, Anja Palatzke, as well as my friend Trenton Schulz
for their unfailing encouragement and support in this project. Despite rustiness
with formal methods, my friend Mark Summerfield read through the manuscript.
His suggestions considerably improved the quality of English throughout. My
friends and colleagues Sascha Böhme and Tjark Weber also commented on drafts
of this thesis, for which I am very thankful.

Much of the text of this thesis has appeared before in scientific papers. The fol-
lowing people provided comments that led to textual improvements to the papers:
Stefan Berghofer, Sascha Böhme, Chad Brown, Lukas Bulwahn, Pascal Fontaine,
Marcelo Frias, Florian Haftmann, Paul Jackson, Alexander Krauss, Peter Lammich,
Rustan Leino, Ann Lillieström, Andreas Lochbihler, Tobias Nipkow, Andrei Po-
pescu, Peter Sewell, Mark Summerfield, Geoff Sutcliffe, Emina Torlak, Tjark Weber,
and numerous anonymous reviewers.

Tjark Weber created the Refute tool that guided Nitpick’s design. As a user of
Nitpick, he provided feedback on the tool and tried it out on a formalization of the
C++ memory model he was developing together with Mark Batty, Scott Owens,
Susmit Sarkar, and Peter Sewell, paving the way for this thesis’s main case study.

Emina Torlak developed the wonderful Kodkod model finder upon which Nitpick
is built. During the last three years, she frequently provided advice and shed some
light onto the inner workings of Kodkod.

v

Alexander Krauss codeveloped the monotonicity calculi presented in this thesis.
His fixation on simplicity and generality benefited both the calculi and their sound-
ness proofs. He is the one to thank for the pleasing type-system flavor of the calculi.

Andreas Lochbihler, Denis Lohner, and Daniel Wasserrab were among the first
users of Nitpick and provided much helpful feedback. Geoff Sutcliffe installed Nit-
pick on his Miami computer farm and runs it regularly against other model finders;
in response to my request, he introduced a higher-order refutation division to the
annual CADE ATP System Competition (CASC).

On the Sledgehammer front, my first acknowledgment is of Lawrence Paulson,
whose team developed the first version of the tool. I am particularly grateful for
the numerous email discussions and the joint papers.

Sascha Böhme did most of the hard work necessary to extend Sledgehammer with
SMT solvers, and Nik Sultana helped me integrate the higher-order automatic
provers LEO-II and Satallax as additional backends. Sascha also developed the
λ-lifting procedure and the monomorphizer that are now part of the interface with
resolution provers. Charles Francis, financed by the Google Summer of Code pro-
gram, implemented the proof redirection algorithm described here.

Following on the work with Alexander Krauss on monotonicity, Koen Claessen,
Ann Lillieström, and Nicholas Smallbone showed how to exploit monotonicity to
encode types in an untyped logic. Nicholas was gracious enough to let me imple-
ment some of his unpublished ideas, which now lie at the heart of Sledgehammer’s
sound, complete, and efficient type encodings.

The authors of the automatic provers upon which Sledgehammer is built helped in
various ways. Stephan Schulz extended E with two new weight functions at my re-
quest. Daniel Wand and Christoph Weidenbach are working on several SPASS fea-
tures tailored to Sledgehammer’s needs. Kryštof Hoder and Andrei Voronkov were
quick to address the few issues I encountered with Vampire. Nikolaj Bjørner and
Leonardo de Moura promptly fixed a critical bug in Z3’s proof generator. Christoph
Benzmüller added an option to LEO-II to control the proof output’s level of detail,
and Chad Brown added an option to Satallax to output the unsatisfiable core; both
suggested alternative translations for λ-abstractions, which I am looking forward
to trying out. Joe Hurd helped me upgrade to the latest Metis and kindly applied
Isabelle-motivated patches to his repository.

Geoff Sutcliffe, whose involvement with Nitpick was acknowledged above, also
deserves credit in the context of Sledgehammer. He maintains the SystemOnTPTP
service, which I found invaluable for experimenting with hard-to-install provers.
Apart from occasional reminders about my “hammering the service quite hard,”
he showed himself truly service-minded. He also introduced a problem category
consisting exclusively of Sledgehammer-generated problems as part of CASC, a
step that could lead to new prover versions that are better suited to Isabelle. Finally,
I want to thank the other participants of the Polymorphic TPTP TFF mailing list,
especially François Bobot, Chad Brown, Viktor Kuncak, Andrei Paskevich, Florian
Rabe, Philipp Rümmer, Stephan Schulz, and Josef Urban.

My research was financed by the Deutsche Forschungsgemeinschaft project Quis
Custodiet (grants Ni 491/11-1 and Ni 491/11-2).

vi

Contents

Contents vii

1 Introduction 1

1.1 Motivation . 1

1.2 Contributions . 3

1.3 Publications . 4

1.4 Structure of This Thesis . 5

1.5 A Note on the Proofs . 5

2 Isabelle/HOL 7

2.1 The Metalogic . 7

2.2 The HOL Object Logic . 8

2.3 Definitional Principles . 10

3 Counterexample Generation Using a Relational Model Finder 15

3.1 First-Order Relational Logic . 16

3.2 Basic Translations . 17

3.2.1 A Sound and Complete Translation 18

3.2.2 Approximation of Infinite Types and Partiality 22

3.3 Translation of Definitional Principles 26

3.3.1 Simple Definitions . 26

3.3.2 Inductive Datatypes and Recursive Functions 28

3.3.3 Inductive and Coinductive Predicates 31

3.3.4 Coinductive Datatypes and Corecursive Functions 33

3.4 Optimizations . 35

3.4.1 Function Specialization . 35

3.4.2 Boxing . 35

3.4.3 Quantifier Massaging . 36

3.4.4 Alternative Definitions . 37

3.4.5 Tabulation . 37

3.4.6 Heuristic Constant Unfolding 37

3.4.7 Necessary Datatype Values . 38

3.4.8 Lightweight Translation . 38

3.5 Examples . 39

3.5.1 A Context-Free Grammar . 39

3.5.2 AA Trees . 41

3.5.3 The Volpano–Smith–Irvine Security Type System 43

3.5.4 A Hotel Key Card System . 44

vii

3.5.5 Lazy Lists . 45
3.6 Evaluation . 46
3.7 Related Work . 48

4 Monotonicity Inference 51

4.1 Monotonicity . 51
4.2 First Calculus: Tracking Equality and Quantifiers 53

4.2.1 Extension Relation and Constancy 53
4.2.2 Syntactic Criteria . 56

4.3 Second Calculus: Tracking Sets . 57
4.3.1 Extension Relation . 58
4.3.2 Type Checking . 60
4.3.3 Monotonicity Checking . 63
4.3.4 Type Inference . 64

4.4 Third Calculus: Handling Set Comprehensions 65
4.4.1 Extension Relation . 66
4.4.2 Type Checking . 67
4.4.3 Monotonicity Checking . 71
4.4.4 Type Inference . 72

4.5 Practical Considerations . 73
4.5.1 Constant Definitions . 73
4.5.2 Inductive Datatypes . 74
4.5.3 Evaluation . 75

4.6 Related Work . 76

5 Case Study: Nitpicking C++ Concurrency 79

5.1 Background . 79
5.2 The C++ Memory Model . 80

5.2.1 Introductory Example . 80
5.2.2 Memory Actions and Orders 81
5.2.3 Original Formalization . 82
5.2.4 CPPMEM . 83
5.2.5 Fine-Tuned Formalization . 84

5.3 Litmus Tests . 85
5.3.1 Store Buffering . 85
5.3.2 Load Buffering . 87
5.3.3 Independent Reads of Independent Writes 88
5.3.4 Message Passing . 89
5.3.5 Write-to-Read Causality . 90
5.3.6 Sequential Lock . 90
5.3.7 Generalized Write-to-Read Causality 92

5.4 Related Work . 92
5.5 Discussion . 93

6 Proof Discovery Using Automatic Theorem Provers 95

6.1 TPTP Syntax . 95
6.2 Sledgehammer and Metis . 97
6.3 Extension with SMT Solvers . 99

6.3.1 The smt Proof Method . 100

viii

6.3.2 Solver Invocation . 101
6.3.3 Proof Reconstruction . 102
6.3.4 Relevance Filtering . 103
6.3.5 Example . 103

6.4 Elimination of Higher-Order Features 104
6.4.1 Arguments and Predicates . 105
6.4.2 Translation of λ-Abstractions 107
6.4.3 Higher-Order Reasoning . 107

6.5 Encoding of Polymorphic Types . 108
6.5.1 Traditional Type Encodings . 111
6.5.2 Sound Type Erasure via Monotonicity Inference 113
6.5.3 Monomorphization-Based Encodings 119
6.5.4 Soundness and Completeness 122

6.6 Further Technical Improvements . 127
6.6.1 Full First-Order Logic Output 127
6.6.2 Fine-Tuned Relevance Filter . 128
6.6.3 Time Slicing . 129
6.6.4 Additional Provers . 129
6.6.5 Fast Minimization . 130
6.6.6 Revamped User Experience . 131
6.6.7 Skolemization without Choice 131

6.7 Evaluation . 134
6.7.1 Experimental Setup . 135
6.7.2 Type Encodings . 136
6.7.3 Translation of λ-Abstractions 137
6.7.4 Combination of Automatic Provers 139

6.8 Structured Proof Construction . 140
6.8.1 Proof Notations . 142
6.8.2 Examples of Proof Redirection 144
6.8.3 The Redirection Algorithm . 148

6.9 Related Work . 152

7 Conclusion 155

7.1 Results . 155
7.2 Future Work . 157

7.2.1 Counterexample Generation with Nitpick 157
7.2.2 Proof Discovery with Sledgehammer 158

Bibliography 159

ix

When we’re faced with a “prove or disprove,”
we’re usually better off trying first to disprove with
a counterexample, for two reasons: A disproof is
potentially easier (we need just one counterexample);
and nitpicking arouses our creative juices.

— R. Graham, D. Knuth, and O. Patashnik (1988)

Chapter 1

Introduction

This thesis describes work on two components of the interactive theorem prover
Isabelle/HOL—Sledgehammer and Nitpick—that generate proofs and counter-
examples for higher-order conjectures by harnessing external first-order reasoners.

1.1 Motivation

Anecdotal evidence suggests that most “theorems” initially given to an interactive
theorem prover do not hold, typically because of a typo or a missing assumption,
but sometimes because of a fundamental flaw. Andreas Lochbihler presented a
beautiful example of this at TPHOLs 2009 [113]. Having just proved the lemma

{a, b}= {x, y} ←→ a = x ∧ b = y ∨ a = y ∧ b = x

with an automatic proof tactic, we would naturally expect the generalization to sets
of three variables to be provable as well:

{a, b, c}= {x, y, z} ←→ a = x ∧ b = y ∧ c = z ∨ a = x ∧ b = z ∧ c = y ∨
a = y ∧ b = x ∧ c = z ∨ a = y ∧ b = z ∧ c = x ∨
a = z ∧ b = x ∧ c = y ∨ a = z ∧ b = y ∧ c = x

We can waste much time and effort trying various proof tactics before noticing that
there is a flaw in our thinking: If a = b = x 6= c = y = z, the left-hand side is true
but the right-hand side is false.

As useful as they might be, automatic proof tools are mostly helpless in the face
of an invalid conjecture. Novices and experts alike can enter invalid formulas and
find themselves wasting hours (or days) on an impossible proof; once they identify
and correct the error, the proof is often easy.

To spare users the Sisyphean task of trying to prove non-theorems, most modern
proof assistants include counterexample generators to debug putative theorems or
specific subgoals in an interactive proof. For some years, Isabelle/HOL [140] has
included two such tools:

• Refute [198] systematically searches for finite countermodels of a formula
through a reduction to SAT (propositional satisfiability).

• Quickcheck [21] combines Isabelle’s code generator with random testing, in
the style of QuickCheck for Haskell [59]. It analyses inductive definitions to

1

2 Chapter 1. Introduction

generate values that satisfy them by construction [49] and has recently been
extended with exhaustive testing and narrowing [30, §4].

Their areas of applicability are somewhat disjoint: Quickcheck excels at inductive
datatypes but is restricted to an executable fragment of higher-order logic (which
excludes unbounded quantifiers ranging over infinite types as well as underspeci-
fication) and may loop endlessly on inductive predicates. Refute does not impose
restrictions on the form of the formulas, but this comes at the cost of frequent spu-
rious counterexamples; inductive datatypes and predicates are mostly out of reach
due to combinatorial explosion.

In the first-order world, the Alloy Analyzer testing tool [94] has achieved consid-
erable popularity and features in several case studies. Its backend, the finite model
finder Kodkod [187], reduces relational logic problems to SAT. Alloy’s success in-
spired us to develop a new counterexample generator for Isabelle, called Nitpick.1

It employs Kodkod as its backend, thereby benefiting from Kodkod’s optimizations
and its rich relational logic. Nitpick searches for finite fragments (substructures) of
infinite countermodels, soundly approximating problematic constructs.

A failure to falsify the conjecture corroborates it and suggests that it might be a
theorem. At this point, the actual proving begins. In the tradition of LCF-style
provers [83], Isabelle has long emphasized tactics —functions written in Standard
ML [129] that operate on the proof state via a trusted inference kernel. Tactics dis-
charge a proof goal directly or, more often, break it down into one or more subgoals
that must then be tackled by other tactics. In the last decade, the structured Isar lan-
guage [139,202] has displaced ML as the language of choice for Isabelle proofs, but
the most important ML tactics are still available as Isar proof methods.

Much effort has been devoted to developing general-purpose proof methods (or
tactics) that work equally well on all object logics supported by Isabelle, notably
higher-order logic (HOL) [82] and Zermelo–Fraenkel set theory (ZF) [145,146]. The
most important methods are the simplifier [134], which rewrites the goal using
equations as oriented rewrite rules, and the tableau prover [147]. These are com-
plemented by specialized decision procedures, especially for arithmetic [53]. For
the users of an interactive theorem prover, one of the main challenges is to find out
which proof methods to use and which arguments to specify.

Although proof methods are still the mainstay of Isabelle proofs, the last few years
have seen the emergence of advisory proof tools that work outside the LCF-style
inference kernel. Some of these tools are very simple and yet surprisingly effective;
for example, one searches Isabelle’s libraries for a lemma that can prove the current
goal directly, and another tries common proof methods.

The most important proof tool besides the simplifier and the tableau prover is
probably Sledgehammer [152], a subsystem that harnesses first-order resolution
provers. Given a conjecture, it heuristically selects a few hundred facts (lemmas,
definitions, or axioms) from Isabelle’s libraries, translates them to first-order logic
along with the conjecture, and delegates the proof search to the external provers.

1The name Nitpick is shamelessly appropriated from Alloy’s venerable precursor [93].

1.2. Contributions 3

Sledgehammer boasts a fairly high success rate on goals that cannot be discharged
directly by standard proof methods: In a study involving older proof documents,
Sledgehammer could handle 34% of the more difficult goals arising in those proofs
[44, §6]. The tool also works well in combination with the structured Isar language:
The new way of teaching Isabelle is to let students think up intermediate properties
and rely on Sledgehammer to fill in the gaps, rather than teach them low-level
tactics and have them memorize lemma libraries [152, §4].

Sledgehammer was originally developed by Lawrence Paulson and his team in
Cambridge, UK. The Isabelle team in Munich eventually took over its maintenance
and further development. Once the more pressing technical issues had been sorted
out, we became very much interested in increasing the success rate and identified
three main avenues to achieve this: Embrace other classes of automatic provers
besides first-order resolution provers. Address the soundness issues in the problem
preparation phase. Make proof reconstruction in Isabelle faster and more reliable.

1.2 Contributions

The primary contribution of this thesis is the development of the counterexample
generator Nitpick. The basic translation from Isabelle’s higher-order logic to Kod-
kod’s first-order relational logic is conceptually simple; however, common Isabelle
idioms, such as (co)inductive predicates and datatypes and (co)recursive functions,
are treated specially to ensure efficient SAT solving. Experimental results on Isa-
belle theories and the TPTP library indicate that Nitpick generates more counterex-
amples than other model finders for higher-order logic, without a priori restrictions
on the form of the conjecture. In a case study, we applied the tool to an Isabelle for-
malization of the C++ memory model.

Our second main contribution is the further development of the Sledgehammer
proof tool. Complementing the resolution provers with satisfiability modulo theo-
ries (SMT) solvers, which combine a satisfiability solver with decision procedures
for first-order theories, adds considerable power to an already powerful tool. Pre-
vious schemes for encoding Isabelle’s rich type information in untyped first-order
logic were either unsound or too inefficient; although Isabelle certifies external
proofs, unsound proofs are annoying and may conceal sound proofs. Our new
approach encodes polymorphic types in a sound, complete, and efficient way. Fi-
nally, we devised an algorithm for translating the resolution proofs found by exter-
nal provers into direct Isar proofs, to make them more attractive to Isabelle users.

A leitmotif of our work is the reliance on type-monotonicity inferences. Mono-
tonicity naturally occurs in the context of finite model finding, where it helps prune
the search space and allows us to soundly interpret infinite types with finite sets.
Our Gothenburg colleagues discovered that monotonicity can also be exploited to
encode types soundly and efficiently [61], and Sledgehammer’s new type encod-
ings build on their ideas. The development of the monotonicity inferences and the
underlying theory, together with their application in Nitpick and Sledgehammer,
surely constitutes the most serendipitous aspect of our research.

4 Chapter 1. Introduction

1.3 Publications

Most of the contributions described here have been presented at conferences and
workshops, and two of the conference papers have subsequently been extended
and accepted in journals. This thesis builds on the following papers:

1. J. C. B. and T. Nipkow. Nitpick: A counterexample generator for
higher-order logic based on a relational model finder. In M. Kaufmann and
L. C. Paulson, editors, ITP 2010, volume 6172 of LNCS, pages 131–146.
Springer, 2010.

2. J. C. B., T. Weber, M. Batty, S. Owens, and S. Sarkar. Nitpicking C++

concurrency. In PPDP 2011, pages 113–124. ACM Press, 2011.

3. J. C. B., S. Böhme, and L. C. Paulson. Extending Sledgehammer with SMT
solvers. In N. Bjørner and V. Sofronie-Stokkermans, editors, CADE-23,
volume 6803 of LNAI, pages 207–221. Springer, 2011.

4. J. C. B., L. Bulwahn, and T. Nipkow. Automatic proof and disproof in
Isabelle/HOL. In C. Tinelli and V. Sofronie-Stokkermans, editors,
FroCoS 2011, volume 6989 of LNAI, pages 12–27. Springer, 2011.

5. J. C. B. and A. Krauss. Monotonicity inference for higher-order formulas.
J. Autom. Reasoning, 47(4):369–398, 2011.

6. J. C. B. Relational analysis of (co)inductive predicates, (co)inductive
datatypes, and (co)recursive functions. To appear in Softw. Qual. J.

7. J. C. B., S. Böhme, and N. Smallbone. Monotonicity or how to encode
polymorphic types safely and efficiently. Submitted.

Joint work is presented here with the coauthors’ permission. The following papers
were also written as part of the Ph.D. but are beyond the scope of this thesis:

8. J. C. B. Proof pearl: Mechanizing the textbook proof of Huffman’s algorithm
in Isabelle/HOL. J. Autom. Reasoning, 43(1):1–18, 2009.

9. J. C. B. and K. Claessen. Generating counterexamples for structural
inductions by exploiting nonstandard models. In C. G. Fermüller and
A. Voronkov, editors, LPAR-17, number 6397 in LNAI, pages 117–141.
Springer, 2010.

10. L. C. Paulson and J. C. B. Three years of experience with Sledgehammer,
a practical link between automatic and interactive theorem provers. In
G. Sutcliffe, E. Ternovska, and S. Schulz, editors, IWIL-2010, 2010.

11. D. Traytel, A. Popescu, and J. C. B. Foundational, compositional
(co)datatypes for higher-order logic—Category theory applied to theorem
proving. Submitted.

12. J. C. B. and A. Paskevich. TFF1: The TPTP typed first-order form with
rank-1 polymorphism. Submitted.

13. J. C. B., A. Popescu, D. Wand, and C. Weidenbach. More SPASS with
Isabelle—Superposition with hard sorts and configurable simplification.
Submitted.

1.4. Structure of This Thesis 5

1.4 Structure of This Thesis

Although our title puts Proofs before Refutations in line with Imre Lakatos’s cele-
brated essay [108], our presentation follows Graham, Knuth, and Patashnik’s ad-
vice and makes the nitpicking that arouses our creative juices precede the heavy
proof hammering. In more concrete terms:

• Chapter 2 briefly introduces the syntax and semantics of higher-order logic
as well as the main definitional principles offered by Isabelle/HOL.

• Chapter 3 describes Nitpick’s translation to the relational logic understood
by Kodkod and demonstrates the tool on realistic examples.

• Chapter 4 presents the monotonicity inference calculi together with sound-
ness proofs.

• Chapter 5 applies Nitpick to a formalization of the C++ memory model.

• Chapter 6 describes various enhancements to Sledgehammer and evaluates
them on a large benchmark suite.

• Chapter 7 summarizes our results and gives directions for future work.

Notwithstanding Graham et al., Chapters 3 to 6 can be read in any order. Related
work is considered at the end of each chapter. The raw test data for the various
evaluations are available at http://www21.in.tum.de/~blanchet/phd-data.tgz .

1.5 A Note on the Proofs

Pen-and-paper proofs are included in the body of this thesis. Although mechanized
Isabelle proofs would be desirable for the entirety of our metatheory, before this
becomes cost-effective Nitpick and Sledgehammer would have to be much more
powerful: Their increased power would make such an effort more tractable and
simultaneously justify the time (and taxpayer-money) expenditure.

Nitpick’s translation to relational logic in Chapter 3 is supported by short proof
sketches. Part of the reason is that finite model finding for HOL is well understood
nowadays; indeed, a very thorough soundness proof of a translation from HOL to
SAT can be found in Tjark Weber’s Ph.D. thesis [198, ch. 2]. Nitpick is also easy
to test, by checking that it finds no counterexamples to the tens of thousands of
lemmas in the standard Isabelle libraries and the Archive of Formal Proofs [102]. In
contrast, the monotonicity work in Chapter 4 is more difficult to test effectively, and
its abstract flavor calls for very detailed proofs; accordingly, much of the chapter is
devoted to proving our monotonicity inference calculi sound.

Most of the enhancements to Sledgehammer described in Chapter 6 require at most
easy or well-known arguments, which are omitted. Assuming Isabelle’s inference
kernel is sound, any unsoundness in the translation would be caught during proof
reconstruction. We make an exception for the application of monotonicity to en-
code HOL types, which is novel and interesting enough in its own right to deserve
a detailed proof of correctness.

http://www21.in.tum.de/~blanchet/phd-data.tgz

HOL is weaker than ZF set theory but for most
applications this does not matter. If you prefer
ML to Lisp, you will probably prefer HOL to ZF.

— Lawrence C. Paulson (1993)

Chapter 2

Isabelle/HOL

Isabelle [140] is a generic interactive theorem prover whose built-in metalogic is
an intuitionistic fragment of higher-order logic [4, 56, 82]. The HOL object logic
provides a more elaborate version of higher-order logic, complete with the familiar
connectives and quantifiers. Isabelle/HOL provides various definitional principles
for introducing new types and constants safely. This chapter provides a brief intro-
duction to Isabelle/HOL, focusing on the features that are needed in this thesis and
taking some liberties with the official syntax to lighten the presentation.

2.1 The Metalogic

Definition 2.1 (Syntax). The types and terms of Isabelle are that of the simply
typed λ-calculus, augmented with constants, n-ary type constructors, and ML-style
polymorphism.

Types: Terms:
σ ::= α type variable t ::= x σ variable

| σ̄ κ type constructor | cσ constant
| λx σ. t λ-abstraction
| t t′ application

We reserve the Greek letters α, β, γ for type variables, σ, τ, υ for types, x, y, z for
term variables, and t, u for terms, although we will also use many other letters for
terms. Lists of zero or more instances of a syntactic quantity are indicated by a
bar (e.g., σ̄). Type constructors are written in ML-style postfix notation (e.g., α list,
(α, β)map). We set constants in sans serif to distinguish them from variables. Func-
tion application expects no parentheses around the argument list and no commas
between the arguments, as in f x y. Syntactic sugar provides an infix syntax for
common operators, such as x = y and x + y.

The standard semantics interprets the type prop of propositions (formulas) and the
type of functions α→ β. The function arrow associates to the right, reflecting the
left-associativity of application. We assume throughout that terms are well-typed
using the following (simplified) typing rules:

⊢ x σ : σ ⊢ cσ : σ

⊢ t : τ

⊢ λx σ. t : σ→ τ

⊢ t : σ→ τ ⊢ u : σ

⊢ t u : τ

7

8 Chapter 2. Isabelle/HOL

In keeping with the logic’s higher-order nature, variables can have function types.
We write x and c rather than x σ and cσ when the type σ is irrelevant or clear from
the context; conversely, we write tσ to indicate that an arbitrary term t has type σ.

The metalogical operators are

=⇒prop�prop�prop implication∧(α�prop)�prop universal quantification
≡α�α�prop equality

We write
∧

x. t as an abbreviation for
∧

(λx. t) and similarly for the other binders
introduced later. The operators =⇒ and ≡ are written infix. In addition to the
usual equality rules (symmetry, reflexivity, transitivity, and substitutivity), the α-
renaming, β-reduction, and η-expansion rules from the λ-calculus also apply:

α
(λx. t[x]) ≡ (λy. t[y])

β
(λx. t[x]) u ≡ t[u]

η
tσ�τ ≡ (λx σ. t x)

Proviso for η: x σ does not appear free in t.

For both types and terms, Isabelle distinguishes between two kinds of free variable.
Schematic variables can be instantiated arbitrarily, whereas nonschematic variables
represent fixed but unknown terms or types. Although formulas can involve both
kinds of variable simultaneously, this is rarely necessary: When stating a conjec-
ture and proving it, the type and term variables are normally fixed, and once it is
proved, they become schematics so that users of the lemma can instantiate them as
they wish. In this thesis, we restrict ourselves to this use case and let the context
(lemma or conjecture) determine whether the variables are schematic.

2.2 The HOL Object Logic

HOL is the most widely used instance of Isabelle and is the only object logic sup-
ported by Nitpick and Sledgehammer. It provides classical higher-order logic [4,
56,82] with ML-style rank-1 polymorphism, extended with Haskell-style axiomatic
type classes [135, 201].

HOL axiomatizes a type bool of Booleans, which we abbreviate to o (omicron). It
defines the constants Falseo, Trueo, and =α�α�o (with←→o�o�o as surface syntax),
the connectives ¬o�o, ∧o�o�o, ∨o�o�o, and −→o�o�o, the quantifiers ∀ (α�o)�o and
∃ (α�o)�o, and the conditional expression ‘if then else’o�α�α�α. Equality on functions
is extensional:

(
∧

x. f x = g x) =⇒ f = g

HOL also provides the definite and indefinite description operators ι(α�o)�α and
ε (α�o)�α axiomatized by

(ιx. x = a) = a P x =⇒ P (ε P)

The ε operator is often called Hilbert choice. Both operators are binders; ε P can
be η-expanded into ε (λx. P x), i.e., εx. P x. HOL types are inhabited (nonempty),
and we can obtain an arbitrary element of a type σ using either εx σ. True or the
unspecified constant undefinedσ.

2.2. The HOL Object Logic 9

HOL is embedded into the metalogic using Truepropo�prop. Isabelle’s parser inserts
it as appropriate and the output routine ignores it, so that users are hardly ever
exposed to it. We follow this convention and write, for example, False =⇒ True
rather than Trueprop False =⇒ Trueprop True.

There is considerable overlap between the metalogic and the HOL object logic.
Many Isabelle tools must distinguish the two layers, but for Nitpick and Sledge-
hammer this is hardly relevant: Both tools effectively treat prop the same as o, =⇒
the same as −→,

∧
the same as ∀, and ≡ the same as =. Some properties can only

be expressed in the metalogic, but these are of foundational interest and play no
role here. We preserve the distinction between the two levels in the examples, to
avoid distracting the trained Isabelle eye, but otherwise assume formulas are ex-
pressed purely in the object logic. Readers unfamiliar with Isabelle are encouraged
to ignore the distinction when reading this thesis.

The standard semantics of HOL is given in terms of Zermelo–Fraenkel set theory
with the axiom of choice (ZFC) [82, ch. 15]. The proofs in Sections 3 and 4 require
only a monomorphic fragment of HOL, in which the only type variables are non-
schematic. To simplify these proofs, we depart from the HOL tradition and treat
polymorphism in the metalanguage: Polymorphic constants such as equality are
expressed as collections of constants, one for each type.

Types and terms are interpreted relative to a scope that fixes the interpretation of
types. Scopes are also called “type environments.” Our terminology here is consis-
tent with Jackson [95].

Definition 2.2 (Scope). A scope S is a function from (nonschematic) types to non-
empty sets (the domains).

Definition 2.3 (Interpretation of Types). The interpretation JσKS of a type σ in a
scope S is defined recursively by the equations

JoKS = {⊥,⊤} Jσ→ τKS = JσKS→ JτKS Jσ̄ κKS = S(σ̄ κ)

where ⊥ 6= ⊤ and A→ B denotes the set of (total) functions from A to B.1

Definition 2.4 (Model). A constant model is a scope-indexed family of functions
MS that map each constant cσ to a value MS(c) ∈ JσKS. A constant model is stan-
dard if it gives the usual interpretation to equality and implication. A variable
assignment V for a scope S is a function that maps each variable x σ to a value
V(x) ∈ JσKS. A model for S is a triple M = (S, V, M), where V is a variable
assignment for S and M is a constant model.

Definition 2.5 (Interpretation of Terms). Let M = (S, V, M) be a model. The
interpretation JtKM of a term t inM is defined recursively by the equations

JxK(S,V,M) = V(x) Jt uK(S,V,M) = JtK(S,V,M)

(
JuK(S,V,M)

)

JcK(S,V,M) = MS(c) Jλx σ. tK(S,V,M) = a ∈ JσKS 7→ JtK(S,V[x 7→a],M)

1Metatheoretic functions here and elsewhere in this thesis are defined using sequential pattern
matching. As a result, the second equation is preferred over the third when both are applicable.

10 Chapter 2. Isabelle/HOL

where a ∈ A 7→ f (a) denotes the function with domain A that maps each a ∈ A to
f (a). If t is a formula and JtKM = ⊤, we say thatM is a model of t, writtenM � t.
A formula is satisfiable for scope S if it has a model for S.

The HOL connectives and quantifiers can be defined in terms of equality and im-
plication. Definitions also cater for set-theoretic notations.1

Definition 2.6 (Logical Constants).

True ≡ (λx o. x) = (λx. x) p ∧ q ≡ ¬ (p −→ ¬ q)

False ≡ (λx o. x) = (λx. True) p ∨ q ≡ ¬ p −→ q

¬ p ≡ p −→ False ∀x σ. p ≡ (λx. p) = (λx. True)

p 6= q ≡ ¬ (p = q) ∃x σ. p ≡ ¬∀x. ¬ p

Definition 2.7 (Set Constants).

∅ ≡ λx. False s − t ≡ λx. s x ∧ ¬ t x

UNIV ≡ λx. True x ∈ s ≡ s x

s ∩ t ≡ λx. s x ∧ t x insert x s ≡ (λy. y = x) ∪ s

s ∪ t ≡ λx. s x ∨ t x

The constants ∅ and insert can be seen as (non-free) constructors for finite sets.
Following tradition, we write {x1, . . . , xm} instead of insert x1 (. . . (insert xm ∅) . . .).

2.3 Definitional Principles

Isabelle/HOL provides a rich array of ways to introduce new type constructors and
constants. Types and constants can be specified axiomatically, but this is generally
avoided because it can easily lead to inconsistent specifications.

Type Declarations. The type declaration command

typedecl ᾱ κ

introduces a new uninterpreted type constructor κ whose arity is given by the num-
ber of type variables ᾱ [140, §8.5.1]. The type ᾱ κ is completely unspecified except
that each of its ground instances is inhabited.

Type Definitions. A more interesting mechanism for expanding the logic is to
introduce new types as isomorphic to subsets of existing types. The syntax is

typedef ᾱ κ = tσ�o

where t must be a provably nonempty set for any instantiation of ᾱ [140, §8.5.2]. For
example, assuming a type nat of natural numbers with 0, 1, 2, . . . , the command

typedef three = {0nat, 1, 2}
1Isabelle versions 2007 to 2011-1 identify sets and predicates, as we do here: α set is surface syntax
for α→ o. Future versions are expected to reintroduce the distinction between α set and α→ o.

2.3. Definitional Principles 11

introduces a new type with exactly three values. The bijection between the new
type three and the subset {0, 1, 2} of UNIVnat�o is accessible as Rep_three three�nat

and Abs_threenat�three.

Simple Definitions. A simple definition

definition cσ where c x̄ = t

introduces a constant as equal to another term [140, §2.7.2]. Behind the scenes, the
definition introduces the axiom c ≡ (λx̄. t). Isabelle checks the following provi-
sos to ensure that the definition is conservative [201]: The constant c is fresh, the
variables x̄ are distinct, and the right-hand side t does not refer to any other free
variables than x̄, to any undefined constants or c, or to any type variables not oc-
curring in σ. An example follows:

definition Kα�β�α where K x y = x

(Co)inductive Predicates. The inductive and coinductive commands define in-
ductive and coinductive predicates specified by their introduction rules [148]:

[co]inductive pσ where

Q11 =⇒ · · · =⇒ Q1ℓ1
=⇒ p t̄1

...

Qn1 =⇒ · · · =⇒ Qnℓn
=⇒ p t̄n

Among the provisos, the constant p must be fresh, and each Qij is either a side con-
dition that does not refer to p or is of the form pσ ū, where the arguments ū do not
refer to p. The introduction rules may involve any number of free variables ȳ. If the
inductive or coinductive keyword is replaced by inductive_set or coinductive_set,
the applications of p must use the set membership operator (e.g., u ∈ p).

The syntactic restrictions on the rules ensure monotonicity; by the Knaster–Tarski
theorem, the fixed-point equation

p =
(
λx̄. ∃ȳ.

∨n
j=1 x̄ = t̄j ∧ Qj1 ∧ · · · ∧ Qjℓj

)

admits a least and a greatest solution [86, 148]. Inductive definitions provide the
least fixed point, and coinductive definitions provide the greatest fixed point. In-
ternally, (co)inductive definitions are reduced to simple definitions.

Let us consider an example. Assuming a type nat of natural numbers generated
freely by 0nat and Sucnat�nat, the following definition introduces the predicate even
of even numbers:

inductive evennat�o where

even 0
even n =⇒ even (Suc (Suc n))

The associated fixed-point equation is

even = (λx. ∃n. x = 0 ∨ (x = Suc (Suc n) ∧ even n))

12 Chapter 2. Isabelle/HOL

which we can also express as even = F even, where

F = (λ f x. ∃n. x = 0 ∨ (x = Suc (Suc n) ∧ f n))

Isabelle/HOL also supports mutual definitions, such as the following:

inductive evennat�o and oddnat�o where

even 0
even n =⇒ odd (Suc n)
odd n =⇒ even (Suc n)

In general, mutual definitions for p1, . . . , pm can be reduced to a single predicate q
whose domain is the disjoint sum of the domains of each pi [148]. Assuming
Inlα�α+β and Inrβ�α+β are the disjoint sum constructors, this definition of even and
odd is reducible to

inductive even_oddnat+nat�o where

even_odd (Inl 0)
even_odd (Inl n) =⇒ even_odd (Inr (Suc n))
even_odd (Inr n) =⇒ even_odd (Inl (Suc n))

definition evennat�o where even n = even_odd (Inl n)
definition oddnat�o where odd n = even_odd (Inr n)

To enhance readability, we sometimes present the introduction rules of a predicate
in the customary rule format, with a simple horizontal bar for inductive predicates
and a double bar for coinductive predicates. For example:

even 0

even n

odd (Suc n)

odd n

even (Suc n)

(Co)inductive Datatypes. The datatype command defines mutually recursive in-
ductive datatypes specified by their constructors [22]:

datatype ᾱ κ1 = C11 σ̄11 | · · · | C1ℓ1
σ̄1ℓ1

and . . .
and ᾱ κn = Cn1 σ̄n1 | · · · | Cnℓn

σ̄nℓn

The defined types ᾱ κi are parameterized by a list of distinct type variables ᾱ, pro-
viding type polymorphism. Each constructor Cij has type σ̄ij→ ᾱ κi. The arguments
ᾱ must be the same for all the type constructors κi. The type constructors κi and the
constructor constants Cij must be fresh and distinct, the type parameters ᾱ must be
distinct, and the argument types σ̄ij may not refer to other type variables than ᾱ

(but may refer to the types ᾱ κi being defined).

Types introduced by the datatype command roughly correspond to Standard ML
datatypes [84, 123]. A corresponding codatatype command, which allows infinite
objects like Haskell data [154], is under development [189]. For the moment, Isa-
belle also provides a “lazy list” library that defines a coinductive datatype of lists
without the help of a definitional package. Since Nitpick supports lazy lists and lets
users register custom codatatypes, we find it convenient in this thesis to entertain
the fiction that Isabelle already provides a codatatype command.

2.3. Definitional Principles 13

The (co)datatype commands can be used to define natural numbers, pairs, finite
lists, and possibly infinite lazy lists as follows:

datatype nat = 0 | Suc nat
datatype α× β = Pair α β

datatype α list = Nil | Cons α (α list)
codatatype α llist = LNil | LCons α (α llist)

Mutually recursive trees and forests (lists of trees) can be defined just as easily:

datatype α tree = Empty | Node α (α forest)
and α forest = FNil | FCons (α tree) (α forest)

Defining a (co)datatype introduces the appropriate axioms for the constructors
[148]. It also introduces a case combinator and syntactic sugar

case t of Ci1 x̄1 ⇒ u1 | . . . | Ciℓi
x̄ℓi
⇒ uℓi

such that the following equation holds for j ∈ {1, . . . , ℓi}:
(case Cij x̄j of Ci1 x̄1 ⇒ u1 | . . . | Ciℓi

x̄ℓi
⇒ uℓi

) = uj

(Co)recursive Functions. The primrec command defines primitive recursive func-
tions on inductive datatypes [22]:

primrec fσ1
1 and . . . and fσn

n where

f1 x̄11 (C11 ȳ11) z̄11 = t11 . . . f1 x̄1ℓ1
(C1ℓ1

ȳ1ℓ1
) z̄1ℓ1

= t1ℓ1
...

fn x̄n1 (Cn1 ȳn1) z̄n1 = tn1 . . . fn x̄nℓn
(Cnℓn

ȳnℓn
) z̄nℓn

= tnℓn

The main proviso is that the middle argument of any recursive call in the tij’s must
be one of the ȳij’s. This ensures that each recursive call peels off one constructor
from the argument and hence that the recursion is well-founded. Isabelle also pro-
vides fun and function commands for more general forms of recursion [106].

Like coinductive datatypes, corecursive functions are not directly supported by
Isabelle, but Nitpick can handle them if the user registers them appropriately. Their
postulated concrete syntax, inspired by the lazy list corecursion combinator [80,
114], follows a rather different schema, with a single equation per function fi that
must return type ᾱ κi:

coprimrec fσ1
1 and . . . and fσn

n where

f1 ȳ1 = if Q11 then t11 else if Q12 then . . . else t1ℓ1
...

fn ȳn = if Qn1 then tn1 else if Qn2 then . . . else tnℓn

Provisos: The constants fi are fresh and distinct, the variables ȳi are distinct, the
right-hand sides involve no other variables than ȳi, no corecursive calls occur in
the conditions Qij, and either tij does not involve any corecursive calls or it has

the form Cij ūij for some codatatype constructor Cij.
1 The syntax can be relaxed to

allow a ‘case’ expression instead of a sequence of conditionals; what matters is that

1Some authors formulate corecursion in terms of selectors instead of constructors [96].

14 Chapter 2. Isabelle/HOL

corecursive calls are protected by constructors, to ensure that the functions fi are
productive and hence well-defined.

The following examples define concatenation for inductive and coinductive lists:

primrec @α list�α list�α list where

Nil @ zs = zs
Cons y ys @ zs = Cons y (ys @ zs)

coprimrec @L
α llist�α llist�α llist where

ys @L zs = case ys of
LNil⇒ zs
| LCons y ys′ ⇒ LCons y (ys′ @L zs)

At the moment you find an error, your brain may
disappear because of the Heisenberg uncertainty
principle, and be replaced by a new brain that
thinks the proof is correct.

— Leonid A. Levin (1993)

Chapter 3

Counterexample Generation
Using a Relational Model Finder

The Alloy Analyzer [94] is a lightweight checking tool that searches for counter-
examples to claimed properties of specifications. It has achieved considerable pop-
ularity since its introduction a decade ago. Its specification language, Alloy, is a
modeling language designed around a first-order relational logic. The Analyzer is
based on Kodkod [187], a Java library that translates relational problems to propo-
sitional logic and invokes a SAT solver (usually MiniSat [74]).

Alloy’s success inspired Tjark Weber to develop Refute [198], a SAT-based higher-
order model finder for Isabelle/HOL. Refute excels at formulas with small finite
models, such as those from the TPTP benchmark suite [181], and features in sev-
eral case studies [98, 120, 197]. However, it suffers from soundness and scalability
issues that severely impair its usefulness: Inductive datatypes and (co)inductive
predicates are mostly out of its reach due to the combinatorial explosion, and con-
jectures involving datatypes often give rise to spurious countermodels.

Our Nitpick tool succeeds Refute and reuses many of its ideas: The translation
from HOL is parameterized by the cardinalities of the types occurring in the prob-
lem; Nitpick systematically enumerates the cardinalities, so that if the conjecture
has a finite countermodel, the tool eventually finds it, unless it runs out of re-
sources. But unlike Refute, Nitpick employs Kodkod as its backend, thereby ben-
efiting from Kodkod’s rich relational logic (Section 3.1) and its optimizations. The
basic translation from HOL is conceptually simple (Section 3.2). For common id-
ioms such as (co)inductive datatypes and predicates, we departed from Refute and
adopted more appropriate translation schemes that scale better while being sound
(Section 3.3). Nitpick benefits from many novel optimizations that greatly improve
its performance, especially in the presence of higher-order constructs (Section 3.4);
one optimization, monotonicity inference, is treated separately in Chapter 4.

We present five small case studies: a context-free grammar, AA trees, a security type
system, a hotel key card system, and lazy lists (Section 3.5). A larger case study, in
which we apply Nitpick to a formalization of the C++ memory model, is treated in
Chapter 5. We also evaluate Nitpick and its two rivals, Quickcheck [21, 30, 49] and
Refute, on a large benchmark suite of mutated theorems (Section 3.6).

15

16 Chapter 3. Counterexample Generation Using a Relational Model Finder

3.1 First-Order Relational Logic

Kodkod’s logic, first-order relational logic (FORL), combines elements from first-
order logic and relational calculus, to which it adds the transitive closure operator
[187]. FORL terms range over relations —sets of tuples drawn from a finite universe
of uninterpreted atoms. Relations can be of arbitrary arities. The logic is untyped,
but each term denotes a relation of a fixed arity. Nitpick’s translation relies on the
following FORL fragment.1

Terms:
r ::= NONE empty set
| IDEN identity relation
| an atom
| x variable
| r+ transitive closure
| π n

n(r) projection
| r1.r2 dot-join
| r1 × r2 Cartesian product
| r1 ∪ r2 union
| r1 − r2 difference
| r1 ++++++++ r2 override
| {〈x1 ∈ r1, . . . , xm ∈ rm〉 | ϕ} comprehension
| IF ϕ THEN r1 ELSE r2 conditional

Formulas:
ϕ ::= FALSE falsity

| TRUE truth
| m r multiplicity constraint
| r1 = r2 equality
| r1 ⊆ r2 inclusion
| ¬ ϕ negation
| ϕ1 ∧ ϕ2 conjunction
| ∀x ∈ r: ϕ universal quantification

Miscellaneous:
m ::= NO | LONE | ONE | SOME multiplicities
n ::= 1 | 2 | · · · positive integers

The universe of discourse is A = {a1, . . . , an}, where each aj is a distinct unin-
terpreted atom. Atoms and n-tuples are identified with singleton sets and single-
ton n-ary relations, respectively; thus, the term a1 denotes the set {a1} (or {〈a1〉}),
and a1 × a2 denotes the binary relation {〈a1, a2〉}. Bound variables range over
the tuples in a relation; thus, ∀x ∈ (a1 ∪ a2)× a3: ϕ[x] is equivalent to ϕ[a1× a3] ∧
ϕ[a2× a3]. Although they are not listed above, we sometimes make use of ∨ (dis-
junction), −→ (implication), ∗ (reflexive transitive closure), and ∩ (intersection).

1Our syntax for FORL is inspired by Alloy but closer to standard logical notation; for example, we
write ∀x ∈ r: ϕ where Alloy would require all [x : r] | ϕ. To simplify the presentation, we also
relax some arity restrictions on override, comprehension, and universal quantification. It is easy
to encode our relaxed operators in Kodkod’s slightly more restrictive logic.

3.2. Basic Translations 17

The constraint NO r states that r is the empty relation, ONE r states that r is a single-
ton, LONE r ⇐⇒ NO r ∨ ONE r, and SOME r ⇐⇒ ¬ NO r. The override, projection,
and dot-join operators are also unconventional. Their semantics is given below:

Jr ++++++++ sK = JsK ∪ {〈r1, . . . , rm〉 | 〈r1, . . . , rm〉 ∈ JrK ∧ ∄t. 〈r1, . . . , rm−1, t〉 ∈ JsK}
Jπ k

i (r)K = {〈ri, . . . , ri+k−1〉 | 〈r1, . . . , rm〉 ∈ JrK}
Jr.sK = {〈r1, . . . , rm−1, s2, . . . , sn〉 | ∃t. 〈r1, . . . , rm−1, t〉 ∈ JrK ∧ 〈t, s2, . . . , sn〉 ∈ JsK}

We write π i(r) for π 1
i (r). If r and s are partial functions, the override r ++++++++ s is the

partial function that agrees with s where s is defined and with r elsewhere.

The dot-join operator admits three important special cases. Let s be unary and r, r′

be binary relations. The expression s.r gives the direct image of the set s under
r; if s is a singleton and r a function, it coincides with the function application
r(s). Analogously, r.s gives the inverse image of s under r. Finally, r.r′ expresses
the relational composition r ◦ r′. To pass an n-tuple s to a function r, we write
〈s〉.r, which stands for the n-fold dot-join πn(s).(. . . .(π1(s).r) . . .); similarly, the
abbreviation r.〈s〉 stands for (. . . (r.πn(s)). . . .).π1(s).

The relational operators often make it possible to express first-order problems con-
cisely. The following FORL problem vainly tries to fit 30 pigeons into 29 holes:

var pigeons = {a1, . . . , a30}
var holes = {a31, . . . , a59}
var ∅ ⊆ nest ⊆ {a1, . . . , a30} × {a31, . . . , a59}
solve (∀p ∈ pigeons: ONE p.nest) ∧ (∀h ∈ holes: LONE nest.h)

The variables pigeons and holes are given fixed values, whereas nest is specified
with a lower and an upper bound. Variable declarations are an extralogical way of
specifying type constraints and partial solutions [187]. They also indirectly specify
the variables’ arities, which in turn determine the arities of all the terms.

The constraint ONE p.nest states that pigeon p is in relation with exactly one hole,
and LONE nest.h states that hole h is in relation with at most one pigeon. Taken
as a whole, the formula states that nest is an injective function. It is, of course, not
satisfiable, a fact that Kodkod can establish in less than a second.

When reducing FORL to SAT, each n-ary relational variable y is in principle trans-
lated to an |A|n array of propositional variables V[i1, . . . , in], with V[i1, . . . , in]⇐⇒
〈ai1 , . . . , ain

〉 ∈ y. Most relational operations can be coded efficiently; for example,
∪ is simply ∨. The quantified formula ∀r∈ s: ϕ[r] is treated as

∧n
j=1 tj ⊆ s −→ ϕ[tj],

where the tj’s are the tuples that may belong to s. Transitive closure is simply un-
rolled to saturation, which is possible since all cardinalities are finite. Of course, the
actual translation performed by Kodkod is considerably more sophisticated [187].

3.2 Basic Translations

Nitpick employs Kodkod to find a finite model (a satisfying assignment to the free
variables and constants) of A ∧ ¬C, where A is the conjunction of all relevant
axioms and C is the conjecture. The translation of a formula from HOL to FORL

18 Chapter 3. Counterexample Generation Using a Relational Model Finder

is parameterized by the cardinalities of the types occurring in it, provided as a
function | | from nonschematic types to cardinalities obeying

|σ| ≥ 1 |o| = 2 |σ→ τ| = |τ||σ| |σ× τ| = |σ| · |τ|

In this chapter, we call such a function a scope.1 Like Refute, Nitpick enumerates
the possible cardinalities for each type, so that if a formula has a finite counterex-
ample, the tool will eventually find it, unless it runs out of resources [198, §2.4.2].
Both tools reject goals involving schematic type variables, since refuting such goals
requires considering infinitely many ground instantiations of the type variables.

To exhaust all models up to a cardinality bound k for n atomic types (types other
than o,→, and ×), a model finder must a priori iterate through kn combinations of
cardinalities and consider all models for each of these combinations. This can be
made more efficient if some of the types in the problem are monotonic (Chapter 4).
Another option is to avoid hard-coding the exact cardinalities in the translation
and let the SAT solver try all cardinalities up to a given bound; this is the Alloy
Analyzer’s normal mode of operation [94, §4.6].

3.2.1 A Sound and Complete Translation

We start by presenting a sound and complete translation from HOL to FORL, ex-
cluding the definitional principles. The translation is limited to finite domains, but
for these it is sound and complete. It primarily serves as a stepping stone toward
the more sophisticated translations of Sections 3.2.2 and 3.3, which are closer to
Nitpick’s actual implementation.

SAT solvers (Kodkod’s backends) are particularly sensitive to the encoding of prob-
lems. Whenever practicable, HOL constants should be mapped to their FORL
equivalents, rather than expanded to their definitions. This is especially true for
the transitive closure r+, which HOL defines (roughly) as

lfp (λR (x, y). (x, y) ∈ r ∨ (∃u. (x, u) ∈ R ∧ (u, y) ∈ r))

where lfp F is the least R such that F R ⊆ R if such an R exists. The translation
treats the following HOL constants specially:

Falseo falsity insertα�(α�o)�α�o element insertion
Trueo truth ∪ (α�o)�(α�o)�α�o union
=α�α�o equality − (α�o)�(α�o)�α�o set difference
¬o�o negation (,)α�β�α×β pair constructor
∧o�o�o conjunction fstα×β�α first projection
∀ (α�o)�o universal quantifier sndα×β�β second projection
∅α�o empty set ()+ (α×α�o)�α×α�o transitive closure
UNIVα�o universal set

Disjunction, equivalence, and existential quantification can be seen as abbrevia-
tions. Other constants are treated as if they were free variables of the problem,
constrained by their (definitional or axiomatic) specification.

1In Chapter 2, we defined a scope as a function to nonempty sets (Definition 2.2). Here we abstract
away the set elements, which are irrelevant [198, §2.3.2], and consider only finite cardinalities.

3.2. Basic Translations 19

In general, an n-ary HOL function from and to atomic types can be encoded in
FORL as an (n + 1)-ary relation accompanied by a constraint. For example, given
the scope |α| = 2 and |β| = 3, the HOL conjecture ∀x α. ∃y β. f x = y corresponds
to the (negated) FORL problem

var ∅ ⊆ f ⊆ {a1, a2}× {a3, a4, a5}
solve (∀x ∈ a1 ∪ a2: ONE x. f) ∧ ¬ (∀x ∈ a1 ∪ a2: ∃y ∈ a3 ∪ a4 ∪ a5: x. f = y)

The first conjunct ensures that f is a function, and the second conjunct is the nega-
tion of the HOL conjecture translated to FORL. If the return type is o, the function
is more efficiently coded as an unconstrained n-ary relation than as a constrained
(n + 1)-ary relation. This allows formulas such as A+ ∪ B+ = (A ∪ B)+ to be
translated without taking a detour through ternary relations.

Higher-order quantification and functions bring complications of their own. For
example, we would like to translate the HOL assumption ∀g β�α. g y 6= x into
something like

∀g ⊆ (a3 ∪ a4 ∪ a5)× (a1 ∪ a2): (∀y ∈ a3 ∪ a4 ∪ a5: ONE y.g) −→ y.g 6= x

but since FORL is a first-order formalism,⊆ is not allowed at the binding site—only
∈ is. Skolemization solves half of the problem (Section 3.4.3), but for the remaining
quantifiers we are forced to adopt an unwieldy n-tuple singleton representation of
functions, where n is the cardinality of the domain. For the formula above, this
gives

∀G ∈ (a1 ∪ a2)3: y.
(

g
︷ ︸︸ ︷
a3×π1(G) ∪ a4×π2(G) ∪ a5×π3(G)

)
6= x

where G is the triple corresponding to g. In the body, we convert the ternary single-
ton G to its binary relational representation, then we apply y on it using dot-join.
The singleton (or tuple) encoding is also used for passing functions to functions;
fortunately, two optimizations, function specialization and boxing (Section 3.4),
make this rarely necessary.

We are now ready to look at the translation in more detail. The translation distin-
guishes between formulas (F), singletons (S), and general relations (R). We start by
mapping HOL types to sets of FORL atom tuples. For each type σ, we provide two
encodings, a singleton representation S〈〈σ〉〉 and a relational representation R〈〈σ〉〉:

S〈〈σ→ τ〉〉 = S〈〈τ〉〉|σ| R〈〈σ→ o〉〉 = S〈〈σ〉〉
S〈〈σ× τ〉〉 = S〈〈σ〉〉× S〈〈τ〉〉 R〈〈σ→ τ〉〉 = S〈〈σ〉〉× R〈〈τ〉〉

S〈〈σ〉〉 = {a1, . . . , a|σ|} R〈〈σ〉〉 = S〈〈σ〉〉
Both metafunctions depend on the scope. In the S-representation, an element of
type σ is mapped to a single tuple taken from the set S〈〈σ〉〉. In the R-representation,
an element of type σ→ o is mapped to a subset of S〈〈σ〉〉 consisting of the points
at which the predicate is true; an element of σ→ τ (where τ 6= o) is mapped to a
relation ⊆ S〈〈σ〉〉× R〈〈τ〉〉; an element of any other type is coded as a singleton (S).

To simplify the presentation, we reuse the same atoms for distinct types. Doing
so is sound for well-typed terms. However, our implementation in Nitpick as-
signs disjoint atom sets to distinct types so as to produce problems that are more

20 Chapter 3. Counterexample Generation Using a Relational Model Finder

amenable to symmetry breaking [62, 187].1 Symmetry breaking can dramatically
speed up model finding, especially for high cardinalities.

It is convenient to assume that free and bound variables are syntactically distin-
guishable (as in the locally nameless representation of λ-terms [157]), and we re-
serve the letter y for the former and b for the latter. Free variables can be coded
using the natural R representation, whereas bound variables require the unwieldy
S representation.

For each free variable yσ, we produce the declaration var ∅ ⊆ y ⊆ R〈〈σ〉〉 as well as
a constraint Φσ(y) to ensure that functions are functions and scalars are singletons:

Φσ1�···�σn�o(r) = TRUE

Φσ�τ(r) = ∀bf ∈ S〈〈σ〉〉: Φτ
(
〈bf〉.r

)

Φσ(r) = ONE r

The symbol bf denotes a fresh bound variable.

We postulate a total order on atom tuples (e.g., the lexicographic order induced by
ai < aj ⇐⇒ i < j) and let Si〈〈σ〉〉 denote the ith tuple from S〈〈σ〉〉 according to that
order. Moreover, we define s(σ) and r(σ) as the arity of the tuples in S〈〈σ〉〉 and
R〈〈σ〉〉, respectively. The translation of terms requires the following rather technical
conversions between formulas, singletons, and relations:

s2f(r) = (r = at)

f2s(ϕ) = IF ϕ THEN at ELSE af

s2rσ(r) =

⋃|τ|
i=1 π i(r).(at× Si〈〈τ〉〉) if σ = τ→ o

⋃|τ|
i=1 Si〈〈τ〉〉× s2rυ

(
π

s(υ)
(i−1)·s(υ)+1

(r)
)

if σ = τ→ υ

r otherwise

r2sσ(r) =

{
{〈bf ∈ S〈〈σ〉〉〉 | s2rσ(bf) = r} if σ = τ→ υ

r otherwise

The functions f2s and s2f convert between singletons (atoms) and formulas, with
the convention that the two distinct atoms af, at ∈ A encode FALSE and TRUE;
s2r expands a relation to a tuple, and r2s reconstructs the relation.

The translation from HOL terms to formulas, singletons, and relations is performed
by the functions F〈〈to〉〉, S〈〈tσ〉〉, and R〈〈tσ〉〉, respectively. They implicitly depend on
the scope. Their defining equations are matched sequentially modulo η-expansion
in case not all arguments are supplied to the constants we treat specially:

F〈〈False〉〉 = FALSE F〈〈t ∧ u〉〉 = F〈〈t〉〉 ∧ F〈〈u〉〉
F〈〈True〉〉 = TRUE F〈〈∀bσ. t〉〉 = ∀b ∈ S〈〈σ〉〉: F〈〈t〉〉

F〈〈t = u〉〉 = (R〈〈t〉〉 = R〈〈u〉〉) F〈〈t u〉〉 = S〈〈u〉〉 ⊆ R〈〈t〉〉
F〈〈¬ t〉〉 = ¬ F〈〈t〉〉 F〈〈t〉〉 = s2f(S〈〈t〉〉)

1Because of bound declarations, which refer to atoms by name, FORL atoms are generally not in-
terchangeable. Kodkod’s symmetry breaker infers symmetries (classes of atoms that can be per-
muted with each other) from the bound declarations and generates additional constraints to rule
out needless permutations [187].

3.2. Basic Translations 21

S〈〈b〉〉 = b S〈〈snd tσ×τ〉〉 = π
s(τ)
s(σ)+1

(S〈〈t〉〉)
S〈〈(t, u)〉〉 = S〈〈t〉〉× S〈〈u〉〉 S〈〈tσ〉〉 = r2sσ(R〈〈t〉〉)

S〈〈fst tσ×τ〉〉 = π
s(σ)
1 (S〈〈t〉〉)

R〈〈False〉〉 = af R〈〈insert t u〉〉 = S〈〈t〉〉 ∪ R〈〈u〉〉
R〈〈True〉〉 = at R〈〈t ∪ u〉〉 = R〈〈t〉〉 ∪ R〈〈u〉〉

R〈〈y〉〉 = y R〈〈t− u〉〉 = R〈〈t〉〉− R〈〈u〉〉
R〈〈bσ〉〉 = s2rσ(b) R〈〈(tσ×σ�o)+〉〉 = R〈〈t〉〉+ if s(σ) = 1

R〈〈(t, u)〉〉 = S〈〈(t, u)〉〉 R〈〈tσ�o u〉〉 = f2s(F〈〈t u〉〉)
R〈〈fst tσ×τ〉〉 = s2rσ(S〈〈fst t〉〉) R〈〈t u〉〉 = 〈S〈〈u〉〉〉.R〈〈t〉〉

R〈〈snd tσ×τ〉〉 = s2rτ(S〈〈snd t〉〉) R〈〈λbσ. to〉〉 = {〈b ∈ S〈〈σ〉〉〉 | F〈〈t〉〉}
R〈〈∅σ〉〉 = NONE

r(σ) R〈〈λbσ. tτ〉〉 = {〈b ∈ S〈〈σ〉〉, bf ∈ R〈〈τ〉〉〉 |
R〈〈UNIVσ〉〉 = R〈〈σ〉〉 bf ⊆ R〈〈t〉〉}

Annoyingly, the translation of transitive closure is defined only if s(σ) = 1. There
are at least three ways to lift this restriction: Fall back on the (expensive) HOL def-
inition in terms of lfp; treat the transitive closure like any other inductive predicate
(Section 3.3.3); box the argument (Section 3.4.2).

Countermodels found by Kodkod must be mapped back to HOL before they can
be presented to the user. The functions ⌈t⌉σS and ⌈r⌉σR translate an S-encoded tuple
t ∈ S〈〈σ〉〉 or an R-encoded relation r ⊆ R〈〈σ〉〉 to a HOL term of type σ:

⌈〈r1, . . . , rm〉⌉σ→τ
S = undefinedσ�τ(S1〈〈σ〉〉 := ⌈r1⌉τS, . . . , Sm〈〈σ〉〉 := ⌈rm⌉τS)

⌈〈r1, . . . , rm〉⌉σ×τ
S =

(
⌈〈r1, . . . , rs(σ)〉⌉σS , ⌈〈rs(σ)+1, . . . , rm〉⌉τS

)

⌈〈ai〉⌉σS = Si〈〈σ〉〉

⌈{t1, . . . , tn}⌉σ→o
R = {⌈t1⌉σS, . . . , ⌈tn⌉σS}

⌈r⌉σ→τ
R = undefinedσ�τ(S1〈〈σ〉〉 := ⌈S1〈〈σ〉〉.r⌉τR, . . . ,

Sm〈〈σ〉〉 := ⌈Sm〈〈σ〉〉.r⌉τR)
⌈{t}⌉σR = ⌈t⌉σS

Functions are expressed using Isabelle’s function update notation: f (a := b) is the
function that maps a to b and that otherwise coincides with f . Successive updates
f (a1 := b1) · · · (an := bn) are displayed as f (a1 := b1, . . . , an := bn). The unspeci-
fied function undefinedσ�τ works as a placeholder; since we override its definition
at every point, any function would do.

The equations above abuse notation in two ways. First, they employ the FORL
dot-join operator semantically, instead of syntactically. Second, they identify the
value Si〈〈σ〉〉 with some term that denotes it; for uninterpreted types (such as non-
schematic type variables and types introduced by typedecl), Nitpick chooses sub-
scripted one-letter names based on the type (e.g., b1, b2, b3 for the type β).

For our proof sketches, we find it convenient to define the function ⌈B⌉oF for FORL
truth values B, with ⌈⊥⌉oF = False and ⌈⊤⌉oF = True. We also identify the terms
returned by the ⌈ ⌉σ

X
functions with the values they denote (which are independent

of any variable environment).

22 Chapter 3. Counterexample Generation Using a Relational Model Finder

Example 3.1. Given a cardinality k for β, the HOL conjecture ¬ (P x β ∧ ¬ P y) is
translated into the FORL problem

var ∅ ⊆ P, x, y ⊆ {a1, . . . , ak}
solve ONE x ∧ ONE y ∧ ¬¬ (x ⊆ P ∧ y 6⊆ P)

The first two conjuncts ensure that x and y are singletons (representing scalars),
and the third conjunct is the translation of the negated conjecture. Two solutions
already exist for k = 2, namely the valuation P = {a1}, x = {a1}, and y = {a2}
and its isomorph with a1 and a2 permuted. The first valuation corresponds to the
HOL variable assignment P = {b1}, x = b1, and y = b2.

Theorem 3.2 (Soundness and Completeness). Given a conjecture P with free vari-
ables yσ1

1 , . . . , yσm
m within our HOL fragment and a scope, P is falsifiable for the

scope iff there exists a valuation V with V(yi) ⊆ R〈〈σi〉〉 that satisfies the FORL for-
mula F〈〈¬ P〉〉 ∧ ∧m

i=1 Φσi(yi). Moreover, the HOL variable assignment yi 7→ ⌈yi⌉σi
R

falsifies P for the scope.

Proof sketch. Let JtKA denote the semantics of the HOL term t with respect to a
variable assignment A and the given scope. Let JρKV denote the semantics of the
FORL term or formula ρ with respect to a variable valuation V and the scope.

SOUNDNESS (IF): Using well-founded induction, it is straightforward to prove that
⌈JX〈〈tσ〉〉KV⌉σX = JtKA if ⌈V(yi)⌉σi

R = A(yi) for all free variables yi and ⌈V(bi)⌉σi
S =

A(bi) for all locally free bound variables bi occurring in t, where X ∈ {F, S, R}. Let
A(yi) = ⌈V(yi)⌉σi

R . Clearly, A falsifies P: ⌈JF〈〈¬ P〉〉KV⌉oF = ⊤ = J¬ PKA. The Φσi(yi)
constraints and the variable bounds V(yi) ⊆ R〈〈σi〉〉 ensure that ⌈V(yi)⌉σi

R is defined
and yields a type-correct value.

COMPLETENESS (ONLY IF): For any HOL variable assignment A, we exhibit a
FORL valuation V such that ⌈V(yi)⌉σi

R = A(yi) for all yi’s. S〈〈σ〉〉 and R〈〈σ〉〉 are
defined so that the tuples in S〈〈σ〉〉 and the Φσ-constrained subsets of R〈〈σ〉〉 are iso-
morphic to the elements of σ. The function ⌈ ⌉σS is clearly an isomorphism, and we
can take its inverse to define V in terms of A. ⊓⊔

3.2.2 Approximation of Infinite Types and Partiality

Besides its lack of explicit support for Isabelle’s definitional principles, the above
translation suffers from a serious limitation: It cannot handle infinite types such as
natural numbers, lists, and trees, which are ubiquitous in real-world specifications.
Fortunately, it is not hard to adapt the translation to take these into account in a
sound way, if we give up completeness.

We first introduce a distinction between the reference scope, which allows infinite
types, and an analysis scope used in the FORL translation. In Section 3.2.1, these
two notions coincided. Given an infinite atomic type, our FORL translation consid-
ers a finite subset of it and represents every element not in this subset by a special
undefined or unknown value ⋆. For the type nat of natural numbers, an obvious
choice is to consider prefixes {0, . . . , K} of N and map numbers greater than K to ⋆.
Using this technique, the successor function Suc becomes partial, with Suc K = ⋆.
The same approach can also be used to speed up the analysis of finite types with
a high cardinality: We can approximate a 256-value byte type by a subset of, say,

3.2. Basic Translations 23

5 values, by letting |byte| = 256 in the reference scope and |byte| = 5 in the analysis
scope. Since we are mostly concerned with the analysis scope, we usually call it
“scope” and leave it implicit that the cardinality operator |σ| refers to it.

We call types for which we can represent all the values in FORL without needing ⋆

complete ; the other types are incomplete. Function types with an infinite domain
are generally infinite and must be approximated, but the approximation has a dif-
ferent flavor: Functions such as nat→ o are represented by partial functions from
the subset {0, . . . , K} to o, with the convention that numbers beyond K are mapped
to ⋆. Since every function of the space nat→ o can be represented as a function from
{0, . . . , K} to o, the type is complete, but the ambiguity caused by the truncation of
the domain prompts us to call such a type abstract, as opposed to concrete. Some
types, such as nat→ nat, are both incomplete and abstract.

We can in principle choose how to treat finite atomic types, but it makes sense to
consider types such as o and α concrete and complete, whereas the infinite atomic
type nat approximated by {0, . . . , K} is concrete but incomplete. The following
rules lift the two notions to functions and products:

σ is concrete τ is complete

σ→ τ is complete

σ is complete τ is concrete

σ→ τ is concrete

σ is complete τ is complete

σ× τ is complete

σ is concrete τ is concrete

σ× τ is concrete

Approximation means that the translation must cope with partiality. Constructors
and other functions sometimes return the unknown value ⋆, which trickles down
from terms all the way to the logical connectives and quantifiers. Moreover, equal-
ity for abstract types is problematic, because a single abstract value encodes several
values and there is no way to distinguish them. At the formula level, some preci-
sion can be regained by adopting a three-valued Kleene logic [100], with such rules
as ⋆ ∨True⇐⇒ True and ⋆ ∧ False⇐⇒ False.

To ensure soundness, universal quantifiers whose bound variable ranges over an
incomplete type, such as ∀nnat. P n, will generally evaluate to either False (if P n
gives False for some n ≤ K) or ⋆, but never to True, since we cannot ascertain
whether P (K+ 1), P (K+ 2), . . . are true except in special cases. By the same token,
Anat�o = B will generally evaluate to either False or ⋆. In view of this, Nitpick
generally cannot falsify conjectures that contain an essentially existential (i.e., non-
skolemizable) quantifier ranging over an infinite type. As a fallback, the tool enters
an unsound mode in which the quantifiers are artificially bounded, similar to what
Refute always does; counterexamples are then labeled “potentially spurious.”

Partiality can be encoded in FORL as follows. Inside terms, we let the empty set
(NONE) stand for ⋆. This choice is convenient because it is an absorbing element for
the dot-join operator, which models function application; thus, f ⋆ = ⋆ irrespective
of f . Inside a formula, we keep track of polarities: In positive contexts (i.e., under
an even number of negations), TRUE encodes True and FALSE encodes False or ⋆; in
negative contexts, FALSE encodes False and TRUE encodes True or ⋆.

In the translation of Section 3.2.1, we conveniently identified HOL predicates with
FORL relations. This is not desirable here, because predicates must now distin-

24 Chapter 3. Counterexample Generation Using a Relational Model Finder

guish between three return values (True, False, and ⋆). Instead, we treat predicates
as any other functions. This is reflected in the new definition of R〈〈σ〉〉:

R〈〈σ→ τ〉〉 = S〈〈σ〉〉× R〈〈τ〉〉 R〈〈σ〉〉 = S〈〈σ〉〉
(S〈〈σ〉〉 is exactly as before.) With the R-representation, the approximated predicate
Pα�o that maps a1 to True, a2 to ⋆, and a3 to False would be encoded as the term
(a1 × at) ∪ (a2 × NONE) ∪ (a3 × af), which denotes the relation {〈a1, at〉, 〈a3, af〉}.
With the S-representation, P would be encoded as at× NONE× af, which collapses
to the (ternary) empty set, representing the fully unknown predicate; this is sound
but loses all information about the predicate at points a1 and a3.

The auxiliary functions s2rσ(r) and r2sσ(r) are defined as in Section 3.2.1 except
that predicates are now treated the same way as other functions (i.e., the first case
in the definition of s2rσ(r) is omitted). Both gracefully handle unknown values,
returning the empty set if passed the empty set.

The translation function Fs〈〈t〉〉 for formulas depends on the polarity s (+ or –) of
the formula. Taken together, the Boolean values of F+〈〈t〉〉 and F–〈〈t〉〉 encode a three-
valued logic, with

〈TRUE, TRUE〉 denoting True
〈FALSE, TRUE〉 denoting ⋆

〈FALSE, FALSE〉 denoting False

The remaining case, 〈TRUE, FALSE〉, is impossible by construction. The conversion
functions between FORL formulas and atoms must now take the polarity into ac-
count. Observe in particular that f2s+(NONE) is false, whereas f2s–(NONE) is true:

s2f+(r) = (r = at) f2s+(ϕ) = IF ϕ THEN a2 ELSE NONE

s2f–(r) = (r 6= af) f2s–(ϕ) = IF ¬ ϕ THEN a1 ELSE NONE

The translation function Fs〈〈t〉〉 is defined as follows:

Fs〈〈False〉〉 = FALSE F+〈〈¬ t〉〉 = ¬ F–〈〈t〉〉
Fs〈〈True〉〉 = TRUE F–〈〈¬ t〉〉 = ¬ F+〈〈t〉〉

Fs〈〈tσ�τ = u〉〉 = Fs〈〈∀bσ
f . t bf = u bf〉〉 F+〈〈∀bσ. t〉〉 = FALSE if σ is incomplete

F+〈〈tσ = u〉〉 = FALSE if σ is abstract Fs〈〈∀bσ. t〉〉 = ∀b ∈ S〈〈σ〉〉: Fs〈〈t〉〉
F+〈〈t = u〉〉 = SOME (R〈〈t〉〉 ∩ R〈〈u〉〉) F+〈〈t uσ〉〉 = S〈〈u〉〉 6⊆ S〈〈σ〉〉−R〈〈t〉〉.at

F–〈〈t = u〉〉 = LONE (R〈〈t〉〉 ∪ R〈〈u〉〉) F–〈〈t uσ〉〉 = S〈〈u〉〉 ⊆ S〈〈σ〉〉−R〈〈t〉〉.af

Fs〈〈t ∧ u〉〉 = Fs〈〈t〉〉 ∧ Fs〈〈u〉〉 Fs〈〈t〉〉 = f2s s(S〈〈t〉〉)
Many of the equations deserve some justification:

• Fs〈〈tσ�τ = u〉〉: The equation exploits extensionality to avoid comparing ap-
proximated functions directly.

• F+〈〈tσ = u〉〉 for abstract σ: Even if t and u evaluate to the same value, if they
are of an abstract type it is generally impossible to tell whether they both
correspond to the same concrete value.

• F+〈〈t = u〉〉: R〈〈t〉〉 and R〈〈u〉〉 are either singletons or empty sets. If the intersec-
tion of R〈〈t〉〉 and R〈〈u〉〉 is nonempty, they must be equal singletons, meaning
that t and u must be equal.

3.2. Basic Translations 25

• F–〈〈t = u〉〉: This case is the dual of the preceding case. If the union of R〈〈t〉〉
and R〈〈u〉〉 has more than one element, then t and u must be unequal.

• F+〈〈∀bσ. t〉〉 for incomplete σ: Positive occurrences of universal quantification
can never yield True if the bound variable ranges over an incomplete type. (In
negative contexts, approximation compromises the translation’s complete-
ness but not its soundness.)

• F+〈〈t uσ〉〉: It is tempting to put S〈〈u〉〉 ⊆ R〈〈t〉〉.at on the right-hand side but this
would be unsound when S〈〈u〉〉 yields the empty set. Our version correctly
returns FALSE (meaning ⋆) in that case and is equivalent to S〈〈u〉〉 ⊆ R〈〈t〉〉.at

when S〈〈u〉〉 is a singleton.

The S〈〈t〉〉 equations are exactly as in Section 3.2.1 and are omitted here. On the
other hand, the R〈〈t〉〉 equations concerned with predicates must be adapted:

R〈〈∅σ�o〉〉 = S〈〈σ〉〉× af

R〈〈UNIVσ�o〉〉 = S〈〈σ〉〉× at

R〈〈insert t u〉〉 = R〈〈u〉〉++++++++ (S〈〈t〉〉× at)

R〈〈t ∪ u〉〉 = ((R〈〈t〉〉.at ∪ R〈〈u〉〉.at)× at) ∪ ((R〈〈t〉〉.af ∩ R〈〈u〉〉.af)× af)

R〈〈t− u〉〉 = ((R〈〈t〉〉.at ∩ R〈〈u〉〉.af)× at) ∪ ((R〈〈t〉〉.af ∪ R〈〈u〉〉.at)× af)

R〈〈(tσ×σ�o)+〉〉 = ((S〈〈σ〉〉− (S〈〈σ〉〉− R〈〈t〉〉.af)
+)× af) ++++++++ ((R〈〈t〉〉.at)

+ × at)
if s(σ) = 1

R〈〈tσ�o u〉〉 = IF F+〈〈t u〉〉 THEN at ELSE IF ¬ F–〈〈t u〉〉 THEN af ELSE NONE

We must relax the definition of the Φσ(y) constraint to account for unknown val-
ues, by substituting LONE for ONE. We also no longer treat predicates specially:

Φσ�τ(r) = ∀bf ∈ S〈〈σ〉〉: Φτ(〈bf〉.r) Φσ(r) = LONE r

As before, countermodels found by Kodkod must be mapped back to HOL. To
cope with partiality, we extend the HOL term syntax with ⋆ terms. The semantic
of an extended HOL term is a nonempty set of values. Countermodels involving
⋆ describe not a single countermodel, but rather a family of countermodels where
each occurrence of ⋆ can take an arbitrary type-correct value.

The functions ⌈s⌉σS and ⌈r⌉σR translate an S-encoded singleton or empty set s ⊆ S〈〈σ〉〉
or an R-encoded relation r ⊆ R〈〈σ〉〉 to an extended HOL term of type σ:

⌈∅⌉σS = ⋆
σ

⌈{〈r1, . . . , rm〉}⌉σ→τ
S = ⋆

σ�τ(S1〈〈σ〉〉 := ⌈r1⌉τS, . . . , Sm〈〈σ〉〉 := ⌈rm⌉τS)
⌈{〈r1, . . . , rm〉}⌉σ×τ

S =
(
⌈{〈r1, . . . , rs(σ)〉}⌉σS , ⌈{〈rs(σ)+1, . . . , rm〉}⌉τS

)

⌈{〈ai〉}⌉σS = Si〈〈σ〉〉

⌈r⌉σ→τ
R = ⋆

σ�τ(S1〈〈σ〉〉 := ⌈S1〈〈σ〉〉.r⌉τR, . . . , Sm〈〈σ〉〉 := ⌈Sm〈〈σ〉〉.r⌉τR)
⌈s⌉σR = ⌈s⌉σS

We identify extended terms with the nonempty sets of values they denote.

Example 3.3. Given a cardinality k for β, the HOL conjecture ¬ (P x β ∧ ¬ P y) is
translated into the FORL problem

26 Chapter 3. Counterexample Generation Using a Relational Model Finder

var ∅ ⊆ P ⊆ {a1, . . . , ak} × {af, at}
var ∅ ⊆ x, y ⊆ {a1, . . . , ak}
solve LONE x ∧ LONE y ∧ (∀z ∈ {a1, . . . , ak}. LONE z.P) ∧

¬¬ (x 6⊆ {a1, . . . , ak} − P.at ∧ y 6⊆ {a1, . . . , ak} − P.af)

Two solutions exist for k = 2: the valuation P = {〈a1, at〉, 〈a2, af〉}, x = {a1}, and
y = {a2} and its isomorph with a1 and a2 permuted. Using extended HOL terms,
the first valuation corresponds to the HOL variable assignment P = ⋆(b1 := True,
b2 := False) (i.e., the set {b1}), x = b1, and y = b2.

Example 3.4. Given a finite cardinality k for the (incomplete) type nat, the conjec-
ture ∀xnat. x = y is translated into

var ∅ ⊆ y ⊆ {a1, . . . , ak}
solve LONE y ∧ ¬ (∀x ∈ {a1, . . . , ak}. LONE (x ∪ y))

Again, a solution exists for k = 2, falsifying the conjecture.

In the face of partiality, the new encoding is sound but no longer complete.

Theorem 3.5 (Soundness). Given a conjecture P with free variables yσ1
1 , . . . , yσm

m

within our HOL fragment and a reference scope, P is falsifiable for the scope if there
exists a valuation V with V(yi) ⊆ R〈〈σi〉〉 that satisfies the FORL formula F+〈〈¬ P〉〉 ∧∧m

i=1 Φσi(yi) generated using an analysis scope.

Proof sketch. The proof is similar to the soundness part of Theorem 3.2, but par-
tiality and the polarity-based encoding of a three-valued logic introduce some com-
plications. Using well-founded induction, we can prove that if A(yi) ∈ ⌈V(yi)⌉σi

R

for all free variables yi and A(bi) ∈ ⌈V(bi)⌉σi
S for all locally free bound variables bi

occurring in t, then

1. JF+〈〈to〉〉KV = ⊤ =⇒ JtKA = ⊤
2. JF–〈〈to〉〉KV = ⊥ =⇒ JtKA = ⊥
3. JtKM ∈ ⌈JX〈〈t〉〉KV⌉σX for X ∈ {S, R}

In particular, if F+〈〈¬ P〉〉 = ⊤, then J¬ PKA = ⊤ for any variable assignment such
that A(yi) ∈ ⌈V(yi)⌉σi

R . ⊓⊔

3.3 Translation of Definitional Principles

Although our translation is sound, a lot of precision is lost when translating equal-
ity and quantification for approximated types. By handling high-level definitional
principles specially (as opposed to directly translating their HOL specification), we
can bypass the imprecise translation and increase the precision.

3.3.1 Simple Definitions

If the conjecture to falsify refers to defined constants, we must take the relevant
definitions into account. For simple definitions c ≡ t, earlier versions of Nitpick
(like Refute) unfolded (i.e., inlined) the constant’s definition, substituting the right-
hand side t for the constant c wherever it appears in the problem. This notion

3.3. Translation of Definitional Principles 27

was clearly misguided: If a constant is used many times and its definition is large,
expanding it each time hinders reuse. Kodkod often detects shared subterms and
factors them out [187, §4.3], but this does not help if Nitpick’s translation phase is
overwhelmed by the large terms.

The alternative is to translate HOL constants introduced by definition to FORL vari-
ables and conjoin the definition with the problem as an additional constraint to sat-
isfy. More precisely, if cτ is defined and an instance cτ′ occurs in a formula, we
must conjoin c’s definition with the formula, instantiating τ with τ′. This process
must be repeated for any defined constants occurring in c’s definition. It will even-
tually terminate, since cyclic definitions are disallowed. If several type instances of
the same constant are needed, they must be given distinct names in the translation.

Given the command

definition cτ where c x̄ = t

the naive approach would be to conjoin F+〈〈∀x̄. c x̄ = t〉〉with the FORL formula to
satisfy and recursively do the same for any defined constants in t. However, there
are two issues with this:

• If any of the variables x̄ is of an incomplete type, the equation F+〈〈∀x̄. t〉〉 =
FALSE applies, and the axiom becomes unsatisfiable. This is sound but ex-
tremely imprecise, as it prevents the discovery of any model.

• Otherwise, the body of ∀x̄. c x̄ = t is translated to SOME (R〈〈c x̄〉〉 ∩ R〈〈t〉〉) (as-
suming τ is an atomic type), which evaluates to FALSE (meaning ⋆) whenever
R〈〈t〉〉 is NONE for some values of x̄.

Fortunately, we can take a shortcut and translate the definition directly to the fol-
lowing FORL axiom, bypassing F+ altogether (cf. Weber [198, p. 66]):

∀x1 ∈ S〈〈σ1〉〉, . . . , xn ∈ S〈〈σn〉〉: R〈〈c x1 . . . xn〉〉 = R〈〈t〉〉

We must also declare the variable using appropriate bounds for the constant’s type.

Example 3.6. The conjecture K a a = aα, where K is defined as

definition Kα�β�α where K x y = x

is translated to

var ∅ ⊆ a ⊆ {a1, . . . , a|α|}
var ∅ ⊆ K ⊆ {a1, . . . , a|α|}3

solve LONE a ∧ ¬ LONE (a.(a.K) ∪ a) ∧ ∀x, y∈ {a1, . . . , a|α|}: y.(x.K) = x

In the translation, K’s schematic type variables α and β are instantiated with the
(unrelated) nonschematic type variable α from the conjecture.

Theorem 3.7. The encoding of Section 3.2.2 extended with simple definitions is
sound.

28 Chapter 3. Counterexample Generation Using a Relational Model Finder

Proof sketch. Any FORL valuation V that satisfies the FORL axiom associated with
a constant c can be extended into a HOL constant model M that satisfies the cor-
responding HOL axiom, by setting M(c)(v) = Jλx1. . . xn. tKM(v) for any value v
at which V(c) is not defined (either because v is ⋆ in FORL or because the partial
function V(c) is not defined at that point). The apparent circularity in M(c)(v) =
Jλx1. . . xn. tKM(v) is harmless, because simple definitions are required to be acyclic
and so we can construct M one constant at a time. ⊓⊔

Incidentally, we obtain a simpler (and still sound) SAT encoding by replacing the
= operator with ⊆ in the encoding of simple definitions. (Kodkod expands r = s
to r ⊆ s ∧ s ⊆ r.) Any entry of a defined constant’s relation table that is not needed
to construct the model can then be ⋆, even if the right-hand side is not ⋆.

3.3.2 Inductive Datatypes and Recursive Functions

In contrast to Isabelle’s constructor-oriented treatment of inductive datatypes, the
FORL axiomatization revolves around selectors and discriminators, inspired by
Kuncak and Jackson’s modeling of lists and trees in Alloy [107]. Let

κ = C1 σ11 . . . σ1n1
| · · · | Cℓ σℓ1 . . . σℓnℓ

be a datatype instance. With each constructor Ci we associate a discriminator Dκ�o
i

and ni selectors Sκ�σik
ik obeying the laws

Dj (Ci x1 . . . xn) = (i = j) Sik (Ci x1 . . . xn) = xk

For example, the type α list is assigned the discriminators nilp and consp and the
selectors head and tail:1

nilp Nil = True consp Nil = False head (Cons x xs) = x

nilp (Cons x xs) = False consp (Cons x xs) = True tail (Cons x xs) = xs

The discriminator and selector view almost always results in a more efficient SAT
encoding than the constructor view because it breaks high-arity constructors into
several low-arity discriminators and selectors. These are declared as

var ∅ ⊆ Di ⊆ S〈〈κ〉〉 var ∅ ⊆ Sik ⊆ R〈〈κ→ σik〉〉

for all possible i, k. For efficiency, the predicates Di are directly coded as sets of
atoms rather than as functions to {af, at}.

Let Ci(r1, . . . , rn) stand for Si1.〈r1〉 ∩ · · · ∩ Sin.〈rn〉 if n ≥ 1, and Ci() = Di for
parameterless constructors. Intuitively, Ci(r1, . . . , rn) represents the constructor Ci

with arguments r1, . . . , rn at the FORL level [70]. A faithful axiomatization of data-

1These names were chosen for readability; any fresh names would do. The generated selectors head

and tail should not be confused with the similar HOL constants hd and tl defined in Isabelle’s
theory of lists.

3.3. Translation of Definitional Principles 29

types in terms of Di and Sik involves the following axioms (for all possible i, j, k):

DISJOINTij: NO (Di ∩ Dj) for i < j

EXHAUSTIVE: D1 ∪ · · · ∪ Dℓ = S〈〈κ〉〉
SELECTORik: ∀y ∈ S〈〈κ〉〉: IF y ⊆ Di THEN Ψσik(y.Sik) ELSE NO y.Sik

UNIQUEi: ∀x1 ∈ S〈〈σ1〉〉, . . . , xni
∈ S〈〈σni

〉〉: LONE Ci(x1, . . . , xni
)

GENERATORi: ∀x1 ∈ S〈〈σ1〉〉, . . . , xni
∈ S〈〈σni

〉〉: SOME Ci(x1, . . . , xni
)

ACYCLIC: NO (supκ ∩ IDEN).

In the SELECTOR axioms, the Ψσ(r) constraint is identical to Φσ(r) except with ONE

instead of LONE. In the ACYCLIC axiom, supκ denotes the proper superterm relation
for κ. For example, we have 〈Cons(x, xs), xs〉 ∈ supκ for any x and xs because the
second component’s value is a proper subterm of the first argument’s value. We
will see shortly how to derive supκ.

DISJOINT and EXHAUSTIVE ensure that the discriminators partition S〈〈κ〉〉. The four
remaining axioms, called the SUGA axioms (after the first letter of each axiom
name), ensure that selectors are functions whose domain is given by the corre-
sponding discriminator (SELECTOR), that constructors are total functions (UNIQUE

and GENERATOR), and that datatype values cannot be proper subterms or super-
terms of themselves (ACYCLIC). The injectivity of constructors follows from the
functionality of selectors.

With this axiomatization, occurrences of Ci u1 . . . un in HOL are simply mapped
to Ci(S〈〈u1〉〉, . . . , S〈〈un〉〉), whereas

case t of C1 x̄1 ⇒ u1 | . . . | Cℓ x̄ℓ ⇒ uτ
ℓ

is translated to

IF S〈〈t〉〉⊆D1 THEN R〈〈u•1〉〉
ELSE IF . . .
ELSE IF S〈〈t〉〉⊆Dℓ THEN R〈〈u•ℓ 〉〉
ELSE NONEr(τ)

where u•i denotes the term ui in which all occurrences of the variables x̄i = xi1, . . . ,
xini

are replaced with the corresponding selector expressions Si1(t), . . . , Sini
(t).

Unfortunately, the SUGA axioms admit no finite models if the type κ is recursive
(and hence infinite), because they force the existence of infinitely many values. The
solution is to leave GENERATOR out, yielding SUA. The SUA axioms characterize
precisely the subterm-closed finite substructures of an inductive datatype.

Omitting GENERATOR is generally unsound in a two-valued logic, but Kuncak and
Jackson [107] showed that it is sound for existential–bounded-universal (EBU) for-
mulas (i.e., formulas whose prenex normal forms contain no unbounded universal
quantifiers ranging over datatypes). In our three-valued setting, omitting GENER-
ATOR is always sound if we consider the datatype as incomplete. The construct
Ci(r1, . . . , rni

) sometimes returns NONE for non-NONE arguments, but this is not a
problem since our translation of Section 3.2.2 is designed to cope with partiality.
Non-EBU formulas such as True ∨ (∀nnat. P n) become analyzable when mov-

30 Chapter 3. Counterexample Generation Using a Relational Model Finder

ing to a three-valued logic. This is especially important for complex specifications,
because they are likely to contain irrelevant non-EBU parts.

Example 3.8. The nat list instance of α list would be axiomatized as follows:

DISJOINT: NO (nilp ∩ consp)

EXHAUSTIVE: nilp ∪ consp = S〈〈nat list〉〉
SELECTORhead: ∀ys∈S〈〈nat list〉〉: IF ys⊆ consp THEN ONE ys.head ELSE NO ys.head

SELECTORtail: ∀ys∈S〈〈nat list〉〉: IF ys⊆ consp THEN ONE ys.tail ELSE NO ys.tail

UNIQUENil: LONE Nil()

UNIQUECons: ∀x ∈ S〈〈nat〉〉, xs∈ S〈〈nat list〉〉: LONE Cons(x, xs)

ACYCLIC: NO (supnat list ∩ IDEN) with supnat list = tail+

Examples of subterm-closed list substructures using traditional notation are {[],
[0], [1]} and {[], [1], [2, 1], [0, 2, 1]}. In contrast, L = {[], [1, 1]} is not subterm-
closed, because tail [1, 1] = [1] /∈ L. Given a cardinality, Kodkod systematically
enumerates all corresponding subterm-closed list substructures.

To generate the proper superterm relation needed for ACYCLIC, we must consider
the general case of mutually recursive datatypes. We start by computing the data-
type dependency graph, in which vertices are labeled with datatypes and edges
with selectors. For each selector Sκ�κ ′, we add an edge from κ to κ ′ labeled S. Next,
we compute for each datatype a regular expression capturing the nontrivial paths
in the graph from the datatype to itself. This can be done using Kleene’s construc-
tion [101; 105, pp. 51–53]. The proper superterm relation is obtained from the regu-
lar expression by replacing concatenation with relational composition, alternative
with set union, and repetition with transitive closure.

Example 3.9. Let sym be an uninterpreted type, and consider the declarations

datatype α list = Nil | Cons α (α list)
datatype tree = Leaf sym | Node (tree list)

Their dependency graph is

children

tree tree list

head
tail

where children is the selector associated with Node. The superterm relations are

suptree = (children.tail∗.head)+ suptree list = (tail ∪ head.children)+

Notice that in the presence of polymorphism, instances of sequentially declared
datatypes can be mutually recursive.

Our account of datatypes would be incomplete without suitable completeness and
concreteness rules:

σ11 is complete · · · σℓnℓ
is complete |κ| = ∑

ℓ
i=1 ∏

nj
j=1 |σij|

κ is complete

3.3. Translation of Definitional Principles 31

σ11 is concrete · · · σℓnℓ
is concrete

κ is concrete

Notice that the condition |κ| = ∑
ℓ
i=1 ∏

nj
j=1 |σij| always holds in the reference scope

but not necessarily in the analysis scope, which interests us here. In particular, for
recursive datatypes κ we necessarily have an inequality <, and for nonrecursive
datatypes any of {<,=,>} is possible. In the > case, the SUA axioms are unsatis-
fiable; Nitpick detects this condition and simply skips the scope.

With a suitable axiomatization of datatypes as subterm-closed substructures, it is
easy to encode primrec definitions. A recursive equation

f (Ci x σ1
1 . . . x σm

m) zυ = tτ

(with, for simplicity, exactly one nonrecursive argument) is translated to

∀y ∈Di, z ∈ S〈〈υ〉〉: R〈〈 f y z〉〉 = R〈〈t•〉〉
where t• is obtained from t by replacing the variables xi with the selector expres-
sions Si(y). By quantifying over the constructed values y rather than over the argu-
ments to the constructors, we reduce the number of copies of the quantified body
by a factor of |σ1| · . . . · |σm| / |κ| in the SAT problem. Although we focus here on
primitive recursion, general well-founded recursion with non-overlapping pattern
matching (as defined using Isabelle’s function package [106]) can be handled in
essentially the same way.

Example 3.10. The recursive function @ from Section 2.3 is translated to

∀ys∈ nilp, zs∈ S〈〈α list〉〉: zs.(ys.@) = zs
∀ys∈ consp, zs∈ S〈〈α list〉〉: zs.(ys.@) = Cons(ys.head, zs.((ys.tail).@))

Theorem 3.11. The encoding of Section 3.3.1 extended with inductive datatypes
and primitive recursion is sound.

Proof sketch. Kuncak and Jackson [107] proved that the SUA axioms precisely de-
scribe subterm-closed finite substructures of an inductive datatype, and sketched
how to generalize this result to mutually recursive datatypes. This means that we
can always extend the valuation of the SUA-specified descriptors and selectors to
obtain a model of the entire datatype. For recursion, we can prove

J f (Ci x1 . . . xm) zKM ∈ ⌈JR〈〈 f (Ci x1 . . . xm) z〉〉KV⌉τR
by structural induction on the value of the first argument to f and extend f ’s model
as in the proof sketch of Theorem 3.7, exploiting the injectivity of constructors. ⊓⊔

3.3.3 Inductive and Coinductive Predicates

With datatypes and recursion in place, we are ready to consider inductive and co-
inductive predicates. Isabelle lets users specify (co)inductive predicates p by their
introduction rules (Section 2.3) and synthesizes a fixed-point definition p = lfp F or
p = gfp F for some term F. For performance reasons, Nitpick avoids expanding lfp
and gfp to their definitions and translates (co)inductive predicates directly, using
appropriate FORL concepts.

32 Chapter 3. Counterexample Generation Using a Relational Model Finder

A first intuition is that an inductive predicate p is a fixed point, so we could use the
fixed-point equation p = F p as the axiomatic specification of p. In general, this is
unsound since it underspecifies p, but there are two important cases for which this
method is sound.

First, if the recursion in p = F p is well-founded, the equation admits exactly one
solution [86, §3]; we can safely use it as p’s specification and encode it the same way
as a recursive function (Section 3.3.2). To ascertain wellfoundedness, we could per-
form a simple syntactic check to ensure that each recursive call peels off at least one
constructor, but we prefer to invoke an off-the-shelf termination prover (Isabelle’s
lexicographic_order tactic [50]). Given introduction rules of the form

Mi1 (p t̄i1) · · · Mini
(p t̄ini

) Qi

p ūi

for i ∈ {1, . . . , m}, where the Mij’s are optional monotonic operators and the Qi’s
are optional side conditions, the termination prover attempts to exhibit a well-
founded relation R such that

∧m
i=1

∧ni
j=1

(
Qi −→

〈
t̄ij, ūi

〉
∈ R

)

In our experience, about half of the inductive predicates occurring in practice are
well-founded. This includes most type systems and other compositional formal-
isms, but generally excludes state transition systems.

Second, if p is inductive and occurs negatively in the formula, we can replace these
occurrences by a fresh constant q satisfying q = F q. The resulting formula is equi-
satisfiable to the original formula: Since p is a least fixed point, q overapproximates
p and thus ¬ q x̄ =⇒ ¬ p x̄. Dually, this method can also handle positive occur-
rences of coinductive predicates.

To deal with positive occurrences of generally non-well-founded inductive predi-
cates, we adapt a technique from bounded model checking [24]: We replace these
occurrences of p by a fresh predicate rk defined by the HOL equations

r0 = (λx̄. False) rSuc m = F rm

which corresponds to p unrolled k times. In essence, we have made the predicate
well-founded by introducing a counter that decreases with each recursive call. The
above equations are primitive recursive over nat and can be translated using the ap-
proach shown in Section 3.3.2. The situation is mirrored for coinductive predicates:
Negative occurrences are replaced by the overapproximation rk defined by

r0 = (λx̄. True) rSuc m = F rm

The translation is sound for any k, but it is generally more precise when k is larger.
On the other hand, the relation table for rk is k times larger than that of p directly
encoded as p = F p. If k is the cardinality of p’s tuple of arguments in the analysis
scope, the predicate is unrolled to saturation—the point beyond which increment-
ing k has no effect. (If each unrolling contributes at least one new element, after
k iterations p must be uniformly true; and if an iteration i < k contributes no ele-
ment, a fixed point has been reached.) By default, Nitpick gradually increments k
together with the cardinalities of the types that occur in the problem, using the
cardinality of the tuple of arguments as an upper bound.

3.3. Translation of Definitional Principles 33

Example 3.12. The even predicate defined by

inductive evennat�o where

even 0
even n =⇒ even n
even n =⇒ even (Suc (Suc n))

is not well-founded because of the (superfluous) cyclic rule even n =⇒ even n. The
fixed-point equation

even x =
(
∃n. x = 0 ∨ (x = n ∧ even n) ∨ (x = Suc (Suc n) ∧ even n)

)

overapproximates even in negative contexts. Positive contexts require unrolling:

even0 x = False

evenSuc m x =
(
∃n. x = 0 ∨ (x = n ∧ evenm n) ∨ (x = Suc (Suc n) ∧ evenm n)

)

Theorem 3.13. The encoding of Section 3.3.2 extended with (co)inductive predi-
cates is sound.

Proof sketch. We consider only inductive predicates; coinduction is dual. If p is
well-founded, the fixed-point equation fully characterizes p [86, §3], and the proof
is identical to that of primitive recursion in Theorem 3.11 but with well-founded
induction instead of structural induction. If p is not well-founded, q = F q is sat-
isfied by several q’s, and by Knaster–Tarski p ⊑ q. Substituting q for p’s negative
occurrences in the FORL formula strengthens it, which is sound. For the positive
occurrences, we have r0 ⊑ · · · ⊑ rk ⊑ p by monotonicity of the definition; substi-
tuting rk for p’s positive occurrences strengthens the formula. ⊓⊔

As an alternative to the explicit unrolling, Nitpick mobilizes FORL’s transitive clo-
sure for an important class of inductive predicates, which we call linear inductive
predicates and whose introduction rules are of the form

Q
(the base rules)

p ū
or

p t̄ Q
(the step rules)

p ū

The idea is to replace positive occurrences of p x̄ with

∃x̄0. x̄0 ∈ pbase ∧ (x̄0, x̄) ∈ p∗step

where x̄0 ∈ pbase iff p x̄0 can be deduced from a base rule, (x̄0, x̄) ∈ pstep iff p x̄
can be deduced by applying one step rule assuming p x̄0, and p∗step is the reflexive
transitive closure of pstep. The approach is not so different from explicit unrolling,
since Kodkod internally unrolls the transitive closure to saturation. Nonetheless,
on some problems the transitive closure is considerably faster, presumably because
Kodkod unfolds the relation in place.

3.3.4 Coinductive Datatypes and Corecursive Functions

Coinductive datatypes are similar to inductive datatypes, but they allow infinite
values. For example, the infinite lists [0, 0, . . .] and [0, 1, 2, 3, . . .] are possible values
of the type nat llist of coinductive, or lazy, lists over natural numbers.

34 Chapter 3. Counterexample Generation Using a Relational Model Finder

Nitpick supports coinductive datatypes, even though Isabelle does not yet provide
a high-level mechanism for defining them. Users can define custom coinductive
datatypes from first principles and tell Nitpick to substitute its efficient FORL ax-
iomatization for their definitions. Nitpick also recognizes Isabelle’s lazy list data-
type α llist, with the constructors LNilα llist and LConsα�α llist�α llist.

In principle, we could use the same SUA axiomatization for codatatypes as for
datatypes (Section 3.3.2). This would exclude all infinite values but nevertheless
be sound. However, in practice, infinite values often behave in surprising ways;
excluding them would also exclude many interesting models.

We can alter the SUA axiomatization to support an important class of infinite val-
ues, namely those that are ω-regular. For lazy lists, this means lasso-shaped objects
such as [0, 0, . . .] and [8, 1, 2, 1, 2, . . .] (where the cycle 1, 2 is repeated infinitely).

The first step is to leave out the ACYCLIC axiom. However, doing only this is un-
sound, because we might get several atoms encoding the same value; for example,

a1 = LCons 0 a1 a2 = LCons 0 a3 a3 = LCons 0 a2

all encode the infinite list [0, 0, . . .]. This violates the bisimilarity principle, accord-
ing to which two values are equal unless they lead to different observations (the
observations here being 0, 0, . . .).

For lazy lists, we translate the following coinductive bisimulation principle along
with the HOL formula:

LNil ∼ LNil

x = x′ xs ∼ xs’

LCons x xs ∼ LCons x′ xs′

To ensure that distinct atoms correspond to observably distinct lists, we require
that = coincides with ∼ on α llist values.

More generally, we generate mutual coinductive definitions of ∼ for all the co-
datatypes. For each constructor Cσ1�···�σn�σ, we add an introduction rule

x1 ≈1 x′1 · · · xn ≈n x′n

C x1 . . . xn ∼ C x′1 . . . x′n

where ≈i is ∼σi�σi�o if σi is a codatatype and = otherwise. Finally, for each codata-
type κ, we add the axiom

BISIMILAR: ∀y, y′ ∈ S〈〈κ〉〉: y ∼ y′ −→ y = y′

The completeness and concreteness rules are as for inductive datatypes.

The apparent lack of duality between SUA and SUB is dictated by efficiency con-
cerns. For finite model finding, the ACYCLIC axiom (together with EXHAUSTIVE)
approximates the standard higher-order induction principle (which quantifies over
a predicate P), but it can be expressed more comfortably in FORL. Similarly, BISIM-
ILAR is more efficient than the dual of the induction principle.

With the SUB axioms (SU plus BISIMILAR) in place, it is easy to encode coprimrec

definitions. A corecursive equation f yσ1
1 . . . yσ1

n = t is translated to

∀y1 ∈ S〈〈σ1〉〉, . . . , yn ∈ S〈〈σn〉〉: R〈〈f y1 . . . yn〉〉 = R〈〈t〉〉

3.4. Optimizations 35

Theorem 3.14. The encoding of Section 3.3.3 extended with coinductive datatypes
and primitive corecursion is sound.

Proof sketch. Codatatypes are characterized by selectors, which are axiomatized
by the SU axioms, and by finality, which is equivalent to the bisimilarity princi-
ple [96, 148]. Our finite axiomatization gives a subterm-closed substructure of the
coinductive datatype, which can be extended to yield a HOL model of the complete
codatatype, as we did for inductive datatypes in the proof sketch of Theorem 3.11.

The soundness of the encoding of primitive corecursion is proved by coinduction.
Given the equation f ȳ = tτ, assuming that for each corecursive call f x̄ we have
Jf x̄KM ∈ ⌈JR〈〈f x̄〉〉KV⌉τR, we must show that Jf ȳKM ∈ ⌈JR〈〈f ȳ〉〉KV⌉τR. This follows
from the soundness of the encoding of the constructs occurring in t and from the
hypotheses. ⊓⊔

3.4 Optimizations

While our translation of definitional principles can be seen as a form of optimiza-
tion, many more ad hoc optimizations are necessary to increase the tool’s scalability
in practical applications, especially in the presence of higher-order constructs. In
particular, the early experiments leading to the case study presented in Chapter 5
shed some light on areas in earlier versions of Nitpick that could benefit from more
optimizations—although we had come up with workarounds, we decided to im-
prove the tool in the hope that future applications would require less manual work.

3.4.1 Function Specialization

A function argument is static if it is passed unaltered to all recursive calls. A typical
example is f in the equational specification of map:

map f [] = [] map f (Cons x xs) = Cons (f x) (map f xs)

An optimization reminiscent of the static argument transformation, or λ-dropping
[65, pp. 148–156], is to specialize the function for each eligible call site, thereby
avoiding passing the static argument altogether. At the call site, any term whose
free variables are all globally free is eligible for this optimization. Following this
scheme, map (λn. n− 1) ns becomes map′ ns, where map′ is defined as follows:

map′ [] = [] map′ (Cons x xs) = Cons (x− 1) (map′ xs)

For this example, specialization reduces the number of propositional variables that
encode the function by a factor of |nat||nat|.

3.4.2 Boxing

Nitpick normally translates function and product types directly to the homologous
Kodkod concepts. This is not always desirable; for example, a transition relation
on states represented as n-tuples leads to a 2n-ary relation, which gives rise to a
combinatorial explosion and precludes the use of FORL’s binary transitive closure.
In such cases, it can be advantageous to approximate functions and products by
substructures, similarly to (co)inductive datatypes.

36 Chapter 3. Counterexample Generation Using a Relational Model Finder

Nitpick approximates a function or a product by wrapping it in a (conceptually
isomorphic) datatype α box with the single constructor Boxα�α box and associated
selector unboxα box�α. The translation must then insert constructor and selector calls
as appropriate to convert between the raw type and the boxed type. For example,
assuming that function specialization is disabled and that we want to box map’s
function argument, the second equation for map would become

map f (nat�nat) box (Cons x xs) = Cons (unbox f x) (map f xs)

with map (Box (λn. n− 1)) ns at the call site. Because of approximation, the Box
constructor may return ⋆ for non-⋆ arguments; in exchange, f (nat�nat) box ranges
only over a fragment of the function space. For function types, boxing is similar to
defunctionalization [17], with selectors playing the role of “apply” functions.

Boxing stands in a delicate trade-off between precision and efficiency. There are
situations where the complete function or product space is needed to find a model
and others where a small fragment suffices. By default, Nitpick approximates un-
specialized higher-order arguments as well as n-tuples where n ≥ 3. Users can
override this behavior by specifying which types to box and not to box.

3.4.3 Quantifier Massaging

(Co)inductive definitions are marred by existential quantifiers, which blow up the
size of the resulting propositional formula. The following steps are applied to elim-
inate quantifiers or reduce their binding range:

1. Replace quantifications of the forms

∀x. x = t −→ P x ∀x. x 6= t ∨ P x ∃x. x = t ∧ P x

by P t if x does not occur free in t.

2. Skolemize.

3. Distribute quantifiers over congenial connectives (∀ over ∧; ∃ over ∨, −→).

4. For any remaining subformula Qx1 . . . xn. p1 ⊗ · · · ⊗ pm, where Q is a quan-
tifier and ⊗ is a connective, move the pi’s out of as many quantifiers as pos-
sible by rebuilding the formula using qfy({x1, . . . , xn}, {p1, . . . , pm}), defined
by the equations

qfy(∅, P) =
⊗

P

qfy(x ⊎ X, P) = qfy(X, P− Px ∪ {Qx.
⊗

Px})
where Px = {p ∈ P | x occurs free in p}.

The order in which individual variables x are removed from the first argument in
step 4 is crucial because it affects which pi’s can be moved out. For clusters of
up to 7 quantifiers, Nitpick considers all permutations of the bound variables and
chooses the one that minimizes the sum

m

∑
i=1

|τi1| · . . . ·
∣∣τiki

∣∣ · size(pi)

where τi1, . . . , τiki
are the types of the variables that have pi in their binding range,

and size(pi) is a rough syntactic measure of pi’s size; for larger clusters, it falls back

3.4. Optimizations 37

on a heuristic inspired by Paradox’s clause splitting procedure [62]. Thus,

∃x α yα. p x ∧ q x y ∧ r y (f y y)

is rewritten to

∃yα. r y (f y y) ∧ (∃x α. p x ∧ q x y)

Processing y before x in qfy would instead give

∃x α. p x ∧ (∃yα. q x y ∧ r y (f y y))

which is more expensive because r y (f y y), the most complex conjunct, is doubly

quantified and hence |α|2 copies of it are needed in the resulting SAT problem.

3.4.4 Alternative Definitions

Isabelle’s predefined theories use various constructions to define basic types and
constants, many of which are inefficient for SAT solving. A preprocessor replaces
selected HOL constants and types with optimized constructs. For example, it re-
places occurrences of ∃!x. P x, which is defined as ∃x. P x ∧ (∀y. P y −→ y = x),
with ∃x. P = {x}, and it substitutes a normalized pair representation of rationals
and reals for Isabelle’s set quotient construction and Dedekind cuts.

3.4.5 Tabulation

FORL relations can be assigned fixed values, in which case no propositional vari-
ables are generated for them. We can use this facility to store tables that precompute
the value of basic operations on natural numbers, such as Suc, +, −, ∗, div, mod,
<, gcd, and lcm. This is possible for natural numbers because for any cardinality k
there exists exactly one subterm-closed substructure, namely {0, 1, . . . , k− 1}.

For example, if nat is approximated by {0, 1, 2, 3, 4}, we encode each number n < 5
as an+1, effectively performing our own symmetry breaking. The Suc function is
then specified as follows:

var Suc = {〈a1, a2〉, 〈a2, a3〉, 〈a3, a4〉, 〈a4, a5〉}

3.4.6 Heuristic Constant Unfolding

When Nitpick meets a constant c introduced by a simple definition c ≡ t, it has
the choice between conjoining the equation to the the problem as an additional
constraint to satisfy (Section 3.3.1) and unfolding (i.e., inlining) the definition.

Refute and early versions of Nitpick followed a simplistic approach:

• For simple definitions c ≡ t, they unfolded c’s definition, substituting the
right-hand side t for c wherever it appears in the problem.

• Constants introduced using primrec, fun, or function, which define recursive
functions in terms of user-supplied equations in the style of functional pro-
gramming, were translated to FORL variables, and their equational specifica-
tions were conjoined with the problem as additional constraints to satisfy.

38 Chapter 3. Counterexample Generation Using a Relational Model Finder

This approach works reasonably well for specifications featuring a healthy mix-
ture of simple definitions and recursive functions, but it falls apart when there are
too many nested simple definitions. Simple definitions are generally of the form
c ≡ (λx1 . . . xn. u), and when c is applied to arguments, these are substituted for
x1, . . . , xn. The formula quickly explodes if the xi’s occur many times in the body u.
Kodkod often detects shared subterms and factors them out [187, §4.3], but it does
not help if Nitpick’s translation phase is overwhelmed by the large terms.

We introduced a simple heuristic based on the size of the right-hand side of a defi-
nition: Small definitions are unfolded, whereas larger ones are kept as equations. It
is difficult to design a better heuristic because of hard-to-predict interactions with
function specialization and other optimizations occurring at later stages. We also
made the unfolding more compact by heuristically introducing ‘let’s to bind the
arguments of a constant when it is unfolded.

To give the user complete control, Nitpick provides a nitpick_simp attribute that
can be attached to a simple definition or to any other theorem of the right form to
prevent unfolding as well as a nitpick_unfold attribute that can be used to forcefully
unfold a larger definition.

3.4.7 Necessary Datatype Values

The subterm-closed substructure approach to inductive datatypes described in Sec-
tion 3.3.2 typically scales up to cardinality 8 or so. However, in larger specifications
such as the C++ memory model (Chapter 5), the combinatorial explosion goes off
much sooner.

To address this issue, we came up with the following plan: Add an option to let
users specify necessary datatype values. We encode that information in the FORL
problem. Users provide a set of datatype values as ground constructor terms, and
Nitpick assigns one FORL atom to each term and subterm from that set. The atom
assignment is coded as an additional constraint in the FORL problem and passed
to the SAT solver, which exploits it to prune the search space.

3.4.8 Lightweight Translation

There is a second efficiency issue related to Nitpick’s handling of inductive data-
types. Attempting to construct a value that Nitpick cannot represent yields the un-
known value ⋆. The ensuing partiality is handled by a three-valued Kleene logic.

Unfortunately, the three-valued logic puts a heavy burden on the translation, which
must handle ⋆ gracefully and keep track of polarities (positive and negative con-
texts). An operation as innocuous as equality in HOL, which we could otherwise
map to FORL equality, must be translated so that it returns ⋆ if either operand is ⋆.
Formulas occurring in unpolarized, higher-order contexts (e.g., in a conditional ex-
pression or as an argument to a function) are less common but equally problematic.

The root of the problem is overflow: When a constructor returns ⋆, it overflows in
much the same way that IEEE n-bit floating-point arithmetic operations can yield
NaN (“not a number”) for large operands. Nitpick’s translation of Section 3.2.2
handles overflows robustly. If the tool were to know that overflows are impossible,

3.5. Examples 39

it could disable this expensive machinery and use the more direct translation of
Section 3.2.1.

With the subterm-closed substructure approximation of inductive datatypes, over-
flows are a fact of life. For example, the append operator on lists will overflow if
the longest representable nonempty list is appended to itself. In contrast, selectors
cannot overflow.

For some specifications, such as that of the C++ memory model (Chapter 5), we can
convince ourselves that overflows are impossible. To exploit this precious property,
we added an option, total_consts, to control whether the lightweight translation
without ⋆ should be used. The lightweight translation must be used with care: A
single overflow in a definition can prevent the discovery of models.

Naturally, it would be desirable to implement an analysis in Nitpick to determine
precisely which constants can overflow and use this information in a hybrid trans-
lation. This is for future work.

3.5 Examples

We show Nitpick in action on five small yet realistic Isabelle formalizations that are
beyond Refute’s reach: a context-free grammar, AA trees, a security type system,
a hotel key card system, and lazy lists. The examples were chosen to illustrate the
main definitional principles. With some manual setup, the first three formalizations
can also be checked by the latest version of Quickcheck.

3.5.1 A Context-Free Grammar

Our first example is adapted from the Isabelle/HOL tutorial [140, §7.4]. The fol-
lowing context-free grammar, originally due to Hopcroft and Ullman, produces all
strings with an equal number of a’s and b’s:

S ::= ǫ | bA | aB A ::= aS | bAA B ::= bS | aBB

The intuition behind the grammar is that A generates all strings with one more a
than b’s and B generates all strings with one more b than a’s.

Context-free grammars can easily be expressed as inductive predicates on lists. The
following HOL specification attempts to capture the above grammar, but a few
errors were introduced to make the example more interesting.

datatype Σ = a | b
inductive_set SΣ list�o and AΣ list�o and BΣ list�o where

[] ∈ S
w ∈ A =⇒ Cons b w ∈ S
w ∈ B =⇒ Cons a w ∈ S
w ∈ S =⇒ Cons a w ∈ A
w ∈ S =⇒ Cons b w ∈ S
v ∈ B =⇒ v ∈ B =⇒ Cons a (v @ w) ∈ B

Debugging faulty specifications is at the heart of Nitpick’s raison d’être. A good
approach is to state desirable properties of the specification—here, that S corre-

40 Chapter 3. Counterexample Generation Using a Relational Model Finder

sponds to the set of strings over Σ with as many a’s as b’s—and check them with
the tool. If the properties are correctly stated, counterexamples will point to bugs in
the specification. For our grammar example, we proceed in two steps, separating
the soundness and the completeness of the set S:

SOUND: w ∈ S =⇒ count a w = count b w

COMPLETE: count a w = count b w =⇒ w ∈ S

The auxiliary function count is defined below:

primrec countα�α list�nat where

count x Nil = 0
count x (Cons y ys) = (if x = y then 1 else 0) + count x ys

We first focus on soundness. The predicate S occurs negatively in SOUND, but
positively in the negated conjecture ¬ SOUND. Wellfoundedness is easy to establish
because the words in the conclusions are always at least one symbol longer than in
the assumptions. As a result, Nitpick can use the fixed-point equations

x ∈ S =
(
x = Nil ∨ (∃w. x = Cons b w ∧ w ∈ A)

∨ (∃w. x = Cons a w ∧ w ∈ B) ∨ (∃w. x = Cons b w ∧ w ∈ S)
)

x ∈ A =
(
∃w. x = Cons a w ∧ w ∈ S

)

x ∈ B =
(
∃v w. x = Cons a v @ w ∧ v ∈ B ∧ v ∈ B

)

When invoked on SOUND with the default settings, Nitpick generates a sequence
of 10 FORL problems corresponding to the scopes |nat| = |Σ list| = k and |Σ| =
min {k, 2} for k ∈ {1, . . . , 10}. Datatypes approximated by subterm-closed sub-
structures are always monotonic (Chapter 4), so it would be sufficient to try only
the largest scope, but in practice it is usually more efficient to start with smaller
scopes. The models obtained this way also tend to be simpler.

Nitpick almost instantly finds the counterexample w = [b] for k = 2 built using the
substructures

{0, 1} ⊆ nat {[], [b]} ⊆ Σ list {a, b} ⊆ Σ

and the constant interpretations

[] @ [] = [] count a [] = 0 S [] = True A [] = False B [] = ⋆

[b] @ [] = ⋆ count b [] = 0 S [b] = True A [b] = False B [b] = ⋆

[] @ [b] = [b] count a [b] = 0
[b] @ [b] = ⋆ count b [b] = 1

It would seem that [b] ∈ S. How could this be? An inspection of the introduction
rules reveals that the only rule with a right-hand side of the form Cons b . . . ∈ S
that could have added [b] to S is

w ∈ S =⇒ Cons b w ∈ S

This rule is clearly wrong: To match the production B ::= bS, the second S would
need to be a B.

If we fix the typo and run Nitpick again, we obtain the counterexample w = [a, a, b],
which requires k = 4. This takes about 1.5 seconds on modern hardware. Some

3.5. Examples 41

detective work is required to find out what went wrong. To get [a, a, b] ∈ S, we
need [a, b] ∈ B, which in turn can only originate from

v ∈ B =⇒ v ∈ B =⇒ Cons a (v @ w) ∈ B

This introduction rule is highly suspicious: The same assumption occurs twice,
and the variable w is unconstrained. Indeed, one of the two occurrences of v in the
assumptions should have been a w.

With the correction made, we do not get any counterexample from Nitpick, which
exhausts all scopes up to cardinality 10 well within the 30 second timeout. Let us
move on and check completeness. Since the predicate S occurs negatively in the
negated conjecture ¬ COMPLETE, Nitpick can safely use the fixed-point equations
for S, A, and B as their specifications. This time we get the counterexample w =
[b, b, a, a], with k = 5.

Apparently, [b, b, a, a] is not in S even though it has the same numbers of a’s and
b’s. But since our inductive definition passed the soundness check, the introduc-
tion rules are likely to be correct. Perhaps we simply lack a rule. Comparing the
grammar with the inductive definition, our suspicion is confirmed: There is no in-
troduction rule corresponding to the production A ::= bAA, without which the
grammar cannot generate two or more b’s in a row. So we add the rule

v ∈ A =⇒ w ∈ A =⇒ Cons b (v @ w) ∈ A

With this last change, we do not get any counterexamples for either soundness or
completeness. We can even generalize our result to cover A and B as well:

w ∈ S ←→ count a w = count b w

w ∈ A ←→ count a w = count b w + 1

w ∈ B ←→ count a w + 1 = count b w

Nitpick can test these formulas up to cardinality 10 within 30 seconds.

3.5.2 AA Trees

AA trees are a variety of balanced trees introduced by Arne Andersson that provide
similar performance to red-black trees but are easier to implement [3]. They store
sets of elements of type α equipped with a total order <. We start by defining the
datatype and some basic extractor functions:

datatype α aa_tree = Λ | N α nat (α aa_tree) (α aa_tree)

primrec levelα aa_tree�nat where

level Λ = 0
level (N _ k _ _) = k

primrec dataα aa_tree�α where

data (N x _ _ _) = x

primrec is_inα�α aa_tree�o where

is_in _ Λ ←→ False
is_in a (N x _ t u) ←→ a = x ∨ is_in a t ∨ is_in a u

primrec leftα aa_tree�α aa_tree where

42 Chapter 3. Counterexample Generation Using a Relational Model Finder

left Λ = Λ

left (N _ _ t _) = t

primrec rightα aa_tree�α aa_tree where

right Λ = Λ

right (N _ _ _ u) = u

The wellformedness criterion for AA trees is fairly complex. Each node carries a
level field, which must satisfy the following constraints:

• Nil trees (Λ) have level 0.

• Leaf nodes (i.e., nodes of the form N _ _ Λ Λ) have level 1.

• A node’s level must be at least as large as its right child’s, and greater than its
left child’s and its grandchildren’s.

• Every node of level greater than 1 must have two children.

The wf predicate formalizes this description:

primrec wfα aa_tree�o where

wf Λ ←→ True
wf (N _ k t u) ←→

if t = Λ then
k = 1 ∧ (u = Λ ∨ (level u = 1 ∧ left u = Λ ∧ right u = Λ))

else
wf t ∧ wf u ∧ u 6= Λ ∧ level t < k ∧ level u≤ k ∧ level (right u)< k

Rebalancing the tree upon insertion and removal of elements is performed by two
auxiliary functions, skew and split:

primrec skewα aa_tree�α aa_tree where

skew Λ = Λ

skew (N x k t u) =
if t 6= Λ ∧ k = level t then

N (data t) k (left t) (N x k (right t) u)
else

N x k t u

primrec splitα aa_tree�α aa_tree where

split Λ = Λ

split (N x k t u) =
if u 6= Λ ∧ k = level (right u) then

N (data u) (Suc k) (N x k t (left u)) (right u)
else

N x k t u

Performing a skew or split operation should have no impact on the set of elements
stored in the tree:

is_in a (skew t) = is_in a t is_in a (split t) = is_in a t

Furthermore, applying skew or split on a well-formed tree should not alter the tree:

wf t =⇒ skew t = t wf t =⇒ split t = t

3.5. Examples 43

All these properties can be checked up to cardinality 7 or 8 (i.e., for all subterm-
closed sets of trees with at most 7 or 8 elements) within 30 seconds.

Insertion is implemented recursively. It preserves the sort order:

primrec insortα aa_tree�α�α aa_tree where

insort Λ x = N x 1 Λ Λ

insort (N y k t u) x =
split (skew (N y k (if x < y then insort t x else t)

(if x > y then insort u x else u)))

If we test the property

wf t =⇒ wf (insort t x)

with the applications of skew and split commented out, we get the counterexample
t = N a1 1 Λ Λ and x = a2. It is hard to see why this is a counterexample without
looking up the definition of < on type α.

However, to improve readability, we can restrict the theorem to nat and tell Nitpick
to display the value of insort t x. The counterexample is now t = N 1 1 Λ Λ and
x = 0, with insort t x = N 1 1 (N 0 1 Λ Λ) Λ. The output reveals that the element 0
was added as a left child of 1, where both nodes have a level of 1. This violates the
requirement that a left child’s level must be less than its parent’s. If we reintroduce
the tree rebalancing code, Nitpick finds no counterexample up to cardinality 7.

3.5.3 The Volpano–Smith–Irvine Security Type System

Assuming a partition of program variables into public and private ones, Volpano,
Smith, and Irvine [194] provide typing rules guaranteeing that the contents of pri-
vate variables stay private. They define two types, High (private) and Low (public).
An expression is High if it involves private variables; otherwise it is Low. A com-
mand is High if it modifies private variables only; commands that could alter public
variables are Low.

As our third example, we consider a fragment of the formal soundness proof by
Snelting and Wasserrab [173]. Given a variable partition Γ, the inductive predicate
Γ ⊢ e : σ says whether the expression e has type σ, whereas Γ, σ ⊢ c says whether
the command c has type σ. Below is a flawed definition of Γ, σ ⊢ c:

Γ, σ ⊢ skip

Γ v = ⌊High⌋
Γ, σ ⊢ v := e

Γ ⊢ e : Low Γ v = ⌊Low⌋
Γ, Low ⊢ v := e

Γ, σ ⊢ c1

Γ, σ ⊢ c1 ; c2

Γ ⊢ b : σ Γ, σ ⊢ c1 Γ, σ ⊢ c2

Γ, σ ⊢ if (b) c1 else c2

Γ ⊢ b : σ Γ, σ ⊢ c

Γ, σ ⊢ while (b) c

Γ, High ⊢ c

Γ, Low ⊢ c

The following theorem constitutes a key step in the soundness proof:

Γ, High ⊢ c ∧ 〈c, s〉 ∗ 〈skip, s′〉 =⇒ ∀v. Γ v = ⌊Low⌋ −→ s v = s′ v

Informally, it asserts that if executing the High command c in state s terminates in
state s′, the public variables of s and s′ must agree. This is consistent with our intu-
ition that High commands should modify only private variables. However, because

44 Chapter 3. Counterexample Generation Using a Relational Model Finder

we planted a bug in one of the rules for Γ, σ ⊢ c, Nitpick finds a counterexample:

Γ = [v1 7→ Low] s = [v1 7→ false]

c = skip ; v1 := (Var v1 ==Var v1) s′ = [v1 7→ true]

Even though the command c has type High, it assigns the value true to the Low vari-
able v1. The bug is a missing assumption Γ, σ ⊢ c2 in the typing rule for sequential
composition.

3.5.4 A Hotel Key Card System

We consider a state-based model of a vulnerable hotel key card system with record-
able locks [136], inspired by an Alloy specification due to Jackson [94, §E.1]. Where
Alloy favors relational constraints, the Isabelle version challenges model finders
with its reliance on inductive definitions, records, and datatypes.

The formalization revolves around three uninterpreted types, room, guest, and key.
A key card, of type card = key× key, combines an old key and a new key. A state is
a 7-field record

(|ownsroom�guest option, currroom�key, issuedkey�o, cardsguest�card�o,
roomkroom�key, isinroom�guest�o, saferoom�o|)

The set reach of reachable states is defined inductively by the following rules:

inj init
INIT

(|owns = (λr. ∅), curr = init, issued = range init, cards = (λg. ∅),
roomk = init, isin = (λr. ∅), safe = (λr. True)|) ∈ reach

s ∈ reach k /∈ issued s
CHECK-IN

s(|curr := (curr s)(r := k), issued := issued s ∪ k,
cards := (cards s)(g := cards s g ∪ 〈curr s r, k〉),
owns := (owns s)(r := ⌊g⌋), safe := (safe s)(r := False)|) ∈ reach

s ∈ reach 〈k, k′〉 ∈ cards s g roomk s r ∈ {k, k′}
ENTRY

s(|isin := (isin s)(r := isin s r ∪ g), roomk := (roomk s)(r := k′),
safe := (safe s)(r := owns s r = ⌊g⌋ ∧ isin s r = ∅ ∨ safe s r)|) ∈ reach

s ∈ reach g ∈ isin s r
EXIT

s(|isin := (isin s)(r := isin s r− {g})|) ∈ reach

A desirable property of the system is that it should prevent unauthorized access:

s ∈ reach =⇒ safe s r =⇒ g ∈ isin s r =⇒ owns s r = ⌊g⌋
Nitpick needs some help to contain the state space explosion: We restrict the search
to one room and two guests. Within seconds, we get the counterexample

s = (|owns = undefined(r1 := ⌊g1⌋), curr = undefined(r1 := k1),
issued = {k1, k2, k3, k4},
cards = undefined(g1 := {〈k3, k1〉, 〈k4, k2〉}, g2 := {〈k2, k3〉}),
roomk = undefined(r1 := k3), isin = undefined(r1 := {g1, g2}), safe = {r1}|)

with g = g2 and r = r1.

3.5. Examples 45

To retrace the steps from the initial state to the state s, we can ask Nitpick to show
the interpretation of reach at each iteration. This reveals the following “guest in the
middle” attack:

1. Guest g1 checks in and gets a card 〈k4, k2〉 for room r1, whose lock expects k4.
Guest g1 does not enter the room yet.

2. Guest g2 checks in, gets a card 〈k2, k3〉 for r1, and waits.

3. Guest g1 checks in again, gets a card 〈k3, k1〉, inadvertently unlocks r1 with
her previous card, 〈k4, k2〉, leaves a diamond on the nightstand, and exits.

4. Guest g2 enters the room and “borrows” the diamond.

This flaw was already detected by Jackson using the Alloy Analyzer on his original
specification and can be fixed by adding k′ = curr s r to the conjunction in ENTRY.

3.5.5 Lazy Lists

The codatatype α llist of lazy lists [114,148] is generated by the constructors LNilα llist

and LConsα�α llist�α llist. It is of particular interest to countermodel finding because
many properties of finite lists do not carry over to infinite lists, often in baffling
ways. To illustrate this, we conjecture that appending ys to xs yields xs iff ys is LNil:

xs @L ys = xs ←→ ys = LNil

The operator @L is defined corecursively in Section 2.3. Nitpick immediately finds
the countermodel xs = ys = [0, 0, . . .], in which a cardinality of 1 is sufficient for α

and α llist, and the bisimilarity predicate ∼ is unrolled only once. Indeed, append-
ing [0, 0, . . .] 6= [] to [0, 0, . . .] leaves [0, 0, . . .] unchanged. Many other counterexam-
ples are possible—for example, xs = [0, 0, . . .] and ys = [1]—but Nitpick tends to
reuse the objects that are part of a subterm-closed substructure to keep cardinali-
ties low. Although very simple, the counterexample is beyond Quickcheck’s and
Refute’s reach, since they do not support codatatypes.

The next example requires the following lexicographic order predicate:

coinductive �nat llist�nat llist�o where

LNil � xs
x ≤ y =⇒ LCons x xs � LCons y ys
xs � ys =⇒ LCons x xs � LCons x ys

The intention is to define a linear order on lazy lists of natural numbers, and hence
the following properties should hold:

REFL: xs � xs ANTISYM: xs � ys ∧ ys � xs −→ xs = ys

LINEAR: xs � ys ∨ ys � xs TRANS: xs � ys ∧ ys � zs −→ xs � zs

However, Nitpick finds a counterexample for ANTISYM: xs = [1, 1] and ys = [1].
On closer inspection, the assumption x ≤ y of the second introduction rule for �
should have been x < y; otherwise, any two lists xs, ys with the same head satisfy
xs � ys. Once we repair the specification, no more counterexamples are found for
the four properties up to cardinality 6 for nat and nat llist within the time limit of
30 seconds. Andreas Lochbihler used Isabelle to prove all four properties [114].

46 Chapter 3. Counterexample Generation Using a Relational Model Finder

We could continue like this and sketch a full-blown theory of lazy lists. Once
the definitions and main theorems have been thoroughly tested using Nitpick, we
could start working on the proofs. Developing theories this way can save a lot of
time, because faulty theorems and definitions are discovered early.

3.6 Evaluation

An ideal way to assess Nitpick’s strength would be to run it against Quickcheck [21,
49] and Refute [198] on a representative database of Isabelle/HOL non-theorems.
Lacking such a database, we instead derived formulas from existing theorems by
mutation, replacing constants with other constants and swapping arguments, as
was done to evaluate an early version of Quickcheck [21, §7]. We filtered out the
mutated formulas that could quickly be proved using Sledgehammer or automatic
proof methods. The vast majority of the remaining mutants are invalid, and those
that are valid do not influence the ranking of the tools. For executable theorems,
we made sure that the mutants are executable to prevent a bias against Quickcheck.

In addition to Nitpick and Refute, we ran three instances of Quickcheck with differ-
ent strategies—random, exhaustive, and narrowing [30, 49]. We set the time limit
to 20 seconds and restricted each tool to a single thread. Most counterexamples
are found within a few seconds; giving the tools more time would hardly have any
impact on the results. For Quickcheck, we followed its maintainer’s advice and in-
creased the maximum size parameter from 5 to 20, the number of iterations per size
from 100 to 1000, and the maximum depth from 10 to 20, to exploit the available
time better. For Refute and Nitpick, we kept the default settings.

We selected ten theories from the official Isabelle distribution and as many from
the Archive of Formal Proofs (AFP) [102]. Both sets of theories are listed below,
with abbreviated theory names. The last column gives the features contained by
each theory, where A means arithmetic, I means induction/recursion, L means λ-
abstractions, and S means sets.1

1We owe this categorization scheme to Böhme and Nipkow [44, §2].

3.6. Evaluation 47

THY. DESCRIPTION FEATS.

Div The division operators ‘div’ and ‘mod’ A I
Fun Functions L S
GCD Greatest common divisor and least common multiple A I
Lst Inductive lists A I L S
Map Maps (partial functions) I L S
Pr Predicates I L S
Rel Relations I L S
Ser Finite summations and infinite series A L
Set Simply typed sets L S
Wf Well-founded recursion A I L S

BQ Functional binomial queues I S
C++ Multiple inheritance in C++ I S
Co Coinductive datatypes I L
FOL First-order logic syntax and semantics I L S
HA Hierarchical automata I S
Huf Optimality of Huffman’s algorithm A I L S
ML Type inference for MiniML A I L S
Mtx Executable matrices I L S
NBE Normalization by evaluation A I L S
TA Tree automata I L S

These theories cover a wide range of idioms: The theories from the distribution are
somewhat simpler, whereas those from the AFP are perhaps more representative
of real applications. We generated 200 mutants per theory.

We are only interested in counterexamples that are labeled as genuine. In par-
ticular, for Refute this rules out all problems involving recursive datatypes: Its
three-valued logic is unsound, so all countermodels for conjectures that involve
an infinite type are potentially spurious and reported as such to the user.1 We
disqualified Refute for ML and NBE because it ignores the axioms in these theo-
ries and hence finds spurious “genuine” countermodels, whereas Nitpick correctly
takes these into consideration.

Figures 3.1 and 3.2 give the success rate for each tool on each theory from the Isa-
belle distribution and the AFP, respectively, together with the unique contributions
of each tool (i.e., the percentage of mutants that only that tool can disprove).

It should come as no surprise that Nitpick practically subsumes its precursor Re-
fute. On theories that admit small finite models, such as Fun, Rel, and Set, there
is little that distinguishes the two tools: Not only do they falsify about as many
conjectures, but they largely falsify the same ones. The TPTP problems used in the
CADE ATP System Competition (CASC) exhibit similar features, which explains
why the two tools are neck and neck there [181].

That Nitpick would gain the upper hand over Quickcheck was harder to foresee.
As a rule of thumb, they are comparable on conjectures that belong to the exe-

1Refute is actually sound for monotonic formulas (Chapter 4). It would not be difficult to extend
the tool with a syntactic check that infers this, transforming many of the “potentially spurious”
counterexamples into “genuine” ones.

48 Chapter 3. Counterexample Generation Using a Relational Model Finder

Ser Lst GCD Pre Div Wf Fun Map Rel Set ALL UNIQ.

QC. RANDOM 8 42 63 34 53 42 80 85 87 84 57.5 .0
QC. EXHAUST. 8 42 61 33 53 43 79 86 87 84 57.4 .1
QC. NARROW. 4 36 60 27 46 30 44 67 63 53 42.7 .2
REFUTE 1 2 0 63 0 59 81 50 84 87 42.6 .0
NITPICK 6 67 68 77 71 79 84 86 87 87 71.0 8.1

ALL TOOLS 10 70 71 77 77 79 84 87 87 87 72.6 –

Figure 3.1: Success rates (%) on all mutants per tool and distribution theory

C++ HA NBE ML FOL Mtx Co TA Huf BQ ALL UNIQ.

QC. RANDOM 0 1 17 11 42 35 1 5 68 32 20.9 .6
QC. EXHAUST. 0 1 19 11 37 41 1 5 58 30 20.2 .7
QC. NARROW. 0 0 1 10 4 17 3 4 36 25 9.8 .4
REFUTE 1 5 0 0 7 2 0 1 0 5 1.9 .1
NITPICK 8 9 28 39 47 28 58 61 68 71 41.6 22.1

ALL TOOLS 8 9 32 39 53 54 60 61 69 72 45.6 –

Figure 3.2: Success rates (%) on all mutants per tool and AFP theory

cutable fragment supported by Isabelle’s code generator, but Nitpick can addition-
ally handle some non-executable formulas. Executability is a harsh taskmaster:
Quickcheck is fundamentally unable to disprove hd [] = x, since taking the head
of the empty list is unspecified and results in a run-time exception, and it meets
similar hurdles with undefined, ι, and ε. In addition, because it lacks a skolemizer,
it cowardly refuses to tackle conjectures of the form ∀x σ. P x where σ is infinite.

On the other hand, Quickcheck is often one or two orders of magnitudes faster
than Nitpick when it succeeds, and it performs well on theories that were designed
with code generation in mind (e.g., Huf and Mtx). It also handles rational and real
arithmetic more smoothly than Nitpick (e.g., Ser).1 The unique contribution num-
bers for the Quickcheck variants are deceptively low because they compete against
each other; overall, 4.0% of the AFP mutants are only disproved by Quickcheck.

Nitpick and Quickcheck nicely complement each other: Because it is so fast, Quick-
check is enabled by default to run on all conjectures. Users are so accustomed to its
feedback that they rarely realize to what extent they benefit from it. Every so often,
Nitpick finds a counterexample beyond Quickcheck’s reach.

3.7 Related Work

We classify the approaches for testing conjectures in four broad categories: reduc-
tion to SAT, direct exhaustive search, random testing, and other approaches.

1Nitpick considers the type of rationals as an incomplete datatype generated by a non-free construc-
tor, relying on a generalization of the SUA axioms described in Section 3.3.2. Reals are handled in
exactly the same way, which is very incomplete; for example, the tool cannot falsify π = 0.

3.7. Related Work 49

Reduction to SAT. SAT-based model finders translate the problem to proposi-
tional logic and pass it to a SAT solver. The translation is parameterized by upper
or exact finite bounds on the cardinalities of the atomic types. Each predicate or re-
lation is encoded by propositional variables, with each variable indicating whether
a tuple is part of the relation or not. Functions can be treated as relations with
an additional constraint. This procedure was pioneered by McCune in the earlier
versions of Mace (also capitalized as MACE) [117]. Other SAT-based finders are
Paradox [62], Kodkod [187], and Refute [198].

The most successful SAT-based finders implement many optimizations. Paradox
and Kodkod generate symmetry breaking constraints to reduce the number of iso-
morphic models to consider. Both can invoke SAT solvers incrementally, reusing
constraints across problems. Paradox is tailored to the untyped first-order logic
with equality featured at CASC: It infers types in untyped problems and analyzes
the unsatisfiability core returned by the SAT solver to determine which type’s car-
dinality to increment next.

Nitpick’s encoding of inductive datatypes in FORL has been introduced by Kuncak
and Jackson [107] and further studied by Dunets et al. [70]. Kuncak and Jackson
focused on lists and trees. Dunets et al. showed how to handle primitive recursion;
their approach to recursion is similar to ours, but the use of a two-valued logic
compelled them to generate additional definedness guards. Nitpick’s unrolling
of inductive predicates was inspired by bounded model checking [24] and by the
Alloy idiom for state transition systems [94, pp. 172–175].

Another inspiration has been Weber’s higher-order model finder Refute [198]. It
uses a three-valued logic, but sacrifices soundness for precision. Datatypes are
approximated by subterm-closed substructures that contain all datatype values
built using up to k nested constructors [198, §3.6.2]. This scheme proved disad-
vantageous in practice, because it generally requires much higher cardinalities to
obtain the same models as with Kuncak and Jackson’s approach. Weber handled
(co)inductive predicates by expanding their lfp/gfp definition, which does not scale
beyond a cardinality of 3 or 4 for the predicate’s domain.

Satisfiability modulo theories (SMT) solvers, whose core search engine is a SAT
solver, can find models of first-order logic with equality and built-in theories (e.g.,
for arithmetic). However, in the presence of quantifiers, the models may be spu-
rious. Recent research shows how to exploit SMT solvers to find sound models
for well-founded recursive functions [185]. The approach can be seen as a dy-
namic version of Nitpick’s translation of recursive functions (Section 3.3.2). The
SMT solvers’ handling of datatypes incurs less spinning than Kuncak and Jack-
son’s approach while scaling better than Refute’s. Theory reasoning and even some
symbolic reasoning are supported.

Direct Exhaustive Search. An alternative to translating the problem to proposi-
tional logic is to perform an exhaustive model search directly on the original (first-
order or higher-order) problem. Given fixed cardinalities, the search space is repre-
sented in memory as multidimensional arrays. The procedure tries different values
in the function and predicate table entries, checking each time if the problem is sat-
isfied and backtracking if necessary. This approach was pioneered by SEM [207]

50 Chapter 3. Counterexample Generation Using a Relational Model Finder

and FINDER [172] and serves as the basis of many more model finders, notably the
Alloy Analyzer’s precursor (called Nitpick, like our tool) [93] and the later versions
of Mace [118].

These finders perform symmetry breaking directly during the proof search, instead
of through additional constraints. They can also propagate equality constraints
efficiently. As a result, they tend to be more efficient than SAT-based finders on
equational problems [62, p. 1].

Random Testing. Random testing evaluates the conjecture for randomly gener-
ated values of its free variables. It is embodied by the QuickCheck or Quickcheck
tools for Haskell [59], Agda [72], and Isabelle/HOL [21, 49] as well as similar tools
for ACL2 [54] and PVS [144]. As the names of many of these tools suggest, random
testing’s main strength is its speed.

Random testing tools are generally restricted to formulas that fall within an exe-
cutable fragment of the source logic and can only exhibit counterexamples in which
the conjecture is falsified irrespective of the interpretation of underspecified con-
stants. Given a conjecture φ[ȳ], random testing exhibits ground witnesses w̄ for the
free variables ȳ such that φ[w̄] is equivalent to False.

Some random testing tools expect the user to provide random value generators for
custom datatypes. In contrast, Isabelle’s Quickcheck and ACL2’s random testing
framework automatically synthesize generators following the datatype definition.
They also perform a static data-flow analysis to compute dependencies between
free variables, taking premises into account; this helps avoid the vacuous test cases
that typically plague random testing.

Other Approaches. While all of the above tools are restricted to ground reasoning
and finite models, some model finders implement a more symbolic approach based
on narrowing or logic programming [30,81,112,169]. There is also a line of research
on infinite model generation [51], so far with little practical impact.

Some proof methods deliver sound or unsound counterexamples upon failure; for
example, linear arithmetic decision procedures can provide concrete values that fal-
sify the conjecture [53], model checking can in principle provide a counterexample
in the form of a lasso-shaped trace if there exists a counterexample [73], resolution
provers can sometimes output a saturation—an exhaustive list of all (normalized)
clauses that can be derived from the given axioms [7], and semantic tableaux have
been adapted to produce finite counterexamples [103, 162].

While the focus of our work is on adding Alloy-style model finding capabilities to
an interactive theorem prover based on higher-order logic, the other direction—
adding proof support to Alloy—is also meaningful: The Dynamite tool [79] lets
users prove Alloy formulas in the interactive theorem prover PVS.

Monotony is the ruling characteristic,—
monotony of beauty, monotony of desolation,
monotony even of variety.

— Julian Hawthorne (1892)

Chapter 4

Monotonicity Inference

In model finders that work by enumerating scopes, the choice and order of the
scopes is critical for performance, especially for formulas involving many atomic
types (nonschematic type variables and other uninterpreted types). We present
a solution that prunes the search space by inferring monotonicity with respect to
atomic types. Monotonicity is undecidable, so we approximate it syntactically.

Our measurements show that monotonic formulas are pervasive in HOL formal-
izations and that syntactic criteria can usually detect them. Our criteria have been
implemented as part of Nitpick, with dramatic speed gains.

This chapter describes joint work with Alexander Krauss [32, 33].

4.1 Monotonicity

Formulas occurring in logical specifications often exhibit monotonicity in the sense
that if the formula is satisfiable when the types are interpreted with sets of given
(positive) cardinalities, it is still satisfiable when these sets become larger.

Definition 4.1 (Monotonicity). Let S ≤α S′ abbreviate the conditions S(α) ⊆ S′(α)
and S(β) = S′(β) for all β 6= α. A formula t is monotonic with respect to an atomic
type α (or α is monotonic in t) if for all scopes S, S′ such that S ≤α S′, if t is satisfiable
for S, it is also satisfiable for S′. It is antimonotonic with respect to α if its negation
is monotonic with respect to α.

Given a scope S, the set S(α) can be finite or infinite, although for model finding we
usually have finite domains in mind. In contexts where S is clear, the cardinality of
S(α) is written |α|, and the elements of S(α) are denoted by 0, 1, 2, etc.

Example 4.2. Consider the following formulas:

1. ∃x α y. x 6= y

2. f x α = x ∧ f y 6= y

3. (∀x α. f x = x) ∧ f y 6= y

4. {yα} = {z}
5. ∃x α y. x 6= y ∧ ∀z. z = x ∨ z = y

6. ∀x α y. x = y

It is easy to see that formulas 1 and 2 are satisfiable iff |α| > 1, formula 3 is unsat-
isfiable, formula 4 is satisfiable for any cardinality of α, formula 5 is satisfiable iff

51

52 Chapter 4. Monotonicity Inference

|α| = 2, and formula 6 is satisfiable iff |α| = 1. Formulas 1 to 4 are monotonic with
respect to α, whereas 5 and 6 are not.

Example 4.3. Imagine a village of monkeys [61] where each monkey owns at least
two bananas:

∀m. owns m (banana1 m) ∧ owns m (banana2 m)
∀m. banana1 m 6= banana2 m
∀b m1 m2. owns m1 b ∧ owns m2 b −→ m1 = m2

The predicate ownsmonkey�banana�o associates monkeys with their bananas, and the
functions banana1,banana2monkey�banana witness the existence of each monkey’s min-
imum supply of bananas. The type banana is monotonic, because any model with
k bananas can be extended to a model with k′ > k bananas (where k and k′ can be
infinite cardinals). In contrast, monkey is nonmonotonic, because there can live at
most n monkeys in a village with a finite supply of 2n bananas.

Convention. In the sequel, we denote by α̃ the atomic type with respect to which
we consider monotonicity when not otherwise specified.

In plain first-order logic without equality, every formula is monotonic, since it is
impossible to express an upper bound on the cardinality of the models and hence
any model can be extended to a model of arbitrarily larger cardinality. This mono-
tonicity property is essentially a weak form of the upward Löwenheim–Skolem
theorem. When equality is added, nonmonotonicity follows suit.

Our interest in monotonicity arose in the context of model finding, where it can
help prune the search space. Nitpick and its predecessor Refute systematically
enumerate the domain cardinalities for the atomic types occurring in the formula.
To exhaust all models up to a given cardinality bound k for a formula involving
n atomic types, a model finder must iterate through kn combinations of cardinali-
ties and must consider all models for each of these combinations. In general, this
exponential behavior is necessary for completeness, since the formula may dictate
a model with specific cardinalities. However, if the formula is monotonic with re-
spect to all its atomic types, it is sufficient to consider only the models in which all
types have cardinality k.

Another related use of monotonicity is to find finite fragments of infinite models.
A formal specification of a programming language might represent variables by
strings, natural numbers, or values of some other infinite type. Typically, the ex-
act nature of these types is irrelevant; they are merely seen as inexhaustible name
stores and used monotonically. If the specification is weakened to allow finite mod-
els, we can apply model finders with the guarantee that any finite model found is
a substructure of an infinite model.

Monotonicity occurs surprisingly often in practice. Consider the specification of
a hotel key card system with recordable locks (Section 3.5.4). Such a specification
involves rooms, guests, and keys, modeled as distinct uninterpreted types. A de-
sirable property of the system is that only the occupant of a room may unlock it.
A counterexample requiring one room, two guests, and four keys will still be a

4.2. First Calculus: Tracking Equality and Quantifiers 53

counterexample if more rooms, guests, or keys are available. Indeed, it should re-
main a counterexample if infinitely many keys are available, as would be the case
if keys are modeled by integers or strings.

Theorem 4.4 (Undecidability). Monotonicity is undecidable.

Proof (reduction). For any closed HOL formula t, let t⋆ ≡ t ∨ ∀x α̃ y. x = y,
where α̃ does not occur in t. Clearly, t⋆ must be monotonic if t is valid, since the
second disjunct becomes irrelevant in this case. If t is not valid, then t⋆ cannot
be monotonic, since it is true for |α̃| = 1 due to the second disjunct but false for
some larger scopes. Thus, validity in HOL (which is undecidable) can be reduced
to monotonicity. ⊓⊔

Since monotonicity is a semantic property, it is not surprising that it is undecidable;
the best we can do is approximate it. In the rest of this chapter, we present three
calculi for detecting monotonicity of HOL formulas. The first calculus (Section 4.2)
simply tracks the use of equality and quantifiers. Although useful in its own right,
it mainly serves as a stepping stone for a second, refined calculus (Section 4.3),
which employs a type system to detect the ubiquitous “sets as predicates” idiom
and treats it specially. The third calculus (Section 4.4) develops this idea further.

Since HOL is typed, we are interested in monotonicity with respect to a given (non-
schematic) type variable or some other uninterpreted type α̃. Moreover, our calculi
must cope with occurrences of α̃ in nested function types such as (α̃→ β)→ β and
in datatypes such as α̃ list. We are not aware of any previous work on inferring or
proving monotonicity for HOL. While some of the difficulties we face are specific
to HOL, the calculi can be adapted to any logic that provides unbounded quantifi-
cation, such as simply typed first-order logic with equality.

The calculi are constructive: Whenever they infer monotonicity, they also yield a
recipe for extending models into larger, possibly infinite models. They are also
readily extended to handle constant definitions (Section 4.5.1) and inductive data-
types (Section 4.5.2), which pervade HOL formalizations. Our evaluation (Sec-
tion 4.5.3) is done in the context of Nitpick. On a corpus of 1183 monotonic formu-
las from six theories, the strongest calculus infers monotonicity for 85% of them.

4.2 First Calculus: Tracking Equality and Quantifiers

This section presents the simple calculus M1 for inferring monotonicity, which
serves as a stepping stone toward the more general calculi M2 and M3 of Sections
4.3 and 4.4. Since the results are fairly intuitive and subsumed by those of the next
sections, we omit the proofs.

All three calculi assume that o (Boolean) and→ (function) are the only interpreted
type constructors. Other types are considered atomic until Section 4.5.2, which
extends the calculi to handle inductive datatypes specially.

4.2.1 Extension Relation and Constancy

We first introduce a concept that is similar to monotonicity but that applies not only
to formulas but also to terms of any type—the notion of constancy. Informally, a

54 Chapter 4. Monotonicity Inference

term is constant if it denotes essentially the same value before and after we enlarge
the scope. What it means to denote “essentially the same value” can be formal-
ized using an extension relation ⊑, which relates elements of the smaller scope to
elements of the larger scope.

For types such as o, α, and α̃, this is easy: Any element of the smaller scope is
also present in the larger scope and can serve as an extension. For functions, the
extended function must coincide with the original one where applicable; elements
not present in the smaller scope may be mapped to any value. For example, when
going from |α̃| = 1 to |α̃| = 2, the function f α̃�o = [0 7→ ⊤] can be extended to
g = [0 7→ ⊤, 1 7→ ⊥] or g′ = [0 7→ ⊤, 1 7→ ⊤]. In other words, we take the
liberal view that both g and g′ are “essentially the same value” as f , and we write
f ⊑α̃→o g and f ⊑α̃→o g′. We reconsider this decision in Section 4.3.

Definition 4.5 (Extension). Let σ be a type, and let S, S′ be scopes such that S ≤α̃

S′. The extension relation⊑σ ⊆ JσKS× JσKS′ for S and S′ is defined by the following
pair of equivalences:

a ⊑σ b iff a = b if σ is o or an atomic type

f ⊑σ→τ g iff ∀a b. a ⊑σ b −→ f (a) ⊑τ g(b)

The expression a ⊑σ b is read “a is extended by b” or “b extends a.” The element
a is b’s restriction to S, and b is a’s extension to S′. In addition, we will refer to
elements b ∈ JσKS′ as being old if they admit a restriction to S and new if they do
not admit any restriction.

(a) α̃ (right-unique) (b) o→ α̃ (right-unique)

(c) α̃→ o (right-total) (d) α̃→ α̃ (neither)

Figure 4.1: ⊑σ for various types σ, with |S(α̃)| = 2 and |S′(α̃)| = 3

Figure 4.1 illustrates ⊑σ for various types. We represent a function from σ to τ by
a |σ|-tuple such that the nth element for σ (according to the lexicographic order,
with ⊥ < ⊤ and n < n + 1) is mapped to the nth tuple component. Observe that

4.2. First Calculus: Tracking Equality and Quantifiers 55

⊑σ is always left-total1 and left-unique2. It is also right-total3 if α̃ does not occur
positively in σ (e.g., σ = α̃→ o), and right-unique4 if α̃ does not occur negatively
(e.g., σ = o→ α̃). These properties are crucial to the correctness of our calculus,
which restricts where α̃ may occur. They are proved in Section 4.3.

Convention. To simplify the calculi and proofs, constants express the logical prim-
itives, whose interpretation is fixed a priori. Our definition of HOL is fairly mini-
malistic, with only equality (=σ�σ�o for any σ) and implication (−→o�o�o) as prim-
itive constants. Other constants are treated as variables whose definition is con-
joined with the formula. We always use the standard constant model M̂S, which
interprets −→ and = in the usual way, allowing us to omit the third component of
M = (S, V, M̂). Since we are interested in finding (counter)models of conjectures,
type variables are always nonschematic.

Definition 4.6 (Model Extension). LetM = (S, V) andM′ = (S′, V ′) be models.
The model M′ extends M, written M ⊑ M′, if S ≤α̃ S′ and V(x) ⊑σ V ′(x) for
all x σ.

The relation ⊑ on models provides a recipe to transform a smaller modelM into a
larger modelM′. Because ⊑σ is left-total, the recipe never fails.

Definition 4.7 (Constancy). A term tσ is constant if JtKM ⊑σ JtKM′ for all models
M,M′ such thatM⊑ M′.

Example 4.8. f α̃�α̃ x is constant. Proof: Let V(x) = a1 and V(f)(a1) = a2. For any
M′ = (S′, V ′) that extendsM = (S, V), we have V(x) ⊑α̃ V ′(x) and V(f) ⊑α̃→α̃

V ′(f). By definition of ⊑σ, V ′(x) = a1 and V ′(f)(a1) = a2. Thus, J f xKM =
J f xKM′ = a2. ⊓⊔

Example 4.9. f o�α̃ = g is constant. Proof: For any M′ = (S′, V ′) that extends
M = (S, V), we have V(f) ⊑o→α̃ V ′(f) and V(g) ⊑o→α̃ V ′(g). By definition of ⊑σ,
V ′(f) = V(f) and V ′(g) = V(g). Hence, J f = gKM = J f = gKM′ . ⊓⊔

Example 4.10. p α̃�o = q is not constant. Proof: A counterexample is given by
|S(α̃)| = 1, V(p) = V(q) = (⊤), |S′(α̃)| = 2, V ′(p) = (⊤,⊥), V ′(q) = (⊤,⊤).
Then Jp = qK(S,V) = ⊤ but Jp = qK(S′,V′) = ⊥. ⊓⊔

Variables are always constant, and constancy is preserved by λ-abstraction and
application. On the other hand, the equality symbol =σ�σ�o is constant only if α̃

does not occur negatively in σ. Moreover, since ⊑o is the identity relation, constant
formulas are both monotonic and antimonotonic.

As an aside, relations between models of the λ-calculus that are preserved under
abstraction and application are called logical relations [130] and are widely used in
semantics and model theory. If we had no equality, ⊑ would be a logical relation,
and constancy of all terms would follow from the “Basic Lemma,” which states

1i.e., total: ∀a. ∃b. a ⊑σ b.
2i.e., injective: ∀a a′ b. a ⊑σ b ∧ a′ ⊑σ b −→ a = a′.
3i.e., surjective: ∀b. ∃a. a ⊑σ b.
4i.e., functional: ∀a b b′. a ⊑σ b ∧ a ⊑σ b′ −→ b = b′.

56 Chapter 4. Monotonicity Inference

that the interpretations of any term are related by ∼ if ∼ is a logical relation. This
property is spoiled by equality since in general J=KM 6⊑ J=KM′ . Our calculus
effectively carves out a sublanguage for which ⊑ is a logical relation.

4.2.2 Syntactic Criteria

We syntactically approximate constancy, monotonicity, and antimonotonicity with
the predicates K(t), M+(t), and M–(t). The goal is to derive M+(t) for the formula t
we wish to prove monotonic. If M+(t) and the modelM satisfies t, we can apply the
recipe ⊑ to obtain arbitrarily larger modelsM′ that also satisfy t. The predicates
depend on the auxiliary functions AT+(σ) and AT–(σ), which collect the positive
and negative atomic types of σ.

Definition 4.11 (Positive and Negative Atomic Types). The set of positive atomic
types AT+(σ) and the set of negative atomic types AT–(σ) of a type σ are defined
as follows:

AT+(α) = {α} ATs(o) = ∅

AT–(α) = ∅ ATs(σ→ τ) = AT∼s(σ) ∪ ATs(τ)
where ∼s =

{
+ if s = –

– if s = +

Definition 4.12 (Constancy and Monotonicity Rules). The predicates K(t), M+(t),
and M–(t) are inductively defined by the rules

K(x) K(−→)

α̃ /∈ AT–(σ)

K(=σ�σ�o)

K(t)

K(λx. t)

K(tσ�τ) K(uσ)

K(t u)

K(t)

Ms(to)

M∼s(t) Ms(u)

Ms(t −→ u)

K(tσ) K(uσ)

M–(t = u)

M–(t)

M–(∀x. t)

M+(t) α̃ /∈ AT+(σ)

M+(∀x σ. t)

The rules for K simply traverse the term structure and ensure that equality is not
used on types in which α̃ occurs negatively. The rules for Ms are more subtle:

• The first Ms rule lets us derive (anti)monotonicity from constancy.

• The implication rule flips the sign s when analyzing the assumption.

• The M–(t = u) rule is sound because the extensions of distinct elements are
always distinct (since ⊑σ is left-unique).

• The M–(∀x. t) rule is sound because if enlarging the scope makes x range
over new elements, these cannot make ∀x. t become true if it was false in the
smaller scope.

• The M+(∀x. t) rule is the most difficult one. If α̃ does not occur at all in σ, then
monotonicity is preserved. Otherwise, there is the danger that the formula t is
true for all values a ∈ JσKS but not for some b ∈ JσKS′ . However, in Section 4.3
we show that this can only happen for new b’s (i.e., b’s that do not extend
any a), which can only exist if α̃ ∈ AT+(σ).

Definition 4.13 (Derived Monotonicity Rules). For the other logical constants, we
can derive the following rules using Definitions 2.6 and 4.12:

Ms(False) Ms(True)

M∼s(t)

Ms(¬ t)

Ms(t) Ms(u)

Ms(t ∧ u)

4.3. Second Calculus: Tracking Sets 57

Ms(t) Ms(u)

Ms(t ∨ u)

M+(t)

M+(∃x. t)

M–(t) α̃ /∈ AT+(σ)

M–(∃x σ. t)

Example 4.14. The following derivations show that formulas 1 and 2 from Exam-
ple 4.2 are monotonic with respect to α:

K(x) K(y)

M–(x = y)

M+(x 6= y)

M+(∃y. x 6= y)

M+(∃x α y. x 6= y)

α /∈ AT–(α)

K(=α�α�o)

K(f) K(x)

K(f x)

K((=) (f x)) K(x)

K(f x = x)

M+(f x = x)

K(f) K(y)

K(f y) K(y)

M–(f y = y)

M+(f y 6= y)

M+(f x α = x ∧ f y 6= y)

Similarly, M+ judgments can be derived for the monkey village axioms of Exam-
ple 4.3 to show monotonicity with respect to banana.

Example 4.15. Formula 4 from Example 4.2 is monotonic, but M+ fails on it:

α /∈ AT–(α→ o)

K(= (α�o)�(α�o)�o)

...

K({y})
K((=) {y})

...

K({z})
K({y} = {z})

M+({y} = {z})
The assumption α /∈ AT–(α→ o) cannot be discharged, since AT–(α→ o) = {α}.
The formula fares no better if we put it in extensional form (∀x. (x = y) = (x = z)).

4.3 Second Calculus: Tracking Sets

Example 4.15 exhibits a significant weakness of the calculus M1. Isabelle/HOL
identifies sets with predicates, yet the predicate M+ prevents us from comparing
terms of type α̃→ o for equality. This restriction is necessary because the exten-
sion of a function of this type is not unique (cf. Figure 4.1(c)), and thus equality is
generally not preserved as we enlarge the scope.

This behavior of ⊑α̃→o is imprecise for sets, as it puts distinct sets in relation; for
example, {0} ⊑α̃→o {0, 1} if S(α̃) = 1 and S′(α̃) = 2. We would normally prefer
each set to admit a unique extension, namely the set itself. This would make set
equality constant.

To solve the problem sketched above, we could adjust the definition of ⊑σ so that
the extension of a set is always the set itself. Rephrased in terms of functions, this
amounts to requiring that the extended function returns ⊥ for all new elements.
Figure 4.2 compares this more conservative “set” approach to the liberal approach
of Section 4.2; in subfigure (b), it may help to think of (⊥,⊥) and (⊥,⊥,⊥) as ∅,
(⊤,⊥) and (⊤,⊥,⊥) as {0}, and so on.

With this approach, we could easily infer that {y} = {z} is constant. However,
the wholesale application of this principle would have pernicious consequences

58 Chapter 4. Monotonicity Inference

(a) general view (right-total) (b) set view (right-unique)

Figure 4.2: ⊑α̃→o with S(α̃) = 2 and S′(α̃) = 3

on constancy: Semantically, the universal set UNIV α̃�o, among others, would no
longer be constant; syntactically, the introduction rule for K(λx. t) would no longer
be sound. What we propose instead in our calculus M2 is a hybrid approach that
supports both forms of extensions in various combinations. The required book-
keeping is conveniently expressed as a type system, in which each function arrow
is annotated with G (“general”) or F (“false-extended set”).

Definition 4.16 (Annotated Type). An annotated type is a HOL type in which each
function arrow carries an annotation A ∈ {G, F}.

The annotations specify how ⊑ should extend function values to larger scopes:
While G-functions are extended as in the previous section, the extension of an F-
function must map all new values to ⊥. The annotations have no influence on the
interpretation of types and terms, which is unchanged. For notational convenience,
we sometimes use annotated types in contexts where plain types are expected; in
such cases, the annotations are simply ignored.

4.3.1 Extension Relation

Definition 4.17 (Extension). Let σ be an annotated type, and let S, S′ be scopes
such that S ≤α̃ S′. The extension relation ⊑σ ⊆ JσKS × JσKS′ for S and S′ is defined
by the following equivalences:

a ⊑σ b iff a = b if σ is o or an atomic type

f ⊑σ→Gτ g iff ∀a b. a ⊑σ b −→ f (a) ⊑τ g(b)

f ⊑σ→Fτ g iff ∀a b. a ⊑σ b −→ f (a) ⊑τ g(b) and
∀b. (∄a. a ⊑σ b) −→ g(b) = (|τ|)

where (|o|) = ⊥, (|σ→ τ|) = a ∈ JσKS′ 7→ (|τ|), and (|α|) is any element of S(α).

The extension relation⊑σ distinguishes between the two kinds of arrow. The G case
coincides with Definition 4.5. Although F is tailored to predicates, the annotated
type σ→F τ is legal for any type τ. The value (|τ|) then takes the place of ⊥ as the
default extension.

We now prove the crucial properties of ⊑σ, which we introduced in Section 4.2 for
the G case.

4.3. Second Calculus: Tracking Sets 59

Lemma 4.18. The relation ⊑σ is left-total (i.e., total) and left-unique (i.e., injective).

Proof (structural induction on σ). For o and α, both properties are obvious. For
σ→A τ, ⊑σ and ⊑τ are left-unique and left-total by induction hypothesis. Since
⊑σ→Fτ ⊆ ⊑σ→Gτ by definition, it suffices to show that⊑σ→Fτ is left-total and⊑σ→Gτ

is left-unique.

LEFT-TOTALITY: For f ∈ Jσ→ τKS, we find an extension g as follows: Let b ∈ JσKS′ .
If b extends an a, that a is unique by left-uniqueness of ⊑σ. Since ⊑τ is left-total,
there exists a y such that f (a) ⊑τ y, and we let g(b) = y. If b does not extend any a,
then we set g(b) = (|τ|). By construction, f ⊑σ→Fτ g.

LEFT-UNIQUENESS: We assume f , f ′ ⊑σ→Gτ g and show that f = f ′. For every
a ∈ JσKS, left-totality of ⊑σ yields an extension b ⊒σ a. Then f (a) ⊑τ g(b) and
f ′(a) ⊑τ g(b), and since ⊑τ is left-unique, f (a) = f ′(a). ⊓⊔

Definition 4.19 (Positive and Negative Atomic Types). The set of positive atomic
types AT+(σ) and the set of negative atomic types AT–(σ) of an annotated type σ

are defined as follows:

AT+(o) = ∅ AT–(o) = ∅

AT+(α) = {α} AT–(α) = ∅

AT+(σ→G τ) = AT+(τ) ∪ AT–(σ) AT–(σ→G τ) = AT–(τ) ∪ AT+(σ)

AT+(σ→F τ) = AT+(τ) ∪ AT–(σ) ∪ AT+(σ) AT–(σ→F τ) = AT–(τ)

This peculiar generalization of Definition 4.11 reflects our wish to treat occurrences
of α̃ differently for sets and ensures that the following key lemma holds uniformly.

Lemma 4.20. If α̃ /∈ AT+(σ), then ⊑σ is right-total (i.e., surjective). If α̃ /∈ AT–(σ),
then ⊑σ is right-unique (i.e., functional).

Proof (structural induction on σ). For o and α, both properties are obvious.

RIGHT-TOTALITY OF ⊑σ→Gτ: If α̃ /∈ AT+(σ→G τ) = AT+(τ) ∪ AT–(σ), then by
induction hypothesis⊑τ is right-total and⊑σ is right-unique. For g ∈ Jσ→ τKS′ , we
find a restriction f as follows: Let a ∈ JσKS. Since ⊑σ is both left-total (Lemma 4.18)
and right-unique, there is a unique b such that a ⊑σ b. By right-totality of ⊑τ, we
obtain an x ⊑τ g(b), and we set f (a) = x. By construction, f ⊑σ→Gτ g.

RIGHT-TOTALITY OF ⊑σ→Fτ: If α̃ /∈ AT+(σ→F τ) = AT+(τ) ∪ AT–(σ) ∪ AT+(σ),
then by induction hypothesis ⊑τ is right-total, and ⊑σ is both right-total and right-
unique. By right-totality of ⊑σ, the second condition in the definition of ⊑σ→Fτ

becomes vacuous, and ⊑σ→Fτ = ⊑σ→Gτ, whose right-totality was shown above.

RIGHT-UNIQUENESS OF ⊑σ→Gτ: If α̃ /∈ AT–(σ→G τ) = AT–(τ) ∪ AT+(σ), then by
induction hypothesis ⊑τ is right-unique and ⊑σ is right-total. We consider g, g′

such that f ⊑σ→Gτ g and f ⊑σ→Gτ g′, and show that g = g′. For every b ∈ JσKS′ ,
right-totality of ⊑σ yields a restriction a ⊑σ b. Then f (a) ⊑τ g(b) and f (a) ⊑τ

g′(b), and since ⊑τ is right-unique, g(b) = g′(b).

RIGHT-UNIQUENESS OF ⊑σ→Fτ: If α̃ /∈ AT–(σ→F τ) = AT–(τ), then by induction
hypothesis ⊑τ is right-unique. We consider g, g′ such that f ⊑σ→Fτ g and f ⊑σ→Fτ

60 Chapter 4. Monotonicity Inference

g′, and show that g = g′. For any b ∈ JσKS′ , if there exists no restriction a ⊑σ b,
then by definition g(b) = g′(b) = (|τ|). Otherwise, we assume a ⊑σ b. Then
f (a) ⊑τ g(b) and f (a) ⊑τ g′(b), and since ⊑τ is right-unique, g(b) = g′(b). ⊓⊔

The new definition of AT+ and AT– solves the problem raised by {y} = {z} in
Example 4.15, by counting the α̃ in α̃→F o as a positive occurrence. However, we
must ensure that types are consistently annotated; otherwise, we could easily over-
constrain the free variables and end up in a situation where there exists no model
M′ such thatM⊑ M′ for two scopes S ≤α̃ S′.

4.3.2 Type Checking

Checking constancy can be seen as a type checking problem involving annotated
types. The main idea is to derive typing judgments Γ ⊢ t : σ, whose intuitive
meaning is that the denotations of t in a smaller and a larger scope are related by
⊑σ (i.e., that t is constant in a sense given by σ). Despite this new interpretation,
the typing rules are similar to those of the simply typed λ-calculus, extended with
a particular form of subtyping.

Definition 4.21 (Context). A context is a pair of mappings Γ = (Γc, Γv), where
Γc maps constant symbols to sets of annotated types, and Γv maps variables to
annotated types.

Allowing constants to have multiple annotated types gives us a form of polymor-
phism on the annotations, which is sometimes useful.

Definition 4.22 (Compatibility). A constant context Γc is compatible with a con-
stant model M if σ ∈ Γc(c) implies MS(c) ⊑σ MS′(c) for all scopes S, S′ with
S ≤α̃ S′ and for all constants c and annotated types σ.

Convention. In the sequel, we consistently use a fixed constant context Γc compat-
ible with the standard constant model M̂, allowing us to omit the first component
of Γ = (Γc, Γv).

Definitions 4.6 and 4.7 and the K part of Definition 4.12 are generalized as follows.

Definition 4.23 (Model Extension). LetM = (S, V) andM′ = (S′, V ′) be models.
The model M′ extends M in a context Γ, written M ⊑Γ M′, if S ≤α̃ S′ and
Γ(x) = σ implies V(x) ⊑σ V ′(x) for all x.

Definition 4.24 (Constancy). Let σ be an annotated type. A term t is σ-constant in
a context Γ if JtKM ⊑σ JtKM′ for all modelsM,M′ such thatM⊑Γ M′.

Definition 4.25 (Typing Rules). The typing relation Γ ⊢ t : σ is given by the rules

Γ(x) = σ
VAR

Γ ⊢ x : σ

σ ∈ Γc(c)
CONST

Γ ⊢ c : σ

Γ ⊢ t : σ σ ≤ σ′
SUB

Γ ⊢ t : σ′

Γ[x 7→ σ] ⊢ t : τ
LAM

Γ ⊢ λx. t : σ→G τ

Γ ⊢ t : σ→A τ Γ ⊢ u : σ
APP

Γ ⊢ t u : τ

4.3. Second Calculus: Tracking Sets 61

where the subtype relation σ ≤ τ is defined by the rules

REFL
σ ≤ σ

σ′ ≤ σ τ ≤ τ′
GEN

σ→A τ ≤ σ′→G τ′
σ′ ≤ σ σ ≤ σ′ τ ≤ τ′

FALSE
σ→F τ ≤ σ′→F τ′

Lemma 4.26. If σ ≤ σ′, then ⊑σ ⊆ ⊑σ′.

Proof (induction on the derivation of σ ≤ σ′). The REFL case is trivial.

GEN: We may assume ⊑σ′ ⊆ ⊑σ and ⊑τ ⊆ ⊑τ′ and must show ⊑σ→τ ⊆ ⊑σ′→τ′ .
Since ⊑σ→Aτ ⊆ ⊑σ→Gτ (by Definition 4.17), it is sufficient to consider the case A =
F. From f ⊑σ→Gτ g, we have a ⊑σ b =⇒ f (a) ⊑τ g(b); and using the assumptions
we conclude a ⊑σ′ b =⇒ f (a) ⊑τ′ g(b), i.e., f ⊑σ′→Gτ′ g.

FALSE: We may assume ⊑σ = ⊑σ′ and ⊑τ ⊆ ⊑τ′ . If f ⊑σ→Fτ g, the first condition
for f ⊑σ′→Fτ′ g follows for the same reason as above. The second condition holds
since ⊑σ = ⊑σ′ . ⊓⊔

As a consequence of Lemma 4.26, ≤ is a partial quasiorder. Observe that σ→F o ≤
σ→G o for any σ, and if α̃ does not occur in σ we also have σ→G o ≤ σ→F o. On
the other hand, (α̃→G o)→G o and (α̃→F o)→F o are not related, so the quasiorder
≤ is not total (linear).

Theorem 4.27 (Soundness of Typing). If Γ ⊢ t : σ, then t is σ-constant in Γ.

Proof (induction on the derivation of Γ ⊢ t : σ). VAR: Because V(x) ⊑σ V ′(x) by
assumption for σ = Γ(x).

CONST: By compatibility of Γc, M̂S(c) ⊑σ M̂S′(c) for all σ ∈ Γc(c).

SUB: By Lemma 4.26 and Definition 4.24.

LAM: Let a ∈ JσKS and b ∈ JσKS′ such that a ⊑σ b. Then we have the altered
modelsMa = (S, V[x 7→ a]) andM′

b = (S′, V ′[x 7→ b]). Thus,Ma ⊑Γ[x 7→σ] M′
b,

and by induction hypothesis Jλx. tKM(a) = JtKMa
⊑τ JtKM′

b
= Jλx. tKM′(b). Hence

Jλx. tKM ⊑σ→Gτ Jλx. tKM′ .

APP: By induction hypothesis, and since ⊑σ→Fτ ⊆ ⊑σ→Gτ, we have JtKM ⊑σ→Gτ

JtKM′ and JuKM ⊑σ JuKM′ . By Definition 4.17, we have Jt uKM = JtKM (JuKM) ⊑τ

JtKM′ (JuKM′) = Jt uKM′ , which shows that t u is τ-constant in Γ. ⊓⊔

Notice a significant weakness here: While our typing rules propagate F-annotations
nicely, they cannot derive them, since the LAM rule annotates all arrows with G. In
particular, the basic set operations ∅, ∪, ∩, and − cannot be typed appropriately
from their definitions (Definition 2.7). We solve this issue pragmatically by treating
common set operations as primitive constants along with implication and equal-
ity. The typing rules then propagate type information through expressions such as
A ∪ (B ∩ C). We address this limitation more generally in Section 4.4.

62 Chapter 4. Monotonicity Inference

Definition 4.28 (Standard Constant Context). The standard constant context Γ̂c is
the following mapping:

−→ 7→ {o→G o→G o}
= 7→ {σ→G σ→F o | α̃ /∈ AT–(σ)}
∅ 7→ {σ→F o}

UNIV 7→ {σ→G o}
∪, ∩ 7→ {(σ→A o)→G (σ→A o)→G σ→A o | A ∈ {G, F}}
− 7→ {(σ→A o)→G (σ→G o)→G σ→A o | A ∈ {G, F}}
∈ 7→ {σ→G (σ→A o)→G o | A ∈ {G, F}}

insert 7→ {σ→G (σ→A o)→G σ→A o | A ∈ {G, F}, α̃ /∈ AT–(σ)}

Notice how the lack of a specific annotation for “true-extended sets” prevents us
from giving precise typings to the complement of an F-annotated function; for ex-
ample, ∅ is captured precisely by σ→F o, but UNIV can be typed only as σ→G o.
In Section 4.4, we introduce a T-annotation similar to F but with ⊤ instead of ⊥ as
the default extension.

Lemma 4.29. The standard constant context Γ̂c is compatible with the standard
constant model M̂.

Proof. CASE −→: Obvious.

CASE =: Since α̃ /∈ AT–(σ),⊑σ is right-unique (Lemma 4.20). Unfolding the defini-
tion of⊑, we assume a ⊑σ b and show that if a′ ⊑σ b′, then (a = a′) = (b = b′), and
that if there exists no restriction a′ such that a′ ⊑σ b′, then (b = b′) = ⊥. The first
part follows from the left-uniqueness and right-uniqueness of ⊑σ. For the second
part, b 6= b′ because b extends a while b′ admits no restriction.

CASE ∅: Obvious, since Jλx. FalseKM = ∅ ⊑σ→Fo ∅ = Jλx. FalseKM′ . (For nota-
tional convenience, we identify sets with predicates in the semantics.)

CASES UNIV, ∈, AND insert: The typings are derivable from the constants’ defini-
tions using the rules of Definition 4.25, and σ-constancy follows from Theorem 4.27.

CASE ∪: The subcase A = G follows from the derivability of Γ ⊢ λs t x. s x ∨ t x : σ

and Theorem 4.27. Otherwise, A = F and we let τ = σ→F o. We have Jλs t x. s x ∨
t xKM = (A, A′) ∈ Jσ→ oK2

S 7→ A ∪ A′ ⊑τ→Gτ→Go (B, B′) ∈ Jσ→ oK2
S′ 7→ B ∪ B′ =

Jλs t x. s x ∨ t xKM′ , because if B and B′ map all new elements b ∈ JσKS′ to ⊥ (as
required by the typing σ→F o), then B ∪ B′ also maps b to ⊥.

CASE ∩: Similar to ∪.

CASE −: The subcase A = G follows from the derivability of Γ ⊢ λs t x. s x ∧ ¬ t x :
(σ→G o)→G (σ→G o)→G s→G o and Theorem 4.27. Otherwise, Jλs t x. s x ∨
t xKM = (A, A′) ∈ Jτ→ oK2

S 7→ A − A′ ⊑(σ→Fo)→G(σ→Go)→Gσ→Fo (B, B′) ∈ Jτ→
oK2

S′ 7→ B − B′ = Jλs t x. s x − t xKM′ , because if B maps all elements b ∈ JτKS′ that
do not extend any a ∈ JτKS to ⊥ (as required by the typing σ→F o), then B − B′

also maps b to ⊥. ⊓⊔

Example 4.30. Let σ = α→F o and Γv = [x 7→ σ, y 7→ σ]. The following derivation
shows that x α�o = y is constant with respect to α:

4.3. Second Calculus: Tracking Sets 63

σ→G σ→F o ∈ Γc(=)
CONST

Γ ⊢ (=) : σ→G σ→F o

Γ(x) = σ
VAR

Γ ⊢ x : σ
APP

Γ ⊢ (=) x : σ→G o

Γ(y) = σ
VAR

Γ ⊢ y : σ
APP

Γ ⊢ x = y : o

4.3.3 Monotonicity Checking

The rules for checking monotonicity and antimonotonicity are analogous to those
presented in Section 4.2, except that they must now extend the context when mov-
ing under a quantifier.

Definition 4.31 (Monotonicity Rules). The predicates Γ ⊢ M+(t) and Γ ⊢ M–(t)
are given by the rules

Γ ⊢ t : o
TERM

Γ ⊢ Ms(t)

Γ ⊢ M∼s(t) Γ ⊢ Ms(u)
IMP

Γ ⊢ Ms(t −→ u)

Γ ⊢ t : σ Γ ⊢ u : σ
EQ

–

Γ ⊢ M–(t = u)

Γ[x 7→ σ] ⊢ M–(t)
ALL

–

Γ ⊢ M–(∀x. t)

Γ[x 7→ σ] ⊢ M+(t) α̃ /∈ AT+(σ)
ALL

+

Γ ⊢ M+(∀x. t)

Definition 4.32 (Derived Monotonicity Rules). From Definitions 2.6, 4.25, and
4.31, we derive the following rules for logical constants:

FALSE
Γ ⊢ Ms(False)

TRUE
Γ ⊢ Ms(True)

Γ ⊢ M∼s(t)
NOT

Γ ⊢ Ms(¬ t)

Γ ⊢ Ms(t) Γ ⊢ Ms(u)
AND

Γ ⊢ Ms(t ∧ u)

Γ ⊢ Ms(t) Γ ⊢ Ms(u)
OR

Γ ⊢ Ms(t ∨ u)

Γ[x 7→ σ] ⊢ M+(t)
EX

+

Γ ⊢ M+(∃x σ. t)

Γ[x 7→ σ] ⊢ M–(t) α̃ /∈ AT+(σ)
EX

–

Γ ⊢ M–(∃x σ. t)

Theorem 4.33 (Soundness of Ms). LetM and M′ be models such thatM⊑Γ M′.
If Γ ⊢ M+(t), thenM � t impliesM′ � t. If Γ ⊢ M–(t), thenM 6� t impliesM′ 6� t.

Proof (induction on the derivation of Γ ⊢ Ms(t)). The TERM and IMP cases are
obvious. LetM = (S, V) andM′ = (S′, V ′).

EQ–: Assume Γ ⊢ t : σ, Γ ⊢ u : σ, and M 6� t = u. Since M is a standard
model, we know that JtKM 6= JuKM. By Theorem 4.27, we have JtKM ⊑σ JtKM′ and
JuKM ⊑σ JuKM′ . By the left-uniqueness of ⊑σ, the extensions cannot be equal, and
thusM′ 6� t = u.

ALL
–: Assume Γ[x 7→ σ] ⊢ M–(t) and M 6� ∀x σ. t. Then there exists a ∈ JσKS

such that (S, V[x 7→ a]) 6� t. Since ⊑σ is left-total, there exists an extension b ⊒σ a.
Since (S, V[x 7→ a]) ⊑Γ (S′, V ′[x 7→ b]), we have (S′, V ′[x 7→ b]) 6� t by induction
hypothesis. ThusM′ 6� ∀x σ. t.

ALL
+: Assume Γ[x 7→ σ] ⊢ M+(t), α̃ /∈ AT+(σ), and M � ∀x σ. t. We show that

M′ � ∀x σ. t. Let b ∈ JσKS′ . Since ⊑σ is right-total (Lemma 4.20), there exists a

64 Chapter 4. Monotonicity Inference

restriction a ∈ JσKS with a ⊑σ b. By assumption, (S, V[x 7→ a]) � t. Since (S, V[x 7→
a]) ⊑Γ (S′, V ′[x 7→ b]), we have (S′, V ′[x 7→ b]) � t by induction hypothesis. Thus
M′ � ∀x σ. t. ⊓⊔

Theorem 4.34 (Soundness of the Calculus). If Γ ⊢ M+(t) can be derived in some
arbitrary context Γ, then t is monotonic. If Γ ⊢ M–(t) can be derived in some
arbitrary context Γ, then t is antimonotonic.

Proof. The definition of monotonicity requires showing the existence of a model
M′ = (S′, V ′) for any scope S′ such that S ≤α̃ S′. By Theorem 4.33, we can take
any modelM′ for whichM ⊑Γ M′. Such a model exists because ⊑Γ is left-total
(by Lemma 4.18 and Definition 4.23). ⊓⊔

Example 4.35. The following table lists some example formulas, including all those
from Example 4.2. For each formula, we indicate whether it is monotonic or anti-
monotonic with respect to α according to the calculi M1 and M2 and to the semantic
definitions.

MONOTONIC ANTIMONOTONIC

FORMULA M1 M2 SEM. M1 M2 SEM.

∃x α y. x 6= y ✓ ✓ ✓ · · ·
f x α = x ∧ f y 6= y ✓ ✓ ✓ ✓ ✓ ✓

x o�α = y ✓ ✓ ✓ ✓ ✓ ✓

sα�o = t · ✓ ✓ ✓ ✓ ✓

{yα} = {z} · ✓ ✓ ✓ ✓ ✓

(λx α. x = y) = (λx. x = z) · · ✓ ✓ ✓ ✓

(∀x α. f x = x) ∧ f y 6= y · · ✓ ✓ ✓ ✓

∀x α y. x = y · · · ✓ ✓ ✓

∃x α y. x 6= y ∧ ∀z. z = x ∨ z = y · · · · · ·

In Definition 4.19, all atomic types in σ count as positive occurrences in σ→F τ.
This raises the question of whether a fully covariant behavior, with ATs(σ→F τ) =
ATs(σ) ∪ ATs(τ), could be achieved, presumably with a different definition of
⊑σ→Fτ. Although such a behavior looks more regular, it would make the calculus
unsound, as the following counterexample shows:

∀F (α̃�o)�o f α̃�o g h. f ∈ F ∧ g ∈ F ∧ f a 6= g a −→ h ∈ F

The formula is not monotonic: Regardless of the value of the free variable a, it is
true for |α̃| = 1, since the assumptions imply that f 6= g, and as there are only two
functions of type α̃→ o, h can only be one of them, so it must be in F. This argument
breaks down for larger scopes, so the formula is not monotonic. However, with a
fully covariant F-arrow, we could type F as F (α̃�Go)�Fo and the rule ALL

+ would
apply, since there are no positive occurrences of α̃ in the types of F, f , g, and h.

4.3.4 Type Inference

Expecting all types to be fully annotated with G and F is unrealistic, so we now
face the problem of computing annotations such that a given term is typable—a
type inference problem. We follow a standard approach to type inference: We start

4.4. Third Calculus: Handling Set Comprehensions 65

by annotating all types with annotation variables ranging over {G, F}. Then we
construct a typing derivation by backward chaining, collecting a set of constraints
over the annotations. Finally, we look for an instantiation of the annotation vari-
ables that satisfies all the constraints.

Definition 4.36 (Annotation Constraint). An annotation constraint over a set of
annotation variables X is an expression of the form σ ≤ τ, α̃ /∈ AT+(σ), or α̃ /∈
AT–(σ), where the types σ and τ may contain annotation variables in V. Given a
valuation ρ : X→ {G, F}, the meaning of a constraint is given by Definitions 4.19
and 4.25.

A straightforward way of solving such constraints is to encode them in proposi-
tional logic, following Definitions 4.19 and 4.25, and give them to a SAT solver.
Annotation variables, which may take two values, are mapped directly to propo-
sitional variables. Only one rule, SUB, is not syntax-directed, but it is sufficient to
apply it to the second argument of an application and to variables and constants be-
fore invoking VAR or CONST. This approach proved very efficient on the problems
that we encountered in our experiments.

It is unclear whether the satisfiability problem for this constraint language is NP-
complete or in P. We suspect that it is in P, but we have not found a polynomial-time
algorithm. Thus, it is unclear if our use of a SAT solver is fully appropriate from a
theoretical point of view, even though it works perfectly well in practice.

Similarly to the simply typed λ-calculus, our type system admits principal types
if we promote annotation variables to first-class citizens. When performing type
inference, we would keep the constraints as part of the type, instead of computing
a solution to the collected constraints. More precisely, a type schema would have
the form ∀A. ∀α. σ 〈C〉, where σ is a type containing annotation variables A and
type variables α, and C is a list of constraints of the form given in Definition 4.36.
Equality would have the principal type schema ∀α. α→G α→A o 〈α̃ /∈ AT–(α)〉.
This approach nicely extends ML-style polymorphism.

4.4 Third Calculus: Handling Set Comprehensions

An obvious deficiency of the calculus M2 from the previous section is that the rule
LAM always types λ-abstractions with G-arrows. The only way to construct a term
with F-annotations is to build it from primitives whose types are justified semanti-
cally. In other words, we cannot type set comprehensions precisely.

This solution is far from optimal. Consider the term λR S x z. ∃y. R x y ∧ S y z,
which composes two binary relations R and S. Semantically, composition is con-
stant for type (α→F β→F o)→G (β→F γ→F o)→G α→F γ→F o, but M2 cannot
infer this. As a result, it cannot infer the monotonicity of any of the four type
variables occurring in the associativity law for composition, unless composition is
considered a primitive and added to the constant context Γc. Another annoyance
is that the η-expansion λx. t x of a term tσ�Fτ can only be typed with a G-arrow.

The calculus M3 introduced in this section is designed to address this. The under-
lying intuition is that a term λx α. t can be typed as α→F o if we can show that
the body t evaluates to ⊥ whenever x is new in the larger scope. The key is to

66 Chapter 4. Monotonicity Inference

track what happens to a term when one or several of its free variables are assigned
a new value. When abstracting over a variable, we can then use this information
to annotate the function arrow precisely. This scheme covers bounded set compre-
hensions such as λx. x ∈ A α̃�Fo ∧ x ∈ B α̃�Fo and, by way of consequence, bounded
quantifications such as ∀x. x ∈ A α̃�Fo −→ q x.

Definition 4.37 (Annotated Type). An annotated type is a HOL type in which each
function arrow carries an annotation A ∈ {G, N, F, T}.

The G- and F-annotations have the same meaning as in Section 4.3. The T-annota-
tion is similar to F, but with ⊤ instead of ⊥ as its default extension of type o; the
universal set UNIVα�o can be typed precisely as α→T o. Finally, the N-annotation
indicates that if the argument to the function is a new value, so is its result.

4.4.1 Extension Relation

The extension relation ⊑σ distinguishes the four kinds of arrow. The G and F cases
are the same as in Definition 4.17.

Definition 4.38 (Extension). Let σ be an annotated type, and let S, S′ be scopes
such that S ≤α̃ S′. The extension relation ⊑σ ⊆ JσKS × JσKS′ for S and S′ is defined
by the equivalences

a ⊑σ b iff a = b if σ is o or an atomic type

f ⊑σ→Aτ g iff ∀a b. a ⊑σ b −→ f (a) ⊑τ g(b) and
∀b. Nσ(b) −→ A

τ(g(b))

and

Gσ(b) iff ⊤ Fσ(b) iff b = (|σ|)F

Nσ(b) iff ∄a. a ⊑σ b Tσ(b) iff b = (|σ|)T

where (|o|)F = ⊥, (|o|)T = ⊤, (|α|)A ∈ S(α), and (|σ→ τ|)A = a ∈ JσKS′ 7→ (|τ|)A.

We cannot require (|α|)F 6= (|α|)T because this would be impossible for |α| = 1.

Hence, we must be careful to assume (|σ|)F 6= (|σ|)T only if σ is of the form σ1→
· · · → σn→ o.

Definition 4.39 (Positive and Negative Atomic Types). The set of positive atomic
types AT+(σ) and the set of negative atomic types AT–(σ) of an annotated type σ

are defined as follows:

AT+(o) = ∅

AT+(α) = {α} AT+(σ→A τ) =

{
AT+(τ) ∪ AT–(σ) if A = G

AT+(τ) ∪ AT–(σ) ∪ AT+(σ) otherwise

AT–(o) = ∅

AT–(α) = ∅
AT–(σ→A τ) =

{
AT–(τ) ∪ AT+(σ) if A ∈ {G, N}
AT–(τ) otherwise

With the introduction of an N-annotation, not all annotated types are legitimate.
For example, α̃→N o would mean that new values of type α̃ are mapped to new
Booleans, but there is no such thing as a new Boolean, since JoK is always {⊥,⊤}.

4.4. Third Calculus: Handling Set Comprehensions 67

Definition 4.40 (Well-Annotated Type). An annotated type σ is well-annotated if
WA(σ) holds, where WA(σ) is defined by the following equivalences:

WA(σ) iff ⊤ if σ is o or an atomic type

WA(σ→A τ) iff WA(σ) and WA(τ) and A = N −→ body(τ) = α̃

where body(o) = o, body(α) = α, and body(σ→ τ) = body(τ).

Lemma 4.41. If σ is well-annotated, then ⊑σ is left-total (i.e., total) and left-unique
(i.e., injective).

Proof (structural induction on σ). The proof is similar to that of Lemma 4.18, except
that we must propagate the WA assumption. There is one genuinely new case.

LEFT-TOTALITY OF ⊑σ→Nτ: For f ∈ Jσ→ τKS, we find an extension g as follows:
Let b ∈ JσKS′ . If b extends an a, that a is unique by left-uniqueness of ⊑σ. Since
⊑τ is left-total, there exists a y such that f (a) ⊑τ y, and we let g(b) = y. If b
does not extend any a, then we set g(b) to a new element y constructed as follows:
Since σ→N τ is well-annotated, τ must be of the form τ1→A1 · · ·→An−1 τn→An α̃. As
value for y, we simply take y1 ∈ Jτ1KS′ 7→ · · · 7→ yn ∈ JτnKS′ 7→ y′, where y′ is not
the extension of any x′. Such a y′ exists, because otherwise |S(α̃)| = |S′(α̃)|, which
is inconsistent with the existence of a new element b. ⊓⊔

Lemma 4.42. Let σ be a well-annotated type. If α̃ /∈ AT+(σ), then ⊑σ is right-total
(i.e., surjective). If α̃ /∈ AT–(σ), then ⊑σ is right-unique (i.e., functional).

Proof. The proof is similar to that of Lemma 4.20. Lemma 4.41, which replaces
Lemma 4.18, requires σ to be well-annotated. ⊓⊔

4.4.2 Type Checking

As in Section 4.3, constancy checking is treated as a type checking problem involv-
ing annotated types. The judgments still have the form Γ ⊢ t : σ, but the context
now carries more information about t’s value when its free variables are assigned
new values.

Definition 4.43 (Context). A context is a pair Γ = (Γc, Γv), where Γc maps con-
stant symbols to sets of annotated types, and Γv is a list [x1 :A1 σ1, . . . , xm :Am σm]
associating m distinct variables xi with annotations Ai and annotated types σi. A
context is well-annotated if all the types σi are well-annotated.

We assume as before that Γc is fixed and compatible with the standard constant
model and write Γ for Γv. We abbreviate [x1 :A1 σ1, . . . , xm :Am σm] to 〈xm :Am σm〉.
The intuitive meaning of a typing judgment Γ ⊢ t : σ with Γ = 〈xm :Am σm〉 is
that if x1 is new, then A

σ1
1 (t) holds; if V(x1) ⊑σ1 V ′(x1) but x2 is new, then A

σ2
2 (t)

holds; and so on. Furthermore, if V(xi) ⊑σi V ′(xi) for all i ∈ {1, . . . , m}, then
JtKM ⊑σ JtKM′ . It may help to think of a judgment 〈xm :Am σm〉 ⊢ t : σ as meaning
roughly the same as [] ⊢ λx1 . . . xm. t : σ1→A1

· · · →An−1
σn→An

σ.1

1In fact, by Lemma 4.50 (and Definitions 4.46 and 4.47), they are exactly the same if none of the
annotations Ai are N.

68 Chapter 4. Monotonicity Inference

Example 4.44. Given a constant r such that α̃→T α̃→F o ∈ Γc(r), the new typing
rules will let us derive the following judgments:

[x :T α̃, y :F α̃] ⊢ r x y : o

[x :T α̃] ⊢ λy. r x y : α̃→F o

[] ⊢ λx y. r x y : α̃→T α̃→F o

Notice that the η-expanded form λx y. r x y can be typed in the same way as r.

The following definitions make this more rigorous.

Definition 4.45 (Model Extension). LetM = (S, V) andM′ = (S′, V ′) be models,
and let Γ, ∆ be two contexts with disjoint sets of variables. The modelM′ extends
M strongly in Γ and weakly in ∆, writtenM⊑∆

Γ M′, if S ≤α̃ S′, x :A σ ∈ Γ implies
V(x) ⊑σ V ′(x), and x :A σ ∈ ∆ implies either V(x) ⊑σ V ′(x) or Nσ(V ′(x)) for all x.
If ∆ = [], we writeM⊑Γ M′.

Definition 4.46 (Constancy). Let σ be an annotated type. A term t is σ-constant in
a context Γ if JtKM ⊑σ JtKM′ for all modelsM,M′ such thatM⊑Γ M′.

Definition 4.47 (Conformity). Let σ be an annotated type, and let Γ be a context.
A term t is σ-conformant to Γ if for all decompositions Γ = ∆, [x :A τ], E and for all
modelsM,M′ such thatM⊑E

∆ M′, we have that Nτ(JxKM′) implies A
σ(JtKM′).

Equipped with these semantic definitions, we are ready to examine the inference
rules of M3 relating to constancy and monotonicity.

Definition 4.48 (Typing Rules). The typing relation Γ ⊢ t : σ is specified by the
context, nonlogical, and logical rules below.

Context rules:

Γ, ∆ ⊢ t : τ
ADD

Γ, [x :G σ], ∆ ⊢ t : τ

Γ, [x :A σ], ∆ ⊢ t : τ
ANN

Γ, [x :G σ], ∆ ⊢ t : τ

Γ, [y :B τ, x :A σ], ∆ ⊢ t : υ
SWAP where A ∈ {B, G}

Γ, [x :A σ, y :B τ], ∆ ⊢ t : υ

Nonlogical rules:

VAR
[x :N σ] ⊢ x : σ

σ ∈ Γc(c)
CONST

[] ⊢ c : σ

Γ ⊢ t : σ σ ≤ σ′
SUB

Γ ⊢ t : σ′
Γ, [x :A σ] ⊢ t : τ

LAM
Γ ⊢ λx. t : σ→A τ

〈xm :Am σm〉 ⊢ t : σ→B τ 〈xm :G σm〉, 〈yn :N τn〉 ⊢ u : σ
APP where Ai ∈ {G,F,T}

〈xm :Am σm〉, 〈yn :B τn〉 ⊢ t u : τ

Logical rules:

4.4. Third Calculus: Handling Set Comprehensions 69

FALSE〈xm :F σm〉 ⊢ False : o
TRUE〈xm :T σm〉 ⊢ True : o

〈xm :Am σm〉 ⊢ t : o 〈xm :Bm σm〉 ⊢ u : o
IMP〈xm :Am❀Bm σm〉 ⊢ t −→ u : o

where A ❀B =

T if A = F or B = T
F if A = T and B = F
G otherwise

The subtype relation σ ≤ τ is defined by the rules

REFL
σ ≤ σ

σ′ ≤ σ τ ≤ τ′
GEN

σ→A τ ≤ σ′→G τ′
σ′ ≤ σ σ ≤ σ′ τ ≤ τ′

ANY
σ→A τ ≤ σ′→A τ′

The nonlogical rules are similar to the rules of Definition 4.25, but the LAM rule now
allows arbitrary annotations, and the other rules impose various restrictions on the
annotations in the contexts. The logical rules support rudimentary propositional
reasoning within terms.

In the previous calculus, the context was a set and we could dispense with explicit
context rules. The context now being a list, we need weakening rules to add and
permute variables and to change the annotations in a controlled way. The new
typing rules form a substructural type system [195].

Lemma 4.49. If σ ≤ σ′, then ⊑σ ⊆ ⊑σ′ .

Proof. Similar to the proof of Lemma 4.26. ⊓⊔

The proof of the soundness theorem relies on two closure properties of functional
abstraction and application.

Lemma 4.50. Let g ∈ Jσ→ τKS′ .

(a) If A
τ(g(b)) for all b ∈ JσKS′ , then A

σ→Bτ(g).

(b) If A ∈ {G, F, T} and A
σ→Bτ(g), then A

τ(g(b)) for all b ∈ JσKS′ .

Proof. Immediate from Definition 4.38. ⊓⊔

It is regrettable that Lemma 4.50(b) does not hold uniformly for all annotation types
and, as a result, that the APP rule has a side condition Ai ∈ {G, F, T}. The crux of
the matter is that while a function that maps old values to new values is necessar-
ily new, the converse does not hold: A function may be new even if it maps old
values to old values. Given the type α̃→F o, the function (⊥,⊥,⊤) depicted in
Figure 4.2(b) is an example of this.

Theorem 4.51 (Soundness of Typing). If Γ ⊢ t : σ, then t is both σ-constant in Γ

and σ-conformant to Γ.

Proof (induction on the derivation of Γ ⊢ t : σ). The cases ADD, ANN, VAR,
CONST, FALSE, TRUE, and IMP are easy to prove using the definitions of ⊑σ, con-
stancy, and conformity. The remaining cases are proved below.

70 Chapter 4. Monotonicity Inference

SWAP: The case A = G is easy. In the remaining case, the only subtlety occurs
when both x and y are new, i.e., Nσ(JxKM′) and Nτ(JyKM′); but since A = B, the
behaviors dictated by x :A σ and y :B τ agree and we can exchange them.

SUB: By Lemma 4.49 and Definition 4.46.

LAM: The (σ→A τ)-conformity of λx. t follows from Lemma 4.50(a) and the in-
duction hypothesis; constancy is easy to prove from the induction hypothesis and
the definition of ⊑σ→Aτ. We can omit x :A σ in the conclusion because x does not
occur free in λx. t.

APP: Let Γ = 〈xm :Am σm〉, 〈yn :B τn〉. The constancy proof is as for Theorem 4.27.
It remains to show that t u is τ-conformant to Γ. Let Γ = ∆, [z :C υ], E and assume
Nυ(JzKM′). If z is one of the xi’s, we have C

σ→Bτ(JtKM′) by the first induction hy-
pothesis and hence C

τ(Jt uKM′) by Lemma 4.50(b). If z is among the yj’s (in which
case C = B), the second induction hypothesis tells us that JuKM′ is new, and since
JtKM ⊑σ→Bτ JtKM′ by the first induction hypothesis, we have B

τ(Jt uKM′) by the
definition of ⊑σ→Bτ. ⊓⊔

Definition 4.52 (Derived Typing Rules). From Definitions 2.6 and 4.48, we derive
the following rules for logical constants:

〈xm :Am σm〉 ⊢ t : o
NOT〈xm :∼Am σm〉 ⊢ ¬ t : o

where ∼A =

T if A= F
F if A=T
G otherwise

〈xm :Am σm〉 ⊢ t : o 〈xm :Bm σm〉 ⊢ u : o
AND〈xm :AmaBm σm〉 ⊢ t ∧ u : o

where AaB =

T if A=B =T
F if A= F or B = F
G otherwise

〈xm :Am σm〉 ⊢ t : o 〈xm :Bm σm〉 ⊢ u : o
OR〈xm :Am`Bm σm〉 ⊢ t ∨ u : o

where A`B =

T if A=T or B =T
F if A=B = F
G otherwise

Equipped with powerful typing rules, we no longer need to reason semantically
about set constructs. This leaves us with a much reduced standard constant context.

Definition 4.53 (Standard Constant Context). The standard constant context Γ̂c is
the following mapping:

−→ 7→ {o→G o→G o}
= 7→ {σ→G σ→F o | α̃ /∈ AT–(σ)}

Lemma 4.54. The standard constant context Γ̂c is compatible with the standard
constant model M̂.

Proof. Analogous to the proof of Lemma 4.29. ⊓⊔

The examples below exploit the new calculus to type set constructs precisely.

Example 4.55. The empty set ∅σ�o and the universal set UNIVσ�o get their natural
typings:

4.4. Third Calculus: Handling Set Comprehensions 71

FALSE
[x :F σ] ⊢ False : o

LAM
[] ⊢ λx. False : σ→F o

TRUE
[x :T σ] ⊢ True : o

LAM
[] ⊢ λx. True : σ→T o

Example 4.56. The complement s of a set s is the set UNIV− s. It can be typed as
follows for A ∈ {G, F, T}:

VAR
[s :N σ→A o] ⊢ s : σ→A o

ANN
[s :G σ→A o] ⊢ s : σ→A o

VAR
[x :N σ] ⊢ x : σ

ADD
[s :G σ→A o, x :N σ] ⊢ x : σ

APP
[s :G σ→A o, x :A σ] ⊢ s x : o

NOT
[s :G σ→A o, x :∼A σ] ⊢ ¬ s x : o

LAM
[s :G σ→A o] ⊢ λx. ¬ s x : σ→∼A o

LAM
[] ⊢ λs x. ¬ s x : (σ→A o)→G σ→∼A o

4.4.3 Monotonicity Checking

The rules for checking monotonicity and antimonotonicity are similar to those
given in Section 4.3. The only new rule is ALL

+
T; it exploits the context to avoid

the restriction on α̃.

Definition 4.57 (Monotonicity Rules). The predicates Γ ⊢ M+(t) and Γ ⊢ M–(t)
are given by the rules

Γ ⊢ t : o
TERM

Γ ⊢ Ms(t)

〈xm :Am σm〉 ⊢ M∼s(t) 〈xm :Bm σm〉 ⊢ Ms(u)
IMP〈xm :Am❀Bm σm〉 ⊢ Ms(t −→ u)

〈xm :G σm〉 ⊢ t : σ 〈xm :G σm〉 ⊢ u : σ
EQ

–

〈xm :G σm〉 ⊢ M–(t = u)

Γ, [x :G σ] ⊢ M–(t)
ALL

–

Γ ⊢ M–(∀x. t)

Γ, [x :G σ] ⊢ M+(t) α̃ /∈ AT+(σ)
ALL

+

Γ ⊢ M+(∀x. t)

Γ, [x :T σ] ⊢ M+(t)
ALL

+
T

Γ ⊢ M+(∀x. t)

From Definition 4.57, it would be straightforward to derive monotonicity rules for
False, True, ¬, ∧, ∨, and ∃.

Theorem 4.58 (Soundness of Ms). LetM and M′ be models such thatM⊑Γ M′.
If Γ ⊢ M+(t), then t is monotonic and o-conformant to Γ. If Γ ⊢ M–(t), then t is
antimonotonic and o-conformant to Γ.

Proof (induction on the derivation of Γ ⊢ Ms(t)). The TERM, EQ–, ALL–, and ALL+

cases are similar to the corresponding cases in the proof of Theorem 4.33. The IMP

case is analogous to the IMP case of Theorem 4.51. Finally, the rule ALL+
T can be

derived by treating ∀x. t as an abbreviation for (λx. t) = (λx. True). ⊓⊔

Theorem 4.59 (Soundness of the Calculus). If Γ ⊢ M+(t) can be derived in some
arbitrary well-annotated context Γ, then t is monotonic. If Γ ⊢ M–(t) can be de-
rived in some arbitrary well-annotated context Γ, then t is antimonotonic.

72 Chapter 4. Monotonicity Inference

Proof. By Theorem 4.58, we can take any modelM′ such thatM⊑Γ M′ as witness
for monotonicity. Such a model exists because ⊑Γ is left-total for well-annotated
contexts Γ (by Lemma 4.18 and Definition 4.23). ⊓⊔

Example 4.60. The bounded quantification ∀x. x ∈ A α̃�o −→ q x can be inferred
monotonic in the context Γ = [A :G α̃→F o] if q x can be inferred monotonic:

VAR
[A :N α̃→F o] ⊢ A : α̃→F o

ANN
Γ ⊢ A : α̃→F o

VAR
Γ[x :N α̃] ⊢ x : α̃

APP
Γ[x :F α̃] ⊢ x ∈ A : o

TERM
Γ[x :F α̃] ⊢ M–(x ∈ A)

...

[x :G α̃] ⊢ M+(q x)
ADD

Γ[x :G α̃] ⊢ M+(q x)
IMP

Γ[x :T α̃] ⊢ M+(x ∈ A −→ q x)
ALL+

T
Γ ⊢ M+(∀x. x ∈ A −→ q x)

4.4.4 Type Inference

At the cost of some inelegant technicalities, the approach sketched in Section 4.3.4
for inferring types can be adapted to the new setting.

The nonlogical rules VAR, CONST, and LAM as well as all the logical rules are
syntax-directed and pose no problem when constructing a typing derivation by
backward chaining. The SUB rule is unproblematic for the same reasons as for M2.
Similarly, the context rules ADD and ANN can be deferred to the leaves of the
derivation. The SWAP rule is useful only in conjunction with APP, the only other
rule that examines the order of the context variables; other occurrences of SWAP

can be either postponed or omitted altogether.

The challenge is to handle APP and SWAP, because it is not obvious where to split
the context in two parts and whether variables should be exchanged first. Since
the context is finite, we could enumerate all permutations and splittings, but this
might lead to an exponential explosion in the number of constraints.

Fortunately, there is a general approach to determine which variables to permute
and where to split the context, based on the rule

〈xm :Am σm〉 ⊢ t : σ→B τ 〈xm :G σm〉, 〈yn :G τn〉, 〈zp :N υp〉 ⊢ u : σ
3APP〈xm :Am σm〉, 〈yn :G τn〉, 〈zp :B υp〉 ⊢ t u : τ

where Ai ∈ {G, F, T}, xi ∈ FV(t), and yj, zk /∈ FV(t). This rule is easy to derive
from APP and ADD. Before applying it, we invoke SWAP repeatedly to separate the
variables occurring free in t (the xi’s) from the others (the yj’s and zk’s).

The remaining hurdle is to determine where to split between the yj’s and the zk’s.
This can be coded as polynomial-size constraints. If B = G, we can ignore the
zk’s and list all variables /∈ FV(t) as part of the yj’s; otherwise, the right-hand part

of the context must have the form 〈yn :G τn〉, 〈zp :B υp〉 already—the SWAP rule
cannot bring it into that form if it is not already in that form. So we keep the vari-
ables /∈ FV(t) in the order in which they appear without distinguishing statically

4.5. Practical Considerations 73

between the yj and zk variables, and generate constraints to ensure that the annota-
tions for the yj’s and zk’s in the conclusion have the desired form G, . . . , G, B, . . . , B
and correspondingly in the second hypothesis but with N instead of B.

The completeness proof rests on two ideas:

• Any APP instance in which some of the variables xi do not occur free in t can
only carry a G-annotation and will eventually be eliminated using ADD.1

• The variable exchanges we perform to bring the xi’s to the left are necessary
to meet the general invariant FV(t) ⊆ {x1, . . . , xm} on all derivations of a
judgment 〈xm :Am σm〉 ⊢ t : σ, and any additional SWAPs can be postponed.

Type inference is in NP because our procedure generates a polynomial-size SAT
problem. It is also NP-hard because we can reduce SAT to it using the following
simple scheme: Translate propositional variables to HOL variables of type α̃→ o
and connectives to the corresponding set operations; for example, (A ∧ ¬ B) ∨ B
becomes (A ∩ B) ∪ B. The propositional formula is satisfiable iff the correspond-
ing term is typable as α̃→T o in some context.

4.5 Practical Considerations

To make monotonicity checking useful in practice, we must add support for user-
defined constants and types, which we have not yet considered. In this section,
we briefly sketch these extensions before we evaluate our approach empirically on
existing Isabelle theories.

4.5.1 Constant Definitions

In principle, user-defined constant symbols are easy to handle: We can simply
build a conjunction from the definitions and the negated conjecture (where the
user-defined symbols appear as variables) and hand it to the monotonicity checker.
Unfortunately, this has disastrous effects on the precision of our method: Even a
simple definition of fα�β leads to a formula of the form (∀x α. f x = t) ∧ ¬ u,
which does not pass the monotonicity check because the universal quantifier re-
quires α /∈ AT+(α). Rewriting the definition to the form f = (λx. t) does not help.
We must thus treat definitions specially.

Definition 4.61. Let cσ be a constant. A formula t is a specification for c if t is
satisfiable in each scope and FV(t) = ∅. Then the (nonempty) set of values in JσKS

that satisfy t is denoted by Spec t
S.

In our application, specifications arise from Isabelle/HOL; we can assume that they
are explicitly marked as such and do not have to recognize them syntactically. Spec-
ifications are trivially monotonic because they are satisfiable in each scope, and we
can omit the monotonicity check for them. However, we must assign an annotated
type to the defined constant, which we can use for checking the rest of the formula.

1In pathological cases such as the application (λy. False) x, the variables not occurring in t can
be mapped to F or T and eliminated using FALSE or TRUE. We can avoid these cases by simply
requiring that terms are β-reduced.

74 Chapter 4. Monotonicity Inference

Definition 4.62. Given an annotated type σ, a specification t for c respects σ if
S ≤α̃ S′ implies that for each a ∈ Spec t

S there exists b ∈ Spec t
S′ such that a ⊑σ b.

If a specification respects σ, we may assume that the defined value is σ-constant
and augment our context with [c :G σ] while checking the rest of the formula.

We can check this property for specification formats occurring in practice. For
brevity, we consider only recursive function definitions of the form ∀x. fσ�τ x =
F f x where the recursion is known to be terminating (as is required by Isabelle’s
function package [106]). The termination argument yields a well-founded relation
Rσ�σ�o such that

� ∀ f g x. (∀y. R y x −→ f y = g y) −→ F f x = F g x (∗)
It then suffices to type-check the functional F, circumventing the quantifiers and
equality in the definition of f.

Lemma 4.63. Let σ, τ be annotated types and t = (∀x. f σ�τ x = F f x) a specifi-
cation for f such that the property (∗) holds for some well-founded relation R. If
[] ⊢ F : (σ→G τ)→G τ, then t respects σ→G τ.

Proof. Let S, S′ be scopes such that S ≤α̃ S andM,M′ be models for S and S′ that
both satisfy t. Let f̂ ∈ Spec t

S and ĝ ∈ Spec t
S′ . We show f̂ ⊑σ→Gτ ĝ.

Let ≺ = JRKM′ and FM(f, x) = JFKM(f)(x). By well-founded induction on b ∈
JσKS′ using the relation ≺, we show that ∀a. a ⊑σ b −→ f̂ (a) ⊑τ ĝ(b). As induction
hypothesis we have ∀b′ ≺ b. ∀a′. a′ ⊑σ b′ −→ f̂ (a′) ⊑ ĝ(b′). We pick an arbitrary
extension g ⊒σ→Gτ f̂ , and define the modified function g′ as follows:

g′(x) =

{
ĝ(x) if x ≺ b

g(x) otherwise

From the induction hypothesis, we know that f̂ ⊑σ→Gτ g′ and can thus use the
typing for F (and Theorem 4.51) to conclude FS(f̂ , a) ⊑τ FS′(g′, b). Moreover, the
condition (∗) implies that FS′(g′, b) = FS′(ĝ, b), since g′ and ĝ behave the same on
≺-smaller elements. Thus, unfolding the fixed-point equation (which holds inM
andM′), we finally get

f̂ (a) = FS(f̂ , a) ⊑τ FS′(g′, b) = FS′(ĝ, b) = ĝ(b) ⊓⊔

4.5.2 Inductive Datatypes

The most important way of introducing new types in Isabelle/HOL is to declare an
inductive datatype using the command

datatype ᾱ κ = C1 σ11 . . . σ1k1
| · · · | Cn σn1 . . . σnkn

Datatypes are a derived concept in HOL [22]; however, our analysis benefits from
handling them specially as opposed to unfolding the underlying construction.

The datatype declaration introduces the type constructor κ, together with the term
constructors Ci of type σi1→G · · · →G σiki

→G ᾱ κ. The type ᾱ κ may occur recur-
sively in the σij’s, but only in positive positions. For simplicity, we assume that

4.5. Practical Considerations 75

any arrows in the σij’s already carry annotations. (In the implementation, anno-
tation variables are used to infer them.) The interpretation Jᾱ κKS is given by the
corresponding free term algebra.

We must now extend the basic definitions of ⊑, ≤, and ATs to this new construct.
For Definition 4.38, we add the following case:

Ci(a1, . . . , aki
) ⊑τ̄ κ Ci(b1, . . . , bki

) iff ∀j ∈ {1, . . . , ki}. aj ⊑σij[ᾱ 7→τ̄] bj

Similarly, Definition 4.39 is extended with

ATs(τ̄ κ) =
⋃

1≤i≤n
1≤j≤ki

ATs(σij[ᾱ 7→ τ̄])

and Definition 4.48 with

σij[ᾱ 7→ τ̄] ≤ σij[ᾱ 7→ τ̄′] for all 1 ≤ i ≤ n, 1 ≤ j ≤ ki

τ̄ κ ≤ τ̄′ κ

To extend our soundness result, we must show that Lemmas 4.41 to 4.50 still hold.
The proofs are straightforward. Constancy of the datatype constructors also fol-
lows directly from the above definitions.

Example 4.64. A theory of lists could comprise the following definitions:

primrec @α list�α list�α list where

Nil @ ys = ys
Cons x xs @ ys = Cons x (xs @ ys)

primrec setα list�α�o where

set Nil = ∅

set (Cons x xs) = {x} ∪ set xs

primrec distinctα list�o where

distinct Nil ←→ True
distinct (Cons x xs) ←→ x /∈ set xs ∧ distinct xs

The table below presents the results of our analyses on three lemmas about lists.

MONOTONIC ANTIMONO.
FORMULA M1 M2 M3 M1 M2 M3

set (xs @ ys) = set xs ∪ set ys · ✓ ✓ ✓ ✓ ✓

distinct (xs @ ys) −→ distinct xs ∧ distinct ys ✓ ✓ ✓ ✓ ✓ ✓

distinct (xs @ ys) −→ set xs ∩ set ys = ∅ · ✓ ✓ ✓ ✓ ✓

4.5.3 Evaluation

What proportion of monotonic formulas are detected as such by our calculi? We
applied Nitpick’s implementations of M1, M2, and M3 on the user-supplied theo-
rems from six highly polymorphic Isabelle theories. In the spirit of counterexample
generation, we conjoined the negated theorems with the relevant axioms. The re-
sults are given below.

76 Chapter 4. Monotonicity Inference

FORMULAS SUCCESS RATE

THEORY M1 M2 M3 TOTAL M1 M2 M3

AVL2 29 33 33 33 88% 100% 100%

Fun 71 94 116 118 60% 80% 98%

Huffman 46 91 90 99 46% 92% 91%

List 441 510 545 659 67% 77% 83%

Map 113 117 117 119 95% 98% 98%

Relation 64 87 100 155 41% 56% 65%

The table indicates how many formulas were found to involve at least one mono-
tonic atomic type using M1, M2, and M3, over the total number of formulas involv-
ing atomic types in the six theories. Since the formulas are all negated theorems,
they are all semantically monotonic (no models exist for any scope).

Ideally, we would have evaluated the calculi on a representative database including
(negated) non-theorems, but we lack such a database. Nonetheless, our experience
suggests that the calculi perform as well on non-theorems as on theorems, because
realistic non-theorems tend to use equality and quantifiers in essentially the same
way as theorems. Interestingly, non-theorems that are derived from theorems by
omitting an assumption or mistyping a variable name are even more likely to pass
the monotonicity check than the corresponding theorems.

Although the study of monotonicity is interesting in its own right and leads to an
elegant theory, our main motivation—speeding up model finders—is resolutely
pragmatic. For Nitpick, which uses a default upper bound of 10 on the cardinality
of the atomic types, we observed a speed increase factor of about 6 per inferred
monotonic type. Since each monotonic type reduces the number of scopes to con-
sider by a factor of 10, we could perhaps expect a 10-fold speed increase; however,
the scopes that can be omitted by exploiting monotonicity are smaller and faster to
check than those that are actually checked.

The time spent performing the monotonicity analysis (i.e., generating the annota-
tion constraints and solving the resulting SAT problem) for M2 is negligible. For
M3, the SAT solver (Jerusat [132]) occasionally reached the time limit of one second,
which explains why M2 beat M3 on the Huffman theory.

4.6 Related Work

Monotonicity has been studied in the context of Alloy before. Although Alloy’s
logic is unsorted, models must give a semantics to “primitive types,” which are
sets of uninterpreted atoms. Early versions of the logic ensured monotonicity with
respect to the primitive types by providing only bounded quantification and disal-
lowing explicit references to the sets that denote the types [95]. Monotonicity has
been lost in more recent versions of Alloy, which allow such references [94, p. 165].
Nonetheless, many Alloy formulas are monotonic, notably those in existential–
bounded-universal form [107].

The satisfiability modulo theories (SMT) community has also shown interest in
monotonicity. The original Nelson–Oppen method allows the combination of deci-
sion procedures for first-order theories meeting certain requirements, notably that

4.6. Related Work 77

the theories are stably infinite (or finitely unsatisfiable) [133]. This criterion has
since been weakened, and one of the remaining requirements on the theories to be
composed is that they be “smooth”—that is, every quantifier-free formula must be
monotonic modulo the theory [186]. Smoothness is usually proved with pen and
paper for the theories that need to be combined.

For some logics, small model theorems provide an upper bound on the cardinality
of a sort [58], primitive type [131], or variable’s domain [156]. If no models exist
below that bound, no larger models exist. The Alloy Analyzer and Paradox exploit
such theorems to terminate early. Our approach is complementary and could be
called a large model theorem.

We presented an earlier version of this chapter at IJCAR 2010 [32]. Following on
the IJCAR 2010 paper, Claessen et al. [61] devised two calculi for first-order logic
similar to ours. Their first calculus is slightly stronger than M1 in that it infers
∀X α̃. f(X) = g(X) monotonic, by ensuring that the extensions of f and g coincide
on new values. Their second calculus handles bounded quantifications specially; it
is closely related to M3 but was developed independently. Each predicate can be
false- or true-extended, corresponding to our F- and T-annotations. The inference
problem is NP-complete, and they use a SAT solver to determine which predi-
cates should be false-extended and which should be true-extended. They observe
that monotonic types can be safely erased when translating from simply typed to
untyped first-order logic and exploit this in their new translation tool Monotonox,
with applications in both theorem provers and model finders. A refinement of their
approach is now implemented in Sledgehammer to encode HOL type information
soundly and efficiently (Section 6.5).

When your hammer is C++,
everything begins to look like a thumb.

— Steve Haflich (1994)

Chapter 5

Case Study:
Nitpicking C++ Concurrency

Previous work formalized the C++ memory model in Isabelle/HOL in an effort to
clarify the new standard’s semantics. Here we employ the model finder Nitpick
to check litmus test programs that exercise the memory model, including a simple
locking algorithm. This is joint work with Tjark Weber, Mark Batty, Scott Owens,
and Susmit Sarkar [37].

5.1 Background

To be reasonably confident of the correctness of a sequential program, we can often
get by with informal arguments based on a reading of the source code. However,
when it comes to concurrent programs, their inherent nondeterminism makes it
extremely difficult to gain confidence of their correctness purely on the basis of in-
formal or semiformal reasoning. Ten-line programs can have millions of possible
executions. Subtle race condition bugs can remain hidden for years despite exten-
sive testing and code reviews before they start causing failures. Even tiny concur-
rent programs expressed in idealized languages with clean mathematical semantics
can be amazingly subtle [68, §1.4].

In the real world, performance considerations prompt hardware designers and
compiler writers to further complicate the semantics of concurrent programs. For
example, at the hardware level, a write operation taking place at instant t might not
yet be reflected in a read at t + 1 from a different thread because of cache effects.
The final authority in this matter is the processor’s memory consistency model.

The Java language abstracts the processor memory models, and compiler reorder-
ing, behind a software memory model designed to be efficiently implementable on
actual hardware. However, the original Java model was found to be flawed [159],
and even the revised version had some unpleasant surprises in store [52, 170, 188].

The new C++ standard, C++11 [1], attempts to provide a clear semantics for con-
current programs, including a memory model and library functions. Batty et al.
[14–16] formalized a large fragment of the prose specification in Isabelle/HOL [140]
(Section 5.2). From the Isabelle formalization, they extracted the core of a tool, CPP-
MEM, that can check litmus test programs—small multithreaded programs that ex-

79

80 Chapter 5. Case Study: Nitpicking C++ Concurrency

ercise various aspects of the memory model. As we have come to expect, the re-
searchers found flaws in the original prose specification and clarified several issues,
which have now been addressed by the standard. To validate the semantics, they
proved the correctness of proposed Intel x86 and IBM POWER implementations of
the concurrency primitives.

In this chapter, we are interested in tool support for verifying litmus test programs.
CPPMEM exhaustively enumerates the possible executions of the program, check-
ing each against the (executable) formal semantics. An attractive alternative is to
apply a SAT solver to the memory model constraints and litmus tests. The Mem-
SAT tool’s success on the Java memory model [188] and experiments described in
Batty et al. [16, §7] suggest that SAT solvers scale better than explicit-state model
checkers, allowing us to verify more complex litmus tests. Nitpick and its predeces-
sor Refute [198] featured in several case studies [25, 34, 98, 120, 197] but were never
successfully applied to a specification as complex as the C++ memory model.

Although the memory model specification was not designed with SAT solving in
mind, we expected that with some adjustments it should be within Nitpick’s reach.
The specification is written in a fairly abstract and axiomatic style, which should
favor SAT solvers. Various Kodkod optimizations help cope with large problems.
Moreover, although the memory model is subtle and complicated, the specification
is mostly restricted to first-order logic with sets, transitive closure, and inductive
datatypes, all of which are handled efficiently in Nitpick or Kodkod.

Initially, though, we had to make drastic changes to the specification so that Nitpick
would scale to handle the simplest litmus tests in reasonable time. These early re-
sults had been obtained at the cost of several days’ work by people who understood
Nitpick’s internals. Based on our experience adapting the specification by hand, we
proceeded to address scalability issues directly in the tool. This resulted in three
new optimizations, described in a previous chapter: heuristic constant unfolding
(Section 3.4.6), necessary datatype values (Section 3.4.7), and a lightweight trans-
lation (Section 3.4.8). With the optimizations in place, a few minor adjustments to
the original specification sufficed to support efficient model finding. We applied
the optimized version of Nitpick to several litmus tests (Section 5.3), including a
simple sequential locking algorithm, thereby increasing our confidence in the spec-
ification’s adequacy. Litmus tests that were previously too large for CPPMEM can
now be checked within minutes.

5.2 The C++ Memory Model

The C++ International Standard [1] defines the concurrency memory model ax-
iomatically, by imposing constraints on the order of memory accesses in program
executions. The semantics of a program is a set of allowed executions. Here we
briefly present the memory model and its Isabelle formalization [14–16], focusing
on the aspects that are necessary to understand the rest of this chapter.

5.2.1 Introductory Example

To facilitate efficient implementations on modern parallel architectures, the C++

memory model (like other relaxed memory models) has no global linear notion of

5.2. The C++ Memory Model 81

time. Program executions are not guaranteed to be sequentially consistent (SC)—
that is, equivalent to a simple interleaving of threads [110]. The following program
fragment is a simple example that can exhibit non-SC behavior:

atomic_int x = 0;

atomic_int y = 0;

{{{

x.store(1, ord_relaxed);

printf("y: %d\n", y.load(ord_relaxed));

|||

y.store(1, ord_relaxed);

printf("x: %d\n", x.load(ord_relaxed));

}}}

(To keep examples short, we use the notation {{{ . . . ||| . . . }}} for parallel com-
position and ord_xxx for memory_order_xxx.)

Two threads write to separate memory locations x and y; then each thread reads
from the other location. Can both threads read the original value of the location
they read from? According to the standard, they can. The program has eight out-
puts that are permitted by the memory model:

x: 0 x: 0 x: 1 x: 1 y: 0 y: 0 y: 1 y: 1

y: 0 y: 1 y: 0 y: 1 x: 0 x: 1 x: 0 x: 1

Among these, the two outputs

x:0

y:0
and

y:0

x:0

exhibit the counterintuitive non-SC behavior.

5.2.2 Memory Actions and Orders

From the memory model’s point of view, program executions consist of memory
actions. The main actions are

L x locking of x
U x unlocking of x
Rord x = v atomic read of value v from x

Word x = v atomic write of value v to x

RMWord x = v1/v2 atomic read–modify–write at x
Rna x = v nonatomic read of value v from x

Wna x = v nonatomic write of value v to x

Ford fence

82 Chapter 5. Case Study: Nitpicking C++ Concurrency

where ord, an action’s memory order, can be any of the following:

sc ord_seq_cst sequentially consistent
rel ord_release release
acq ord_acquire acquire
a/r ord_acq_rel acquire and release
con ord_consume consume
rlx ord_relaxed relaxed

Memory orders control synchronization and ordering of atomic actions. The ord_

seq_cst order provides the strongest guarantees (SC), while ord_relaxed provides
the weakest guarantees. The release/acquire discipline, where writes use ord_

release and reads use ord_acquire, occupies an intermediate position on the con-
tinuum. The weaker variant release/consume, with ord_consume for the reads, can
be implemented more efficiently on hardware with weak memory ordering.

If we wanted to prohibit the non-SC executions in the program above, we could
simply pass ord_seq_cst as argument to the load and store functions instead of
ord_relaxed.

5.2.3 Original Formalization

In place of a global timeline, the standard postulates several relations over different
subsets of a program’s memory actions. These relations establish some weak notion
of time. They are not necessarily total or transitive (and can therefore be hard to
understand intuitively) but must satisfy various constraints.

In the Isabelle formalization of the memory model, a candidate execution X is a
pair 〈Xopsem, Xwitness〉. The component Xopsem specifies the program’s memory ac-
tions (acts), its threads (thrs), a simple typing of memory locations (lk), and four
relations over actions (sb, asw, dd, and cd) that constrain their evaluation order. The
other component, Xwitness, consists of three relations: Read actions read from some
write action (rf), sequentially consistent actions are totally ordered (sc), and a mod-
ification order (mo) gives a per-location linear-coherence order for atomic writes.

Xopsem is given by the program’s operational semantics and can be determined
statically from the program source. Xwitness is existentially quantified. The memory
model imposes constraints on the components of Xopsem and Xwitness as well as
on various relations derived from them. A candidate execution is consistent if it
satisfies these constraints. The top-level definition of consistency is shown below:

definition consistent_execution acts thrs lk sb asw dd cd rf mo sc ≡
well_formed_threads acts thrs lk sb asw dd cd ∧
well_formed_reads_from_mapping acts lk rf ∧
consistent_locks acts thrs lk sb asw dd cd sc ∧
let

rs = release_sequence acts lk mo
hrs = hypothetical_release_sequence acts lk mo
sw = synchronizes_with acts sb asw rf sc rs hrs
cad = carries_a_dependency_to acts sb dd rf
dob = dependency_ordered_before acts rf rs cad

5.2. The C++ Memory Model 83

ithb = inter_thread_happens_before acts thrs lk sb asw dd cd sw dob
hb = happens_before acts thrs lk sb asw dd cd ithb
vse = visible_side_effect acts thrs lk sb asw dd cd hb

in
consistent_inter_thread_happens_before acts ithb ∧
consistent_sc_order acts thrs lk sb asw dd cd mo sc hb ∧
consistent_modification_order acts thrs lk sb asw dd cd sc mo hb ∧
consistent_reads_from_mapping acts thrs lk sb asw dd cd rf sc mo hb vse

The derived relations (rs, hrs, . . . , vse) and the various consistency conditions fol-
low the C++ standard; we omit their definitions. The complete memory model
comprises approximately 1200 lines of Isabelle text.

5.2.4 CPPMEM

For any given Xopsem, there may be one, several, or perhaps no choices for Xwitness

that give rise to a consistent execution. Since the memory model is complex, and
the various consistency conditions and their interactions can be difficult to under-
stand intuitively, tool support for exploring the model and computing the possible
behaviors of C++ programs is highly desirable.

The CPPMEM tool [16] was designed to assist with these tasks. It consists of three
parts: (1) a preprocessor that computes the Xopsem component of a candidate exe-
cution from a C++ program’s source code; (2) a search procedure that enumerates
the possible values for Xwitness; (3) a checking procedure that calculates the derived
relations and evaluates the consistency conditions for each pair 〈Xopsem, Xwitness〉.

For the second part, the CPPMEM developers refrained from “coding up a sophisti-
cated memory-model-aware search procedure in favour of keeping this part of the
code simple” [16]. Their code enumerates all possible combinations for the rf, mo,
and sc relations that respect a few basic constraints:

• sc only contains SC actions and is a total order over them.

• mo only contains pairs (a, b) such that a and b write to the same location; for
each location, mo is a total order over the set of writes at this location.

• rf only contains pairs (a, b) such that a writes a given value to a location and
b reads the same value from that location; for each read b, it contains exactly
one such pair.

Because the search space grows asymptotically with n! in the worst case, where
n is the number of actions in the program execution, CPPMEM is mostly limited
to small litmus tests, which typically involve up to eight actions. This does cover
many interesting tests, but not larger parallel algorithms.

Writing a more sophisticated search procedure would require a detailed under-
standing of the memory model (which we hope to gain through proper tool support
in the first place) and could introduce errors that are difficult to detect—unless, of
course, the procedure was automatically generated from the formal specification.
This is where Nitpick comes into play.

84 Chapter 5. Case Study: Nitpicking C++ Concurrency

5.2.5 Fine-Tuned Formalization

With the optimizations described in Sections 3.4.6 to 3.4.8 in place, Nitpick handles
the memory model specification reasonably efficiently without any modifications.
Nonetheless, it proves worthwhile to fine-tune the specification in three respects.

First, the types act_id, thr_id, loc, and val—corresponding to action IDs, thread IDs,
memory locations, and values—are defined as aliases for nat. This is unfortunate
because it prevents us from specifying different cardinalities for the different no-
tions. A litmus test involving eight actions, five threads, two locations, and two
values gives rise to a much smaller SAT problem if we tell Nitpick to use the cardi-
nalities |act_id| = 8, |thr_id| = 5, and |loc| = |val| = 2 than if all four types are set
to have cardinality 8. To solve this, we replace the aliases

type_synonym act_id = nat
type_synonym thr_id = nat
type_synonym loc = nat

with copies of the natural numbers:

datatype act_id = A0 | ASuc act_id
datatype thr_id = T0 | TSuc thr_id
datatype loc = L0 | LSuc loc

For notational convenience, we define the following abbreviations:

ak ≡ ASuc k A0 tk ≡ TSuc k T0 x ≡ L0 y ≡ LSuc L0

Second, while the unfolding heuristic presented in Section 3.4.6 allowed us to re-
move many nitpick_simp attributes, we found that the heuristic was too aggressive
with respect to two constants, which are better unfolded (using nitpick_unfold). We
noticed them because they were the only relations of arity greater than 3 in the gen-
erated Kodkod problem. Both were called with a higher-order argument that was
not eligible for specialization.

Third, some of the basic definitions in the specification are gratuitously inefficient
for SAT solving. The specification had its own definition of relational composition
and transitive closure, but it is preferable to replace them with equivalent concepts
from Isabelle’s libraries, which are mapped to appropriate FORL constructs. This
is achieved by providing lemmas that redefine the memory model’s constants in
terms of the desired Isabelle concepts:

lemma [nitpick_unfold]: compose R S = R ◦ S
lemma [nitpick_unfold]: tc A R = (restrict_relation R A)+

These lemmas are part of the separate theory file mentioned above. We do not even
need to prove them; since they are intended for model finding, it is enough to assert
them with the sorry placeholder and check them with Nitpick.

Similarly, we supply a more compact definition of the predicate strict_total_order_

over A R. The original definition cleanly separates the constraints expressing the

5.3. Litmus Tests 85

relation’s domain, irreflexivity, transitivity, and totality:

(
∀(a, b) ∈ R. a ∈ A ∧ b ∈ A

)
∧(

∀x ∈ A. (x, x) /∈ R
)
∧(

∀x ∈ A. ∀y ∈ A. ∀z ∈ A. (x, y) ∈ R ∧ (y, z) ∈ R −→ (x, z) ∈ R
)
∧(

∀x ∈ A. ∀y ∈ A. (x, y) ∈ R ∨ (y, x) ∈ R ∨ x = y
)

The optimized formulation

(
∀x y. if (x, y) ∈ R then

{x, y} ⊆ A ∧ x 6= y ∧ (y, x) /∈ R
else

{x, y} ⊆ A ∧ x 6= y −→ (y, x) ∈ R
)
∧

R+ = R

reduces the number of occurrences of A and R, both of which are higher-order
arguments that can be specialized to arbitrarily large terms.

5.3 Litmus Tests

We evaluated Nitpick on several litmus tests designed to illustrate the semantics of
the C++ memory model. Most of these litmus tests had been checked by CPPMEM

and the unoptimized version of Nitpick before [16], so it should come as no surprise
that our experiments did not reveal any flaws in the C++ standard. We did, how-
ever, discover many mistakes in the formalization, such as missing parentheses and
typos (e.g., ∀ instead of ∃). These mistakes had been accidentally introduced dur-
ing maintenance [143, §2] and had gone unnoticed even though the formalization
is used as a basis for formal proofs.

Our experience illustrates once again the need to validate complex specifications,
to ensure that the formal artifact correctly captures the intended semantics of the
informal one (in our case, the C++ standard).

5.3.1 Store Buffering

The first test is simply the introductory example from Section 5.2:

atomic_int x = 0;

atomic_int y = 0;

{{{

x.store(1, ord_relaxed);

printf("y: %d\n", y.load(ord_relaxed));

|||

y.store(1, ord_relaxed);

printf("x: %d\n", x.load(ord_relaxed));

}}}

This program has six actions: two nonatomic initialization writes (Wna), then one
relaxed write (Wrlx) and one relaxed read (Rrlx) in each thread. The diagram below

86 Chapter 5. Case Study: Nitpicking C++ Concurrency

shows the relations sb and asw, which are part of Xopsem and hence fixed by the
program’s operational semantics:

Wna x = 0

sb
��

Wna y = 0

asw &&

asw

++
Wrlx x = 1

sb
��

Wrlx y = 1

sb
��

Rrlx y = 0 Rrlx x = 0

Each vertex represents an action, and an r-edge from a to b indicates that (a, b) ∈ r.
The actions are arranged in three columns corresponding to the threads they belong
to. For transitive relations, we omit transitive edges.

To check a litmus test with Nitpick, we must provideXopsem. We can use CPPMEM’s
preprocessor to compute Xopsem from a C++ program’s source code, but for simple
programs such as this one, we can also translate the code manually. We first declare
abbreviations for the test’s actions:

abbreviation a ≡ Store a0 t0 x 0
abbreviation b ≡ Store a1 t0 y 0
abbreviation c ≡ Atomic_store a2 t1 Ord_relaxed x 1
abbreviation d ≡ Atomic_load a3 t1 Ord_relaxed y 0
abbreviation e ≡ Atomic_store a4 t2 Ord_relaxed y 1
abbreviation f ≡ Atomic_load a5 t2 Ord_relaxed x 0

The read actions, d and f, specify the value they expect to find as last argument to
the constructor. That value is 0 for both threads because we are interested only in
non-SC executions, in which the write actions c and e are disregarded by the reads.

Next, we introduce the components of Xopsem as constants:

definition [nitpick_simp]: acts ≡ {a, b, c, d, e, f}
definition [nitpick_simp]: thrs ≡ {t0, t1, t2}
definition [nitpick_simp]: lk ≡ (λ_. Atomic)
definition [nitpick_simp]: sb ≡ {(a, b), (c, d), (e, f)}
definition [nitpick_simp]: asw ≡ {(b, c), (b, e)}
definition [nitpick_simp]: dd ≡ ∅

definition [nitpick_simp]: cd ≡ ∅

Specialization implicitly propagates these values to where they are needed in the
specification. To avoid clutter and facilitate subexpression sharing, we disable un-
folding by specifying nitpick_simp.

Finally, we look for a model satisfying

consistent_execution acts thrs lk sb asw dd cd rf mo sc

5.3. Litmus Tests 87

where rf, mo, and sc are free variables corresponding to Xwitness. In the interest of
academic transparency, the Nitpick call is shown below in all its unpleasantness:

nitpick [

satisfy, look for a model
need = a b c d e f, the necessary actions (Section 3.4.7)
card act = 6, six actions (a, b, c, d, e, f)
card act_id = 6, six action IDs (a0, a1, a2, a3, a4, a5)
card thr_id = 3, three thread IDs (t0, t1, t2)
card loc = 2, two locations (x, y)
card val = 2, two values (0, 1)
card = 10, maximum cardinality for other types
total_consts, use lightweight translation (Section 3.4.8)
finitize act, pretend act is finite
dont_box disable boxing (Section 3.4.2)

]

With these options, Nitpick needs 4.7 seconds to find relations that witness a non-
SC execution:

mo = {(a, c), (b, e)} rf = {(a, f), (b, d)} sc = ∅

The relations rf and mo are shown in the diagram below:

Wna x = 0

mo

��

rf

��

Wna y = 0
mo

++

rf

""

Wrlx x = 1 Wrlx y = 1

Rrlx y = 0 Rrlx x = 0

The modification-order relation (mo) reveals that the assignments x = 1 and y = 1
take place after the initializations to 0, but the read-from relation (rf) indicates that
the two reads get their values from the initializations and not from the assignments.

If we replace all four relaxed memory accesses with SC atomics, such non-SC be-
havior is no longer possible. Nitpick verifies this in 4.0 seconds by reporting the
absence of suitable witnesses. These results are consistent with our understanding
of the C++ standard.

5.3.2 Load Buffering

This test is dual to the Store Buffering test. Two threads read from separate loca-
tions; then each thread writes to the other location:

atomic_int x = 0;

atomic_int y = 0;

88 Chapter 5. Case Study: Nitpicking C++ Concurrency

{{{

printf("x: %d\n", x.load(ord_relaxed));

y.store(1, ord_relaxed);

|||

printf("y: %d\n", y.load(ord_relaxed));

x.store(1, ord_relaxed);

}}}

With relaxed atomics, each thread can observe the other thread’s “later” write. Nit-
pick finds the following execution in 4.2 seconds:

Wna x = 0

sb
��

mo

��

Wna y = 0

asw && asw
++

mo

""

Rrlx x = 1

sb
��

Rrlx y = 1

sb
��

Wrlx y = 1

rf
88

Wrlx x = 1

rf

ff

Nitpick verifies the absence of a non-SC execution with release/consume, release/
acquire, and SC atomics in 4.1 seconds.

5.3.3 Independent Reads of Independent Writes

Two writer threads independently write to x and y, and two readers read from both
data locations:

atomic_int x = 0;

atomic_int y = 0;

{{{

x.store(1, ord_release);

|||

y.store(1, ord_release);

|||

printf("x1: %d\n", x.load(ord_acquire));

printf("y1: %d\n", y.load(ord_acquire));

|||

printf("y2: %d\n", y.load(ord_acquire));

printf("x2: %d\n", x.load(ord_acquire));

}}}

With release/acquire, release/consume, and relaxed actions, different readers can
observe these writes in opposite order. Nitpick finds an execution in 5.8 seconds:

5.3. Litmus Tests 89

Wna x = 0

sb
�� mo

��

rf

��

Wna y = 0

asw ## asw))

asw

((

asw

))

mo

)) rf

��

Wrel x = 1

rf

44
Wrel y = 1

rf

44
Racq x = 1

sb
��

Racq y = 1

sb
��

Racq y = 0 Racq x = 0

With SC actions, this behavior is not allowed, and Nitpick verifies the absence of a
non-SC execution in 5.2 seconds.

5.3.4 Message Passing

We consider a variant of message passing where one thread writes first to a data
location x and then to a flag y, while two reading threads read both the flag and the
data. There are two initialization writes and two actions in each thread, for a total
of eight actions:

atomic_int x = 0;

atomic_int y = 0;

{{{

x.store(1, ord_relaxed);

y.store(1, ord_relaxed);

|||

printf("y1: %d\n", y.load(ord_relaxed));

printf("x1: %d\n", x.load(ord_relaxed));

|||

printf("x2: %d\n", x.load(ord_relaxed));

printf("y2: %d\n", y.load(ord_relaxed));

}}}

Because all non-initialization actions are relaxed atomics, the two readers can ob-
serve the writes in opposite order. Nitpick finds a witness execution in 5.7 seconds:

Wna x = 0

sb
�� mo

��

rf

��

Wna y = 0

asw %% asw **

asw

,,

mo

rf

��

Wrlx x = 1

sb
��

rf

((
Rrlx y = 1

sb
��

Rrlx x = 1

sb
��

Wrlx y = 1

rf
99

Rrlx x = 0 Rrlx y = 0

90 Chapter 5. Case Study: Nitpicking C++ Concurrency

On the other hand, if the flag is accessed via a release/acquire pair, or via SC atom-
ics, the first reader is guaranteed to observe the data written by the writer thread.
Nitpick finds such an execution (without the second reader) in 4.0 seconds, and
verifies the absence of a non-SC execution also in 4.0 seconds.

5.3.5 Write-to-Read Causality

This test spawns three auxiliary threads in addition to the initialization thread:

atomic_int x = 0;

atomic_int y = 0;

{{{

x.store(1, ord_relaxed);

|||

printf("x1: %d\n", x.load(ord_relaxed));

y.store(1, ord_relaxed);

|||

printf("y: %d\n", y.load(ord_relaxed));

printf("x2: %d\n", x.load(ord_relaxed));

}}}

The first auxiliary thread writes to x; the second thread reads from x and writes
to y; the third thread reads from y and then from x. With relaxed atomics, the third
thread does not necessarily observe the first thread’s write to x even if it observes
the second thread’s write to y and the second thread observes the first thread’s
write to x. Nitpick finds this execution in 4.2 seconds:

Wna x = 0

sb
�� mo

��

rf

��

Wna y = 0

asw %%
asw

**

mo

..

asw

**
Wrlx x = 1

rf
// Rrlx x = 1

sb
��

Rrlx y = 1

sb
��

Wrlx y = 1

rf

99

Rrlx x = 0

The memory model guarantees write-to-read causality for release/acquire and SC
actions. Nitpick verifies the absence of a non-SC execution in 4.4 seconds.

5.3.6 Sequential Lock

This test is more ambitious. The program models a simple sequential locking algo-
rithm inspired by the Linux kernel’s “seqlock” mechanism [109]:

atomic_int x = 0;

atomic_int y = 0;

atomic_int z = 0;

5.3. Litmus Tests 91

{{{

for (int i = 0; i < N; i++) {

x.store(2 * i + 1, ord_release);

y.store(i + 1, ord_release);

z.store(i + 1, ord_release);

x.store(2 * i + 2, ord_release);

}

|||

printf("x: %d\n", x.load(ord_consume));

printf("y: %d\n", y.load(ord_consume));

printf("z: %d\n", z.load(ord_consume));

printf("x: %d\n", x.load(ord_consume));

}}}

The program spawns a writer and a reader thread. The writer maintains a counter x
that gets incremented before and after all writes to the data locations y and z. The
data is “locked” whenever the counter x is odd. The reader eventually accesses the
data, but not without checking x before and after. A non-SC behavior occurs if the
two reads of x yield the same even value (i.e., the lock was free during the two data
reads) but y 6= z (i.e., the data was observed while in an inconsistent state).

Already for N = 1, Nitpick finds the following non-SC execution, where the reader
observes y = 0 and z = 1, in 15.8 seconds:

Wna x = 0

sb
��

mo

��

Wna y = 0

sb
�� mo

��

rf

��

Wna z = 0

asw
((

asw

++

mo

��

Wrel x = 1

sb
��

mo

��

Rcon x = 2

sb
��

Wrel y = 1

sb
��

Rcon y = 0

sb
��

Wrel z = 1

sb
��

rf // Rcon z = 1

sb
��

Wrel x = 2
rf //

rf

CC

Rcon x = 2

With release/acquire instead of release/consume, the algorithm should be free of
non-SC behavior. Nitpick takes 15.8 seconds to exhaustively check the N = 1 case,
86 seconds for N = 2, and 378 seconds for N = 3. If we add a second reader thread,
it takes 86 seconds for N = 1 and 379 seconds for N = 2.

92 Chapter 5. Case Study: Nitpicking C++ Concurrency

Because of the loop, our analysis is incomplete: We cannot prove the absence of
non-SC behavior for all bounds N (or for an arbitrary number of readers), only its
presence. Nonetheless, the small-scope hypothesis, which postulates that “most
bugs have small counterexamples” [94, §5.1.3], suggests that the sequential lock-
ing algorithm implemented in terms of release/acquire atomics is correct for any
number of iterations and reader threads.

5.3.7 Generalized Write-to-Read Causality

Nitpick’s run-time depends on the size of the search space, which is exponential
in the number of actions. To demonstrate how Nitpick scales up to larger litmus
tests, we generalize the Write-to-Read Causality test from 2 to n locations. The
generalized test consists of 2n writes (including n initializations) and n + 1 reads,
thus 3n + 1 actions in total. Since the three witness variables are binary relations
over actions, the state space is of size 23(3n+1)2

.

With relaxed atomics, there is an execution where the last thread does not observe
the first thread’s write. With SC atomics, no such execution exists. The Nitpick run-
times are tabulated below. For comparison, we also include the CPPMEM run-times
(on roughly comparable hardware).

LOCATIONS ACTIONS STATES CPPMEM NITPICK

(n) (3n + 1)
(
23(3n+1)2

)
RLX SC RLX SC

2 7 2147 .0 s .5 s 4 s 4 s
3 10 2300 .0 s 90.5 s 11 s 11 s
4 13 2507 .1 s > 104 s 41 s 40 s
5 16 2768 .2 s > 104 s 132 s 127 s
6 19 21083 .7 s > 104 s 384 s 376 s
7 22 21452 2.5 s > 104 s 982 s 977 s

Every additional location slows down Nitpick’s search by a factor of about 3. Al-
though the search space grows with 2n2

, the search time grows slightly slower
than kn, which is asymptotically better than CPPMEM’s n! worst-case complexity.
CPPMEM outperforms Nitpick on the relaxed version of the test because its basic
constraints reduce the search space to just 2n candidate orders for rf and mo (Sec-
tion 5.2.4). On the other hand, CPPMEM scales much worse than Nitpick when the
actions are SC, because it naively enumerates all 2n · (2n + 1)! combinations for rf,
mo, and sc that meet the basic constraints.

5.4 Related Work

The discovery of fatal flaws in the original Java memory model [159] stimulated
much research in software memory models. We attempt to cover the most relevant
work, focusing on tool support. We refer to Batty et al. [16], Torlak et al. [188], and
Yang et al. [206] for more related work.

MemSAT [188] is an automatic tool based on Kodkod specifically designed for de-
bugging axiomatic memory models. It has been used on several memory models
from the literature, including the Java memory model. A noteworthy feature of
MemSAT is that it produces a minimal unsatisfiable core if the model or the litmus

5.5. Discussion 93

test is overconstrained. MemSAT also includes a component that generates rela-
tional constraints from Java programs, akin to CPPMEM’s preprocessor. Nitpick’s
main advantage over MemSAT for our case study is that it understands higher-
order logic, as opposed to Kodkod’s relational logic.

NemosFinder [206] is another axiomatic memory model checker. Memory models
are expressed as Prolog predicates and checked using either constraint logic pro-
gramming or SAT solving. The tool includes a specification of the Intel Itanium
memory model.

Visual-MCM [124] is a generic tool that checks and graphically displays given exe-
cutions against a memory model specification. The tool was designed primarily as
an aid to hardware designers.

While the above tools are generic, many tools target specific models. Manson and
Pugh [116] developed two simulators for the Java memory model that enumer-
ate the possible executions of a program. Java RaceFinder [99], an extension to
Java PathFinder [193], is a modern successor. Both of these are explicit-state model
checkers. Like CPPMEM (and its predecessor memevents [166]), they suffer from the
state-explosion problem.

5.5 Discussion

We applied the model finder Nitpick to an Isabelle formalization of the C++ stan-
dard’s memory model. Our experiments involved classical litmus tests and did not
reveal any flaws in the C++ standard. This is no surprise: The model has already
been validated by the CPPMEM simulator on several litmus tests, and the correct-
ness proofs of the proposed Intel x86 and IBM POWER implementations give fur-
ther evidence that the Isabelle model captures the standard’s intended semantics.

Verifying the absence of a consistent non-SC execution for the Independent Reads
of Independent Writes test takes about 5.2 seconds using Nitpick, compared with
5 minutes using CPPMEM [16, §7]. Larger SC tests that were never checked with
CPPMEM are now checkable within minutes. There will always be cases where
more dedicated tools are called for, but it is pleasing when a general-purpose tool
outperforms dedicated solutions.

On small litmus tests, Nitpick remains significantly slower than CPPMEM, which
takes less than a second on some of the tests. The bottleneck is the translation of
the memory model into FORL and SAT. The SAT search is extremely fast for small
tests and scales much better than CPPMEM’s simplistic enumeration scheme. On
the largest problems we considered, Nitpick takes a few seconds; then about 95%
of the time is spent in Kodkod, while the rest is spent in MiniSat [74].

For some litmus tests, CPPMEM’s basic constraints reduce the search space consid-
erably. We could probably speed up Nitpick by incorporating these constraints into
the model—for example, by formalizing rf as a map from reads to writes, rather
than as a binary relation over actions. However, this would require extensive mod-
ifications to the formalization, which is undesirable.

The main challenge for a diagnosis tool such as Nitpick is that users of interactive
theorem provers tend to write their specifications so as to make the actual proving

94 Chapter 5. Case Study: Nitpicking C++ Concurrency

easy. In contrast, if the Alloy Analyzer or MemSAT performs poorly on a speci-
fication, the tool’s developers can put part of the blame on the users, arguing for
example that they have “not yet assimilated the relational idiom” [107, p. 7]. We
wish we could have applied Nitpick directly on the Isabelle specification of the
memory model, but without changes to either Nitpick or the specification our ap-
proach would not have scaled to handle even the simplest litmus tests.

We were delighted to see that function specialization, one of the very first optimiza-
tions implemented in Nitpick, proved equal to the task. By propagating arguments
to where they are needed, specialization ensures that no more than two arguments
ever need to be passed at a call site—a dramatic reduction from the 10 or more
arguments taken by many of the memory model’s functions. Without this crucial
optimization, we would have faced the unappealing prospect of rewriting the spec-
ification from scratch.

A proof is a proof. What kind of a proof? It’s a proof.
A proof is a proof, and when you have a good proof,
it’s because it’s proven.

— Jean Chrétien (2002)

Chapter 6

Proof Discovery Using
Automatic Theorem Provers

Sledgehammer [125, 153] is Isabelle’s subsystem for harnessing the power of first-
order automatic theorem provers (ATPs). Given a conjecture, it heuristically selects
a few hundred relevant lemmas from Isabelle’s libraries, translates them to un-
typed first-order logic along with the conjecture, and sends the resulting problem
to ATPs (Section 6.2). Sledgehammer is very effective and has achieved great pop-
ularity with users, novices and experts alike.

The Cambridge team that originally developed Sledgehammer included Jia Meng,
Lawrence Paulson, Claire Quigley, and Kong Woei Susanto. Over the years, the
tool has been improved, tested, and evaluated by members of the Munich team—
notably Sascha Böhme, Fabian Immler, Philipp Meyer, Tobias Nipkow, Makarius
Wenzel, and the author of this thesis.

This chapter presents some of the latest developments. We extended the tool to
invoke satisfiability modulo theories (SMT) solvers, which combine propositional
reasoning and decision procedures for equality and arithmetic (Section 6.3). We
developed sound and efficient encodings of higher-order features in untyped first-
order logic to address long-standing soundness issues (Sections 6.4 and 6.5). We
addressed a range of unglamorous but important technical issues (Section 6.6). We
evaluated various aspects of the tool on a representative set of Isabelle theories
(Section 6.7). Finally, we adapted the Isar proof construction code so that it delivers
direct proofs (Section 6.8). Some of these improvements are joint work with Sascha
Böhme, Charles Francis, Lawrence Paulson, Nicholas Smallbone, and Nik Sultana;
precise credits are given below.

6.1 TPTP Syntax

The TPTP World [180] is a well-established infrastructure for supporting the auto-
mated reasoning community. It includes a vast problem library, the Thousands of
Problems for Theorem Provers (TPTP) [179], as well as specifications of concrete
syntaxes to facilitate interchange of problems and solutions: The untyped clause
normal form (CNF) and first-order form (FOF) are implemented in dozens of rea-
soning tools, and a growing number of reasoners can process the “core” typed first-

95

96 Chapter 6. Proof Discovery Using Automatic Theorem Provers

order form (TFF0) [183], which provides simple monomorphic types (sorts) and
interpreted arithmetic, or the corresponding higher-order form (THF0) [20]. The
TPTP community recently extended TFF0 with rank-1 polymorphism [35].

CNF: Clause Normal Form. The TPTP CNF syntax provides an untyped classical
first-order logic with equality, which closely corresponds to the internal represen-
tation used in most automatic provers. It is parameterized by sets of function sym-
bols (f, g, . . .), predicate symbols (p, q, . . .), and variables (X, Y, . . .). Function and
predicate symbols are assigned fixed arities. The terms, atoms, literals, and clauses
of CNF have the following syntaxes.1

Terms: Atoms:
t ::= X variable a ::= p(t1, . . . , tn) predicate atom
| f(t1, . . . , tn) function term | t1 = t2 equality

Literals: Clauses:
l ::= a positive literal c ::= l1 ∨ · · · ∨ ln

| ¬ a negative literal

Variable names start with an upper-case letter, to distinguish them from function
and predicate symbols. Variables are interpreted universally in a clause. Nullary
function symbols c are called constants and are normally written without parenthe-
ses in terms—i.e., c rather than c(). The negative literal ¬ t = u is called disequality
and is written t 6= u.

A CNF problem is a set of clauses, where the conjecture is negated and the axioms
appear as is. An interpretation of the function and predicate symbols is a model of
a set of clauses iff all ground instances of all clauses evaluate to ⊤. The aim of an
automatic prover is to derive the empty clause (⊥) from the problem’s clauses using
some appropriate calculus (typically based on resolution, tableaux, or instantiation)
or, equivalently, to show that the problem is unsatisfiable. In case of success, the
conjecture is provable from the axioms.

FOF: First-Order Form. The FOF syntax extends CNF with the familiar connec-
tives (¬, ∨, ∧,−→,←→) and quantifiers (∀, ∃), which can be freely nested. Popular
automatic provers such as E, SPASS, and Vampire include clausifiers that translate
FOF problems into CNF, introducing Skolem functions to encode existential vari-
ables. For example, the FOF formula

∀N. N = zero ∨ ∃M. N = suc(M)

would be translated into the CNF clause

N = zero ∨ N = suc(m(N))

where m is a Skolem function.

1We take some liberties with the concrete TPTP syntaxes. In particular, we prefer traditional nota-
tions (¬, ∨, 6=, . . .) to ASCII symbols (~, |, !=, . . .).

6.2. Sledgehammer and Metis 97

TFF0: Core Typed First-Order Form. The typed first-order form (TFF) is a re-
cent addition to the TPTP family. The core syntax TFF0 extends FOF with simple
monomorphic types (sorts) and interpreted arithmetic. Each n-ary function symbol
f and predicate symbol p must be declared with a type signature:

f : σ1 × · · · × σn→ σ p : σ1 × · · · × σn→ o

The pseudo-type o of Booleans is used for the result of predicates. The type ι of
individuals is predefined but has no particular semantics. An exhaustion rule for
(uninterpreted) natural numbers is presented below:

zero : nat
suc : nat→ nat

∀N nat. N = zero ∨ ∃Mnat. N = suc(M)

TFF1: Typed First-Order Form with Polymorphism. TFF1 is an extension of
TFF0 with rank-1 polymorphism. Types are either type variables α or applied type
constructors ᾱ κ. Type declarations are of the forms

f : ∀α1 . . . αm. σ1 × · · · × σn→ σ p : ∀α1 . . . αm. σ1 × · · · × σn→ o

The symbols ×, →, and o are part of the type signature syntax; they are not type
constructors. Uses of f and p in terms require m type arguments specified in angle
brackets and n term arguments specified in parentheses:

f〈τ1, . . . , τm〉(t1, . . . , tn) p〈τ1, . . . , τm〉(t1, . . . , tn)

The type arguments completely determine the type of the arguments and, for func-
tions, of the result. In a departure from the official TFF1 syntax, we omit the type
arguments if they are irrelevant or can be deduced from the context; in addition,
we sometimes use superscripts to indicate type constraints.

THF0: Core Typed Higher-Order Form. The THF0 syntax is an effective super-
set of TFF0 similar to Isabelle’s higher-order logic but without polymorphism or
type classes. The types of THF0 are those of TFF0 extended with a binary type con-
structor→ that can be arbitrarily nested, to allow curried functions and functions
with higher-order arguments, and o is a first-class type. Function application is
performed via an explicit left-associative application operator @; thus, THF0 syn-
tactically requires f @ X @ Y where the first-order TPTP syntaxes have f(X, Y) and
Isabelle/HOL has f x y. The exhaustion rule for nat becomes

zero : nat
suc : nat→ nat

∀N nat. N = zero ∨ ∃Mnat. N = suc @ M

6.2 Sledgehammer and Metis

Sledgehammer’s main processing steps consist of relevance filtering, translation
to untyped first-order logic, ATP invocation, proof reconstruction, and proof mini-
mization. For proof reconstruction, it is assisted by the metis proof method [92,153].

98 Chapter 6. Proof Discovery Using Automatic Theorem Provers

Relevance Filtering. Sledgehammer employs a simple relevance filter [126] to ex-
tract a few hundred lemmas that seem relevant to the current conjecture from Isa-
belle’s enormous libraries. The relevance test is based on how many symbols are
shared between the conjecture and each candidate lemma. Although crude, this
filter greatly improves Sledgehammer’s success rate, because most ATPs perform
poorly in the presence of thousands of axioms.

Translation into First-Order Logic. HOL is much richer than the ATPs’ untyped
first-order logics (CNF and FOF). Sledgehammer uses various techniques to trans-
late higher-order formulas to first-order logic [125]. The translation is lightweight
but unsound; the ATP proofs can be trusted only after they have been reconstructed
in Isabelle. Higher-order features complicate the translation: λ-abstractions are
rewritten to combinators, and curried functions are passed varying numbers of ar-
guments by means of an explicit application operator.

Parallel ATP Invocation. For a number of years, Isabelle has emphasized par-
allelism to exploit modern multi-core architectures [203]. Accordingly, Sledge-
hammer invokes several ATPs in parallel, with great success: Running E [167],
SPASS [200], and Vampire [163] together for five seconds solves as many prob-
lems as running a single automatic prover for two minutes [44, §8]. The automatic
provers are run in the background so that users can keep working during the proof
search, although most users find it hard to think while automatic provers are active
and prefer to wait for the responses.

Proof Reconstruction. As in other LCF-style theorem provers [83], Isabelle theo-
rems can only be generated within a small inference kernel. It is possible to bypass
this safety mechanism if some external tool is to be trusted as an oracle, but all or-
acle inferences are tracked. Sledgehammer performs true proof reconstruction by
running Metis, a first-order resolution prover written in ML by Joe Hurd [92]. Al-
though Metis was designed to be interfaced with an LCF-style interactive theorem
prover (HOL4), integrating it with Isabelle’s inference kernel required significant
effort [153]. The resulting metis proof method is given the short list of facts refer-
enced in the proof found by the external ATP.1 The metis call is all that remains
from the Sledgehammer invocation in the Isabelle theory, which can then be re-
played without external provers. Since metis is given only a handful of facts, it
often succeeds almost instantly.

Proof Minimization. Reconstruction using metis loses about 5% of ATP proofs
because Metis takes too long. One reason is that automatic provers frequently use
many more facts than are necessary, making it harder for metis to re-find the proof.
The minimization tool takes a set of facts found by a prover and repeatedly calls the
prover with subsets of the facts to find a minimal set. Depending on the number of
initial facts, it relies on either of these two algorithms:

• The naive linear algorithm attempts to remove one fact at a time. This can
require as many prover invocations as there are facts in the initial set.

1To avoid confusion between the Isabelle proof method and the underlying first-order prover, we
consistently write metis for the former and Metis for the latter.

6.3. Extension with SMT Solvers 99

• The binary algorithm, due to Bradley and Manna [47, §4.3], recursively bi-
sects the facts. It performs best when a small fraction of the facts are actually
required [44, §7].

Example 6.1. In the Isabelle proof below, taken from a formalization of the Robbins
conjecture [196], four of the five subproofs are discharged by a metis call generated
by Sledgehammer using an ATP:

proof –
let z = −(x ⊔ −y) and ky = y ⊔ k ⊗ (x ⊔ z)
have −(x ⊔ −ky) = z by (simp add: copyp0)
hence −(−ky ⊔ −(−y ⊔ z)) = z by (metis assms sup_comm)
also have −(z ⊔ −ky) = x by (metis assms copyp0 sup_comm)
hence z = −(−y ⊔ −(−ky ⊔ z)) by (metis sup_comm)
finally show −(y ⊔ k ⊗ (x ⊔ −(x ⊔ −y))) = −y by (metis eq_intro)

qed

The example is typical of the way Isabelle users employ the tool: If they understand
the problem well enough to propose some intermediate properties, all they need to
do is state a progression of properties in small enough steps and let Sledgehammer
or an automatic Isabelle tactic prove each one.

6.3 Extension with SMT Solvers

It is widely recognized that combining automated reasoning systems of different
types can deliver huge rewards. First-order ATPs are powerful and general, but
they can usefully be complemented by other technologies. Satisfiability modulo
theories (SMT) is a powerful technology based on combining a SAT solver with
decision procedures for first-order theories, such as equality, integer and real arith-
metic, and bit-vector reasoning. SMT solvers are particularly well suited to dis-
charging large proof obligations arising from program verification. Although SMT
solvers are automatic theorem provers in a general sense, we find it convenient
to reserve the abbreviation ATP for more traditional systems, especially resolution
and tableau provers.1

In previous work, Böhme integrated the SMT solvers CVC3 [12], Yices [71] and
Z3 [66] with Isabelle as oracles and implemented step-by-step proof reconstruction
for Z3 [41, 42, 45]. The resulting smt proof method takes a list of problem-specific
facts that are passed to the SMT solver along with the conjecture (Section 6.3.1).
While a motivated user can go a long way with the smt proof method [43], the need
to specify facts and to guess that a conjecture could be solved by SMT makes it hard
to use. As evidence of this, the Isabelle theories accepted in the Archive of Formal
Proofs [102] in 2010 and early 2011, after the introduction of smt, contain 7958 calls
to Isabelle’s simplifier, 928 calls to its tableau prover, 219 calls to metis (virtually all
generated using Sledgehammer), but not even one smt call.

1This distinction is mostly historical. The TPTP and SMT communities are rapidly converging [183,
§1], with more and more ATPs supporting typical SMT features such as arithmetic and sorts, and
SMT solvers parsing TPTP syntaxes. There is also a strong technological connection between TPTP
instantiation-based provers (such as Equinox [57] and iProver [104]) and SMT solvers.

100 Chapter 6. Proof Discovery Using Automatic Theorem Provers

Can typical Isabelle users benefit from SMT solvers? We assumed so and took the
obvious next step, namely to have Sledgehammer run SMT solvers in parallel with
ATPs, reusing the existing relevance filter and parallel architecture (Section 6.3).
This idea seemed promising for a number of reasons:

• ATPs and SMT solvers have complementary strengths. The former handle
quantifiers more elegantly; the latter excel on large, mostly ground problems.

• The translation of higher-order constructs and types is done differently for
the SMT solvers than for the ATPs—differences that should result in more
proved goals.1

• Users should not have to guess whether a problem is more appropriate for
ATPs or SMT solvers. Both classes of prover should be run concurrently.

The Sledgehammer–SMT integration is, to our knowledge, the first of its kind, and
we had no clear idea of how successful it would be as we started the implementa-
tion work. Would the SMT solvers only prove conjectures already provable using
the ATPs, or would they find original proofs? Would the decision procedures be
pertinent to typical interactive goals? Would the SMT solvers scale in the face of
hundreds of quantified facts translated en masse, as opposed to carefully crafted
axiomatizations?

We were pleased to find that the SMT solvers are up to the task and add consid-
erable power to Sledgehammer. The SMT integration is joint work with Sascha
Böhme and Lawrence Paulson [28].

6.3.1 The smt Proof Method

The smt proof method [41,42,45] developed by Böhme interfaces Isabelle with SMT
solvers. It translates the conjecture and any user-supplied facts to the SMT solvers’
many-sorted first-order logic, invokes a solver, and (depending on the solver) ei-
ther trusts the result or attempts to reconstruct the proof in Isabelle.

Translation into First-Order Logic. The translation maps equality and arithmetic
operators to the corresponding SMT-LIB 1.2 [160] concepts.2 SMT-LIB is a standard
syntax supported by most SMT solvers; it corresponds roughly to the monomor-
phic typed first-order form (TFF0) of TPTP. Many-sorted first-order logic’s support
for sorts would seem to make it more appropriate to encode HOL type informa-
tion than untyped first-order logic, but it does not support polymorphism. The
solution is to monomorphize the formulas: Polymorphic formulas are iteratively
instantiated with relevant monomorphic instances of their polymorphic constants.
This process is iterated a bounded number of times to obtain the monomorphized
problem. Partial applications are translated using an explicit application opera-
tor. In contrast to Sledgehammer’s combinator approach, the smt method lifts λ-
abstractions into new “supercombinators” [90].

1There are also many efficiency, readability, and robustness advantages of obtaining several proofs
for the same goal from different sources [182].

2Support for SMT-LIB 2.0 [11] is future work.

6.3. Extension with SMT Solvers 101

Proof Reconstruction. CVC3 and Z3 provide independently checkable proofs of
unsatisfiability. Proof reconstruction is currently supported for Z3, whereas CVC3
and Yices can be invoked as oracles. Reconstruction relies extensively on standard
Isabelle proof methods such as the simplifier [134], the tableau prover [147], and
the arithmetic decision procedures [53]. Certificates make it possible to store Z3
proofs alongside Isabelle theories, allowing proof replay without Z3; only if the
theories change must the certificates be regenerated. Using SMT solvers as oracles
requires trusting both the solvers and the smt method’s translation, so it is generally
frowned upon.

Example 6.2. The integer recurrence relation xi+2 = |xi+1| − xi has period 9. This
property can be proved using the smt method as follows [41, §1.2]:

lemma x3 = |x2| − x1 ∧ x4 = |x3| − x2 ∧ x5 = |x4| − x3 ∧
x6 = |x5| − x4 ∧ x7 = |x6| − x5 ∧ x8 = |x7| − x6 ∧
x9 = |x8| − x7 ∧ x10 = |x9| − x8 ∧ x11 = |x10| − x9 =⇒
x1 = x10 ∧ x2 = x11

by smt

SMT solvers find a proof almost instantly, and proof reconstruction (if enabled)
takes a few seconds. In contrast, Isabelle’s arithmetic decision procedure requires
several minutes to establish the same result. This example does not require any
problem-specific facts, but these would have been supplied as arguments in the
smt call just like for metis in Example 6.1.

6.3.2 Solver Invocation

Extending Sledgehammer with SMT solvers was largely a matter of connecting ex-
isting components: Sledgehammer’s relevance filter and minimizer with the smt
method’s translation and proof reconstruction. Figure 6.1 depicts the resulting ar-
chitecture, omitting proof reconstruction and minimization.

Sledgehammer

Relevance filter

E SPASS Z3 CVC3 Yices

Relevance filter

ATP translation SMT tr. SMT translation

Metis
proof

Metis
or SMT
proof

Metis
or SMT
proof

Metis
or SMT
proof

Metis
proof

Metis
proof

Vampire

Figure 6.1: Sledgehammer’s extended architecture

102 Chapter 6. Proof Discovery Using Automatic Theorem Provers

Two instances of the relevance filter run in parallel, to account for different sets of
built-in symbols. The relevant facts and the conjecture are translated to the ATP
or SMT version of first-order logic, and the resulting problems are passed to the
provers. The translation for Z3 is done slightly differently than for CVC3 and Yices
to take advantage of the former’s support for nonlinear arithmetic.

In our first experiments, we simply invoked Z3 as an oracle with the monomorph-
ized relevant facts, using the same translation as for the smt proof method. The
results were disappointing. Several factors were to blame:

• The translation of hundreds of facts took many seconds.

• It took us a while to get the bugs out of our translation code. Syntax errors in
many generated problems caused Z3 to give up immediately.

• Z3 often ran out of memory after a few seconds or, worse, crashed.

Latent issues both in our translation and in Z3 were magnified by the number of
facts involved. Earlier experience with SMT solvers had involved only a few facts.

The bottleneck in the translation was monomorphization. Iterative expansion of
a few hundred HOL formulas yielded thousands of monomorphic instances. We
reduced the maximum number of iterations from 10 to 3, to great effect.

The syntax errors were typically caused by confusion between formulas and terms
or the use of a partially applied built-in symbol (both of which are legal in HOL).
These were bugs in the smt proof method; we gradually eradicated them.

We reported the segmentation faults to the Z3 developers, who released an im-
proved version. The bug was located in Z3’s proof generation facility, which is
disabled by default and hence not as well tested as the rest of the solver. To han-
dle the frequent out-of-memory conditions, we modified Sledgehammer to retry
aborted solver calls with half the facts. This simple change was enough to increase
the success rate dramatically.

6.3.3 Proof Reconstruction

In case of success, Sledgehammer extracts the facts referenced in the SMT proof—
the unsatisfiable core—and generates an smt call with these facts supplied as argu-
ments. For example:

by (smt assms copyp0 sup_comm)

The proof method invokes Z3 to re-find the proof and replays it step by step. The
Z3 proof can also be stored alongside the Isabelle theory as a certificate to avoid
invoking Z3 each time the proof is rechecked. Proof minimization can be done as
for ATP proofs to reduce the number of facts.

To increase the success rate and reduce the dependency on external solvers or cer-
tificates, Sledgehammer first tries metis for a few seconds. If this succeeds, Sledge-
hammer generates a metis call rather than an smt call. This will of course fail if the
proof requires theories other than equality.

6.3. Extension with SMT Solvers 103

One of the less academically rewarding aspects of integrating third-party tools is
the effort spent on solving mundane issues. Obtaining an unsatisfiable core from
the SMT solvers turned out to be surprisingly difficult:

• CVC3 returns a full proof, but somehow the proof refers to all facts, whether
they are actually needed or not, and there is no easy way to find out which
facts are really needed. We rely on Sledgehammer’s proof minimizer and its
binary algorithm to reduce the facts to a reasonable number.

• Yices can output a minimal core, but for technical reasons only when its native
input syntax is used rather than the standard SMT-LIB 1.2 format. We tried
using off-the-shelf file format converters to translate SMT-LIB 1.2 to 2 then to
Yices, but this repeatedly crashed. In the end, we settled for the same solution
as for CVC3.

• For Z3, we could reuse our existing proof parser, which we need to recon-
struct proofs. The proof format is fairly stable, although new releases often
come with various minor changes.

6.3.4 Relevance Filtering

The relevance filter gives more precise results if it ignores HOL constants that are
translated to built-in constructs. For ATPs, this concerns equality, connectives, and
quantifiers. SMT solvers support a much larger set of built-in constructs, notably
arithmetic operators. It was straightforward to generalize the filter code so that it
performs its task appropriately for SMT solvers. As a result, a fact such as 1 + 1 =
2 int might be considered relevant for the ATPs but will always be left out of SMT
problems, since it involves only built-in symbols. (Indeed, the fact is a tautology of
linear arithmetic.)

Observing that some provers cope better with large fact bases than others, we op-
timized the maximum number of relevant facts to include in a problem indepen-
dently for each prover. The maxima we obtained are 150 for CVC3 and Yices and
250 for Z3, which is comparable to the corresponding figures for the ATPs.

6.3.5 Example

A gratifying example arose on the Isabelle mailing list [138] barely one week after
we had enabled SMT solvers in the development version of Sledgehammer. A
novice was experimenting with a simple arithmetic datatype:

datatype arith = Z | Succ arith | Pred arith

inductive isvaluearith�o where

isvalue Z
isvalue M =⇒ isvalue (Succ M)

inductive steparith�arith�o where

s_succ: step m m′ =⇒ step (Succ m) (Succ m′)
s_pred_zero: step (Pred Z) Z
s_pred: step m m′ =⇒ step (Pred m) (Pred m′)
s_pred_succ: isvalue v =⇒ step (Pred (Succ v)) v

104 Chapter 6. Proof Discovery Using Automatic Theorem Provers

He wanted to prove the following property but did not know how to proceed:

lemma step (Pred Z) m =⇒ m = Z

Tobias Nipkow helpfully supplied a structured Isar proof:

lemma

assumes step (Pred Z) m
shows m = Z

using assms
proof cases

case s_pred_zero thus m = Z by simp
next

case (s_pred m′)
from ‘step Z m′ ’ have False by cases
thus m = Z by blast

qed

The proof is fairly simple by interactive proving standards, but it nonetheless rep-
resents a few minutes’ work to a seasoned user (and, as we saw, was too difficult
for a novice). Nipkow then tried the development version of Sledgehammer and
found a much shorter proof due to Z3:

by (smt arith.simps(2,4,5,8) step.simps)

Although it involves no theory reasoning beyond equality, the ATPs failed to find it
within 30 seconds because of the presence of too many extraneous facts. The eval-
uation in Section 6.7 confirms that this is no fluke: SMT solvers often outperform
the ATPs even on nonarithmetic problems.

6.4 Elimination of Higher-Order Features

A central component of Sledgehammer is its translation module, which encodes
Isabelle/HOL formulas in the untyped first-order logic understood by the resolu-
tion provers E, SPASS, Vampire, and Metis.1 Meng and Paulson [125] designed the
translation at the heart of Sledgehammer, inspired by Hurd’s work in the context
of HOL98 and HOL4 [91, 92].

It is convenient to view the translation as a two-step process:

1. The higher-order features of the problem are eliminated, yielding a first-order
problem with polymorphic types and type classes: λ-abstractions are rewrit-
ten to combinators, and curried functions are passed varying numbers of ar-
guments via an explicit application operator, hAPP. This step is described in
this section.

2. The type information is encoded in the target logic. Meng and Paulson had
the TPTP CNF format as their target; our main target is FOF, but we are also
interested in TFF0, TFF1, and even THF0. This step is described in Section 6.5.

1The translation to the SMT-LIB format also plays an important role, but it lies within the scope of
Böhme’s Ph.D. thesis [41].

6.4. Elimination of Higher-Order Features 105

The higher-order features to eliminate are listed below, with an example of each.

1. Higher-order quantification: ∀x. ∃ f . f x = x

2. Higher-order arguments: map f [x] = [f x]

3. Partial function applications: f = g −→ f x = g x

4. λ-abstractions: (λx y. y + x) = (+)

5. Formulas within terms: p (x a = x) −→ p True

6. Terms as formulas: x o

After examining several schemes, Meng and Paulson adopted a translation that
eliminates higher-order features locally, yielding a smooth transition from purely
first-order to heavily higher-order problems. To give a flavor of the translation, here
are the six formulas above after their higher-order features have been eliminated,
expressed in a TFF1-like syntax:

1. ∀X α. ∃F (α, α) fun. hAPP(F, X) = X

2. map(F, cons(X, nil)) = cons(hAPP(F, X), nil)

3. F = G −→ hAPP(F, X) = hAPP(G, X)

4. c(plus) = plus

5. p(fequal(X a, X)) −→ p(true)

6. hBOOL(X)

In these and later examples, we rely on the reader’s discernment to identify + in
Isabelle/HOL with plus in first-order logic, [] with nil, Cons with cons, True with
true, x with X, and so on. In the rest of this section, we expand on Meng and
Paulson’s translation and discuss some alternatives.

6.4.1 Arguments and Predicates

Following common practice, Meng and Paulson enforce the first-order distinction
between terms and formulas by introducing two special symbols, which they call
@ and B in their paper [125, §2.1] and hAPP and hBOOL in their implementation.

• The hAPP function symbol serves as an explicit application operator; it takes
a (curried) function and an argument and applies the former on the latter. It
permits the application of a variable: F(c) is illegal in first-order logic, but
hAPP(F, c) is legal. It also makes it possible to pass a variable number of
arguments to a function, as is often necessary if the problem requires partial
function applications.

• The hBOOL symbol is a predicate that yields true iff its Boolean term argu-
ment equals True. Intuitively, hBOOL(t) is the same as t = true, where true is
the uninterpreted constant symbol corresponding to the HOL constant True.

The special symbols hAPP and hBOOL can hugely burden problems if introduced
systematically for all arguments and predicates. To reduce clutter, Meng and Paul-
son compute the minimum arity n needed for each symbol and pass the first n argu-
ments directly, falling back on hAPP for additional arguments. This optimization

106 Chapter 6. Proof Discovery Using Automatic Theorem Provers

works fairly well and has long been the default mode of operation, but it some-
times makes problems unprovable. For example, from the HOL lemmas Suc 0 = 1
and map f [x] = [f x] we would expect the conjecture

∃gnat�nat. map g [0] = [1]

to be provable, by taking Suc as witness for g. However, the first-order problem

suc(zero) = one
map(F, cons(X, nil)) = cons(hAPP(F, X), nil)
map(G, cons(zero, nil)) 6= cons(one, nil)

(where the last clause is the negated conjecture) is unprovable. Confusingly, if we
supply an additional fact where Suc appears without argument, say, Suc 6= id, Suc
is translated to a nullary function symbol unifiable with F and G, and the problem
becomes provable, even though the additional fact is not referenced in the proof.

This incompleteness meant that Sledgehammer would sometimes miss proofs. The
same issue affected the translation to SMT-LIB [41, §2.2.3]. A different trade-off was
made for metis and the proof minimizer: In problems that fell outside a first-order
fragment of HOL, hAPP and hBOOL were systematically introduced to ensure that
proofs found by an ATP are not lost because of this subtle issue.

Since the issue is connected to higher-order quantifiers, which rarely occur in prac-
tice, a better compromise is possible: We can look for essentially universal variables
(i.e., non-skolemizable variables) having a function type σ in the problem and re-
quire each constant of type τ1→· · ·→ τn→ σρ, where σρ is an instance of σ, to take
at most their first n arguments directly, using hAPP for any additional arguments.
This can burden the translation, but the gain in reliability and predictability is such
that we have now made this the preferred mode of operation.

A similar issue affects predicates. Meng and Paulson map HOL functions of type
σ→ o to predicate symbols if possible and rely on the hBOOL predicate to turn the
remaining Boolean terms into formulas. From null [], we would expect ∃pα list�o. p []
to be derivable, but this is not the case if null is translated to a predicate symbol. If
we make null a nullary function symbol instead, the problem becomes

hBOOL(hAPP(null, nil))
¬ hBOOL(hAPP(P, nil))

and it can be proved by resolving the two clauses together (with P = null). The
general remedy is simple: If the problem contains a universal variable ranging over
σ1→· · ·→ σm→ o and a HOL constant of type τ1→· · ·→ τn→ σ1ρ→· · ·→ σmρ→ o,
where the types σiρ are instances of the corresponding types σi with respect to the
same substitution ρ, the constant should be translated to a function symbol of arity
n or less, with hAPP and hBOOL inserted as needed, rather than to a predicate.

Although the examples above are artificial, the issues they illustrate arise in real-
world examples. As observed elsewhere [152, §5], Sledgehammer’s performance
on higher-order problems is unimpressive; as a first step in the right direction, we
should at the very least make sure that easy higher-order problems are still prov-
able when they reach the first-order provers.

6.4. Elimination of Higher-Order Features 107

6.4.2 Translation of λλλ-Abstractions

Meng and Paulson evaluated three schemes for eliminating λ-abstractions: λ-lifting
[90], the Curry combinators (I, K, S, B, C) [190], and the modified Turner combina-
tors (Curry plus S′, B∗, C′) [97, §16.2; 190]. The combinator approaches enable the
automatic provers to synthesize λ-terms (an extreme example of which is given
in Section 6.5.1) but tend to yield bulkier formulas than λ-lifting: The translation
is quadratic in the worst case, and the equational definitions of the combinators
are very prolific in the context of resolution. In spite of this, Meng and Paulson
found the Curry combinators to be superior to λ-lifting and the Turner combina-
tors on their benchmarks and kept them as the only supported translation scheme
in Sledgehammer and metis.

Following the success of the smt method, based on λ-lifting, we carried out new
experiments with the tried and tested smt implementation of λ-lifting [41, §2.2.2].
In addition, we introduced a hybrid scheme that characterizes each λ-lifted con-
stant both using a lifted equation c x1 . . . xn = t and via Curry combinators. The
different schemes are evaluated in Section 6.7.3.

6.4.3 Higher-Order Reasoning

Beyond the translation of λ-abstractions, we looked into several ways to improve
Sledgehammer’s higher-order reasoning capabilities. These are presented below.
An alternative to this mixed bag of techniques is to integrate genuine higher-order
ATPs as backends; this is considered in Section 6.5.3.

Extensionality. The relevance filter previously left out the extensionality axiom

(
∧

x. f x = g x) =⇒ (λx. f x) = (λx. g x)

because it involves only logical constants, which are ignored for the relevance cal-
culations. However, in its translated form

∃X. hAPP(F, X) = hAPP(G, X) −→ F = G

extensionality characterizes the otherwise unspecified hAPP operator. The axiom
is now included in problems that use hAPP.

Proxies. First-order occurrences of logical constants can be translated to the cor-
responding TPTP constructs. The remaining occurrences, such as = and True in

p (x a = x) −→ p True

must be translated somehow. The standard solution is to treat higher-order occur-
rences of Booleans the same way as we would for any other HOL type, mapping
o to an uninterpreted (deeply embedded) type bool, True to an uninterpreted con-
stant true, and False to an uninterpreted constant false. Connectives, quantifiers,
and equality can be embedded in the same way. The uninterpreted function sym-
bols that represent the logical constants inside the term language are called proxies.
By axiomatizing the proxies, we permit a restricted form of higher-order reasoning.

Meng and Paulson handle higher-order occurrences of equality in this way [125,
§2.1], by introducing the proxy fequal (where f highlights that it is a function and

108 Chapter 6. Proof Discovery Using Automatic Theorem Provers

not a predicate) axiomatized as

hBOOL(hAPP(hAPP(fequal, X α), Y)) ←→ X = Y

Being a nullary function, fequal can be used in any context, by introducing hAPP
and hBOOL as appropriate.

We have now extended this approach to the connectives and partially to the ∀
and ∃ quantifiers.1 For True and False, we include the axioms hBOOL(true) and
¬ hBOOL(false), which connect terms to formulas. If a sound type encoding is
used (Section 6.5), we also include the exhaustion rule X bool = true ∨ X = false.

The first-order problem produced for the HOL conjecture p (x a = x) −→ p True is
shown below:

¬ hBOOL(false)
hBOOL(true)
X bool = true ∨ X = false
hBOOL(hAPP(hAPP(fequal, X α), Y α))←→ X = Y

∃X a. p(hAPP(hAPP(fequal, X), X)) ∧ ¬ p(true)

Thanks to the proxies, the problem is provable.

Induction. The relevance filter normally leaves out induction rules, since it is un-
realistic (if possible at all) for the ATPs to instantiate them with the proper terms,
using combinators and proxies to encode formulas. An alternative is to have the
filter preinstantiate induction rules based on the conjecture, in the hope that a
straightforward induction (requiring no generalization) is possible. In the follow-
ing example, from a formalization of Huffman’s algorithm [26], the proof was dis-
covered by an ATP:

lemma finite (alphabet t)
by (metis tree.induct [where P = (λt. finite (alphabet t))]

alphabet.simps(1) alphabet.simps(2) finite.simps finite_UnI)

This technique is well-known [168, §7.2.1]. Our experiments have so far been incon-
clusive, because most of the goals that Sledgehammer could prove this way could
be proved much more simply with the induct proof method followed by auto.

6.5 Encoding of Polymorphic Types

After translating away the higher-order features of a problem, we are left with first-
order formulas in which Isabelle’s rich type information, including polymorphism,
overloading, and axiomatic type classes, is still present. In contrast, most ATPs
support only untyped or monomorphic (many-sorted) formalisms.

The various sound and complete translation schemes for polymorphic types pro-
posed in the literature produce their share of clutter, and lighter approaches are
usually unsound (i.e., they do not preserve satisfiability). As a result, application

1A mundane issue related to skolemization in metis stands in the way of a complete characterization
of ∀ and ∃.

6.5. Encoding of Polymorphic Types 109

authors face a difficult choice between soundness and efficiency. In the context of
Sledgehammer, Meng and Paulson [125] considered two main schemes for trans-
lating types. Briefly:

• The fully typed translation tags every term and subterm with its type using a
binary function symbol. Types are represented as first-order terms, with type
variables coded as term variables.

• The constant-typed translation passes explicit type arguments to the func-
tion and predicate symbols corresponding to HOL constants to enforce cor-
rect type class reasoning and overload resolution, but not to prevent ill-typed
variable instantiations. As a result, it is unsound.

We describe these translations and a few others in more detail in Section 6.5.1. Since
the constant-typed translation results in a much higher success rate than the fully
typed one [44, §4.2; 125, §3], Meng and Paulson made it the default despite its un-
soundness. This state of affairs is unsatisfactory:

• Finite exhaustion rules must be left out because they lead to unsound cardi-
nality reasoning [125, §2.8]. The inability to encode such rules prevents the
discovery of proofs by case analysis on finite types. This limitation affects
mildly higher-order problems requiring the axiom x = True ∨ x = False,
such as the conjecture P True =⇒ P False =⇒ P x.

• Spurious proofs are distracting and sometimes conceal sound proofs. The
seasoned user eventually learns to recognize facts that lead to unsound rea-
soning and mark them with the no_atp attribute to remove them from the
scope of the relevance filter, but this remains a stumbling block for the novice.

• It would be desirable to let the ATPs themselves perform relevance filter-
ing, or even use a sophisticated system based on machine learning, such as
MaLARea [191, 192], where successful proofs guide subsequent ones. How-
ever, such approaches tend to quickly discover and exploit inconsistencies in
the large translated axiom set.

This section presents joint work with Sascha Böhme and Nicholas Smallbone that
extends earlier work by Claessen, Lillieström, and Smallbone [61]. Claessen et al.
designed a family of sound, complete, and efficient translations from monomorphic
to untyped first-order logic. The key insight is that monotonic types (types whose
domain can always be augmented with new elements while preserving satisfiabil-
ity) can be simply erased, while the remaining types can be made monotonic by
introducing guards (predicates) or tags (functions). Although undecidable, mono-
tonicity can often be inferred using suitable calculi, as we saw in Chapter 4.

In this section, we first generalize this approach to an ML-style polymorphic first-
order logic, as embodied by the polymorphic TPTP typed first-order form (TFF1).
Unfortunately, the presence of a single polymorphic literal of the form X α = t
will lead us to classify every type as potentially nonmonotonic and force the use
of guards or tags everywhere, as in the traditional encodings. We solve this issue
by our second main contribution, a novel scheme that considerably reduces the
clutter associated with nonmonotonic types, based on the observation that guards
or tags are only required when translating the particular axioms that make a type
nonmonotonic. Consider this simple TFF0 specification of a two-valued state type:

110 Chapter 6. Proof Discovery Using Automatic Theorem Provers

S state = on ∨ S = off
toggle(S state) 6= S

Claessen et al. would classify state as nonmonotonic and require systematic anno-
tations with guards or tags, whereas our refined scheme detects that the second
axiom is harmless and translates it directly to the untyped formula toggle(S) 6= S.

After a brief review of the traditional polymorphic type encodings (Section 6.5.1),
we present the polymorphic monotonicity inference calculus and the related type
encodings (Section 6.5.2). Although the focus is on sound encodings, we also con-
sider unsound ones, both as evaluation yardsticks and because applications that
certify external proofs can safely employ them for proof search. Furthermore, we
explore incomplete versions of the type encodings based on monomorphization
(Section 6.5.3). The sound polymorphic encodings are proved sound and complete
(Section 6.5.4).

The encodings are now available in Sledgehammer and metis. We evaluate the en-
codings’ suitability for the resolution provers E, SPASS, and Vampire and the SMT
solver Z3 in Section 6.7. Our comparison includes the traditional type encodings
as well as the provers’ native support for simple types where available.

From both a conceptual and an implementation point of view, the encodings are
all instances of a general framework, in which mostly orthogonal features can be
combined in various ways. Defining such a large number of encodings allows us
to select the most appropriate encoding for each prover, based on the evaluation.
In fact, because of time slicing (Section 6.6.3), it even pays off to have each prover
employ a combination of encodings with complementary strengths.

The exposition builds on the following running examples.

Example 6.3 (Monkey Village). Imagine a TFF0 village of monkeys where each
monkey owns at least two bananas:

owns(M, banana1(M)) ∧ owns(M, banana2(M))
banana1(M) 6= banana2(M)
owns(M1, B) ∧ owns(M2, B) −→ M1 = M2

(The required leap of imagination should not be too difficult for readers who can
recall Section 4.1.) The predicate owns : monkey× banana→ o associates monkeys
with their bananas, and the functions banana1, banana2 : monkey→ banana witness
the existence of each monkey’s minimum supply of bananas. The type banana is
monotonic, because any model with k bananas can be extended to a model with
k′ > k bananas. In contrast, monkey is nonmonotonic, because there can live at
most n monkeys in a village with a finite supply of 2n bananas.

Example 6.4 (Algebraic Lists). The following TFF1 axioms induce a minimalistic
theory of algebraic lists:

nil 6= cons(X α, Xs)
Xs = nil ∨ ∃Y Ys. Xs = cons(Y α, Ys)
hd(cons(X α, Xs)) = X
tl(cons(X α, Xs)) = Xs

6.5. Encoding of Polymorphic Types 111

We conjecture that cons is injective. Expressed negatively for an unknown but fixed
type b, the conjecture becomes

∃X Y Xs Ys. cons(X b, Xs) = cons(Y, Ys) ∧ (X 6= Y ∨ Xs 6= Ys)

Since the problem is unsatisfiable, all types are trivially monotonic.

6.5.1 Traditional Type Encodings

Encoding types in an untyped logic is an old problem, and many solutions have
nearly folkloric status. Their main interest here is that they lay the foundation for
the more efficient encodings introduced in Sections 6.5.2 and 6.5.3.

Full Type Erasure (e). The easiest way to translate polymorphic types to untyped
first-order logic is to omit, or erase, all type information. This yields the e (“erased”)
encoding. Type erasure is conspicuously unsound in a logic that interprets equality,
because different cardinality constraints can be attached to different types. For
example, the e encoding translates the HOL exhaustion rule uunit = () to the clause
U = unity, which forces a universe of cardinality 1 and can be used to derive a
contradiction from any disequality t 6= u or any pair of clauses p(t̄) and ¬ p(ū),
where t̄ and ū are arbitrary. This unsoundness also plagues Hurd’s translation
[91, 92]. The partial solution proposed and implemented by Meng and Paulson is
to leave out exhaustion rules of the forms

x = c1 ∨ · · · ∨ x = cn

(x = c1 =⇒ P) =⇒ · · · =⇒ (x = cn =⇒ P) =⇒ P

which typically originate from Isabelle’s datatype package and account for the vast
majority of unsound proofs in practice. Nonetheless, crude syntactic test generally
does not suffice to prevent unsound cardinality reasoning.

Type erasure is unsound not only because it allows unsound cardinality reason-
ing, but also because it confuses distinct monomorphic instances of polymorphic
symbols. The HOL property

n 6= 0 =⇒ n > 0nat

holds for natural numbers, but it would be unsound for integers or real numbers.

Type Arguments (a). To ensure sound type class reasoning, we encode type in-
formation as additional arguments to the function and predicate symbols. More
precisely, we pass one type argument corresponding to each type variable in the
most general type for a constant. This is sufficient to reconstruct the constant’s type.
Following this scheme, 0nat and 0 int are distinguished as zero(nat) and zero(int),
and the polymorphic function application

map (α�β)�α list�β list f xs

is translated to map(A, B, F, Xs). This approach is readily extended to type classes
[125, §2.1]. We call the resulting encoding a; it corresponds to Meng and Paulson’s
constant-typed translation.

112 Chapter 6. Proof Discovery Using Automatic Theorem Provers

Although Meng and Paulson were careful to supply type information for HOL
constants, they neglected to do so for the special operator hAPP. This resulted in
fascinating unsound proofs. Let t · u abbreviate hAPP(t, u), and let it associate to
the left. From the HOL lemma Suc n 6= n and the definition of the I, K, and S combi-
nators, the resolution provers can derive a contradiction, showing that something
is wrong with the encoding:

1. suc · N 6= N lemma
2. i · X = X def. of I
3. k · X ·Y = X def. of K
4. s · X ·Y · Z = X · Z · (Y · Z) def. of S
5. s · X · i · Z = X · Z · Z by 2, 4
6. s · (k · X) ·Y · Z = X · (Y · Z) by 3, 4
7. s · (s · (k · X)) · i ·Y = X · (Y ·Y) by 5, 6
8. ⊥ by 1, 7

The last resolution step requires taking X = suc and Y = s · (s · (k · suc)) · i in for-
mula 7. In essence, the proof contradicts the lemma that suc admits no fixed point
(a term t such that suc · t = t) by exhibiting one.1 It is a well-known result that ev-
ery function in the untyped λ-calculus, which is encoded here using combinators,
has a fixed point [10, §2.1].

To prevent such unsound proofs, we now treat hAPP as any other HOL constant
of type (α→ β)→ α→ β and pass type arguments corresponding to α and β. De-
spite this change, the a encoding is unsound, because like e it permits unsound
cardinality reasoning.

Type Tags (t). A general approach to preclude unsound cardinality reasoning is
to wrap each term and subterm in suitable functions [174, p. 99], which we call type
tags. The traditional formulation relies on unary functions, one for each simple
type to encode. To support polymorphism and n-ary type constructors, we use a
binary function t(σ, t) that tags the term t with its type σ, where σ is encoded as a
first-order term [63, §3.1; 125, §2.4].

Using this approach, the HOL lemmas u = () and 0 6= Suc n are translated to

t(unit, U) = t(unit, unity)

t(nat, zero) 6= t(nat, suc(t(nat, N)))

Thanks to the type tags, the two formulas are consistent. Because equality is never
used directly on variables but only on function applications (of t), problems en-
coded this way are monotonic [61, §2.3], and consequently no formula can express
an upper bound on the cardinality of the universe. Furthermore, since all terms
carry full type information, we can safely omit the type arguments for polymor-
phic constants, as we have done here for zero. This encoding corresponds to Meng
and Paulson’s fully typed translation; we call it t.

The t encoding is sound in the sense that if a resolution prover finds a proof,
then the problem is also provable in HOL. The resolution proof can still involve

1Expressed as an untyped λ-term, the fixed point found by the resolution prover is (λx. suc (x x))
(λx. suc (x x)), also known as Y suc [10, §2.1].

6.5. Encoding of Polymorphic Types 113

type-incorrect inferences, since nothing prevents the prover from instantiating U
in t(unit, U) = t(unit, unity) with a term of the wrong type (e.g., zero), an encoded
type (e.g., nat), or even a term in which t tags are not properly nested. This is hardly
a problem in practice, because resolution provers heavily restrict paramodulation
from and into variables [8, 48].

Type Guards (g). Type tags are but one way to encode types soundly and com-
pletely. A perhaps more intuitive option is to generate type guards —predicates
that restrict the range of variables. For polymorphic type systems, they take the
form of a binary predicate g(σ, t) that indicates whether t has type σ, where σ is
encoded as a term. We call this type encoding g. Guard-based encodings yield
formulas with a more complex logical structure than with tags, but the terms are
correspondingly simpler.

Following the g encoding, the HOL lemmas u = () and 0 6= Suc n are translated to

g(unit, U) −→ U = unity

g(nat, N) −→ zero 6= suc(N)

Each variable occurring in the generated CNF problem is guarded by the g pred-
icate. When generating FOF problems, we must guard bound variables as well,
with −→ as the connective for ∀ and ∧ for ∃.

To witness the inhabitation (nonemptiness) of all types, we include the axiom

g(A, undefined(A))

which declares the unspecified constant undefinedα. In addition, we must provide
type information about the function symbols that occur in the problem:

g(unit, unity) g(nat, zero) g(nat, suc(N))

In the third axiom, there is no need to guard N because Suc always returns a natural
number irrespective of its argument. This encoding gives a type to some ill-typed
terms, such as suc(suc(unity)) and suc(suc(nat)). Intuitively, this is safe because
such terms cannot bring the proof forward (except to witness inhabitation, but even
in that role they are redundant). On the other hand, well-typed terms must always
be associated with their correct type, as they are in this encoding.

We must include type arguments that occur only in the result type of a constant, to
distinguish instances of polymorphic constants, but all other type arguments can be
omitted, since they can be deduced from the function’s arguments. Thus, the type
argument would be kept for nil but omitted for cons (e.g., nil(A) vs. cons(X, Xs)).

6.5.2 Sound Type Erasure via Monotonicity Inference

Type guards and tags significantly increase the size of the problems passed to the
automatic provers, with a dramatic impact on their performance. Fortunately, most
of the clutter can be removed by inferring monotonicity and (soundly) erasing type
information based on a monotonicity analysis.

114 Chapter 6. Proof Discovery Using Automatic Theorem Provers

Polymorphic Monotonicity Inference. A type σ is monotonic in a formula ϕ if
any model of ϕ where σ has cardinality k can be extended into a model where it
has cardinality k′, for any k′ > k (Chapter 4). Claessen et al. devised an extremely
simple (yet quite powerful) calculus to infer monotonicity for monomorphic first-
order logic [61, §2.3], based on the observation that a type σ must be monotonic
if the problem contains no positive literal X σ = t (or t = X σ).1 We call such an
occurrence of X a positively naked occurrence. The calculus is powerful enough
to infer that banana is monotonic in Example 6.3, since the monkey village contains
no literal of the form Bbanana = t.

It is not difficult to extend the approach to handle polymorphism. Semantically, a
polymorphic type is monotonic iff all of its ground instances are monotonic. The
extended calculus computes the set of possibly nonmonotonic polymorphic types,
which consists of all types σ such that there is a positively naked variable of type σ.
Each nonmonotonic ground type is an instance of a type in this set. To infer that
a polymorphic type σ is monotonic, we check that there is no possibly nonmono-
tonic type unifiable with σ.1 Annoyingly, a single occurrence of a positively naked
variable of type α, such as X in the equation

hd(cons(X, Xs)) = X α

from Example 6.4, is enough to completely flummox the analysis: Since all types
are instances of α, they are all possibly nonmonotonic.

Infinity Inference. We regain some precision by complementing the calculus with
an infinity analysis, as suggested by Claessen et al.: By the Löwenheim–Skolem
theorem, all types with no finite models are monotonic (with respect to finite and
countable models). We call such types infinite.

We could employ an approach similar to that implemented in Infinox [60] to auto-
matically infer finite unsatisfiability of types. Infinox relies on various proof princi-
ples to show that a set of untyped first-order formulas only has models with infinite
domains. For example, given a problem containing the axiom

zero 6= suc(X) ∧ (X 6= Y −→ suc(X) 6= suc(Y))

Infinox can establish that suc is injective but not surjective and hence (by a well-
known lemma) the domain must be infinite. The approach is readily generalizable
to polymorphic first-order logic. It can be used to infer that α list is infinite in Ex-
ample 6.4 because cons is injective in its second argument but not surjective.

However, in an interactive theorem prover, it is simpler to exploit the metainforma-
tion available through introspection. Inductive datatypes are registered with their
constructors; if some of them are recursive, or take an argument of an infinite type,
the datatype must be infinite.

1Claessen et al. designed a second, more powerful calculus to detect predicates that act as fig leaves
for positively naked variables. While the calculus proved fairly successful on a subset of the TPTP
benchmark suite [177], we assessed its suitability on about 1000 fairly large problems generated
by Sledgehammer and found no improvement on the first calculus. In this thesis, we restrict our
attention to the first calculus.

1Unification is to be understood in a wider sense, with implicit renaming of variables to avoid name
clashes. Hence, α list is an instance of α (but nat→ int is not an instance of α→ α). It may help to
think of α as ∀α. α and α list as ∀α. α list.

6.5. Encoding of Polymorphic Types 115

Combining infinity inference with the monotonicity inference calculus described
above, we get the following rule for inferring monotonicity:

A polymorphic type is monotonic if, whenever it is unifiable with a
possibly nonmonotonic type, the most general unifier is an instance of
an infinite type.

Our rule is correct because if we infer a type monotonic, all its ground instances
either are infinite or can be inferred monotonic by the monotonicity calculus.

Type Erasure with Guards (g?, g??). Claessen et al. observed that monotonic
types can be soundly erased when translating from a monomorphic logic to an
untyped logic, whereas nonmonotonic types must generally be encoded, typically
using guards or tags [61, §3.2]. In particular, type erasure as performed by the type
argument encoding a is sound if all types are monotonic. We extend the approach
to polymorphism and show how to eliminate even more type information in the
monomorphic case.

We first focus on type guards. The following procedure soundly translates prob-
lems from polymorphic first-order logic (TFF1) to untyped first-order logic (FOF):

1. Introduce type arguments to all polymorphic function and predicate symbols,
as done for the a encoding.

2. Insert guards for the types that cannot be inferred monotonic, and introduce
suitable typing axioms.

3. Erase all the types.

By adding guards and typing axioms, step 2 effectively makes the nonmonotonic
types monotonic. Once all types are monotonic, step 3 can safely erase them. We
call the resulting encoding g?. In contrast to the traditional g encoding, g? gener-
ally requires type arguments to compensate for the incomplete type information.

Example 6.5. Encoded with g?, the monkey village of Example 6.3 becomes

g(A, undefined(A))

g(monkey, M) −→ owns(M, banana1(M)) ∧ owns(M, banana2(M))
g(monkey, M) −→ banana1(M) 6= banana2(M)
g(monkey, M1) −→ g(monkey, M2) −→

owns(M1, B) ∧ owns(M2, B) −→ M1 = M2

Notice that no guard is generated for the variable B of type banana. This coincides
with Claessen et al. [61, §2.3].

Typing axioms are needed to discharge the guards. We could in principle simply
generate typing axioms g(σ, f(X̄)) for every function symbol f, as in the g encoding,
but some of these axioms are superfluous. We reduce clutter in two ways:

• If σ is not unifiable with any of the possibly nonmonotonic types, the typing
axiom will never be resolvable against a guard and can be omitted.

116 Chapter 6. Proof Discovery Using Automatic Theorem Provers

• For infinite types σ, it suffices to generate an axiom g(σ, X) that allows any
term to be typed as σ. Such an axiom is sound for any monotonic type σ,
as we will prove in Section 6.5.4. (The purpose of type guards is to prevent
instantiating variables of nonmonotonic types with terms of the wrong type;
they play no role for monotonic types.)

Example 6.6. For the algebraic list problem of Example 6.4, our monotonicity infer-
ence reports that α is possibly nonmonotonic, but α list is infinite. The g? encoding
of the problem follows:

g(A, undefined(A))
g(list(A), Xs)
g(A, hd(A, Xs))

g(A, X) −→ nil(A) 6= cons(A, X, Xs)
Xs = nil(A) ∨ ∃Y Ys. g(A, Y) ∧ Xs = cons(A, Y, Ys)
g(A, X) −→ hd(A, cons(A, X, Xs)) = X
g(A, X) −→ tl(A, cons(A, X, Xs)) = Xs

∃X Y Xs Ys. g(b, X) ∧ g(b, Y) ∧
cons(b, X, Xs) = cons(b, Y, Ys) ∧ (X 6= Y ∨ Xs 6= Ys)

The second typing axiom allows any term to be typed as α list, which is sound
because α list is infinite; alternatively, we could have provided individual typing
axioms for nil, cons, and tl. Either way, the axioms are needed to discharge the
g(A, X) guards in case the proof requires reasoning about α list list.

The g? encoding treats all variables of the same type uniformly. Hundreds of ax-
ioms can be penalized because of one unpleasant formula that uses a type non-
monotonically (or in a way that cannot be inferred monotonic). In Example 6.5, the
positively naked variables in

owns(M1, B) ∧ owns(M2, B) −→ M1 = M2

are enough to force the use of guards for all monkey variables in the problem. Fortu-
nately, a lighter encoding is possible: Guards are useful only for essentially univer-
sal (i.e., non-skolemizable) variables that occur positively naked; they can soundly
be omitted for all other variables, irrespective of whether they have a monotonic
type, as we will prove in Section 6.5.4. This is related to the observation that only
paramodulation from or into a (positively naked) variable can cause ill-typed in-
stantiations in a resolution prover [205, §4]. We call this lighter encoding g??.

Example 6.7. Let us return to the monkey village. Encoded with g??, it requires
only two type guards, a clear improvement over g? and Claessen et al.:

g(A, undefined(A))

owns(M, banana1(M)) ∧ owns(M, banana2(M))
banana1(M) 6= banana2(M)
g(monkey, M1) −→ g(monkey, M2) −→

owns(M1, B) ∧ owns(M2, B) −→ M1 = M2

Example 6.8. The g?? encoding of Example 6.4 is identical to g? except that the
nil 6= cons and tl axioms do not need any guard (cf. Example 6.6).

6.5. Encoding of Polymorphic Types 117

Type Erasure with Tags (t?, t??). Analogously to g? and g??, we define t? and
t?? encodings based on type tags. The t? encoding annotates all terms of a possibly
nonmonotonic type that is not infinite. This can result in mismatches—for example,
if α is tagged but its instance α list is not. The solution is to generate an equation
t(σ, X) = X for each infinite type σ, which allows the prover to add or remove a
tag whenever necessary.

The lighter encoding t?? only annotates naked variables, whether positive or neg-
ative, and introduces equations t(σ, f(X)) = f(X) to add or remove tags around
each function symbol (or skolemizable variable) f of a possibly nonmonotonic type
σ.1 For monotonicity, it is not necessary to tag negatively naked variables, but a
uniform treatment of naked variables ensures that resolution can be directly ap-
plied on equality atoms. This encoding works well in practice, because provers
tend to aggressively eliminate type tags using the typing equations as left-to-right
rewrite rules.

Example 6.9. The t? encoding of Example 6.4 is as follows:

t(A, undefined(A)) = undefined(A)
t(list(A), Xs) = Xs

nil(A) 6= cons(A, t(A, X), Xs)
Xs = nil(A) ∨ ∃Y Ys. Xs = cons(A, t(A, Y), Ys)
t(A, hd(A, cons(A, t(A, X), Xs))) = t(A, X)
tl(A, cons(A, t(A, X), Xs)) = Xs

∃X Y Xs Ys. cons(b, t(b, X), Xs) = cons(b, t(b, Y), Ys) ∧
(t(b, X) 6= t(b, Y) ∨ Xs 6= Ys)

Example 6.10. The t?? encoding of Example 6.4 requires fewer tags, at the cost of
more type information (for hd and some of the existential variables):

t(A, undefined(A)) = undefined(A)
t(list(A), Xs) = Xs
t(A, hd(A, Xs)) = hd(A, Xs)

nil(A) 6= cons(A, X, Xs)
Xs = nil(A) ∨ ∃Y Ys. t(A, Y) = Y ∧ Xs = cons(A, Y, Ys)
hd(A, cons(A, X, Xs)) = t(A, X)
tl(A, cons(A, X, Xs)) = Xs

∃X Y Xs Ys. t(b, X) = X ∧ t(b, Y) = Y ∧ cons(b, X, Xs) = cons(b, Y, Ys) ∧
(X 6= Y ∨ Xs 6= Ys)

To conclude this section, we describe an “obviously sound” optimization that is, in
fact, unsound. Consider the equational definition of hd in Isabelle/HOL:

hd (Cons x α xs) = x

Clearly, this lemma does not encode any cardinality constraint on the possible in-
stances for α; otherwise, it would be easy to derive a contradiction in HOL by

1We can optionally provide equations f(X, t(σ, Y), Z) = f(X, Y, Z) to add or remove tags around
well-typed arguments of a function symbol f, as well as the tag idempotence law t(A, t(A, X)) =
t(A, X). Our experiments with them have been inconclusive so far.

118 Chapter 6. Proof Discovery Using Automatic Theorem Provers

instantiating α appropriately. Hence, nothing can go wrong if we omit the type tag
around the naked variable in the translation (or so we think):

hd(A, cons(A, X, Xs)) = X (∗)

From the typing axiom

t(A, hd(A, Xs)) = hd(A, Xs)

we can derive the instance

t(A, hd(A, cons(A, X, Xs))) = hd(A, cons(A, X, Xs))

By rewriting both sides of the equation with (∗), we obtain

t(A, X) = X

This last equation is extremely powerful: It can be used to remove the tag around
any term (whether the type is correct or not) or to tag any term with any type,
defeating the very purpose of type tags.

The nub of the issue is this: Our encoding procedure crucially relies on the problem
being monotonic after the tags and type axioms have been introduced, so that the
types can be safely erased. The equation (∗) is harmless on its own and can be
seen as a “monotonic definition,” following the ideas presented in Section 4.5.1.
However, the equation (∗) and the typing axiom, when taken together, compromise
monotonicity. For instance, the set of TFF1 formulas

hd(A, cons(A, X, Xs)) = X
t(A, hd(A, Xs)) = hd(A, Xs)
t(unit, X) = t(unit, Y)

has only one model, of cardinality 1: The first two formulas require t(unit, X) to
act as an identity function on its second argument (since they have t(A, X) = X
as a consequence, as we saw above), whereas the last formula forces t(unit, X) to
ignore the second argument.

In sum, the envisioned calculus that naively combines the definition handling of
Section 4.5.1 with the monotonicity inference of Claessen et al. is unsound. If there
is a lesson to be learned here, it must be that theoretical properties should be proved
(or at least checked with Nitpick) even when they seem obvious.

Finiteness Inference (g!, g!!, t!, t!!). A radical approach is to assume every type
is infinite unless we have metainformation to the contrary. Only types that are
obviously finite, such as unit, o, o × o, and o→ o, are considered by the mono-
tonicity inference calculus. This is of course unsound; users can encode finiteness
constraints as HOL axioms or local assumptions, as in the example below [137]:

typedecl indi

axiomatization where

finite_indi: finite UNIV indi�o

6.5. Encoding of Polymorphic Types 119

The finiteness of indi escapes our simple analysis. Nonetheless, unsound proofs are
a rare occurrence with this scheme, and the user can fall back on sound type sys-
tems if an unsound proof is found. We identify this family of unsound encodings
by the suffix ! instead of ? (e.g., g!, t!!).

6.5.3 Monomorphization-Based Encodings

Type variables give rise to term variables in encoded formulas; for example, the
type α list is encoded as list(A). These variables dramatically increase the search
space and complicate the translation, because type class predicates must be in-
cluded in the problem to restrict the range of variables [127, §2.1]. An alterna-
tive is to monomorphize the problem—that is, to heuristically instantiate the type
variables with ground types. This is reminiscent of Nitpick’s (and Refute’s) treat-
ment of definitions (Section 3.3), but Sledgehammer must handle arbitrary lemmas.
Monomorphization was applied successfully in the SMT integration developed by
Böhme and briefly described in Section 6.3.1. We were able to reuse his code to
preprocess ATP problems.

Monomorphization is necessarily incomplete [40, §2] and often overlooked or de-
rided in the literature; for example, in their work on encoding polymorphism in
SMT-LIB’s many-sorted logic, Couchot and Lescuyer contend that “monomorphi-
zation always returns theories that are much bigger than the original ones, which
dramatically slows down provers” [63, p. 3]. Our experience is that monomorphi-
zation can dramatically improve performance (Section 6.7.2).

Monomorphization (–). The monomorphization algorithm consists of the fol-
lowing three stages [41, §2.2.1]:

1. Separate the monomorphic and the polymorphic formulas, and collect all
symbols appearing in the monomorphic formulas (the “mono-symbols”).

2. For each polymorphic axiom, stepwise refine a set of substitutions, starting
from the singleton set containing only the empty substitution, by matching
known mono-symbols against their polymorphic counterparts. As long as
new mono-symbols emerge, collect them and repeat this stage.

3. Apply the computed substitutions to the corresponding polymorphic formu-
las. Only keep fully monomorphic formulas.

To avoid divergence, the implementation limits the iterations performed in stage 2
to a configurable number K. To curb the exponential growth, it also enforces an
upper bound ∆ on the number of new formulas. Sledgehammer operates with
K = 3 and ∆ = 200 by default, so that a problem with 500 axioms comprises at
most 700 axioms after monomorphization. Experiments found these values suit-
able. Given formulas about nat and α list, the third iteration already generates
nat list list list instances—yet another layer of list is unlikely to help. Increasing ∆

can help solve more goals, but its potential for clutter is real.

Monomorphization is applicable in conjunction with all the type encodings pre-
sented so far except e (which erases all types). We decorate the letter represent-
ing a type encoding with to indicate monomorphization. Accordingly, g? is the
monomorphic version of the type guard encoding g?.

120 Chapter 6. Proof Discovery Using Automatic Theorem Provers

One unexpected advantage of monomorphization is that provers detect unprov-
ability of small problems much faster than before. This is useful for debugging and
speeds up minimization (Section 6.6.5). Although monomorphization is incom-
plete [63, p. 265], with a high bound on the number of iterations we can be fairly
confident that all necessary monomorphic instances are included.

Type Mangling (~). Monomorphization opens the way to an easy optimization:
Since all types represented as terms are ground, we can mangle them in the en-
closing symbol’s name to lighten the translation. In our examples, we mangle with
underscores: zero(nat), g(nat, N), and t(nat, N) become zero_nat, g_nat(N), and
t_nat(N); in the implementation, we rely on a more sophisticated scheme to avoid
name clashes, ensuring that the mangled problem is equisatisfiable to the original
monomorphized problem. We identify the mangled, monomorphic version of an
encoding with the decoration ˜ (e.g., g̃?).

Native First-Order Types (n). Most popular ATPs take their input in the TPTP
first-order form (FOF), a first-order logic with equality and quantifiers but no types.
A selected few, such as SNARK [175], the metaprovers ToFoF [176] and Monotonox
[61], and recent versions of Vampire, also support the monomorphic TPTP typed
first-order form (TFF0), which provides simple types (sorts). (The SMT-LIB format
[11, 160] offers similar support.) The developers of SPASS recently added support
for simple types in an unofficial version of the prover [36], and hence it becomes
increasingly important to exploit native support where it is available.

The mangled type guard encoding g̃ also constitutes a suitable basis for generat-
ing TFF0 problems. In g̃, each variable is guarded by a g predicate mangled with
a ground type (e.g., g_list_nat(Xs)). In the corresponding TFF0-based encoding,
which we call ñ (“native”), the variable is declared with the guard’s type, and the
guard is omitted. For example, the g̃-encoded FOF formula

∀N. g_nat(N) −→ zero 6= suc(N)

corresponds to the ñ-encoded TFF0 formula

∀N nat. zero 6= suc(N)

Typing axioms such as

g_nat(zero_nat) g(nat, suc(N))

are replaced by TFF0 type declarations:

zero_nat : nat suc : nat→ nat

Thanks to type mangling, this also works for more complex types. For example,
the nat× int→ nat instance of fstα×β�α is declared as

fst_nat_int : prod_nat_int→ nat

Unlike type guards, which can be kept or omitted on a per-variable basis, simple
types must be kept for all variables. Nonetheless, we can define ñ? and ñ! based
on g̃? and g̃! not by erasing types, but rather by replacing the types we would
erase by a shared type of individuals. We use the predefined ι type from TFF0

6.5. Encoding of Polymorphic Types 121

for this purpose, but any fresh type would do. Furthermore, since TFF0 disallows
overloading, all type arguments must be kept and mangled in the symbol names,
as in the fst_nat_int example above.

The polymorphic SMT solver Alt-Ergo [38] can process TFF1 problems, with some
help from the Why3 translation tool [39]. It was not hard to extend Sledgehammer
to generate TFF1 problems, using g as a basis, yielding the encodings n, n, n?, n?,
n!, and n!. Ignoring Isabelle type classes, the plain n encoding amounts to the iden-
tity, but in the implementation it converts Sledgehammer’s internal data structures
to the concrete TFF1 syntax; the other five encodings are effectively preprocessing
steps that perform monomorphization, merge selected types to ι, or both.

The only minor complication concerns type class predicates. The natural encoding
assigns them the type signature ∀α. o (i.e., a type-indexed family of Booleans), as in
the axiom

preorder〈α〉 −→ ∀X Y α. less(X, Y) −→ less_eq(X, Y)

where 〈α〉 is an explicit type argument. The type variable α in ∀α. o is called a phan-
tom type variable because it does not occur in the type’s body. ML-style provers
(such as Alt-Ergo and Isabelle/HOL itself) lack ∀ binders for types and hence can-
not directly cope with phantom types; fortunately, phantoms are easy to preprocess
away [35, §5.1].

Native Higher-Order Types (N). The core language THF0 of the TPTP typed
higher-order form is understood natively by LEO-II [19] and Satallax [9]. To bene-
fit from these and future higher-order ATPs, it is desirable to have Sledgehammer
output THF0 problems. This extension is unpublished joint work with Nik Sultana.

Starting from the TFF0-based ñ encoding, we gradually exploited the THF0 format
to define a higher-order encoding, which we call Ñ:

1. Adopt the @ syntax for function application, so that the generated problems
comply with THF0.

2. Identify the HOL type o with the homologous THF0 type and eliminate the
hBOOL predicate.

3. Identify the HOL function type with the THF0 function type and replace the
explicit application operator hAPP with @.

4. Map higher-order (unpolarized) occurrences of HOL connectives and quanti-
fiers to the corresponding THF0 constructs, eliminating the need for proxies.

5. Let λ-abstractions pass through the translation, instead of rewriting them to
combinators or lifting them.

6. For Satallax, identify the Hilbert choice constant from HOL with the corre-
sponding THF0 operator. (LEO-II currently does not support Hilbert choice.)

The Ñ and Ñ! encodings are higher-order versions of the TFF0-based ñ and ñ! en-
codings. These are the last members in our family of type encodings; the whole
family is charted in Figure 6.2. An Ñ? encoding is in principle possible, but it would
have to be more than a straightforward adaptation of ñ?, whose monotonicity in-
ference calculus is designed for first-order logic.

122 Chapter 6. Proof Discovery Using Automatic Theorem Provers

TYPING OF VARIABLES

ALL MAYBE FIN. FINITE NONE

P
O

L
Y

M
.

M
O

N
O

M
.

M
A

N
G

L
E

D

P
O

L
Y

M
.

M
O

N
O

M
.

M
A

N
G

L
E

D

P
O

L
Y

M
.

M
O

N
O

M
.

M
A

N
G

L
E

D

P
O

L
Y

M
.

M
O

N
O

M
.

M
A

N
G

L
E

D

TAGS HEAVY t t t̃ t? t? t̃? t! t! t̃!

LIGHT t?? t?? t̃?? t!! t!! t̃!!

GUARDS HEAVY g g g̃ g? g? g̃? g! g! g̃!

LIGHT g?? g?? g̃?? g!! g!! g̃!!

NATIVE F.-O. n n ñ n? n? ñ? n! n! ñ!

H.-O. Ñ Ñ!

ARGS. a a ã

FULLY ERASED e

︸ ︷︷ ︸
SOUND

︸ ︷︷ ︸
UNSOUND

Figure 6.2: Overview of the type encodings

The translation to THF0 is a central aspect of the extension of Sledgehammer with
LEO-II and Satallax, but other parts of the machinery also need some adjustments.
First, the relevance filter normally leaves out induction rules; however, it makes
sense to include them uninstantiated in THF0 problems. Second, proof reconstruc-
tion is problematic. As an expedient, we currently extract the referenced facts from
LEO-II and Satallax proofs, detecting applications of the extensionality rule, and
attempt to reconstruct the proof with a one-line metis call.1

6.5.4 Soundness and Completeness

Despite proof reconstruction, our type encodings deserve a detailed proof of cor-
rectness. Obviously, we cannot prove the unsound encodings correct, but this still
leaves g, g?, g??, t, t?, t??, n, and n? with and without monomorphization and
type mangling (, ˜) and also Ñ. We focus on the mangled-monomorphic and
polymorphic versions of g?, g??, t?, and t??; the traditional encodings g and t
are accounted for in the literature, monomorphization without mangling () is a
special case of polymorphism, ñ and Ñ essentially rely on the soundness of type
mangling, and the soundness proof for n? is analogous to that for g?.

To cope with the variety of type encodings, we need a modular proof that iso-
lates their various features. We start by proving the mangled encodings sound and
complete when applied to already monomorphic problems—i.e., they preserve sat-
isfiability and unsatisfiability. (Monomorphization in itself is obviously sound, al-
though incomplete.) Then we proceed to lift the proof to polymorphic encodings.

1As part of his Ph.D. thesis, Sultana is working on a leo2 proof method that performs step-by-step
proof reconstruction for LEO-II, similar in spirit to Böhme’s Z3-based smt method.

6.5. Encoding of Polymorphic Types 123

The Monomorphic, Mangled Case. To prove g̃?, g̃??, t̃?, and t̃?? correct, we fol-
low the two-stage proof strategy put forward by Claessen et al. [61, §3.2]: The first
stage adds guards or tags without erasing any types, so that the formulas remain
typed, and the second stage erases the types. We call the original problem Aτ, the
intermediate problem Zτ, and the final problem Z, as summarized below:

NAME DESCRIPTION LOGIC EXAMPLE

Aτ Original problem TFF0 V b = c
Zτ Encoded Aτ TFF0 t_b(V b) = c_b
Z Type-erased Zτ FOF t_b(V) = c_b

(The τ superscripts stand for “typed.”) The following result, due to Claessen et al.
[61, §2.2], plays a key role in the proof:

Lemma 6.11 (Monotonic Type Erasure). Let Φτ be a monomorphic problem. If
Φτ is monotonic (i.e., all of its types are monotonic), then Φτ is equisatisfiable to
its type-erased variant Φ.

Proof. Let M be a model of Φτ. By monotonicity, there exists a model N where
all the domains have the cardinality of the largest domain in M. From N , we
construct a model of Φ by identifying all the domains. Conversely, from a model
N of Φ we construct a model of Φτ with the same interpretations of functions and
predicates as in N and with N ’s unique domain as the domain for every type. ⊓⊔

Corollary 6.12 (Equisatisfiability Conditions). The problems Aτ and Z are equi-
satisfiable if the following conditions hold:

MONO: Zτ is monotonic.

SOUND: If Aτ is satisfiable, then so is Zτ.

COMPLETE: If Zτ is satisfiable, then so is Aτ.

We show the conditions of Corollary 6.12 separately for guards and tags. The
proofs rely on the following lemma:

Lemma 6.13 (Domain Restriction). Let M be a model of Φ, and let M′ be an
interpretation constructed from M by deleting some domain elements while leav-
ing the interpretations of functions and predicates intact. This M′ is a model of Φ

provided that

(a) we do not make any domain empty;

(b) we do not remove any domain element that is in the range of a function;

(c) we do not remove any witness for an existential variable.

Proof. For simplicity, suppose the problem is expressed in CNF, in which case (b)
subsumes (c). Conditions (a) and (b) ensure that M′ is well-defined and that
ground clauses are interpreted as in M. Since every domain element of M′ is
also inM, all clauses that are satisfied inM are also satisfied inM′. ⊓⊔

Theorem 6.14 (Correctness of Monomorphic Guards). The encodings g̃? and g̃??
are sound and complete for monomorphic problems.

124 Chapter 6. Proof Discovery Using Automatic Theorem Provers

Proof. It suffices to show that the three conditions of Corollary 6.12 are fulfilled.

MONO: Infinite types are monotonic. The other types are monotonic if all posi-
tively naked variables of their types are guarded [61, §2.4]. Both g̃? and g̃?? guard
all such variables— g̃?? guards exactly those variables, while g̃? guards more.

SOUND: Given a model of Aτ, we extend it to a model of Zτ by giving an inter-
pretation to the type guards. To do this, we simply interpret all type guards by the
true predicate (the predicate that is true everywhere).

COMPLETE: A model of Zτ is canonical if all guards are interpreted by the true
predicate. From a canonical model, we obtain a model of Aτ by the converse con-
struction to SOUND. It then suffices to prove that whenever there exists a model of
Zτ, there exists a canonical model. We appeal to Lemma 6.13 to remove the domain
elements that do not satisfy their guard predicate. For this to work, (a) each pred-
icate must be satisfied by at least one element, (b) each function must satisfy its
predicate, and (c) each existential variable must satisfy its predicate; this is exactly
what our typing axioms ensure. ⊓⊔

Theorem 6.15 (Correctness of Monomorphic Tags). The encodings t̃? and t̃?? are
sound and complete for monomorphic problems.

Proof. The proof for tags is analogous to that for guards, so we leave out the details.
A model of Zτ is canonical if the type tags are interpreted by the identity function.
We construct a canonical model by deleting the domain elements for which the type
tag is not the identity. The typing axioms ensure that this gives us a model. ⊓⊔

The above proof goes through even if we tag more terms than are necessary to en-
sure monotonicity. Hence, it is sound to tag negatively naked variables. We may
also add further typing axioms to Zτ —for example, equations f(U, t_σ(X), V) =
f(U, X, V) to add or remove tags around well-typed arguments of a function f, or
the idempotence law t_σ(t_σ(X)) = t_σ(X)—provided that they hold for canoni-
cal models (where the type tag is the identity function) and preserve monotonicity.

Extension to Polymorphism. The next step is to lift the argument to polymor-
phic encodings and polymorphic problems. Regrettably, it is not possible to adjust
the above two-stage proof to polymorphism: Without dependent types, neither the
binary g predicate nor the binary t function can be typed, preventing us from con-
structing the polymorphic intermediate problem corresponding to Zτ.

Instead, we reduce the general, polymorphic case to the already proved monomor-
phic case. Our Herbrandian motto is: A polymorphic formula is equivalent to the
set of its monomorphic instances, which in general will be an infinite set. This com-
plete form of monomorphization is not to be confused with the finitary, heuristic
monomorphization algorithm presented in Section 6.5.3. Our proof exploits a form
of commutativity between our encodings and complete monomorphization.

More specifically, given a polymorphic problem Aα, the following two routes are
possible (among others).

1. Encode, then “monomorphize” : Generate an untyped problem X from Aα

using a polymorphic encoding; then generate all possible “monomorphic”

6.5. Encoding of Polymorphic Types 125

Aα
encode

//

mono-
morphize

��

Xτ
erase types

//

“mono-
morphize”

��

X

Yτ
mangle

// Y

Aτ
encode

//Zτ
erase types

// Z

(a) Transformations

Aα
OO

Herbrand

��

Xτ
Lem. 6.11

OO

Herbrand

��

X

Yτ
Lem. 6.16

Y

Lem. 6.17

Aτ
Thms. 6.14, 6.15

Z

(b) Equisatisfiability

Figure 6.3: Relationships between problems

instances of the problem’s formulas by instantiating the encoded type vari-
ables with all possible “types” and mangle the resulting (generally infinite)
set to obtain the problem Y. By our motto, X and Y are equisatisfiable.

2. Monomorphize, then encode : Compute the (generally infinite) set of mono-
morphic formulas Aτ by instantiating all type variables in Aα with all possible
ground types; then translate Aτ to Z using the mangled-monomorphic vari-
ant of the chosen encoding. Aα and Z are equisatisfiable by Theorem 6.15 and
our motto.

As in the monomorphic case, where we distinguished between the intermediate,
typed problem Zτ and the final, untyped problem Z, we find it useful to oppose
Xτ to X and Yτ to Y. Although the protectors g and t cannot be typed polymor-
phically, a crude typing is possible, with encoded types assigned the type ϑ and all
other terms assigned ι. This avoids mixing types and terms in the encoded prob-
lems. The table below summarizes the situation:

NAME DESCRIPTION LOGIC EXAMPLE

Aα Original problem TFF1 V α = c

Xτ Encoded Aα TFF0 t(Aϑ, V ι) = c(Aϑ)
X Type-erased Xτ FOF t(A, V) = c(A)
Yτ “Monomorphized” Xτ TFF0 t(bϑ, V ι) = c(bϑ)
Y Mangled Yτ FOF t_b(V) = c_b

Aτ Monomorphized Aα TFF0 V b = c
Zτ Encoded Aτ TFF0 t_b(V b) = c_b
Z Type-erased Zτ FOF t_b(V) = c_b

Figure 6.3(a) presents the situation visually.

Intuitively, the problems Y and Z obtained by following routes 1 and 2 should
be very similar. If we can show that they are in fact equisatisfiable, the desired
equisatisfiability of Aα and X follows by transitivity, thereby proving g?, g??, t?,
and t?? sound and complete. Figure 6.3(b) sketches the equisatisfiability proof.
The missing equisatisfiabilities Yτ ∼ Y ∼ Z are proved below.

126 Chapter 6. Proof Discovery Using Automatic Theorem Provers

Lemma 6.16 (Correctness of Type Mangling). The problems Yτ and Y are equi-
satisfiable.

Proof. The difference between Yτ and Y is that the former has ground arguments
of type ϑ, while the latter mangles them into the symbol names—for example,
p(bϑ, V ι) vs. p_b(V). Mangling is generally incomplete in an untyped logic; for
example, the formula X = Y ∧ q(a, U) ∧ ¬ q(b, V) is unsatisfiable (since it implies
a = b), but its mangled variant X = Y ∧ q_a(U) ∧ ¬ q_b(V) is satisfiable. In our
two-typed setting, since there are no equations relating ϑ terms, mangling is easy
to prove correct by considering (equality) Herbrand interpretations of the non-
mangled and mangled formulas. ⊓⊔

Lemma 6.17 (Commutativity of Encoding and Monomorphization). The prob-
lems Y and Z are equisatisfiable.

Proof. We start with an example that illustrates the reasoning behind the proof. As
polymorphic problem Aα, we simply take the polymorphic list axiom

hd(cons(X α, Xs)) = X

from Example 6.4. We suppose that α list is infinite (and hence monotonic) but the
base type b is possibly nonmonotonic.

Following route 1, we apply the two-typed variant of t?? directly to the polymor-
phic formula Aα. This yields the set Xτ, where the second axiom below repairs
mismatches between tagged and untagged terms with the infinite type α list:

hd(A, cons(Aϑ, X ι, Xs ι)) = t(A, X)
t(list(Aϑ), Xs ι) = Xs

This set would also contain a typing axiom for hd, which we omit here. The con-
stant b and the unary function list are the only function symbols with a result of
type ϑ. Next, we instantiate the variables A with all possible ground terms of
type ϑ (of which there are infinitely many), yielding Yτ. Finally, we mangle Yτ,
transforming hd(b, t) into hd_b(t) and so on. This gives Y:

hd_b(cons_b(X, Xs)) = t_b(X)
hd_list_b(cons_list_b(X, Xs)) = t_list_b(X)

...

t_list_b(Xs) = Xs
t_list_list_b(Xs) = Xs

...

In contrast, with route 2 we fully monomorphize Aα to Aτ. Then we use a mangled-
monomorphic encoding, say, t̃??, to translate it into a set Z of untyped formulas

hd_b(cons_b(X, Xs)) = t_b(X)
hd_list_b(cons_list_b(X, Xs)) = X

...

Notice that the treatment of X in the right-hand sides above differs, since b is pos-
sibly nonmonotonic but b list is infinite.

6.6. Further Technical Improvements 127

Are Y and Z equisatisfiable? The first member of Y is also the first member of Z.
The second formula of Y, however, does not appear in Z: the second formula of
Z is the closest but its right-hand side is X instead of t_list_b(X). Fortunately, Y
also contains the axiom t_list_b(Xs) = Xs, so Y must imply the second formula
of Z. Conversely, problem Z does not mention the symbol t_list_σ for any σ, so
we can add, for all ground types σ, the axiom t_list_σ(Xs) = Xs to Z while pre-
serving satisfiability. This new set implies all members of Y—including the second
formula—so Y and Z are equisatisfiable.

We now generalize the above argument. Y contains axioms g_σ(X) or t_σ(X) = X
for each infinite type σ, whereas Z does not mention g_σ or t_σ for these types
because they are monotonic; we can add the corresponding axioms to Z while pre-
serving satisfiability. Otherwise, Y and Z contain the same formulas, except when
Aα quantifies over a variable X of a possibly nonmonotonic type with an infinite
instance σ. Z will not protect the σ instances of X, but Y might; however, since σ is
infinite, Y must contain the axiom g_σ(X) or t_σ(X) = X, allowing us to remove
the guard or tag. Hence, the two sets of formulas are equisatisfiable. ⊓⊔

Theorem 6.18 (Correctness of Polymorphic Encodings). The encodings g?, g??,
t?, and t?? are sound and complete.

Proof. This follows from Lemmas 6.11, 6.16, and 6.17, Theorems 6.14 and 6.15, and
Herbrand’s theorem (for terms and for types), as depicted in Figure 6.3(b). The
application of Lemma 6.11 to erase ϑ and ι in Xτ requires Xτ to be monotonic;
this can be proved either in the style of MONO in the proof of Theorem 6.14 or by
observing that monotonicity is preserved along the equisatisfiability chain Zτ ∼
Z ∼ Y ∼ Yτ ∼ Xτ. ⊓⊔

6.6 Further Technical Improvements

This section describes various technical improvements that we made to Sledge-
hammer. These improvements have not always been of academic interest, but they
are valuable to the users and maintainers.

6.6.1 Full First-Order Logic Output

In the previous Sledgehammer architecture, the available lemmas were rewritten to
CNF using a naive exponential application of distributive laws before the relevance
filter was invoked. To avoid clausifying thousands of lemmas on each Sledgeham-
mer invocation, the CNF clauses were kept in a cache. This design was technically
incompatible with the (cache-unaware) smt method, and it was already unsatisfac-
tory for ATPs, which nowadays include custom clausifiers that generate a polyno-
mial number of clauses [141].

We adjusted the relevance filter so that it operates on arbitrary HOL formulas, try-
ing to simulate the old behavior. To mimic the penalty associated with Skolem
functions in the CNF-based code, we keep track of polarities and detect quantifiers
that give rise to Skolem functions.

A minor disadvantage of generating FOF formulas is that the Skolem constants in-
troduced by the ATPs are applied directly (e.g., y(X)) instead of via the application

128 Chapter 6. Proof Discovery Using Automatic Theorem Provers

operator (e.g., hAPP(y, X)). As a result, the lemma

(∀x. ∃y. p x y) =⇒ ∃ f . ∀x. p x (f x)

(a weak form of the HOL axiom of choice), which was previously translated to the
inconsistent pair of clauses

hBOOL(hAPP(hAPP(P, X), hAPP(y, X)))
¬ hBOOL(hAPP(hAPP(P, x(F)), hAPP(F, x(F))))

can no longer be proved by the ATPs without additional facts.

6.6.2 Fine-Tuned Relevance Filter

The relevance filter is controlled by a threshold, a convergence parameter, and a
prover-dependent desired number of facts. We identified several issues: The num-
ber of selected facts varied greatly between problems, and the threshold and con-
vergence parameters affected it in counterintuitive ways. No facts would be se-
lected if the threshold was not reached in the first iteration. For first-order goals,
all higher-order facts were crudely filtered out.

We started with the existing code base but made the selection more fluid by per-
forming more iterations, each selecting fewer facts. If no facts are selected in the
first iteration, the threshold is automatically lowered. We also made the desired
number of facts a hard limit and tuned the other parameters so that it is normally
reached. Inspired by the world’s best-run financial institutions, we introduced a
complex array of bonuses: Local facts are preferred to global ones, first-order facts
are preferred to higher-order ones, and so on. These parameters were optimized by
running the relevance filter with different values on a benchmark suite and com-
paring the output against a database of known proofs.

To help debugging, we ensured that the facts returned by the relevance filter are
output in the order in which they were selected. We discovered later that this can
be exploited by some provers:

• Z3 supports weights as extralogical annotations on universal quantifiers. The
greater the weight of the quantifier, the fewer instantiations are allowed. We
can give a weight of 0 to the quantifiers in the most relevant fact included,
N to the quantifiers in the least relevant fact, and interpolate in between.

• Motivated by Sledgehammer, Stephan Schulz extended E with two weight
functions, FunWeight and SymOffsetWeight, that let us associate weights with
function and predicate symbols. We give lower weights to the symbols that
occur in the most relevant facts, so that clauses containing these symbols are
preferred to other clauses.

• Also motivated by our application, Daniel Wand extended SPASS’s input syn-
tax with ranks attached to facts, indicating their likely relevance [36]. The
ranks influence the clause selection strategy. This enhancement is expected to
be part of SPASS 3.8.

6.6. Further Technical Improvements 129

6.6.3 Time Slicing

Some automatic provers, notably Vampire, use internal strategy scheduling when
attacking a problem. Each strategy is given a time slice of at most a few seconds.
Time slicing usually results in significantly higher success rates than letting an au-
tomatic prover run undisturbed for n seconds with a fixed strategy.

Applications can implement a form of time slicing for any automatic prover, by
invoking it repeatedly with different options for a fraction of the total time limit.
In Sledgehammer, we vary not only the prover options but also the number of
facts and the type encodings. For E, SPASS, and Vampire, we computed optimal
strategies of three 10-second slices based on exhaustive evaluations of the main
type encodings and prover options. For example, the best combination of three
slices we found for E were 50 facts with the g̃?? encoding and E’s FunWeight clause
weighting function, 500 facts with t̃?? and FunWeight, and 1000 facts with t̃?? and
SymOffsetWeight.

6.6.4 Additional Provers

Our goal with Sledgehammer is to help as many Isabelle users as possible. Third-
party provers should ideally be bundled with Isabelle and ready to be used without
requiring configuration. Today, Isabelle includes CVC3, E, SPASS, and Z3 executa-
bles. Users can download Vampire and Yices, whose licenses forbid redistribution,
but most simply run Vampire remotely on SystemOnTPTP [178].

We have undertaken experiments with several other ATPs:

• SInE, the Sumo Inference Engine [88], is a metaprover designed to cope with
large axiom bases. SystemOnTPTP provides an older version as a wrapper
for E. We pass E-SInE more facts than can be handled by the other ATPs, and
it sometimes surprises us with original proofs.

• Waldmeister [87] is a highly optimized prover for the unit equality fragment
of first-order logic. Its main strength is that it can form long chains of equa-
tional rewrites, reordering the given equations if necessary (unlike Isabelle’s
simplifier). Sledgehammer can use it if the goal is an unconditional equation.

• Instantiation provers such as Equinox [57] and iProver [104] are promising,
but in case of success they currently do not deliver a proof, not even the list
of used axioms.

• Z3 natively supports the TPTP FOF and TFF0 syntaxes. We can pretend it is
an ATP and have it compete head-to-head with E, SPASS, and Vampire.

We already mentioned the SMT solvers CVC3, Yices, and Z3 in Section 6.3 and the
higher-order ATPs LEO-II and Satallax in Section 6.5.3.

By default, Sledgehammer now runs E, E-SInE, SPASS, Vampire, Z3, and (for equa-
tional goals) Waldmeister in parallel, either locally or remotely via SystemOnTPTP.
Remote servers are satisfactory for proof search, at least when they are up and run-
ning and the user has Internet access. They also help distribute the load: Unless
the user’s machine has eight processor cores, it would be reckless to launch six
automatic provers locally and expect the user interface to remain responsive.

130 Chapter 6. Proof Discovery Using Automatic Theorem Provers

6.6.5 Fast Minimization

Proof minimization draws on either a naive linear algorithm or a binary algorithm
(Section 6.2). Given an n-fact proof, the linear algorithm always needs n calls to the
external prover, whereas the binary algorithm requires anywhere between log2 n
and 2n calls, depending on how many facts are actually needed [44, §7.1]. We
currently select the binary algorithm iff n > 20. In particular, the binary algorithm
is used for provers that do not produce proofs or unsatisfiable cores, in which case
it starts with the complete set of facts given to the prover.

Because of the multiple prover invocations (many if not most of which with un-
provable problems), minimization often consumes more time than the proof search
itself. An obvious improvement to the minimization algorithms is to inspect the
proofs and eliminate any fact that is not referenced in it. Another improvement is
to use the time required by the last successful proof as the timeout for the next one,
instead of a fixed, necessarily liberal timeout (5 seconds). We have implemented
these ideas in both algorithms. Together with a more detailed output, they have
greatly contributed to making minimization fast and enjoyable.

The adaptations to Bradley and Manna’s binary algorithm [47, §4.3] required some
thought. Our new algorithm is presented below in a syntax close to Standard ML:

fun split [] lrs = lrs
| split [x] (ls, rs) = (x :: ls, rs)
| split (x1 :: x2 :: xs) (ls, rs) = split xs (x1 :: ls, x2 :: rs)

fun binary_minimize p t xs =
let

fun bm t sup (xs as _ :: _ :: _) =
let val (l0, r0) = split xs ([], []) in

case p t (sup @ l0) of

Success (t, ys)⇒ bm t (sup ∩ ys) (l0 ∩ ys)
| Failure⇒

case p t (sup @ r0) of

Success (t, ys)⇒ bm t (sup ∩ ys) (r0 ∩ ys)
| Failure⇒

let

val (t, sup_r0, l) = bm t (sup @ r0) l0
val sup = sup ∩ sup_r0

val r0 = r0 ∩ sup_r0

val (t, sup_l, r) = bm t (sup @ l) r0

val sup = sup ∩ sup_l
in (t, sup, l @ r) end

end

| bm t sup xs = (t, sup, xs)
in

case bm t [] xs of

(t, _, [x])⇒ (case p t [] of Success _⇒ [] | Failure⇒ [x])
| (_, _, xs)⇒ xs

end

6.6. Further Technical Improvements 131

The main function, binary_minimize, takes the following arguments: a proving func-
tion p that expects a timeout and a list of facts, a timeout t, and a list of facts xs. The
result of p is either Failure or Success (t′, xs′), where t′ ≤ t is the time taken to find
the proof and xs′ ⊆ xs lists the referenced facts in the proof. If t 6= ∞, the proving
function may return Failure when a Success value would be possible, in which case
the result of minimization is not guaranteed to be minimal.

The inner function bm takes a timeout t, a support set sup, and a list of facts xs
to minimize, and returns a new triple (t′, sup′, xs′), where xs′ is the minimized set
of facts, whereas t′ ≤ t and sup′ ⊆ sup are a smaller timeout and a more precise
support set to use for further calls to p.

6.6.6 Revamped User Experience

Sledgehammer was designed to run in the background, so that users can keep
working on a manual proof while the automatic provers are active. However, what
usually happened is that users waited for the tool to return, which took up to one
minute. Since the vast majority of proofs are found in the first 30 seconds [44, §4],
we halved the time limit. If no proof is found by then, Sledgehammer simply re-
turns. Otherwise, it uses up to 30 seconds for postprocessing the proof; this is tol-
erable, because users tend to be patient when they know a proof has been found.

Postprocessing is a new concept that involves automatic proof minimization and
proof preplay. If the proof search took t seconds and yielded an n-fact proof, the
linear algorithm can minimize it within nt seconds. If nt is below an acceptable
threshold (currently 5 seconds), the proof is minimized behind the scenes before it
is presented to the user. Automatic minimization also takes place if n is absurdly
large, which happens if the prover claims provability without giving any details.

Users waste precious time on metis calls that fail or take too long. Proof preplay
addresses this by testing the metis call for a few seconds. In fact, three metis calls
are tried in sequence, with different type encodings (a, g?, and e), followed by an
smt call. The first call that succeeds is shown to the user together with the time
it took. If several automatic provers independently found a proof, the user can
choose the fastest one and insert it in the theory text.

With so many tools at their disposal, users run the risk of forgetting to invoke them
at the right point. For this reason, Sledgehammer can now be configured to run
automatically for a few seconds on all newly entered conjectures. It is also part of
the try tool, which launches the main Isabelle proof and disproof tools with a more
liberal time limit [30, §1].

In keeping with our belief that users should be given complete control to override
default values and heuristics, we devised, implemented, and documented a rich
option syntax [27], complemented by clear messages for common error scenarios.
Many of the options cater for power users, allowing them to influence the facts to
select, the λ-abstraction translation scheme or type encoding to use, and so on.

6.6.7 Skolemization without Choice

The step-by-step reconstruction of Metis proofs by the metis method is only possible
for problems expressed in CNF. Since we cannot reasonably expect users to put

132 Chapter 6. Proof Discovery Using Automatic Theorem Provers

their formulas in this form, it is the metis method’s task to clausify the problem, via
Isabelle’s inference kernel.

The main difficulty here is simulating skolemization in Isabelle. A naive treatment
of skolemization would require the introduction of fresh constants in the middle
of a proof, which is technically impossible. The approach taken by Paulson and
Susanto [153] when they implemented metis was to represent Skolem constants by
fresh nonschematic variables and define them locally using so-called metahypoth-
eses. A HOL lemma of the form ∀x. ∃yα. P x y was transformed into

yα = (λx. εy. P x y) ⊢ P x (y x)

where ⊢ separates the metahypothesis from the HOL clause. (Recall that ε is the
indefinite description operator, or Hilbert choice.) Once the proof by contradiction
was completed, the metahypothesis could be removed.

However, because of restrictions in Isabelle’s logical framework, variables intro-
duced this way cannot have polymorphic types. In the formula above, if α is a
schematic type variable, the schematicity is lost in the process. As a result, it was
possible to use ∀x.∃yα. P x y to prove ∀x.∃yα. P x y, but not to prove the equivalent
formula ∀x. ∃y β. P x y, with β instead of α.

The partial workaround in the old code was to introduce theory-level constants,
which can be polymorphic, instead of nonschematic variables. This was done au-
tomatically for all the theorems of a theory at the end of the theory, and the resulting
clauses were kept in a cache. It then became possible to prove ∀x. ∃y β. P x y from
∀x. ∃yα. P x y if the latter belonged to an ancestor theory, but not if it had been
introduced in the current, unfinished theory. The clause cache was also very inele-
gant and somewhat expensive in terms of time and memory, and as we mentioned
in Section 6.6.1 it did not interact well with SMT solvers.

Our solution to these issues is to avoid the introduction of free variables or con-
stants altogether and use the term λx. εy. P x y directly instead. This only impacts
the HOL side of things: When the clauses are translated for Metis, these ε terms are
replaced by fresh Skolem function symbols, and any occurrence of such a symbol
in a Metis proof is mapped back to the corresponding ε term in HOL. This change
allowed us to eradicate the clause cache once and for all.

However, there are two drawbacks to this approach:

• For large formulas with many nested existential quantifiers, the HOL formu-
las explode in size and slow down metis. As a side effect, this prevents us from
replacing the naive exponential clausifier by a polynomial approach based on
definitional CNF, as this would introduce too many existential quantifiers.

• The reliance on the indefinite choice operator means that metis cannot be used
in theories that are loaded before ε is available, such as Isabelle’s basic arith-
metic theories. It also prevents the use of metis (and Sledgehammer) for other
object logics, such as ZF [145, 146].

A solution to these issues was proposed by de Nivelle [67] for Coq. The idea is
to recast Skolem functions into “Skolem predicates,” which can be defined using
the unproblematic definite description operator ιinstead of ε. We considered this

6.6. Further Technical Improvements 133

approach but found that Isabelle, with its schematic variables, offers an easier al-
ternative. To keep the presentation simple, we restrict ourselves to the case where
there is only one existential quantifier in one lemma, focusing first on the abstract
problem before we review a specific example. In the interest of clarity, we distin-
guish schematics from nonschematics by a ? prefix in this discussion.

Our ideal would be to transform the lemma ∀x. ∃y. P x y into the clause P ?x (y ?x)
where y is some fresh constant or nonschematic variable, but this is denied to us:
As we saw above, we cannot produce such a y out of thin air. The intuition is to fall
back on P ?x (?y ?x), where ?y is schematic. This property generally does not hold
unless P is uniformly true; clearly, ?y must be constrained somehow. Indeed, the
condition it must respect is precisely P ?x (?y ?x), so we add that as an assumption
and obtain the tautology

P ?x (?y ?x) =⇒ P ?x (?y ?x)

This formula is trivial to derive, literally, using the aptly named kernel function
Thm.trivial. What interests us first is the conclusion P ?x (?y ?x)—the clause proper.
In the translation for Metis, the assumption is ignored, the schematic variable ?x is
mapped to a term variable, and ?y is mapped to a fresh Skolem function symbol.
Once we have a Metis proof, we simulate it step by step, carrying the P ?x (?y ?x)
assumption along. At the end, when Metis has derived the empty clause, we are
left with a theorem of the form

P t1 (?y1 t1) =⇒ · · · =⇒ P tn (?yn tn) =⇒ False

where each assumption corresponds to a use of the clause P ?x (?y ?x). In general,
?x is instantiated with some terms tj, but ?y is left uninstantiated, since Metis sees it
as a function symbol and not as the variable it really is. With some massaging, each
assumption can be discharged using the original lemma ∀x. ∃y. P x y, resulting in
the theorem False (with the negated conjecture as metahypothesis).

Let us make this more concrete by looking at an example. Assume we want to use
the lemma

∀x. x = 0 ∨ ∃y. x = Suc y

to prove the nearly identical goal

a = 0 ∨ ∃b. a = Suc b

Our clausifier first produces the three (generalized) HOL clauses

?x = 0 ∨ ?x = Suc (?y ?x) =⇒ ?x = 0 ∨ ?x = Suc (?y ?x)

a 6= 0 a 6= Suc ?b

The first clause corresponds to the lemma, whereas the last two are derived from
the negated conjecture. Because of the negation, the existential variable b is essen-
tially universal and becomes a schematic variable ?b. Inversely, the nonschematic
variable a is effectively a Skolem constant.

The HOL formulas are translated to the first-order clauses

X = zero ∨ X = suc(y(X)) a 6= zero a 6= suc(B)

134 Chapter 6. Proof Discovery Using Automatic Theorem Provers

where y is a Skolem function. Metis finds a contradiction by taking X = a and
B = y(a), and the needed resolution steps are easy to emulate in Isabelle. Because
the first clause has an additional assumption, at the end of the resolution proof we
have derived the following HOL theorem:

a = 0 ∨ a = Suc (?y a) =⇒ False

Let us call this intermediate result nearly_there. Notice that ?x in the assumption is
instantiated with a (since Metis took X = a), whereas ?y is left uninstantiated.

To conclude the proof, we must derive False from nearly_there. This is convoluted.
To give the general flavor of the approach, we express it in the Isar syntax, but nat-
urally it is implemented as a general ML tactic. The current goal state is displayed
between each pair of Isar commands:

show False

1. False

apply (insert ‘∀x. ∃y. x = 0 ∨ x = Suc y’)

1. ∀x. ∃y. x = 0 ∨ x = Suc y =⇒ False

apply (erule_tac x = a in allE)

1. ∃y. a = 0 ∨ a = Suc y =⇒ False

apply (erule exE)

1.
∧

y. a = 0 ∨ a = Suc y =⇒ False

apply (rule nearly_there)

1.
∧

y. a = 0 ∨ a = Suc y =⇒ a = 0 ∨ a = Suc (?y y a)

by assumption

In a first step, we insert the prenex normal form of our lemma as an assumption in
the proof goal. Then we eliminate the quantifier prefix, by instantiating the univer-
sal quantifier and transforming the existential into a schematic variable, applying
the appropriate HOL elimination rules (allE and exE). We are left with a trivial im-
plication modulo the unification goal y

?
= ?y y a. This unification is no match for

Isabelle’s higher-order unifier, which finds the solution ?y = (λy a. y).

The approach is generalizable to arbitrary quantifier prefixes, but it requires care-
ful synchronization when discharging the assumptions. In addition, we cannot
always expect the higher-order unifier to succeed and must perform the required
instantiations explicitly. Since the new approach works well with definitional CNF
and Isabelle already has some support for it (developed for the SAT solver inte-
gration [198, §6]), we now have a clausifier that generates a polynomial number
of clauses in the worst case, making it possible for metis to reconstruct proofs that
were previously beyond its effective reach.

6.7 Evaluation

According to Lawrence Paulson [150]:

Experimental science is about empirical results. You set up an experi-
ment, you run it and you report what happened. In computer science,
we seem to have turned things around, so that the mere act of building
a big system counts as experimental science. In my opinion, it isn’t.

6.7. Evaluation 135

We wholeheartedly agree. Our changes to Sledgehammer might not be improve-
ments, unless we can exhibit convincing empirical evidence that the tool is now
more powerful than it was before our involvement with it.

Ideally, we would show the contribution of each improvement in isolation to the
overall result. This is technically difficult, because in parallel with Sledgeham-
mer’s development, Isabelle itself, its lemma libraries, the evaluation framework
(Mirabelle), the theories used for the evaluation, and the third-party automatic
provers kept evolving. Nonetheless, we can get a fairly accurate idea by tracking
the evaluations presented in three papers:

• In their original “Judgment Day” study, conducted in November 2009 before
we took over Sledgehammer’s development, Böhme and Nipkow [44] eval-
uated E, SPASS, and Vampire in parallel on 1240 proof goals arising in seven
representative Isabelle theories. They found an overall success rate of 47% for
a 30 second timeout and 48% for 120 seconds.

• In September 2010, we ran the Judgment Day benchmark suite on the same
hardware but with more recent versions of the software and theories [152].
In particular, Sledgehammer now communicated with the ATPs using FOF
instead of CNF, added E-SInE to the collection of ATPs, and employed the
latest versions of SPASS and Vampire. The success rate had climbed from
48% to 52% for a 120 second timeout.

• In April 2011, we ran a superset of the Judgment Day benchmarks after a
further round of improvements, including the addition of SMT solvers [28].
On the Judgment Day benchmarks, the success rate with a 30 second timeout
was 52% for the ATPs (E, E-SInE, SPASS, and Vampire), 55% for the SMT
solvers (CVC3, Yices, and Z3), and 60% for all provers combined.

Here we evaluate the latest version of Sledgehammer and the automatic provers,
comparing the performance of the automatic provers and their unique contribu-
tions (Section 6.7.4). But first, we present two smaller evaluations that focus on
specific aspects of the translation to first-order logic: the encoding of polymorphic
types (Section 6.7.2) and the translation of λ-abstractions (Section 6.7.3).

6.7.1 Experimental Setup

The Judgment Day benchmarks consist of all the proof goals arising in seven the-
ories from the Isabelle distribution and the Archive of Formal Proofs [102], listed
below under short names. The third column lists the number of goals from each
theory, and the last column specifies the features it contains, where A means arith-
metic, I means induction/recursion, L means λ-abstractions, and S means sets.

THY. DESCRIPTION GOALS FEATS.

Arr Arrow’s impossibility theorem 101 L S
FFT Fast Fourier transform 146 A L
FTA Fundamental theorem of algebra 424 A
Hoa Completeness of Hoare logic with procedures 203 A I L
Jin Type soundness of a subset of Java 182 I L
NS Needham–Schroeder shared-key protocol 100 I
SN Strong normalization of the typed λ-calculus 115 A I

136 Chapter 6. Proof Discovery Using Automatic Theorem Provers

We added two theories (QE and S2S) that rely heavily on arithmetic to exercise the
SMT decision procedures and a third one (Huf) that combines all four features:

QE DNF-based quantifier elimination 193 A L S
S2S Sum of two squares 130 A
Huf Optimality of Huffman’s algorithm 284 A I L S

We believe these ten theories to be representative of typical applications of Isabelle,
with a bias toward arithmetic reasoning.

We used the following prover versions as backends: CVC3 2.2, E 1.4, E-SInE 0.4,
LEO-II 1.2.8, Satallax 2.2, SPASS 3.7, Vampire 1.8, Waldmeister 710, Yices 1.0.28,
and Z3 3.0. E-SInE and Waldmeister were run remotely via SystemOnTPTP [178];
the other provers were installed and run on Böhme and Nipkow’s 32-bit Linux
servers (with 3.06 GHz Dual-Core Intel Xeon processors). For the evaluations of the
translation of types and λ-abstractions, we invoked each prover once per problem,
with a fixed set of options. For some provers, we deviated from the default setup,
based on earlier experiments:

• The E setup was suggested by Stephan Schulz and included the SymOffset-

Weight weight function (Section 6.6.2).

• We invoked LEO-II with -sos.

• We invoked SPASS with -Auto, -SOS=1, -VarWeight=3, and -FullRed=0.

• We invoked Vampire with -mode casc, -forced_options propositional_to_

bdd=off, and -thanks "Andrei and Krystof".

• We invoked Z3 with MBQI=true for TPTP problems.

For evaluating the combination of provers, we enabled time slicing (Section 6.6.3).
Each time slice of each prover then specifies its own options.

6.7.2 Type Encodings

To evaluate the type encodings described in Section 6.5, we put together two sets of
1000 problems generated from the ten selected Isabelle theories, with 100 problems
per theory, using combinators to encode λ-abstractions. The problems in the first
benchmark set include up to 150 heuristically selected axioms (before monomorph-
ization); that number is increased to 500 for the second set, to reveal how well the
encodings scale with the problem size.

We evaluated the main type encodings with the resolution provers E, SPASS, and
Vampire and the SMT solver Z3 in TPTP mode. The provers were granted 20 sec-
onds of CPU time per problem. Most proofs were found within a few seconds; a
higher time limit would have had little impact on the success rate [44]. To avoid
giving the unsound encodings an unfair advantage, the proof search phase is fol-
lowed by a certification phase that attempts to re-find the proof using a combina-
tion of sound encodings.

Figures 6.4 and 6.5 give, for each combination of prover and encoding, the num-
ber of solved problems from each set. Rows marked with ˜ concern the mangled-
monomorphic encodings. For the second benchmark set, Figure 6.6 presents the

6.7. Evaluation 137

average number of clauses, literals per clause, symbols per atom, and symbols for
clausified problems (using E’s clausifier), to measure each encoding’s overhead.

The monomorphic versions of our refined monotonicity-based translation scheme,
especially g̃!! and g̃??, performed best overall. This confirms the intuition that
clutter (whether type arguments, guards, or tags) slows down automatic provers.
Surprisingly, some of our monomorphic encodings outperformed Vampire’s and
Z3’s native types (ñ? and ñ). Part of the explanation is that the type support in
Vampire 1.8 is unsound (leading to many rejected proofs) and interferes with the
prover’s internal strategy scheduling.

Polymorphic encodings lag behind, but our approach nonetheless constitutes a
substantial improvement over the traditional polymorphic schemes. The best un-
sound encodings performed very slightly better than the best sound ones, but not
enough to justify making them the default.

6.7.3 Translation of λλλ-Abstractions

Orthogonally to the encoding of types, it is important to choose an appropriate
translation of λ-abstractions. In Section 6.4.3, we presented two main translation
schemes into first-order logic—the Curry combinators and λ-lifting—as well as a
hybrid scheme. For good measure, we also evaluate two more radical translation
schemes: One consists of “hiding” the λ-abstractions by replacing them by unspec-
ified fresh constants, effectively disabling all reasoning under λ-abstractions; the
other, which is available only with the higher-order ATPs, is simply to keep the λs
in the generated THF0 problems.

We evaluated these translation schemes for the first-order resolution provers E,
SPASS, and Vampire with the type encoding g̃??, the SMT solver Z3 in TPTP mode
with ñ, and the higher-order provers LEO-II and Satallax with Ñ. The provers were
given 30 seconds per problem. For each combination of prover and translation
scheme, we generated 1000 problems from the ten selected Isabelle theories, with
100 problems per theory. The first-order provers were passed 300 axioms; the (less
scalable) higher-order provers were passed only 100 axioms. Figure 6.7 gives the
number of solved problems for each set of 1000 problems.

UNSOUND SOUND

e a g!! t!! g! t! g?? t?? g? t? g t n? n

E 316 362 350 353 343 338 344 351 345 302 255 295 – –

˜ – 344 390 389 382 372 388 390 386 373 355 334 – –

SPASS 275 324 305 308 309 293 291 309 290 242 247 267 – –

˜ – 267 337 334 334 322 344 341 340 333 321 311 – –

VAMPIRE 291 376 328 326 333 333 331 313 325 294 240 211 – –

˜ – 357 385 368 376 379 381 374 365 364 303 238 366 376

Z3 295 365 345 347 328 313 329 333 307 260 253 319 – –

˜ – 339 366 360 362 362 353 352 356 348 349 314 364 361

Figure 6.4: Number of solved problems with 150 facts

138 Chapter 6. Proof Discovery Using Automatic Theorem Provers

UNSOUND SOUND

e a g!! t!! g! t! g?? t?? g? t? g t n? n

E 193 339 309 308 312 300 313 310 304 245 199 216 – –

˜ – 309 368 365 363 354 364 366 364 350 314 308 – –

SPASS 186 306 287 285 284 274 274 294 264 204 198 243 – –

˜ – 247 310 304 312 284 308 306 300 276 239 231 – –

VAMPIRE 180 350 282 292 298 286 282 288 283 279 185 148 – –

˜ – 315 344 344 354 334 339 342 339 331 251 171 355 346

Z3 175 339 319 323 311 296 306 303 262 222 200 219 – –

˜ – 302 343 343 350 337 343 340 344 327 329 254 335 337

Figure 6.5: Number of solved problems with 500 facts

UNSOUND SOUND

AVG. NUM. e a g!! t!! g! t! g?? t?? g? t? g t

CLAUSES 749 808 896 835 896 835 974 867 974 867 1107 827

˜ – 1080 1139 1105 1139 1105 1176 1105 1176 1105 1649 1105

LITERALS 2.32 2.55 2.70 2.60 3.00 2.55 2.84 2.59 3.88 2.49 5.41 2.56
PER CLAUSE ˜ – 2.28 2.35 2.22 2.35 2.29 2.57 2.15 2.57 2.29 4.74 2.29

SYMBOLS 6.7 9.3 15.8 16.6 14.5 18.3 14.8 16.4 11.9 25.6 6.3 28.1
PER ATOM ˜ – 7.2 6.9 7.4 7.0 8.0 6.3 7.6 6.5 8.3 4.4 14.0

SYMBOLS 11.7 19.2 38.2 38.6 39.0 38.9 40.9 41.5 45.1 55.2 38.0 59.5
(’000) ˜ – 17.8 18.5 18.6 18.7 20.1 19.0 19.2 19.6 21.0 34.4 35.3

Figure 6.6: Average size of clausified problems with 500 facts

HIDDEN COMBS. LIFTING HYBRID LAMBDAS

E 373 393 390 394 –
SPASS 338 345 347 325 –
VAMPIRE 391 403 411 415 –
Z3 342 367 357 360 –

LEO-II 209 196 221 207 205
SATALLAX 137 138 137 133 139

ALL PROVERS 446 482 478 489 –

Figure 6.7: Solved problems per prover and λ-abstraction translation scheme

These results show that it is appropriate to try to encode λ-abstractions—just hid-
ing them does not help. On the benchmarks, E and Z3 preferred combinators,
whereas SPASS and Vampire preferred lifting. The hybrid scheme worked well for
E and Vampire but had a terrible impact on SPASS, for which it performed even
worse than simply hiding the λs.

As expected, Satallax performs about as well if the λs appear as such in the problem
or if they are lifted. (In higher-order logic, λ-lifting is a simple syntactic transfor-
mation that does not affect provability.) On the other hand, the λs give LEO-II more
than enough rope to hang itself.

6.7. Evaluation 139

Based on these results, we have now made the hybrid scheme the default for Vam-
pire and λ-lifting for SPASS and LEO-II. However, we suspect our first-order trans-
lation schemes are far from optimal. We would need to implement and evaluate
more elaborate translation schemes—such as Obermeyer’s combinator-based ap-
proach [142] and explicit substitutions [69]—to gain clarity on this point, and per-
haps choose a more appropriate set of benchmarks.

6.7.4 Combination of Automatic Provers

Last but not least, we applied the main ATPs and SMT solvers supported by Sledge-
hammer to all 1876 goals from the ten selected theories with a 30 second time limit,
followed in case of success by a 30 second postprocessing phase and a 30 second
proof reconstruction phase.

FFT QE Huf NS Jin Arr Hoa SN FTA S2S ALL UNIQ.

E 25 30 30 27 46 46 44 68 67 55 45.8 1.1
E-SINE 20 30 22 22 18 29 42 57 60 52 37.5 .3
SPASS 18 26 30 31 41 44 50 67 62 50 43.6 .5
VAMPIRE 19 28 25 27 43 37 44 70 67 48 43.2 .4
WALDMEISTER 4 6 2 4 1 0 0 1 6 2 3.1 .0

LEO-II 13 13 20 7 23 7 25 43 48 35 27.0 .1
SATALLAX 3 7 6 2 14 10 25 30 25 22 15.6 .1

CVC3 21 27 31 23 37 52 56 53 57 62 43.1 .4
YICES 18 27 24 27 42 36 50 55 54 58 40.2 .2
Z3 24 25 33 41 50 55 54 62 62 58 47.2 2.0

F.-O. ATPS 28 33 36 40 47 50 54 74 71 65 51.3 5.3
H.-O. ATPS 14 16 21 7 27 15 35 50 51 37 30.5 .1
SMT SOLVERS 29 28 36 44 50 62 65 63 68 67 51.9 6.8

ALL PROVERS 34 41 42 46 54 66 70 74 75 76 58.8 –

Figure 6.8: Success rates (%) on all goals per prover and theory

Figure 6.8 gives the success rate for each prover (or class of prover) on each theory
together with the unique contributions of each prover. Sledgehammer solves 58.8%
of the goals, compared with 52.0% without SMT. Much to our surprise, the best
SMT solver, Z3, beats the best ATP, E, with 47.2% versus 45.8%. Z3 also contributes
by far the most unique proofs: 2.0% of the goals are proved only by it, a figure that
climbs to 5.9% if we exclude CVC3 and Yices.

While it might be tempting to see this evaluation as a direct comparison of provers,
recall that even provers of the same class (first-order ATP, higher-order ATP, or SMT
solver) are not given the same number of facts or the same options. Sledgehammer
is not so much a competition as a combination of provers.

If we consider only the seven Judgment Day theories, the success rate is 56.2% for
the first-order ATPs, 34.2% for the higher-order ATPs, 57.5% for the SMT solvers,
and 63.6% for all provers combined. This is a substantial improvement over the
success rate of 47% obtained by Böhme and Nipkow (for E, SPASS, and Vampire).

140 Chapter 6. Proof Discovery Using Automatic Theorem Provers

FFT QE Huf NS Jin Arr Hoa SN FTA S2S ALL UNIQ.

E 20 17 19 14 41 44 27 56 44 21 29.6 1.7
E-SINE 15 17 13 8 18 24 27 53 37 16 22.4 .4
SPASS 15 17 21 21 36 37 35 56 37 25 28.7 .9
VAMPIRE 15 14 17 16 39 31 30 59 44 16 27.7 .7
WALDMEISTER 5 5 1 0 1 0 0 0 7 0 2.4 .0

LEO-II 11 4 14 0 18 3 14 34 24 9 14.0 .1
SATALLAX 0 3 3 0 16 2 13 25 9 5 7.4 .1

CVC3 16 13 20 10 32 42 43 37 37 28 27.6 .7
YICES 13 13 15 17 37 21 39 41 32 23 24.9 .3
Z3 19 10 24 32 48 45 46 46 44 28 33.6 3.2

F.-O. ATPS 23 21 26 30 41 45 40 64 51 35 36.3 5.8
H.-O. ATPS 11 7 14 0 25 5 19 36 25 9 16.0 .2
SMT SOLVERS 24 13 26 36 48 52 54 47 46 32 37.0 7.5

ALL PROVERS 28 23 32 38 50 56 60 64 57 47 44.3 –

Figure 6.9: Success rates (%) on “nontrivial” goals per prover and theory

About 40% of the goals from the chosen Isabelle theories are “trivial” in the sense
that they can be solved directly by standard Isabelle tactics invoked with no ar-
guments. If we ignore these and focus on the remaining 1144 “nontrivial” goals,
which users are especially keen on seeing solved by Sledgehammer, the success
rates are lower, as shown in Figure 6.9: The ATPs solve 36.8% of these harder goals,
and SMT solvers increase the success rate to 44.3%. In contrast, the success rate on
the “trivial” goals for all provers combined is about 81%.

It may surprise some that E outperforms Vampire with such a clear margin, when
the latter has been winning the FOF division of CASC for the last 10 years. The ex-
planation is that Sledgehammer greatly benefits from E’s support for weight func-
tions, a nonstandard feature with no equivalent in Vampire.

Since LEO-II relies on E for its first-order reasoning and most of our problems are
either first-order or very mildly higher-order, we could have expected similar re-
sults for both provers. The wide gap between LEO-II and E is likely attributable
to its inefficient encoding of types [18] and could be addressed by adopting one of
our monotonicity-based encodings.

We expected Satallax to perform at least as well as LEO-II, but two factors worked
against it: Its internal strategy scheduling is calibrated for a much higher time limit
than 30 seconds, and a debilitating bug on Linux leads it to find spurious proofs,
which are then rejected by its unsatisfiable core extractor.

6.8 Structured Proof Construction

Proofs found by ATPs are reconstructed in Isabelle either using a single metis call
or as Isar proofs following the structure of the ATP proofs [153]. The latter option is
useful for more difficult proofs, which metis fails to re-find within a reasonable time.
But most users find the generated Isar proofs unpalatable and are little inclined to
insert them in their theory text.

6.8. Structured Proof Construction 141

As illustration, consider the conjecture length (tl xs) ≤ length xs, which states that
the tail of a list (the list from which we remove its first element, or the empty list if
the list is empty) is at most as long as the original list. The proof found by Vampire,
translated to Isar, is as follows:

proof neg_clausify
assume length (tl xs) 6≤ length xs
hence drop (length xs) (tl xs) 6= [] by (metis drop_eq_Nil)
hence tl (drop (length xs) xs) 6= [] by (metis drop_tl)
hence ∀u. xs @ u 6= xs ∨ tl u 6= [] by (metis append_eq_conv_conj)
hence tl [] 6= [] by (metis append_Nil2)
thus False by (metis tl.simps(1))

qed

The neg_clausify proof method puts the Isabelle conjecture into negated clause form,
ensuring that it has the same shape as the corresponding ATP conjecture. The nega-
tion of the clause is introduced by the assume keyword, and a series of intermediate
facts introduced by hence lead to a contradiction.

There is a considerable body of research about making resolution proofs readable.
Earlier work focused on translating detailed resolution proofs into natural deduc-
tion calculi [128, 155]. Although they are arguably more readable, these calculi still
operate at the logical level, whereas humans reason mostly at the assertion level,
invoking definitions and lemmas without providing the full logical details. A line
of research focused on transforming natural deduction proofs into assertion-level
proofs [6, 89], culminating with the systems TRAMP [122] and Otterfier [208].

We would have liked to try out TRAMP and Otterfier, but these are large pieces of
unmaintained software that are hardly installable on modern machines and that
only support older ATPs. Regardless, the problem looks somewhat different in the
context of Sledgehammer. Because the ATPs are given hundreds of lemmas, they
tend to find short proofs, typically involving only a handful of lemmas. Moreover,
Sledgehammer can be instructed to merge each sequence of n inferences if short
proofs are desired. Replaying the inference is a minor issue, thanks to metis.

The first obstacle to readability is that the Isar proof, like the underlying ATP proof,
is by contradiction. As a first step toward more intelligible proofs, we looked for a
method to turn contradiction proofs around. From the onset, we decided that the
method should not be tied to any one logic (as long as it is classical) or calculus. In
particular, it should work on the Isar proofs generated by Sledgehammer or directly
on first-order TPTP/TSTP proofs [184]. The direct proof should be expressible in
Isar, Tisar (our ad hoc extension of TPTP/TSTP with Isar-like case analysis and
nested subproofs), or similar block-structured languages.

We present a method for transforming resolution proofs into direct proofs, or redi-
recting resolution proofs, in a simple Isar-like syntax (Section 6.8.1). We demon-
strate the method on a few examples (Section 6.8.2) before we present the main
algorithm (Section 6.8.3).

For examples with a simple linear structure, such as the Isar proof above, the proof
can be turned around by applying contraposition repeatedly:

142 Chapter 6. Proof Discovery Using Automatic Theorem Provers

proof –
have tl [] = [] by (metis tl.simps(1))
hence ∃u. xs @ u = xs ∧ tl u = [] by (metis append_Nil2)
hence tl (drop (length xs) xs) = [] by (metis append_eq_conv_conj)
hence drop (length xs) (tl xs) = [] by (metis drop_tl)
thus length (tl xs) ≤ length xs by (metis drop_eq_Nil)

qed

Our approach works on arbitrary proofs by contradiction. An early prototype
demonstrated at PAAR-2010 [151] and IWIL-2010 [152] sometimes exhibited ex-
ponential behavior. This issue has been resolved: Each step in the resolution proof
now gives rise to exactly one step in the direct proof. A linear number of additional
steps are introduced in the direct proof, but these correspond to applications of ba-
sic logical rules, such as modus ponens. Charles Francis implemented a prototype
as a student project, and the algorithm is now part of Sledgehammer.

While the output is designed for replaying proofs, it also has a pedagogical value:
Unlike Isabelle’s automatic tactics, which are black boxes, the proofs delivered by
Sledgehammer can be inspected and understood. The direct proof also forms a
good basis for further development.

6.8.1 Proof Notations

We first fix some notations for representing proofs.

Proof Graph. A proof graph is a directed acyclic graph where an edge a → b
indicates that a is used to derive b. We adopt the convention that derived nodes
appear lower than their parent nodes in the graph and omit the arrowheads:

0 1 2 3

4

5

⊥

6 7

00

00 00

ATP proofs identify formulas by numbers: The conjecture is called 0, the axioms are
numbered 1, 2, . . . , n, and the derivations performed during proof search (whether
or not they participate in the final proof) are numbered sequentially from n+ 1. We
abstract the ATP proofs by ignoring the formulas and keeping only the numbers.
Since we are not interested in the internal structure of the formulas found in the
ATP proofs, we call them atoms.

An atom is tainted if it is the negated conjecture or one of its direct or indirect
consequences. For our convenience, we decorate tainted atom numbers with a bar,
denoting negation. Removing the bar unnegates the conjecture but negates the
other tainted atoms. For the last step, we write ⊥ rather than ⊤.

6.8. Structured Proof Construction 143

Proof Trees. Proof trees are the standard notation for natural deduction proofs.
For example, the proof graph above is captured by the following proof tree:

[0]

1 2

1∧ 2 1∧ 2 −→ 4

4

0∧ 4 0∧ 4 −→ 6

6

[0]

3

1 2

1∧ 2 1∧ 2 −→ 4

4

3∧ 4 3∧ 4 −→ 5

5

0∧ 5 0∧ 5 −→ 7

7

6∧ 7 6∧ 7 −→ ⊥
⊥

The implications, such as 1∧ 2 −→ 4, are tautologies that should be proved as well.
The proof graph notation is more compact, not least because it enables the sharing
of subproofs; consequently, we prefer proof graphs to proof trees.

Isar Proofs. Isar proofs [139, 202] are a linearization of natural deduction proofs,
but unlike proof trees they allow the sharing of common derivations:

proof neg_clausify
assume 0
have 4 by (metis 1 2)
have 5 by (metis 3 4)
have 6 by (metis 0 4)
have 7 by (metis 0 5)
show ⊥ by (metis 6 7)

qed

The above proof is by contradiction. The corresponding direct proof relies on a
2-way case analysis:

proof –
have 4 by (metis 1 2)
have 5 by (metis 3 4)
have 6∨ 7 by metis
moreover

{ assume 6
have 0 by (metis 4 6) }

moreover

{ assume 7
have 0 by (metis 5 7) }

ultimately show 0 by metis
qed

Shorthand Proofs. The last proof format is an ad hoc shorthand notation for a
subset of Isar. In their simplest form, these shorthand proofs are a list of derivations

a1, . . . , am ⊲ b1 ∨ · · · ∨ bn

144 Chapter 6. Proof Discovery Using Automatic Theorem Provers

whose intuitive meaning is that “from the hypotheses a1 and . . . and am, we con-
clude b1 or . . . or bn.” Both the commas on the left-hand side and the disjunctions on
the right-hand sides are associative, commutative, and idempotent. If a hypothe-
sis ai is the previous derivation’s conclusion, we can omit it and write ◮ instead of
⊲. This notation mimics Isar, with⊲ for have or show and◮ for hence or thus. De-
pending on whether we use the abbreviated format, our running example becomes

1, 2 ⊲ 4 1, 2 ⊲ 4

3, 4 ⊲ 5 3 ◮ 5

0, 4 ⊲ 6 0, 4 ⊲ 6

0, 5 ⊲ 7 0, 5 ⊲ 7

6, 7 ⊲ ⊥ 6 ◮ ⊥

Each derivation Γ ⊲ b is essentially a sequent with Γ as the antecedent and b as
the succedent. For proofs by contradiction, the atoms in the antecedent are either
the negated conjecture (0), facts that were proved elsewhere (1, 2, and 3), or atoms
that were proved in preceding sequents (4, 5, 6, and 7). The succedent of the last
sequent is always ⊥.

Direct proofs can be presented in the same way, but the negated conjecture 0 may
not appear in any of the sequents’ antecedents, and the last sequent must have
the conjecture 0 as its succedent. In some of the direct proofs, we find it useful to
introduce case analyses. For example:

1, 2 ⊲ 4

3 ◮ 5

⊲ 6∨ 7
[

[6]

4 ◮ 0

[7]

5 ◮ 0

]

In general, case analysis blocks have the form

[a1]

Γ11 ⊲ b11

...

Γ1k1
⊲ b1k1

. . .

. . .

. . .

[an]

Γn1 ⊲ bn1

...

Γnkn
⊲ bnkn

with the requirement that a sequent with the succedent a1 ∨ · · · ∨ an has been
proved immediately above the case analysis. Each of the branches must be a valid
proof. The assumptions [aj] may be used to discharge hypotheses in the same
branch, as if they had been sequents ⊲ aj. Taken as a unit, the case analysis block
is indistinguishable from the sequent

a1 ∨ · · · ∨ an,
(⋃

i,j Γij −
⋃

j aj −
⋃

i,j bij

)
⊲ b1k1

∨ · · · ∨ bnkn

6.8.2 Examples of Proof Redirection

Before we present the proof redirection algorithm, we consider four examples of
proofs by contradiction and redirect them to produce a direct proof. The first exam-

6.8. Structured Proof Construction 145

ple has a simple linear structure, the second and third examples involve a “lasso,”
and the last example has no apparent structure.

A Linear Proof. We start with a simple proof by contradiction expressed as a
proof graph and in our shorthand notation:

0

⊥

3

4

1 2
00

00

00

0, 1 ⊲ 3

2, 3 ⊲ 4

1, 4 ⊲ ⊥

We redirect the sequents using (sequent-level) contraposition to eliminate all nega-
tions. This gives

1, 3 ⊲ 0

2, 4 ⊲ 3

1 ⊲ 4

We then obtain the direct proof by reversing the order of the sequents, and intro-
duce ◮ wherever possible:

proof –
have 4 by (metis 1)
hence 3 by (metis 2)
thus 0 by (metis 1)

qed

1 ⊲ 4

2 ◮ 3

1 ◮ 0

Lasso-Shaped Proofs. The next two examples look superficially like lassos:

0

1 2

3 4

6

⊥

5

00

00 00

0000

00

00

0 ⊲ 1

0 ⊲ 2

1 ⊲ 3

2 ⊲ 4

3, 4 ⊲ 5

5 ⊲ 6

6 ⊲ ⊥

0

1

2

3 4

5 6

⊥

00

00

00

00 00

0000

0 ⊲ 1

1 ⊲ 2

2 ⊲ 3

2 ⊲ 4

3 ⊲ 5

4 ⊲ 6

5, 6 ⊲ ⊥

We first focus on the example on the left-hand side. Starting from ⊥, it is easy to
redirect the proof segment up to the lasso cycle:

⊲ 6

6 ⊲ 5

5 ⊲ 3∨ 4

146 Chapter 6. Proof Discovery Using Automatic Theorem Provers

When applying the contrapositive to eliminate the negations in 3, 4 ⊲ 5, we obtain
a disjunction in the succedent: 5 ⊲ 3 ∨ 4. To continue from there, we introduce a
case analysis. In each branch, we can finish the proof:

[3]

3 ⊲ 1

1 ⊲ 0

[4]

4 ⊲ 2

2 ⊲ 0

In the second lasso example, the cycle occurs near the end of the contradiction
proof. A disjunction already arises when we redirect the last derivation. Naively
finishing each branch independently leads to a fair amount of duplication:

⊲ 5∨ 6

[5]

5 ⊲ 3

3 ⊲ 2

2 ⊲ 1

1 ⊲ 0

[6]

6 ⊲ 4

4 ⊲ 2

2 ⊲ 1

1 ⊲ 0

The key observation is that the two branches can share the last two steps. This
yields the following proof (without and with ◮):

⊲ 5∨ 6

[5]

5 ⊲ 3

3 ⊲ 2

[6]

6 ⊲ 4

4 ⊲ 2

2 ⊲ 1

1 ⊲ 0

⊲ 5∨ 6

[5]

◮ 3

◮ 2

[6]

◮ 4

◮ 2

◮ 1

◮ 0

Here we were fortunate that the branches were joinable on 2. To avoid duplication,
we must sometimes join on a disjunction b1 ∨ · · · ∨ bn , as in the next example.

A Spaghetti Proof. The final example is diabolical (and slightly unrealistic):

1

2 3

⊥

4

0

5 6

7 8

00

00

0000

00

00 00

0000

0 ⊲ 1

1 ⊲ 2

1 ⊲ 3

2, 3 ⊲ 4

2, 4 ⊲ 5

3, 4 ⊲ 6

2, 5, 6 ⊲ 7

3, 6 ⊲ 8

7, 8 ⊲ ⊥

6.8. Structured Proof Construction 147

We start with the contrapositive of the last sequent:

⊲ 7∨ 8

We perform a case analysis on ⊲ 7 ∨ 8. Since we want to avoid duplication in the
two branches, we first determine which nodes are reachable in the refutation graph
by navigating upward from either 7 or 8 but not from both. The only such nodes
here are 5, 7, and 8. In each branch, we can perform derivations of the form Γ ⊲ b
where Γ ∩ {5, 7, 8} 6= ∅ without fearing duplication. Following this rule, we can
only perform one inference in the right branch before we must stop:

[8]

8 ⊲ 3∨ 6

Any further inferences would need to be repeated in the left branch, so it is indeed
a good idea to stop. The left branch starts as follows:

[7]

7 ⊲ 2∨ 5∨ 6

We would now like to perform the inference 5 ⊲ 2 ∨ 4. This would certainly not
lead to any duplication, because 5 is not reachable from 8 by navigating upward
in the refutation graph. However, we cannot discharge the hypothesis 5, having
established only the disjunction 2∨ 5∨ 6. We need a case analysis on the disjunction
to proceed:

[
[5]

[2] 5 ⊲ 2∨ 4 [6]

]

The 2 and 6 subbranches are left alone, because there is no node that is reachable
only by 2 or 6 but not by the other two nodes from {2, 5, 6} by navigating upward
in the refutation graph. Since only one branch is nontrivial, we find it more aes-
thetically pleasing to abbreviate the entire case analysis to

2∨ 5∨ 6 ⊲ 2∨ 4∨ 6

Putting this all together, the outer case analysis becomes

[7]

◮ 2∨ 5∨ 6

◮ 2∨ 4∨ 6

[8]

◮ 3∨ 6

The left branch proves 2∨ 4∨ 6, the right branch proves 3∨ 6; hence, both branches
together prove 2∨ 3∨ 4∨ 6. Next, we perform the inference 6 ⊲ 3∨ 4. This requires
a case analysis on 2∨ 3∨ 4∨ 6:

[
[6]

[2] [3] [4] 6 ⊲ 3∨ 4

]

This proves 2 ∨ 3 ∨ 4. Since only one branch is nontrivial, we can abbreviate the
case analysis to

2∨ 3∨ 4∨ 6 ⊲ 2∨ 3∨ 4

148 Chapter 6. Proof Discovery Using Automatic Theorem Provers

It may help to think of such derivation steps as instances of rewriting modulo
associativity, commutativity, and idempotence. Here, 6 is rewritten to 3 ∨ 4 in
2 ∨ 3 ∨ 4 ∨ 6, resulting in 2 ∨ 3 ∨ 4. Similarly, the sequent 4 ⊲ 2 ∨ 3 gives rise to
the case analysis

[
[4]

[2] [3] 4 ⊲ 2∨ 3

]

which we abbreviate to

2∨ 3∨ 4 ⊲ 2∨ 3

We are left with 2∨ 3. The rest is analogous to the second lasso-shaped proof:
[

[2]

2 ⊲ 1

[3]

3 ⊲ 1

]

1 ⊲ 0

Putting all of this together, we obtain the following proof, expressed in Isar and in
shorthand using ◮:

proof –
have 7∨ 8 by metis
moreover

{ assume 7
hence 2∨ 5∨ 6 by metis
hence 2∨ 4∨ 6 by metis }

moreover

{ assume 8
hence 3∨ 6 by metis }

ultimately have 2∨ 3∨ 4∨ 6 by metis
hence 2∨ 3∨ 4 by metis
hence 2∨ 3 by metis
moreover

{ assume 2
hence 1 by metis }

moreover

{ assume 3
hence 1 by metis }

ultimately have 1 by metis
thus 0 by metis

qed

⊲ 7∨ 8

[7]

◮ 2∨ 5∨ 6

◮ 2∨ 4∨ 6

[8]

◮ 3∨ 6

◮ 2∨ 3∨ 4

◮ 2∨ 3
[

[2]

◮ 1

[3]

◮ 1

]

◮ 0

The result is quite respectable, considering what we started with.

6.8.3 The Redirection Algorithm

The process we applied in the examples above can be generalized into an algo-
rithm. The algorithm takes an arbitrary proof by contradiction expressed as a set of
sequents as input, and produces a proof in our Isar-like shorthand notation, with
sequents and case analysis blocks. The proof is constructed one inference at a time

6.8. Structured Proof Construction 149

starting from ⊤ until the conjecture is proved. The algorithm relies on a few auxil-
iary notions that we present first.

A fundamental operation is sequent-level contraposition. As in the examples, we
conveniently assume that the negated conjecture and all the nodes that are tainted
by it are negated atoms while the other atoms are positive. A proof by contradiction
then consists of three kinds of sequent:

1. a1, . . . , ak, ak+1, . . . , am ⊲ ⊥
2. a1, . . . , ak, ak+1, . . . , am ⊲ b

3. a1, . . . , am ⊲ b

The contrapositive of each kind of sequent is given below:

1. a1, . . . , ak ⊲ ak+1 ∨ · · · ∨ am

2. a1, . . . , ak, b ⊲ ak+1 ∨ · · · ∨ am

3. a1, . . . , am ⊲ b

In all three cases, the contrapositive has the general form

a1, . . . , am ⊲ b1 ∨ · · · ∨ bn

We call the contrapositives of the sequents in the proof by contradiction the redi-
rected sequents.

Based on the set of redirected sequents, we define the atomic inference graph (AIG)
with, for each sequent of the above general form, an edge from each ai to each bj,
and no additional edges. The AIG is acyclic. Navigating forward in this graph
corresponds roughly to navigating backward, or upward, in the refutation graph.

Given a set of atoms {b1, . . . , bn}, the zone of an atom bj is the set of descendants of
bj in the AIG that are not descendants of any of the other atoms in the set. Being a
descendant of itself, bj may (but need not) belong to its own zone.

The algorithm keeps track of the last-proved clause (initially ⊤), the set of already
proved atoms (initially the set of facts taken as axioms), and the set of remaining
sequents to use (initially all the redirected sequents provided as input). It performs
the following steps:

1. If there are no remaining sequents, stop.

2. If the last-proved clause is ⊤ or a single atom b:

2.1. Pick a sequent Γ ⊲ c among the remaining sequents that can be proved
using only already proved atoms, preferring sequents with a single atom
in their succedent.

2.2. Append Γ ⊲ c to the proof.

2.3. Make c the last-proved clause, add c to the already proved atoms if it is
an atom, and remove Γ ⊲ c from the remaining sequents.

2.4. Go to step 1.

150 Chapter 6. Proof Discovery Using Automatic Theorem Provers

3. Otherwise, the last-proved succedent is of the form b1 ∨ · · · ∨ bn. An n-way
case analysis is called for:1

3.1. Compute the zone of each atom bj with respect to {b1, . . . , bn}.
3.2. For each bj, compute the set Sj of sequents (Γ, c) such that Γ consists

only of already proved atoms or atoms within bj’s zone.

3.3. Recursively invoke the algorithm n times, once for each bj, each time
with bj as the last-proved clause, with bj added to the already proved
atoms and Sj as the set of remaining sequents. This step yields n (possi-
bly empty) subproofs π1, . . . , πn.

3.4. Append the following case analysis block to the proof:
[

[b1] · · · [bn]

π1 · · · πn

]

3.5. Make the succedent c1∨ · · · ∨ ck of the case analysis block the last-proved
clause, add c1 to the already proved atoms if k = 1, and remove all
sequents belonging to any of the sets Sj from the remaining sequents.

3.6. Go to step 1.

To make this description more concrete, the algorithm is presented in Standard
ML pseudocode below. The pseudocode is fairly faithful to the description above.
Atoms are represented by integers and literals by sets (lists) of integers. Go-to
statements are implemented by tail-recursion, and the state is threaded through
recursive calls as three arguments (last, earlier, and seqs).

One notable difference, justified by a desire to avoid code duplication, is that the set
of already proved atoms, called earlier, excludes the last-proved clause last. Hence
we take last ∪ earlier to obtain the already proved atoms, where last is either the
empty list (representing ⊤) or a singleton list (representing a single atom).

Shorthand proofs are represented as lists of inferences:

datatype inference =
Have of int list× int list |
Cases of (int× inference list) list

The main function implementing the algorithm follows:

fun redirect last earlier seqs =
if null seqs then

[]
else if length last ≤ 1 then

let

val provable = filter (fn (Γ, _)⇒ Γ ⊆ last∪ earlier) seqs
val horn_provable = filter (fn (_, [_])⇒ true | _⇒ false) provable
val (Γ, c) = hd (horn_provable @ provable)

1A generalization would be to perform a m-way case analysis, with m < n, by keeping some dis-
junctions. For example, we could perform a 3-way case analysis with b1 ∨ b2, b3, and b4 as the
assumptions instead of breaking all the disjunctions in a 4-way analysis. This could potentially
lead to cleaner proofs if the disjuncts are carefully chosen.

6.8. Structured Proof Construction 151

in Have (Γ, c) :: redirect c (last∪ earlier) (filter ((6=) (Γ, c)) seqs) end

else

let

val zs = zones_of (length last) (map (descendants seqs) last)
val S = map (fn z⇒ filter (fn (Γ, _)⇒ Γ ⊆ earlier∪ z) seqs) zs
val cases = map (fn (b, ss)⇒ (b, redirect [b] earlier ss)) (zip last S)

in Cases cases :: redirect (succedent_of_cases cases) earlier (seqs−⋃ S) end

The code uses familiar ML functions, such as map, filter, and zip. It also relies on
a descendants function that returns the descendants of the specified node in the
AIG associated with seqs; its definition is omitted. Finally, the code depends on the
following straightforward functions:

fun zones_of 0 _ = []
| zones_of n (B :: Bs) = (B−⋃

Bs) :: zones_of (n− 1) (Bs @ [B])

fun succedent_of_inf (Have (_, c)) = c
| succedent_of_inf (Cases cases) = succedent_of_cases cases

and succedent_of_case (a, []) = [a]
| succedent_of_case (_, infs) = succedent_of_inf (last infs)

and succedent_of_cases cases =
⋃
(map succedent_of_case cases)

As a postprocessing step, we abbreviate case analyses in which only one branch is
nontrivial, transforming

[ci]

a11, . . . , a1k1
⊲ d1

...

[c1] · · · [ci−1] an1, . . . , ankn
⊲ dn [ci+1] · · · [cm]

into

c1 ∨ · · · ∨ cm, a11, . . . , a1k1
⊲ d̃1

ã21, . . . , ã2k2
⊲ d̃2

...

ãn1, . . . , ãnkn
⊲ d̃n

where the function ˜ is the identity except for the di’s:

d̃i = c1 ∨ · · · ∨ ci−1 ∨ di ∨ ci+1 ∨ · · · ∨ cm

Finally, we clean up the proof by introducing ◮ and translate it to Isar.

It is not hard to convince ourselves that the proof output by redirect is correct by
inspecting the code. A Have (Γ, c) sequent is appended only if all the atoms in Γ

have been proved (or assumed) already, and a case analysis on b1 ∨ · · · ∨ bn always
follows a sequent with the succedent b1 ∨ · · · ∨ bn. Whenever a sequent is output,
it is removed from the set seqs. The function returns only if seqs is empty, at which
point we can be assured that the conjecture has been proved.

Termination is not quite as obvious. The recursion is well-founded, because the pair
〈length seqs, length last〉 becomes strictly smaller with respect to the lexicographic

152 Chapter 6. Proof Discovery Using Automatic Theorem Provers

extension of < for each of the three syntactic recursive calls. For the first recursive
call, the list filter ((6=) (Γ, c)) seqs is strictly shorter than seqs since (Γ, c) ∈ seqs. The
second call is performed for each branch of a case analysis; the ss argument is a (not
necessarily strict) subset of the caller’s seqs, and the list [b] is strictly shorter than
last, which has length 2 or more. For the third call, the key property is that at least
one of the zones is nonempty, from which we obtain seqs− ⋃ S ⊂ seqs. (If all the
zones were empty, then b1 would be a descendant of b2 in the AIG and vice versa,
pointing to a cycle in the refutation graph.)

As for run-time exceptions, the only worrisome construct is the hd call in redirect’s
second branch. We must convince ourselves that there exists at least one sequent
(Γ, c) ∈ seqs such that Γ ⊆ last ∪ earlier. Intuitively, this is unsurprising, because
seqs is initialized from a well-formed refutation graph: The nonexistence of such a
sequent would indicate a gap or a cycle in the graph.

6.9 Related Work

Sledgehammer is just one of many proof tools that bridge automatic and interactive
theorem provers. We review the main integrations of ATPs and SMT solvers as well
as the type translation schemes proposed in the literature.

ATP Integrations. There have been several attempts to integrate ATPs in inter-
active provers, usually with proof reconstruction. The most notable integrations
are probably Otter in ACL2 [119]; Bliksem and Zenon in Coq [23, 46]; Gandalf in
HOL98 [91]; DISCOUNT, SETHEO, and SPASS in ILF [64]; Zenon in Isabelle/TLA+

[55]; Otter, PROTEIN, SETHEO, SPASS, and 3TAP in KIV [2,161]; and Bliksem, EQP,
LEO, Otter, PROTEIN, SPASS, TPS, and Waldmeister in ΩMEGA [122, 171]. Regret-
tably, few if any of these appear to have withstood the test of time. Sledgehammer’s
success ostensibly inspired the new MizAR web service for Mizar [164], based on
Vampire and SInE. An integration of the equational prover Waldmeister with Agda
is under development [78].

SMT Solver Integrations. There have also been several attempts to combine in-
teractive theorem provers with SMT solvers, either as oracles or with proof recon-
struction. ACL2 and PVS employ UCLID and Yices as oracles [115, 165]. HOL
Light integrates CVC Lite and reconstructs its proofs [121]. Isabelle/HOL enjoys
two oracle integrations [13,76] and two tactics with proof reconstruction [42,45,77].
HOL4 includes an SMT tactic [42,45,199], and an integration of veriT in Coq, based
on SMT proof validation, is in progress [5].

Type Translations. The earliest descriptions of type guards and type tags we are
aware of are due to Enderton [75, §4.3] and Stickel [174, p. 99]. Wick and Mc-
Cune [205, §4] compare full type erasure, guards, and tags. Type arguments are
reminiscent of System F; they are described by Meng and Paulson [125], who also
present a translation of axiomatic type classes. The intermediate verification lan-
guage and tool Boogie 2 [111] supports a restricted form of higher-rank polymor-
phism (with polymorphic maps), and its cousin Why3 [39] supports rank-1 (ML-
style) polymorphism. Both define translations to a monomorphic logic and rely on

6.9. Related Work 153

proxies to handle interpreted types [40,63,111]. One of the Boogie translations [111,
§3.1] ingeniously uses SMT triggers to prevent ill-typed variable instantiations in
conjunction with type arguments; however, this approach is risky in the absence of
a semantics for triggers.

An alternative to encoding polymorphic types or monomorphizing them away is
to support them directly in the prover. This is ubiquitous in interactive theorem
provers, but perhaps the only automatic prover with native support for polymor-
phism is Alt-Ergo [38].

Do I contradict myself?
Very well then I contradict myself.

— Walt Whitman (1855)

Chapter 7

Conclusion

Interactive theorem proving is notoriously laborious, even for highly specialized
experts. This thesis presented work on two tools, Nitpick and Sledgehammer, that
make interactive proving in Isabelle/HOL more productive and enjoyable.

7.1 Results

Isabelle/HOL offers a wide range of automatic tools for proving and disproving
conjectures. Some are built into the prover, but increasingly these activities are del-
egated to external tools, such as resolution provers, SAT solvers, and SMT solvers.
While there have been several attempts at integrating external provers and dis-
provers in other interactive theorem provers, Isabelle is probably the only interac-
tive prover where external tools play such a prominent role, to the extent that they
are now seen as indispensable by many if not most users.

Nitpick is a new higher-order model finder that supports both inductive and coin-
ductive predicates and datatypes. It translates higher-order formulas to first-order
relational logic (FORL) and invokes the SAT-based Kodkod model finder [187] to
solve these. Compared with Quickcheck, which is restricted to executable formu-
las, Nitpick shines by its generality—the hallmark of SAT-based model finding.

Nitpick’s translation to FORL exploits Kodkod’s strengths. Datatypes are encoded
following an Alloy idiom extended to mutually recursive and coinductive data-
types. FORL’s relational operators provide a natural encoding of partial applica-
tion and λ-abstraction, and the transitive closure plays a crucial role in the encod-
ing of inductive datatypes. Our main contributions have been to isolate three ways
to translate (co)inductive predicates to FORL, based on wellfoundedness, polarity,
and linearity, and to devise optimizations—notably function specialization, box-
ing, and monotonicity inference—that dramatically increase scalability.

Unlike Nitpick, Sledgehammer was already a popular tool when we took over its
development. To existing users, the addition of SMT solvers as backends means
that they obtain even more proofs without effort. The SMT solvers compete advan-
tageously with the resolution-based ATPs on all kinds of problem. This came as
a surprise to Sledgehammer’s first developer, Lawrence Paulson, who admits he
“never imagined we would get any mileage out of such tools” [149]. Running the

155

156 Chapter 7. Conclusion

SMT solvers in parallel with the ATPs is entirely appropriate, for how is the user
supposed to know which class of prover will perform best?

To users of SMT solvers, the Sledgehammer–SMT integration eases the transition
from automatic proving in first-order logic to interactive proving in higher-order
logic. Isabelle/HOL is powerful enough for the vast majority of hardware and soft-
ware verification efforts, and its LCF-style inference kernel provides a trustworthy
foundation. Even the developers of SMT solvers profit from the integration: It
helps them reach a larger audience, and proof reconstruction brings to light bugs
in their tools, including soundness bugs, which might otherwise go undetected.1

Support for the TPTP typed first-order form has recently been added to Vampire,
and it is expected that E and SPASS will follow suit. We extended Sledgehammer
to generate typed problems for Vampire. To interact with ATPs with no support for
types, we implemented a family of sound and efficient translations in Sledgeham-
mer and the companion proof method metis, thereby addressing a recurring user
complaint. Although Isabelle certifies external proofs, unsound proofs are annoy-
ing and may conceal sound proofs.

In terms of usefulness, Sledgehammer is arguably second only to the simplifier
and tableau prover. But Nitpick also provides invaluable help and encourages a
lightweight explorative style to formal specification development, as championed
by Alloy. We frequently receive emails from users grateful to have been spared
“several hours of hard work.”

An explanation for Nitpick’s and Sledgehammer’s success is that they are included
with Isabelle and require no additional installation steps. External tools necessary
to their operation are either included in the official Isabelle packages or accessible
as online services. Multi-core architectures and remote servers help to bear the
burden of (dis)proof, so that users can continue working on a manual proof while
the tools run in the background.

Another important design goal for both tools was one-click invocation. Users
should not be expected to preprocess the goals or specify options. Even better than
one-click invocation is zero-click invocation, whereby the tools spontaneously run
on newly entered conjectures. A more flexible user interface, such as the exper-
imental jEdit-based PIDE [204], could help further here, by asynchronously dis-
patching the tools to tackle any unfinished proofs in the current proof document,
irrespective of the text cursor’s location.

Guttmann, Struth, and Weber’s recent work on a large Isabelle/HOL repository
of relational and algebraic methods for modeling computing systems [85] consti-
tutes an unanticipated validation of our work: They relied almost exclusively on
Sledgehammer and the SMT integration to prove over 1000 propositions, including
intricate refinement and termination theorems. To their surprise, they found that

1Indeed, we discovered a soundness bug in Yices and another in Z3 while evaluating them. On
the ATP side of things, proof reconstruction with metis drew our attention to unsoundnesses in
Satallax and in Vampire’s newly introduced type support, and Nitpick helped uncover soundness
issues in the higher-order provers LEO-II and TPS as well as severe SAT solver integration issues
in Kodkod. Our experience vividly illustrates the dangers of uncritically accepting proofs from
external sources. Remarkably, no critical bugs were found in Isabelle or any SAT solver.

7.2. Future Work 157

Sledgehammer can often automate algebraic proofs at the textbook level. Echo-
ing Lakatos [108], they remarked that “counterexample generators such as Nitpick
complement the ATP systems and allow a proof and refutation game which is use-
ful for developing and debugging formal specifications” [85, p. 15].

Interactive theorem proving remains very challenging, but thanks to a new gener-
ation of automatic proof and disproof tools and the wide availability of multi-core
processors with spare cycles, it is much easier and more enjoyable now than it was
only a few years ago.

7.2 Future Work

Nitpick and Sledgehammer suffer from a number of limitations, most of which
could be addressed in future work.

7.2.1 Counterexample Generation with Nitpick

Additional Backends. Nitpick takes part in the first-order model finding divi-
sion of the annual CADE ATP System Competition (CASC). The 2011 competition
results [181] suggest that Nitpick could scale slightly better by employing Para-
dox [62] as a backend. The main difficulty with such an integration is that Paradox
(like the other model finders that compete at CASC) is based on the untyped TPTP
FOF syntax, which is a poor match for FORL. Moreover, we do not expect multi-
ple backends to be as beneficial as for proving, because of the systematic nature of
finite model finding: If Kodkod exhaustively checked that there is no model of a
given cardinality, Paradox will not find any either.

Exhaustive LCF-Style Proofs. Nitpick was primarily designed as a countermodel
finder, but if the problem involves only types with bounded finite cardinalities, the
absence of countermodels up to the cardinality bounds implies that the conjecture
holds. We relied on this observation when we exhaustively checked litmus tests
against the C++ memory model. Kodkod can provide unsatisfiability proofs, and
we could in principle replay them in Isabelle’s inference kernel to obtain a trustwor-
thy decision procedure for a generalization of effectively propositional problems.

Enhanced Interrogation Techniques. Large axiomatic specifications, such as that
of the C++ memory model, are often overconstrained, and it is extremely tedious
for the user to reduce the specification manually to identify the culprit. Kodkod
can provide a minimal unsatisfiable core; it should be possible to translate it into a
set of inconsistent HOL formulas that explains why no models exist. Other useful
diagnosis tools would be a facility for inspecting the value of any term occurring in
the problem and a graphical output similar to that of the Alloy Analyzer. More gen-
erally, it would be desirable for Nitpick to give more insight into what it does—for
example, whether and where approximation takes place. The C++ memory model
case study was within our reach only because we understood how the tool worked
behind the scenes and could make sense of the generated Kodkod problems.

Hybrid Approaches. Random testing, narrowing, data-flow analysis, and code
equations have proved useful in the context of Quickcheck, but we currently know

158 Chapter 7. Conclusion

of no good way of integrating these approaches with SAT solving. Perhaps a tight
integration with an SMT solver, as was done recently for a fragment of Scala [185],
would help combine ground and symbolic reasoning in a meaningful way.

7.2.2 Proof Discovery with Sledgehammer

Structured Proof Construction. On the Sledgehammer side of things, more work
is needed on the construction of readable, concise, and reliable Isar proofs from
the resolution proofs produced by the ATPs. There is plenty of inspiring prior art,
notably TRAMP [122] and Otterfier [208]. Ideally, Isar proof construction should be
extended to SMT solvers.

Translation of λλλ-Abstractions. Sledgehammer’s combinator-based translation of
λ-abstractions performs poorly in practice; λ-lifting is slightly superior for some
provers, but it is hopelessly incomplete. Obermeyer recently demonstrated that
“combinatory algebra / combinatory logic is not as prohibitively unreadable and
combinatorially explosive as is commonly thought” [142, p. 17] if one supplements
the combinators’ definitions with redundant equations relating them to one an-
other. A completely different translation scheme would be to embed the λ-calculus
with de Bruijn indices in first-order logic, with an explicit substitution operator [69].

Type Encodings. Efficient type encodings are crucial to Sledgehammer’s perfor-
mance. A promising direction for future research would be to look into strength-
ening the monotonicity analysis. Our work in the context of Nitpick showed how
to detect definitions and handle them specially, but we have yet to try this out in
Sledgehammer. Type arguments clutter our polymorphic translations; they can of-
ten be omitted soundly, but we lack an inference to find out precisely when.

Arithmetic Support. Sledgehammer’s ATP translation currently makes no provi-
sion for arithmetic. SPASS+T [158] and recent versions of Vampire support arith-
metic natively, and it would be desirable to map Isabelle’s arithmetic constants to
the corresponding TPTP constructs. Proof reconstruction is a challenge here, be-
cause Metis does not know about arithmetic.

Relevance Filtering. The relevance filter is simplistic. It might be preferable to let
the automatic theorem provers perform relevance filtering or use a sophisticated
system based on machine learning, such as MaLARea [191, 192], where successful
proofs guide later proofs.

Metainformation Export. Much metainformation is lost in the translation from
Isabelle/HOL to first-order logic: whether a symbol is a free constructor, whether
an equation is an oriented simplification rule, and so on. Automatic provers could
exploit this information in various ways, but we must agree on a syntax and se-
mantics. Work has commenced in Saarbrücken to handle Isabelle metainformation
meaningfully [36].

Bibliography

[1] ISO/IEC 14882:2011: Information Technology—Programming
Languages—C++. ISO IEC JTC1/SC22, 2011.

[2] W. Ahrendt, B. Beckert, R. Hähnle, W. Menzel, W. Reif, G. Schellhorn, and
P. H. Schmitt. Integrating automated and interactive theorem proving. In
W. Bibel and P. H. Schmitt, editors, Automated Deduction—A Basis for
Applications, volume II: Systems and Implementation Techniques, pages
97–116. Kluwer, 1998.

[3] A. Andersson. Balanced search trees made simple. In F. K. H. A. Dehne,
N. Santoro, and S. Whitesides, editors, WADS 1993, volume 709 of LNCS,
pages 61–70. Springer, 1993.

[4] P. B. Andrews. An Introduction to Mathematical Logic and Type Theory: To
Truth Through Proof, volume 27 of Applied Logic. Springer, second edition,
2002.

[5] M. Armand, G. Faure, B. Grégoire, C. Keller, L. Théry, and B. Werner.
A modular integration of SAT/SMT solvers to Coq through proof witnesses.
In J.-P. Jouannaud and Z. Shao, editors, CPP 2011, volume 7086 of LNCS,
pages 135–150. Springer, 2011.

[6] S. Autexier, C. Benzmüller, A. Fiedler, H. Horacek, and Q. B. Vo.
Assertion-level proof representation with under-specification. Electr. Notes
Theor. Comput. Sci., 93:5–23, 2004.

[7] L. Bachmair and H. Ganzinger. Resolution theorem proving. In A. Robinson
and A. Voronkov, editors, Handbook of Automated Reasoning, volume I,
pages 19–99. Elsevier, 2001.

[8] L. Bachmair, H. Ganzinger, C. Lynch, and W. Snyder. Basic paramodulation.
Inf. Comput., 121(2):172–192, 1995.

[9] J. Backes and C. E. Brown. Analytic tableaux for higher-order logic with
choice. In J. Giesl and R. Hähnle, editors, IJCAR 2010, volume 6173 of LNAI,
pages 76–90. Springer, 2010.

[10] H. P. Barendregt. The Lambda Calculus: Its Syntax and Semantics, volume
103 of Studies in Logic and the Foundations of Mathematics.
North-Holland, revised edition, 1984.

159

160 Bibliography

[11] C. Barrett, A. Stump, and C. Tinelli. The SMT-LIB standard—Version 2.0. In
A. Gupta and D. Kroening, editors, SMT 2010, 2010.

[12] C. Barrett and C. Tinelli. CVC3. In W. Damm and H. Hermanns, editors,
CAV 2007, volume 4590 of LNCS, pages 298–302. Springer, 2007.

[13] D. Barsotti, L. P. Nieto, and A. Tiu. Verification of clock synchronization
algorithms: Experiments on a combination of deductive tools. Formal Asp.
Comput., 19(3):321–341, 2007.

[14] M. Batty, K. Memarian, S. Owens, S. Sarkar, and P. Sewell. Clarifying and
compiling C/C++ concurrency: From C++11 to POWER. In J. Field and
M. Hicks, editors, POPL 2012, pages 509–520. ACM, 2012.

[15] M. Batty, S. Owens, S. Sarkar, P. Sewell, and T. Weber. Mathematizing C++

concurrency: The post-Rapperswil model. Technical Report N3132, ISO IEC
JTC1/SC22/WG21, 2010.

[16] M. Batty, S. Owens, S. Sarkar, P. Sewell, and T. Weber. Mathematizing C++

concurrency. In T. Ball and M. Sagiv, editors, POPL 2011, pages 55–66. ACM,
2011.

[17] J. M. Bell, F. Bellegarde, and J. Hook. Type-driven defunctionalization. ACM
SIGPLAN Notices, 32(8):25–37, 1997.

[18] C. Benzmüller. Private communication, Aug. 2011.

[19] C. Benzmüller, L. C. Paulson, F. Theiss, and A. Fietzke. LEO-II—A
cooperative automatic theorem prover for higher-order logic. In
A. Armando, P. Baumgartner, and G. Dowek, editors, IJCAR 2008, volume
5195 of LNAI, pages 162–170. Springer, 2008.

[20] C. Benzmüller, F. Rabe, and G. Sutcliffe. THF0—The core of the TPTP
language for higher-order logic. In A. Armando, P. Baumgartner, and
G. Dowek, editors, IJCAR 2008, volume 5195 of LNAI, pages 491–506.
Springer, 2008.

[21] S. Berghofer and T. Nipkow. Random testing in Isabelle/HOL. In J. Cuellar
and Z. Liu, editors, SEFM 2004, pages 230–239. IEEE C.S., 2004.

[22] S. Berghofer and M. Wenzel. Inductive datatypes in HOL—Lessons learned
in formal-logic engineering. In Y. Bertot, G. Dowek, A. Hirschowitz,
C. Paulin, and L. Théry, editors, TPHOLs ’99, volume 1690 of LNCS, pages
19–36, 1999.

[23] M. Bezem, D. Hendriks, and H. de Nivelle. Automatic proof construction in
type theory using resolution. J. Autom. Reasoning, 29(3-4):253–275, 2002.

[24] A. Biere, A. Cimatti, E. M. Clarke, and Y. Zhu. Symbolic model checking
without BDDs. In R. Cleaveland, editor, TACAS ’99, volume 1579 of LNCS,
pages 193–207. Springer, 1999.

Bibliography 161

[25] J. C. Blanchette. Relational analysis of (co)inductive predicates,
(co)inductive datatypes, and (co)recursive functions. To appear in Softw.
Qual. J.

[26] J. C. Blanchette. Proof pearl: Mechanizing the textbook proof of Huffman’s
algorithm in Isabelle/HOL. J. Autom. Reasoning, 43(1):1–18, 2009.

[27] J. C. Blanchette. Hammering away: A user’s guide to Sledgehammer for
Isabelle/HOL.
http://www21.in.tum.de/dist/Isabelle/doc/sledgehammer.pdf, 2011.

[28] J. C. Blanchette, S. Böhme, and L. C. Paulson. Extending Sledgehammer
with SMT solvers. In N. Bjørner and V. Sofronie-Stokkermans, editors,
CADE-23, volume 6803 of LNAI, pages 207–221. Springer, 2011.

[29] J. C. Blanchette, S. Böhme, and N. Smallbone. Monotonicity or how to
encode polymorphic types safely and efficiently. Submitted.

[30] J. C. Blanchette, L. Bulwahn, and T. Nipkow. Automatic proof and disproof
in Isabelle/HOL. In C. Tinelli and V. Sofronie-Stokkermans, editors,
FroCoS 2011, volume 6989 of LNCS, pages 12–27. Springer, 2011.

[31] J. C. Blanchette and K. Claessen. Generating counterexamples for structural
inductions by exploiting nonstandard models. In C. G. Fermüller and
A. Voronkov, editors, LPAR-17, volume 6397 of LNAI, pages 117–141.
Springer, 2010.

[32] J. C. Blanchette and A. Krauss. Monotonicity inference for higher-order
formulas. In J. Giesl and R. Hähnle, editors, IJCAR 2010, volume 6173 of
LNAI, pages 91–106. Springer, 2010.

[33] J. C. Blanchette and A. Krauss. Monotonicity inference for higher-order
formulas. J. Autom. Reasoning, 47(4):369–398, 2011.

[34] J. C. Blanchette and T. Nipkow. Nitpick: A counterexample generator for
higher-order logic based on a relational model finder. In M. Kaufmann and
L. C. Paulson, editors, ITP 2010, volume 6172 of LNCS, pages 131–146.
Springer, 2010.

[35] J. C. Blanchette and A. Paskevich. TFF1: The TPTP typed first-order form
with rank-1 polymorphism. Submitted.

[36] J. C. Blanchette, A. Popescu, D. Wand, and C. Weidenbach. More SPASS
with Isabelle—Superposition with hard sorts and configurable
simplification. Submitted.

[37] J. C. Blanchette, T. Weber, M. Batty, S. Owens, and S. Sarkar. Nitpicking C++

concurrency. In PPDP 2011, pages 113–124. ACM Press, 2011.

[38] F. Bobot, S. Conchon, E. Contejean, and S. Lescuyer. Implementing
polymorphism in SMT solvers. In C. Barrett, L. de Moura, D. Babic, and
A. Goel, editors, SMT/BPR ’08, ICPS, pages 1–5. ACM, 2008.

http://www21.in.tum.de/dist/Isabelle/doc/sledgehammer.pdf

162 Bibliography

[39] F. Bobot, J.-C. Filliâtre, C. Marché, and A. Paskevich. Why3: Shepherd your
herd of provers. In K. R. M. Leino and M. Moskal, editors, Boogie 2011,
pages 53–64, 2011.

[40] F. Bobot and A. Paskevich. Expressing polymorphic types in a many-sorted
language. In C. Tinelli and V. Sofronie-Stokkermans, editors, FroCoS 2011,
volume 6989 of LNAI, pages 87–102. Springer, 2011.

[41] S. Böhme. Proving Theorems of Higher-Order Logic with SMT Solvers.
Ph.D. thesis, Dept. of Informatics, T.U. München, 2012.

[42] S. Böhme, A. C. J. Fox, T. Sewell, and T. Weber. Reconstruction of Z3’s
bit-vector proofs in HOL4 and Isabelle/HOL. In J.-P. Jouannaud and
Z. Shao, editors, CPP 2011, volume 7086 of LNCS, pages 183–198. Springer,
2011.

[43] S. Böhme, M. Moskal, W. Schulte, and B. Wolff. HOL-Boogie—An
interactive prover-backend for the Verifying C Compiler. J. Autom.
Reasoning, 44(1-2):111–144, 2010.

[44] S. Böhme and T. Nipkow. Sledgehammer: Judgement Day. In J. Giesl and
R. Hähnle, editors, IJCAR 2010, volume 6173 of LNAI, pages 107–121.
Springer, 2010.

[45] S. Böhme and T. Weber. Fast LCF-style proof reconstruction for Z3. In
M. Kaufmann and L. Paulson, editors, ITP 2010, volume 6172 of LNCS,
pages 179–194. Springer, 2010.

[46] R. Bonichon, D. Delahaye, and D. Doligez. Zenon: An extensible automated
theorem prover producing checkable proofs. In N. Dershowitz and
A. Voronkov, editors, LPAR 2007, volume 4790 of LNCS, pages 151–165.
Springer, 2007.

[47] A. R. Bradley and Z. Manna. Property-directed incremental invariant
generation. Formal Asp. Comput., 20:379–405, 2008.

[48] D. Brand. Proving theorems with the modifiction method. SIAM J.
Comput., 4(4):412–430, 1975.

[49] L. Bulwahn. Smart testing of functional programs in Isabelle. In N. Bjørner
and A. Voronkov, editors, LPAR-18, volume 7180 of LNCS, pages 153–167.
Springer, 2012.

[50] L. Bulwahn, A. Krauss, and T. Nipkow. Finding lexicographic orders for
termination proofs in Isabelle/HOL. In K. Schneider and J. Brandt, editors,
TPHOLs 2007, volume 4732 of LNCS, pages 38–53. Springer, 2007.

[51] R. Caferra, A. Leitsch, and N. Peltier. Automated Model Building,
volume 31 of Applied Logic. Springer, 2004.

[52] P. Cenciarelli, A. Knapp, and E. Sibilio. The Java memory model:
Operationally, denotationally, axiomatically. In R. De Nicola, editor,
ESOP 2007, volume 4421 of LNCS, pages 331–346. Springer, 2007.

Bibliography 163

[53] A. Chaieb and T. Nipkow. Proof synthesis and reflection for linear
arithmetic. J. Autom. Reasoning, 41(1):33–59, 2008.

[54] H. R. Chamarthi, P. Dillinger, M. Kaufmann, and P. Manolios. Integrating
testing and interactive theorem proving. http://arxiv.org/pdf/1105.4394,
2011.

[55] K. Chaudhuri, D. Doligez, L. Lamport, and S. Merz. A TLA+ proof system.
In P. Rudnicki, G. Sutcliffe, B. Konev, R. A. Schmidt, and S. Schulz, editors,
LPAR 2008 Workshops, volume 418 of CEUR Workshop Proceedings.
CEUR-WS.org, 2008.

[56] A. Church. A formulation of the simple theory of types. J. Symb. Log.,
5(2):56–68, 1940.

[57] K. Claessen. Equinox, a new theorem prover for full first-order logic with
equality. Presentation at the Dagstuhl Seminar on Deduction and
Applications, 2005.

[58] K. Claessen. Private communication, Apr. 2009.

[59] K. Claessen and J. Hughes. QuickCheck: A lightweight tool for random
testing of Haskell programs. In ICFP ’00, pages 268–279. ACM, 2000.

[60] K. Claessen and A. Lillieström. Automated inference of finite
unsatisfiability. J. Autom. Reasoning, 47(2):111–132, 2011.

[61] K. Claessen, A. Lillieström, and N. Smallbone. Sort it out with
monotonicity: Translating between many-sorted and unsorted first-order
logic. In N. Bjørner and V. Sofronie-Stokkermans, editors, CADE-23, volume
6803 of LNAI, pages 207–221. Springer, 2011.

[62] K. Claessen and N. Sörensson. New techniques that improve MACE-style
model finding. In MODEL, 2003.

[63] J.-F. Couchot and S. Lescuyer. Handling polymorphism in automated
deduction. In F. Pfenning, editor, CADE-21, volume 4603 of LNAI, pages
263–278. Springer, 2007.

[64] B. Dahn, J. Gehne, T. Honigmann, and A. Wolf. Integration of automated
and interactive theorem proving in ILF. In W. McCune, editor, CADE-14,
volume 1249 of LNCS, pages 57–60. Springer, 1997.

[65] A. L. de Medeiros Santos. Compilation by Transformation in Non-Strict
Functional Languages. Ph.D. thesis, C.S. Dept., University of Glasgow, 1995.

[66] L. de Moura and N. Bjørner. Z3: An efficient SMT solver. In C. R.
Ramakrishnan and J. Rehof, editors, TACAS 2008, volume 4963 of LNCS,
pages 337–340. Springer, 2008.

[67] H. de Nivelle. Translation of resolution proofs into short first-order proofs
without choice axioms. Inf. Comput., 199(1-2):24–54, 2005.

http://arxiv.org/pdf/1105.4394

164 Bibliography

[68] W.-P. de Roever, F. de Boer, U. Hannemann, J. Hooman, Y. Lakhnech,
M. Poel, and J. Zwiers. Concurrency Verification: Introduction to
Compositional and Noncompositional Methods, volume 54 of Cambridge
Tracts in Theoretical Computer Science. Cambridge University Press, 2001.

[69] G. Dowek, T. Hardin, and C. Kirchner. Higher-order unification via explicit
substitutions (extended abstract). In LICS ’95, pages 366–374. IEEE, 1995.

[70] A. Dunets, G. Schellhorn, and W. Reif. Automated flaw detection in
algebraic specifications. J. Autom. Reasoning, 45(4):359–395, 2010.

[71] B. Dutertre and L. de Moura. The Yices SMT solver.
http://yices.csl.sri.com/tool-paper.pdf, 2006.

[72] P. Dybjer, Q. Haiyan, and M. Takeyama. Combining testing and proving in
dependent type theory. In D. A. Basin and B. Wolff, editors, TPHOLs 2003,
volume 2758 of LNCS, pages 188–203. Springer, 2003.

[73] J. Edmund M. Clarke, O. Grumberg, and D. A. Peled. Model Checking.
MIT Press, 1999.

[74] N. Eén and N. Sörensson. An extensible SAT-solver. In E. Giunchiglia and
A. Tacchella, editors, SAT 2003, volume 2919 of LNCS, pages 502–518.
Springer, 2004.

[75] H. B. Enderton. A Mathematical Introduction to Logic. Academic Press,
1972.

[76] L. Erkök and J. Matthews. Using Yices as an automated solver in
Isabelle/HOL. In J. Rushby and N. Shankar, editors, AFM08, pages 3–13,
2008.

[77] P. Fontaine, J.-Y. Marion, S. Merz, L. P. Nieto, and A. Tiu. Expressiveness +
automation + soundness: Towards combining SMT solvers and interactive
proof assistants. In H. Hermanns and J. Palsberg, editors, TACAS 2006,
volume 3920 of LNCS, pages 167–181. Springer, 2006.

[78] S. Foster and G. Struth. Integrating an automated theorem prover into
Agda. In M. G. Bobaru, K. Havelund, G. J. Holzmann, and R. Joshi, editors,
NFM 2011, volume 6617 of LNCS, pages 116–130, 2011.

[79] M. F. Frias, C. G. L. Pombo, and M. M. Moscato. Alloy Analyzer + PVS in the
analysis and verification of Alloy specifications. In O. Grumberg and
M. Huth, editors, TACAS 2007, volume 4424 of LNCS, pages 587–601.
Springer, 2007.

[80] S. Friedrich. More on lazy lists. In G. Klein, T. Nipkow, and L. Paulson,
editors, The Archive of Formal Proofs.
http://afp.sf.net/entries/Lazy-Lists-II.shtml, 2004.

[81] M. Gebser, O. Sabuncu, and T. Schaub. An incremental answer set
programming based system for finite model computation. AI Comm.,
24(2):195–212, 2011.

http://yices.csl.sri.com/tool-paper.pdf
http://afp.sf.net/entries/Lazy-Lists-II.shtml

Bibliography 165

[82] M. J. C. Gordon and T. F. Melham, editors. Introduction to HOL: A Theorem
Proving Environment for Higher Order Logic. Cambridge University Press,
1993.

[83] M. J. C. Gordon, R. Milner, and C. P. Wadsworth. Edinburgh LCF: A
Mechanised Logic of Computation, volume 78 of LNCS. Springer, 1979.

[84] E. L. Gunter. Why we can’t have SML style datatype declarations in HOL. In
L. J. M. Claesen and M. J. C. Gordon, editors, TPHOLs ’92, volume A-20 of
IFIP Transactions, pages 561–568. North-Holland, 1993.

[85] W. Guttmann, G. Struth, and T. Weber. Automating algebraic methods in
Isabelle. In S. Qin and Z. Qiu, editors, ICFEM 2011, volume 6991 of LNCS,
pages 617–632. Springer, 2011.

[86] J. Harrison. Inductive definitions: Automation and application. In E. T.
Schubert, P. J. Windley, and J. Alves-Foss, editors, TPHOLs 1995, volume 971
of LNCS, pages 200–213. Springer, 1995.

[87] T. Hillenbrand, A. Buch, R. Vogt, and B. Löchner. WALDMEISTER—
High-performance equational deduction. J. Autom. Reasoning,
18(2):265–270, 1997.

[88] K. Hoder and A. Voronkov. Sine qua non for large theory reasoning. In
N. Bjørner and V. Sofronie-Stokkermans, editors, CADE-23, volume 6803 of
LNAI, pages 299–314. Springer, 2011.

[89] X. Huang. Translating machine-generated resolution proofs into ND-proofs
at the assertion level. In N. Y. Foo and R. Goebel, editors, PRICAI ’96,
volume 1114 of LNCS, pages 399–410. Springer, 1996.

[90] R. J. M. Hughes. Super-combinators: A new implementation method for
applicative languages. In LFP 1982, pages 1–10. ACM Press, 1982.

[91] J. Hurd. Integrating Gandalf and HOL. In Y. Bertot, G. Dowek,
A. Hirschowitz, C. Paulin, and L. Théry, editors, TPHOLs ’99, volume 1690
of LNCS, pages 311–321, 1999.

[92] J. Hurd. First-order proof tactics in higher-order logic theorem provers. In
M. Archer, B. Di Vito, and C. Muñoz, editors, Design and Application of
Strategies/Tactics in Higher Order Logics, number CP-2003-212448 in
NASA Technical Reports, pages 56–68, 2003.

[93] D. Jackson. Nitpick: A checkable specification language. In FMSP ’96, pages
60–69, 1996.

[94] D. Jackson. Software Abstractions: Logic, Language, and Analysis.
MIT Press, 2006.

[95] D. Jackson, I. Shlyakhter, and M. Sridharan. A micromodularity mechanism.
In ESEC/FSE 2001, pages 62–73, 2001.

[96] B. Jacobs and J. Rutten. A tutorial on (co)algebras and (co)induction. Bull.
EATCS, 62:222–259, 1997.

166 Bibliography

[97] S. P. Jones. The Implementation of Functional Programming Languages.
Prentice Hall, 1987.

[98] J. Jürjens and T. Weber. Finite models in FOL-based crypto-protocol
verification. In P. Degano and L. Viganò, editors, ARSPA-WITS 2009,
volume 5511 of LNCS, pages 155–172. Springer, 2009.

[99] K. Kim, T. Yavuz-Kahveci, and B. A. Sanders. Precise data race detection in
a relaxed memory model using heuristic-based model checking. In
ASE 2009, pages 495–499. IEEE, 2009.

[100] S. C. Kleene. On notation for ordinal numbers. J. Symb. Log., 3(4):150–155,
1938.

[101] S. C. Kleene. Representation of events in nerve nets and finite automata. In
J. McCarthy and C. Shannon, editors, Automata Studies, pages 3–42.
Princeton University Press, 1956.

[102] G. Klein, T. Nipkow, and L. Paulson, editors. The Archive of Formal Proofs.
http://afp.sf.net/.

[103] S. Klingenbeck. Counter Examples in Semantic Tableaux. Infix, 1997.

[104] K. Korovin. Instantiation-based automated reasoning: From theory to
practice. In R. A. Schmidt, editor, CADE-22, volume 5663 of LNAI, pages
163–166. Springer, 2009.

[105] D. C. Kozen. Automata and Computability. Undergraduate Texts in
Computer Science. Springer, 1997.

[106] A. Krauss. Partial and nested recursive function definitions in higher-order
logic. J. Autom. Reasoning, 44(4):303–336, 2009.

[107] V. Kuncak and D. Jackson. Relational analysis of algebraic datatypes. In
M. Wermelinger and H. Gall, editors, ESEC/FSE 2005. ACM, 2005.

[108] I. Lakatos. Proofs and Refutations. Cambridge University Press, 1976.
Posthumous edition by J. Worrall and E. Zahar.

[109] C. Lameter. Effective synchronization on Linux/NUMA systems.
Presentation at the Gelato Conference, 2005.

[110] L. Lamport. How to make a multiprocessor computer that correctly
executes multiprocess programs. IEEE Trans. Comput., 28(9):690–691, 1979.

[111] K. R. M. Leino and P. Rümmer. A polymorphic intermediate verification
language: Design and logical encoding. In J. Esparza and R. Majumdar,
editors, TACAS 2010, volume 6015 of LNCS, pages 312–327. Springer, 2010.

[112] F. Lindblad. Property directed generation of first-order test data. In
M. Morazán, editor, TFP 2007, pages 105–123. Intellect, 2008.

[113] A. Lochbihler. Formalising FinFuns—Generating code for functions as data
from Isabelle/HOL. In S. Berghofer, T. Nipkow, C. Urban, and M. Wenzel,
editors, TPHOLs 2009, volume 5674 of LNCS, pages 310–326. Springer, 2009.

http://afp.sf.net/

Bibliography 167

[114] A. Lochbihler. Coinduction. In G. Klein, T. Nipkow, and L. Paulson, editors,
The Archive of Formal Proofs.
http://afp.sf.net/entries/Coinductive.shtml, 2010.

[115] P. Manolios and S. K. Srinivasan. Verification of executable pipelined
machines with bit-level interfaces. In ICCAD ’05, pages 855–862. IEEE, 2005.

[116] J. Manson and W. Pugh. The Java memory model simulator. In FTfJP 2002,
2002.

[117] W. McCune. A Davis–Putnam program and its application to finite
first-order model search: Quasigroup existence problems. Technical report,
Argonne National Laboratory, 1994.

[118] W. McCune. Prover9 and Mace4.
http://www.cs.unm.edu/~mccune/prover9/, 2010.

[119] W. McCune and O. Shumsky. System description: IVY. In D. McAllester,
editor, CADE-17, volume 1831 of LNAI, pages 401–405. Springer, 2000.

[120] A. McIver and T. Weber. Towards automated proof support for probabilistic
distributed systems. In G. Sutcliffe and A. Voronkov, editors, LPAR 2005,
volume 3835 of LNAI, pages 534–548. Springer, 2005.

[121] S. McLaughlin, C. Barrett, and Y. Ge. Cooperating theorem provers: A case
study combining HOL-Light and CVC Lite. Electr. Notes Theor. Comput.
Sci., 144(2):43–51, 2006.

[122] A. Meier. TRAMP: Transformation of machine-found proofs into natural
deduction proofs at the assertion level (system description). In
D. McAllester, editor, CADE-17, volume 1831 of LNAI, pages 460–464.
Springer, 2000.

[123] T. F. Melham. Automating recursive type definitions in higher order logic.
In G. Birtwistle and P. A. Subrahmanyam, editors, Current Trends in
Hardware Verification and Automated Theorem Proving, pages 341–386.
Springer, 1989.

[124] A. C. Melo and S. C. Chagas. Visual-MCM: Visualising execution histories
on multiple memory consistency models. In P. Zinterhof, M. Vajtersic, and
A. Uhl, editors, ACPC 1999, volume 1557 of LNCS, pages 500–509. Springer,
1999.

[125] J. Meng and L. C. Paulson. Translating higher-order clauses to first-order
clauses. J. Autom. Reasoning, 40(1):35–60, 2008.

[126] J. Meng and L. C. Paulson. Lightweight relevance filtering for
machine-generated resolution problems. J. Applied Logic, 7(1):41–57, 2009.

[127] J. Meng, C. Quigley, and L. C. Paulson. Automation for interactive proof:
First prototype. Inf. Comput., 204(10):1575–1596, 2006.

http://afp.sf.net/entries/Coinductive.shtml
http://www.cs.unm.edu/~mccune/prover9/

168 Bibliography

[128] D. Miller and A. Felty. An integration of resolution and natural deduction
theorem proving. In AAAI-86, volume I: Science, pages 198–202. Morgan
Kaufmann, 1986.

[129] R. Milner, M. Tofte, R. Harper, and D. MacQueen. The Definition of
Standard ML. MIT Press, revised edition, 1997.

[130] J. C. Mitchell. Foundations for Programming Languages. MIT Press, 1996.

[131] L. Momtahan. Towards a small model theorem for data independent
systems in Alloy. Electr. Notes Theor. Comput. Sci., 128(6):37–52, 2005.

[132] A. Nadel. Backtrack Search Algorithms for Propositional Logic
Satisfiability: Review and Innovations. M.Sc. thesis, Inst. of C.S., Hebrew
University of Jerusalem, 2002.

[133] G. Nelson and D. C. Oppen. Simplification by cooperating decision
procedures. ACM Trans. Prog. Lang. Sys., 1(2):245–257, 1979.

[134] T. Nipkow. Term rewriting and beyond—Theorem proving in Isabelle.
Formal Asp. Comput., 1:320–338, 1989.

[135] T. Nipkow. Order-sorted polymorphism in Isabelle. In G. Huet and
G. Plotkin, editors, Logical Environments, pages 164–188. Cambridge
University Press, 1993.

[136] T. Nipkow. Verifying a hotel key card system. In K. Barkaoui, A. Cavalcanti,
and A. Cerone, editors, ICTAC 2006, volume 4281 of LNCS, pages 1–14.
Springer, 2006.

[137] T. Nipkow. Social choice theory in HOL: Arrow and Gibbard–Satterthwaite.
J. Autom. Reasoning, 43(3):289–304, 2009.

[138] T. Nipkow. Re: [isabelle] A beginner’s questionu [sic]. https://lists.cam.
ac.uk/pipermail/cl-isabelle-users/2010-November/msg00097.html, Nov.
2010.

[139] T. Nipkow. A tutorial introduction to structured Isar proofs.
http://www21.in.tum.de/dist/Isabelle/doc/isar-overview.pdf, 2011.

[140] T. Nipkow, L. C. Paulson, and M. Wenzel. Isabelle/HOL: A Proof Assistant
for Higher-Order Logic, volume 2283 of LNCS. Springer, 2002.

[141] A. Nonnengart and C. Weidenbach. Computing small clause normal forms.
In A. Robinson and A. Voronkov, editors, Handbook of Automated
Reasoning, volume I, pages 335–367. Elsevier, 2001.

[142] F. H. Obermeyer. Automated Equational Reasoning in Nondeterministic
λ-Calculi Modulo TheoriesH∗. Ph.D. thesis, Dept. of Mathematics,
Carnegie Mellon University, 2009.

[143] S. Owens, P. Böhm, F. Zappa Nardelli, and P. Sewell. Lem: A lightweight
tool for heavyweight semantics. In M. van Eekelen, H. Geuvers, J. Schmaltz,
and F. Wiedijk, editors, ITP 2011, volume 6898 of LNCS, pages 363–369.
Springer, 2011.

https://lists.cam.ac.uk/pipermail/cl-isabelle-users/2010-November/msg00097.html
https://lists.cam.ac.uk/pipermail/cl-isabelle-users/2010-November/msg00097.html
http://www21.in.tum.de/dist/Isabelle/doc/isar-overview.pdf

Bibliography 169

[144] S. Owre. Random testing in PVS. In AFM ’06, 2006.

[145] L. C. Paulson. Set theory for verification: I. From foundations to functions.
J. Autom. Reasoning, 11(3):353–389, 1993.

[146] L. C. Paulson. Set theory for verification: II. Induction and recursion.
J. Autom. Reasoning, 15(2):167–215, 1995.

[147] L. C. Paulson. Generic automatic proof tools. In R. Veroff, editor,
Automated Reasoning and its Applications: Essays in Honor of Larry Wos,
pages 23–47. MIT Press, 1997.

[148] L. C. Paulson. A fixedpoint approach to (co)inductive and (co)datatype
definitions. In G. D. Plotkin, C. Stirling, and M. Tofte, editors, Proof,
Language, and Interaction—Essays in Honour of Robin Milner, pages
187–212. MIT Press, 2000.

[149] L. C. Paulson. Private communication, Nov. 2010.

[150] L. C. Paulson. Private communication, Dec. 2010.

[151] L. C. Paulson. Three years of experience with Sledgehammer, a practical
link between automated and interactive theorem provers. PAAR-2010, 2010.

[152] L. C. Paulson and J. C. Blanchette. Three years of experience with
Sledgehammer, a practical link between automatic and interactive theorem
provers. In G. Sutcliffe, E. Ternovska, and S. Schulz, editors, IWIL-2010,
2010.

[153] L. C. Paulson and K. W. Susanto. Source-level proof reconstruction for
interactive theorem proving. In K. Schneider and J. Brandt, editors, TPHOLs
2007, volume 4732 of LNCS, pages 232–245. Springer, 2007.

[154] S. Peyton Jones, editor. Haskell 98 Language and Libraries: The Revised
Report. Cambridge University Press, 2003.

[155] F. Pfenning. Analytic and non-analytic proofs. In R. E. Shostak, editor,
CADE-7, volume 170 of LNCS, pages 393–413. Springer, 1984.

[156] A. Pnueli, Y. Rodeh, O. Strichman, and M. Siegel. The small model property:
How small can it be? Inf. Comput., 178(1):279–293, 2002.

[157] R. Pollack. Closure under alpha-conversion. In H. Barendregt and
T. Nipkow, editors, TYPES ’93 (Selected Papers), volume 806 of LNCS, pages
313–332. Springer, 1994.

[158] V. Prevosto and U. Waldmann. SPASS+T. In G. Sutcliffe, R. Schmidt, and
S. Schulz, editors, ESCoR 2006, volume 192 of CEUR Workshop
Proceedings, pages 18–33. CEUR-WS.org, 2006.

[159] W. Pugh. The Java memory model is fatally flawed. Concurrency—Practice
and Experience, 12(6):445–455, 2000.

[160] S. Ranise and C. Tinelli. The SMT-LIB standard: Version 1.2. http:
//goedel.cs.uiowa.edu/smtlib/papers/format-v1.2-r06.08.30.pdf, 2006.

http://goedel.cs.uiowa.edu/smtlib/papers/format-v1.2-r06.08.30.pdf
http://goedel.cs.uiowa.edu/smtlib/papers/format-v1.2-r06.08.30.pdf

170 Bibliography

[161] W. Reif and G. Schellhorn. Theorem proving in large theories. In W. Bibel
and P. H. Schmitt, editors, Automated Deduction—A Basis for Applications,
volume III: Applications, pages 225–241. Kluwer, 1998.

[162] W. Reif, G. Schellhorn, and A. Thums. Flaw detection in formal
specifications. In R. Goré, A. Leitsch, and T. Nipkow, editors, IJCAR 2001,
volume 2083 of LNCS, pages 642–657. Springer, 2001.

[163] A. Riazanov and A. Voronkov. The design and implementation of Vampire.
AI Comm., 15(2-3):91–110, 2002.

[164] P. Rudnicki and J. Urban. Escape to ATP for Mizar. In P. Fontaine and
A. Stump, editors, PxTP-2011, 2011.

[165] J. M. Rushby. Tutorial: Automated formal methods with PVS, SAL, and
Yices. In D. V. Hung and P. Pandya, editors, SEFM 2006, page 262. IEEE,
2006.

[166] S. Sarkar, P. Sewell, F. Zappa Nardelli, S. Owens, T. Ridge, T. Braibant, M. O.
Myreen, and J. Alglave. The semantics of x86-CC multiprocessor machine
code. In Z. Shao and B. C. Pierce, editors, POPL 2009, pages 379–391. ACM,
2009.

[167] S. Schulz. System description: E 0.81. In D. Basin and M. Rusinowitch,
editors, IJCAR 2004, volume 3097 of LNAI, pages 223–228. Springer, 2004.

[168] J. M. Schumann. Automated Theorem Proving in Software Engineering.
Springer, 2001.

[169] H. Schütz and T. Geisler. Efficient model generation through compilation. In
M. A. McRobbie and J. K. Slaney, editors, CADE-13, volume 1104 of LNAI,
pages 433–447. Springer, 1996.

[170] J. Sevcík and D. Aspinall. On validity of program transformations in the
Java memory model. In J. Vitek, editor, ECOOP 2008, volume 5142 of LNCS,
pages 27–51. Springer, 2008.

[171] J. Siekmann, C. Benzmüller, A. Fiedler, A. Meier, I. Normann, and M. Pollet.
Proof development with ΩMEGA: The irrationality of

√
2. In

F. Kamareddine, editor, Thirty Five Years of Automating Mathematics,
volume 28 of Applied Logic, pages 271–314. Springer, 2003.

[172] J. K. Slaney. FINDER: Finite domain enumerator system description. In
A. Bundy, editor, CADE-12, volume 814 of LNAI, pages 798–801. Springer,
1994.

[173] G. Snelting and D. Wasserrab. A correctness proof for the Volpano/Smith
security typing system. In G. Klein, T. Nipkow, and L. Paulson, editors, The
Archive of Formal Proofs.
http://afp.sf.net/entries/VolpanoSmith.shtml, 2008.

[174] M. E. Stickel. Schubert’s steamroller problem: Formulations and solutions.
J. Autom. Reasoning, 2(1):89–101, 1986.

http://afp.sf.net/entries/VolpanoSmith.shtml

Bibliography 171

[175] M. E. Stickel, R. J. Waldinger, M. R. Lowry, T. Pressburger, and
I. Underwood. Deductive composition of astronomical software from
subroutine libraries. In A. Bundy, editor, CADE-12, volume 814 of LNAI,
pages 341–355. Springer, 1994.

[176] G. Sutcliffe. ToFoF. http://www.cs.miami.edu/~tptp/ATPSystems/ToFoF/.

[177] G. Sutcliffe. The TPTP problem library: TPTP v5.0.0.
http://www.cs.miami.edu/~tptp/TPTP/TR/TPTPTR.shtml.

[178] G. Sutcliffe. System description: SystemOnTPTP. In D. McAllester, editor,
CADE-17, volume 1831 of LNAI, pages 406–410. Springer, 2000.

[179] G. Sutcliffe. The TPTP problem library and associated infrastructure—The
FOF and CNF parts, v3.5.0. J. Autom. Reasoning, 43(4):337–362, 2009.

[180] G. Sutcliffe. The TPTP World—Infrastructure for automated reasoning. In
E. M. Clarke and A. Voronkov, editors, LPAR-16, volume 6355 of LNAI,
pages 1–12. Springer, 2010.

[181] G. Sutcliffe. The CADE-23 automated theorem proving system
competition—CASC-23. AI Comm., 25(1):49–63, 2012.

[182] G. Sutcliffe, C. Chang, L. Ding, D. McGuinness, and P. P. da Silva. Different
proofs are good proofs. In D. McGuinness, A. Stump, G. Sutcliffe, and
C. Tinelli, editors, EMSQMS 2010, pages 1–10, 2010.

[183] G. Sutcliffe, S. Schulz, K. Claessen, and P. Baumgartner. The TPTP typed
first-order form with arithmetic. In N. Bjørner and A. Voronkov, editors,
LPAR-18, volume 7180 of LNCS, pages 406–419. Springer, 2012.

[184] G. Sutcliffe, J. Zimmer, and S. Schulz. TSTP data-exchange formats for
automated theorem proving tools. In W. Zhang and V. Sorge, editors,
Distributed Constraint Problem Solving and Reasoning in Multi-Agent
Systems, volume 112 of Frontiers in Artificial Intelligence and Applications,
pages 201–215. IOS Press, 2004.

[185] P. Suter, A. S. Köksal, and V. Kuncak. Satisfiability modulo recursive
programs. In E. Yahav, editor, SAS 2011, volume 6887 of LNCS, pages
298–315. Springer, 2011.

[186] C. Tinelli and C. Zarba. Combining decision procedures for sorted theories.
In J. Alferes and J. Leite, editors, JELIA 2004, volume 3229 of LNCS, pages
641–653. Springer, 2004.

[187] E. Torlak and D. Jackson. Kodkod: A relational model finder. In
O. Grumberg and M. Huth, editors, TACAS 2007, volume 4424 of LNCS,
pages 632–647. Springer, 2007.

[188] E. Torlak, M. Vaziri, and J. Dolby. MemSAT: Checking axiomatic
specifications of memory models. In B. G. Zorn and A. Aiken, editors,
PLDI 2010, pages 341–350. ACM Press, 2010.

http://www.cs.miami.edu/~tptp/ATPSystems/ToFoF/
http://www.cs.miami.edu/~tptp/TPTP/TR/TPTPTR.shtml

172 Bibliography

[189] D. Traytel, A. Popescu, and J. C. Blanchette. Foundational, compositional
(co)datatypes for higher-order logic—Category theory applied to theorem
proving. Submitted.

[190] D. A. Turner. A new implementation technique for applicative languages.
Softw. Pract. Exper., 9:31–49, 1979.

[191] J. Urban. MaLARea: A metasystem for automated reasoning in large
theories. In G. Sutcliffe, J. Urban, and S. Schulz, editors, ESARLT 2007,
volume 257 of CEUR Workshop Proceedings. CEUR-WS.org, 2007.

[192] J. Urban, G. Sutcliffe, P. Pudlák, and J. Vyskočil. MaLARea SG1—Machine
learner for automated reasoning with semantic guidance. In A. Armando,
P. Baumgartner, and G. Dowek, editors, IJCAR 2008, volume 5195 of LNAI,
pages 441–456. Springer, 2008.

[193] W. Visser, K. Havelund, G. Brat, S. Park, and F. Lerda. Model checking
programs. Autom. Softw. Eng. J., 10(2):203–232, 2003.

[194] D. Volpano, G. Smith, and C. Irvine. A sound type system for secure flow
analysis. J. Comput. Secur., 4(3):167–187, 1996.

[195] D. Walker. Substructural type systems. In B. Pierce, editor, Advanced Topics
in Types and Programming Languages, pages 3–44. MIT Press, 2005.

[196] M. Wampler-Doty. A complete proof of the Robbins conjecture. In G. Klein,
T. Nipkow, and L. Paulson, editors, The Archive of Formal Proofs.
http://afp.sf.net/entries/Robbins-Conjecture.shtml, 2010.

[197] T. Weber. A SAT-based Sudoku solver. In G. Sutcliffe and A. Voronkov,
editors, LPAR 2005 (Short Papers), pages 11–15, 2005.

[198] T. Weber. SAT-Based Finite Model Generation for Higher-Order Logic.
Ph.D. thesis, Dept. of Informatics, T.U. München, 2008.

[199] T. Weber. SMT solvers: New oracles for the HOL theorem prover. J. Softw.
Tools Technol. Transfer, 13(5):419–429, 2011.

[200] C. Weidenbach. Combining superposition, sorts and splitting. In
A. Robinson and A. Voronkov, editors, Handbook of Automated Reasoning,
volume II, pages 1965–2013. Elsevier, 2001.

[201] M. Wenzel. Type classes and overloading in higher-order logic. In E. L.
Gunter and A. Felty, editors, TPHOLs 1997, volume 1275 of LNCS, pages
307–322. Springer, 1997.

[202] M. Wenzel. Isabelle/Isar—A generic framework for human-readable proof
documents. In R. Matuszewski and A. Zalewska, editors, From Insight to
Proof—Festschrift in Honour of Andrzej Trybulec, volume 10(23) of Studies
in Logic, Grammar, and Rhetoric. University of Białystok, 2007.

[203] M. Wenzel. Parallel proof checking in Isabelle/Isar. In G. Dos Reis and
L. Théry, editors, PLMMS 2009, pages 13–29. ACM Digital Library, 2009.

http://afp.sf.net/entries/Robbins-Conjecture.shtml

Bibliography 173

[204] M. Wenzel. Asynchronous proof processing with Isabelle/Scala and
Isabelle/jEdit. In C. Sacerdoti Coen and D. Aspinall, editors, UITP ’10, 2010.
To appear in Electr. Notes Theor. Comput. Sci.

[205] C. A. Wick and W. W. McCune. Automated reasoning about elementary
point-set topology. J. Autom. Reasoning, 5(2):239–255, 1989.

[206] Y. Yang, G. Gopalakrishnan, G. Lindstrom, and K. Slind. Nemos:
A framework for axiomatic and executable specifications of memory
consistency models. In IPDPS 2004. IEEE, 2004.

[207] J. Zhang and H. Zhang. SEM: A system for enumerating models. In C. S.
Mellish, editor, IJCAI-95, volume 1, pages 298–303. Morgan Kaufmann, 1995.

[208] J. Zimmer, A. Meier, G. Sutcliffe, and Y. Zhan. Integrated proof
transformation services. In C. Benzmüller and W. Windsteiger, editors,
IJCAR WS 7, 2004.

	Contents
	1 Introduction
	1.1 Motivation
	1.2 Contributions
	1.3 Publications
	1.4 Structure of This Thesis
	1.5 A Note on the Proofs

	2 Isabelle/HOL
	2.1 The Metalogic
	2.2 The HOL Object Logic
	2.3 Definitional Principles

	3 Counterexample Generation Using a Relational Model Finder
	3.1 First-Order Relational Logic
	3.2 Basic Translations
	3.2.1 A Sound and Complete Translation
	3.2.2 Approximation of Infinite Types and Partiality

	3.3 Translation of Definitional Principles
	3.3.1 Simple Definitions
	3.3.2 Inductive Datatypes and Recursive Functions
	3.3.3 Inductive and Coinductive Predicates
	3.3.4 Coinductive Datatypes and Corecursive Functions

	3.4 Optimizations
	3.4.1 Function Specialization
	3.4.2 Boxing
	3.4.3 Quantifier Massaging
	3.4.4 Alternative Definitions
	3.4.5 Tabulation
	3.4.6 Heuristic Constant Unfolding
	3.4.7 Necessary Datatype Values
	3.4.8 Lightweight Translation

	3.5 Examples
	3.5.1 A Context-Free Grammar
	3.5.2 AA Trees
	3.5.3 The Volpano–Smith–Irvine Security Type System
	3.5.4 A Hotel Key Card System
	3.5.5 Lazy Lists

	3.6 Evaluation
	3.7 Related Work

	4 Monotonicity Inference
	4.1 Monotonicity
	4.2 First Calculus: Tracking Equality and Quantifiers
	4.2.1 Extension Relation and Constancy
	4.2.2 Syntactic Criteria

	4.3 Second Calculus: Tracking Sets
	4.3.1 Extension Relation
	4.3.2 Type Checking
	4.3.3 Monotonicity Checking
	4.3.4 Type Inference

	4.4 Third Calculus: Handling Set Comprehensions
	4.4.1 Extension Relation
	4.4.2 Type Checking
	4.4.3 Monotonicity Checking
	4.4.4 Type Inference

	4.5 Practical Considerations
	4.5.1 Constant Definitions
	4.5.2 Inductive Datatypes
	4.5.3 Evaluation

	4.6 Related Work

	5 Case Study: Nitpicking C++ Concurrency
	5.1 Background
	5.2 The C++ Memory Model
	5.2.1 Introductory Example
	5.2.2 Memory Actions and Orders
	5.2.3 Original Formalization
	5.2.4 Cppmem
	5.2.5 Fine-Tuned Formalization

	5.3 Litmus Tests
	5.3.1 Store Buffering
	5.3.2 Load Buffering
	5.3.3 Independent Reads of Independent Writes
	5.3.4 Message Passing
	5.3.5 Write-to-Read Causality
	5.3.6 Sequential Lock
	5.3.7 Generalized Write-to-Read Causality

	5.4 Related Work
	5.5 Discussion

	6 Proof Discovery Using Automatic Theorem Provers
	6.1 TPTP Syntax
	6.2 Sledgehammer and Metis
	6.3 Extension with SMT Solvers
	6.3.1 The smt Proof Method
	6.3.2 Solver Invocation
	6.3.3 Proof Reconstruction
	6.3.4 Relevance Filtering
	6.3.5 Example

	6.4 Elimination of Higher-Order Features
	6.4.1 Arguments and Predicates
	6.4.2 Translation of Lambda-Abstractions
	6.4.3 Higher-Order Reasoning

	6.5 Encoding of Polymorphic Types
	6.5.1 Traditional Type Encodings
	6.5.2 Sound Type Erasure via Monotonicity Inference
	6.5.3 Monomorphization-Based Encodings
	6.5.4 Soundness and Completeness

	6.6 Further Technical Improvements
	6.6.1 Full First-Order Logic Output
	6.6.2 Fine-Tuned Relevance Filter
	6.6.3 Time Slicing
	6.6.4 Additional Provers
	6.6.5 Fast Minimization
	6.6.6 Revamped User Experience
	6.6.7 Skolemization without Choice

	6.7 Evaluation
	6.7.1 Experimental Setup
	6.7.2 Type Encodings
	6.7.3 Translation of Lambda-Abstractions
	6.7.4 Combination of Automatic Provers

	6.8 Structured Proof Construction
	6.8.1 Proof Notations
	6.8.2 Examples of Proof Redirection
	6.8.3 The Redirection Algorithm

	6.9 Related Work

	7 Conclusion
	7.1 Results
	7.2 Future Work
	7.2.1 Counterexample Generation with Nitpick
	7.2.2 Proof Discovery with Sledgehammer

	Bibliography

