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Abstract

Proposing and testing mechanistic hypotheses stands as one of the key applications of
contemporary computational chemistry. In the majority of computational mechanistic
analyses, the individual elementary steps leading from reactants to products are pro-
posed by the user, based on learnt chemical knowledge, intuition, or comparison to an
existing well-characterized mechanism for a closely-related chemical reaction. However,
the pre-requisite of prior chemical knowledge is a barrier to automated (or ‘black box’)
mechanistic generation and assessment, and may simultaneously preclude mechanistic
proposals which lie outside the ‘standard’ chemical reaction set. In this Article, we
propose a simple random-walk algorithm that searches for the set of elementary chem-
ical reactions which transform defined reactant structures into target products. Our
approach operates exclusively in the space of molecular connectivity matrices, seeking
out the set of chemically-sensible bonding changes which link connectivity matrices
for input reactant and product structures. We subsequently illustrate how atomic
coordinates for each elementary reaction can be generated under the action of a graph-
restraining potential, prior to further analysis by quantum chemical calculations. Our
approach is successfully demonstrated for carbon monoxide oxidation, the water-gas
shift reaction, and n-hexane aromatization, all catalyzed by Pt nanoparticles.
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1 Introduction

A key application of contemporary computational chemistry lies in analyzing the elementary

steps of complex chemical reaction mechanisms associated with processes such as catalysis,1–5

polymerization6 and combustion.7–9 Given initial reactant and product molecular configura-

tions (i.e. atomic coordinates), ab initio electronic structure methods can now be straight-

forwardly used to perform geometry optimization and normal-mode analysis. The resulting

optimized molecular geometries and corresponding normal-mode vibrational coordinates can

then be used within the standard rigid-rotor/harmonic oscillator model to evaluate the free

energies of the reactant and products, making direct connection to experimentally-observable

thermodynamic quantities such as reaction free energies.10,11 Furthermore, reaction-path

analysis tools, such as nudged elastic band (NEB12–14), the dimer method15 and the growing-

string method16,17 can be used to seek out minimum-energy paths (MEPs) connecting known

reactant and product structures, providing insight into the reaction mechanism of elemen-

tary steps. Finally, transition-state (TS) searching algorithms17–20 can be used to identify

TS configurations; free energy evaluations for the TS then enables determination of activa-

tion free energies, which can be used within transition-state theory (TST) to approximate

reaction rates.10,11

While the procedure described above is well-defined for a single elementary chemical re-

action step, the challenge of investigating multi-step reaction mechanisms is much greater.

Here, to analyze a multi-step chemical reaction, one must first generate a mechanistic pro-

posal, namely the sequence of elementary reaction-steps which comprise the full mechanism,

as well as the identities of the participating atoms and molecules. Generating molecular

models for each elementary reaction step “by hand” is a tedious task, and leaves open the

question of whether the proposed reaction mechanism is truly representative of experimental

facts, or whether it is somehow biased by the user’s own intuition.

An alternative approach is to develop new computer algorithms which can be used to

propose multi-step reaction mechanisms in an automated, black-box manner, without re-
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quiring user-guidance; this is the key goal of this Article. The last few years have seen a

major growth in methods which aim to construct kinetic networks describing complex chem-

ical systems in an automated manner.3,17,21–32 A prominent example, particularly in relation

to combustion kinetics, is the Reaction Mechanism Generator (RMG) scheme,21 which uses

the idea of molecular connectivity matrices (or graphs) in combination with chemical reac-

tion rules which can be used to build complex reaction networks and simultaneously predict

thermodynamic and kinetic parameters for the elementary reaction steps. The RMG scheme

has been used to construct a wide variety of kinetic models describing complex combustion

and pyrolysis processes,7–9,21 with the resulting models being used to predict emergent rate

laws and product concentrations by direct microkinetic simulations. However, the approach

taken in RMG is to start from a “seed” mechanism and iteratively construct a kinetic model

using stopping criteria based on predicted reaction rates; this is somewhat different to the

aim of the methodology proposed herein, which aims at predicting reaction mechanisms

which definitively connect two known reaction end-points. In addition, RMG has not, to

date, been used to study catalysis by molecular species such as organometallic complexes or

nanoparticles (although recent application to heterogeneous catalysis has been reported33);

it is exactly these molecular application domains which we are interested in here, as described

further below.

In automatically generating complex kinetic networks for molecular catalysis, a num-

ber of computational schemes have been suggested recently. For example, a combination of

molecular dynamics-based schemes for transition-state searching with graph-based tools for

molecular identification has been shown to be effective in modelling catalytic processes.34

On a similar graph-based theme, our own recent work35,36 has shown how one can construct

an automated scheme for reaction sampling by treating reaction-paths as dynamic objects

associated with a classical Hamiltonian incorporating an effective potential which “imprints”

a given connectivity matrix onto sampled molecular configurations; by periodically updating

the connectivity matrices associated with the reaction end-points using chemical reaction
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rules, this scheme can be used to construct reaction networks for subsequent microkinetic

modeling, as demonstrated in application to cobalt-catalyzed hydroformylation. Further re-

lated graph-based schemes include the ZStruct system proposed by Zimmerman,30 employ-

ing an efficient growing-string method for transition-state searching,17 or the recent work

by Kim and coworkers, employing graph-based heuristics to rapidly populate reaction net-

works.32 Other schemes in this domain include the artificial force-induced reaction (AFIR)

approach,27,28 which supplements ab initio calculations with an artificial potential energy

surface to overcome reaction barriers, and the ab initio nanoreactor approach of Martinez

and coworkers,23 which combines ab initio molecular dynamics with an artificial piston to

push reactive molecules together to accelerate reactions. These and other related approaches

have been reviewed recently.22,37

However, to the best of our knowledge, none of the schemes described above have been

employed to directly identify “double-ended” reaction pathways which connect well-defined

reactants and products. In this Article, we show how this challenge can be addressed by

transformation into an optimization problem which can be readily approached using estab-

lished methods such as simulated annealing (SA) or genetic algorithms. Key to our approach

is the idea that connectivity (or adjacency) matrices can be used to discretize chemical space

into molecular species, such that chemical reactions then correspond to moves between chemi-

cal isomers defined by different connectivity matrices.21,30–32,35,36 Then, given input molecular

structures for reactant and product molecules, as well as a library of possible connectivity ma-

trix moves corresponding to generic chemical transformations such as dissociation, insertion

and so on, we show that the identification of a many-step reaction mechanism connecting

reactants and products can be formulated as the search for a sequence of “graph moves”

which transform the connectivity matrix of reactants into the connectivity matrix of the

products. Finally, we demonstrate how geometry optimization under a graph-restraining

potential energy surface, employed in our previous reaction discovery simulations, can be

used to generate Cartesian-space reaction-paths for each individual elementary step in the
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predicted sequence of reactions; these reaction-paths can then be subjected to standard ther-

modynamic (e.g. reaction free energies) and kinetic (e.g. TST rates) analysis in combination

with ab initio quantum chemical calculations.

The remainder of this Article is organized as follows. First, in Section 2, we describe

our connectivity-matrix-based approach for finding double-ended reaction paths connecting

defined reactants and products. Subsequently, in Section 3 we successfully demonstrate

our double-ended mechanism search strategy to find reaction paths for oxidation of carbon

monoxide, the water-gas shift reaction, and aromatization of n-hexane, all in the presence of

a platinum nanoparticle. Finally, in Section 4, we conclude by highlighting some interesting

extensions of our approach in the context of molecular catalyst design.

2 Theory

As noted above, we have recently shown how the idea of connectivity matrices (CMs) can

be used as the basis of an algorithm to automatically explore chemical reaction networks by

constructing a classical Hamiltonian which describes a continuous reaction-path (described

by either Fourier coefficients or discrete “images”). In this approach,35,36 an artificial poten-

tial energy surface (PES) is introduced, referred to hereafter as a graph-restraining potential

(GRP), to restrain the reaction-path end-points to sample only those molecular configu-

rations which correspond to defined CMs; by then introducing changes to the end-point

CMs, the GRP then enforces sampling of distinct chemical reactions, allowing automated

construction of kinetic networks when combined with ab initio quantum chemistry and TST.

In this Article, we show how a similar idea, namely the discretization of chemical-space

using CMs, can be employed as the basis of a search algorithm to identify reaction mecha-

nisms connecting user-defined reactants and products. The reactant and product molecular

structures are first transformed into CMs based on bonding distance cut-offs, as described

below. Changes in chemical bonding correspond to changes in the elements of the CMs; the
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search for a chemical reaction mechanism connecting reactants and products can then be

viewed as the problem of finding the sequence of “chemically-allowed” CM updates which

transforms the reactant CM into the product CM. Finally, using the input molecular struc-

ture of the reactants, the sequence of CM updates, and the idea of optimization under the

GRP, we show how one can construct a series of reaction-paths in the Cartesian space of

atomic coordinates for each elementary step in the full reaction mechanism; further reaction-

path analysis methods, such as NEB, can then be used to refine the proposed reaction path,

providing a fully-atomistic view of the reaction mechanism. In the following subsections, the

ingredients of this approach are presented, before the final algorithm is summarized.

2.1 Connectivity Matrices

Our mechanism proposal algorithm described below operates in the space of CMs. A CM for

an n-atom system is an n× n matrix with entries which are 0 if two atoms are not bonded,

and 1 if two atoms are bonded; we note that the type of bonding (e.g. single, double, etc.)

is not considered in this definition. The element Gij of the CM G are then:

Gij =















1 if rij < rcutij ,

0 otherwise.

(1)

Here, rcutij is a distance cut-off value which indicates whether or not two atoms i and j are

bonded. In what follows, we define this cut-off as

rcutij = γ(Ri +Rj), (2)

where Ri and Rj are approximate covalent radii for the element-types of atoms i and j, and

γ is a parameter which allows for some chemical variation in bonding definitions, with a

typical value γ = 1.1. An important point for the remainder of our approach is that it is

straightforward to calculate the CM for any input molecular structure.

6



2.2 Chemical reactions as CM updates

The key aim of the approach developed here is to seek out the sequence of elementary

chemical reactions which result in transformation of an input reactant structure into an input

product structure. Taking the viewpoint that a chemical reaction must involve changes in

bonding arrangements (this is discussed further below), it is clear that any chemical reaction

can itself be defined as a CM operation. This is illustrated in Fig. 1, which shows how

molecular hydrogen dissociation from formaldehyde corresponds to a change in the reactant

CM to yield a new CM; as a result, this transformation can be viewed as the operation (e.g.

addition) of a CM update matrix acting on the reactant CM.

1 2 3 4

1 0 1 1 1

2 1 0 0 0

3 1 0 0 0

4 1 0 0 0

1 2 3 4

1 0 1 1 0

2 1 0 0 0

3 1 0 0 0

4 0 0 0 0

1

2
3

4

1 2 3 4

1 0 0 0 -1

2 0 0 0 0

3 0 0 0 0

4 -1 0 0 0

Reactants Products

Reaction matrix

(a)

(b)

i j

i 0 -1

j -1 0

Reaction class 

+

Atomic indices

I = [1, 4]

Figure 1: Two methods for defining chemical reactions as connectivity matrix updates, as
illustrated for the four-atom formaldehyde system. (a) Definition of an n×n reaction matrix,
describing bond breaking and bond formation, and (b) definition of a reaction class, here
acting on two atoms i and j, and atomic indices.
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This view of chemical reactions as CM updates is very convenient for developing al-

gorithms for mechanism suggestion, as described below. However, a prerequisite of our

approach is that one must provide a library of possible chemical reactions which might occur

for any given set of atoms and molecules. Unfortunately, as presented in Fig. 1(a), providing

a library of n×n CM update matrices corresponding to possible chemical reactions for a large

collection of atom is inconvenient. For example, in the case of formaldehyde illustrated in

Fig. 1(a), defining individual reaction matrices would require definition of dissociation reac-

tions for both labelled hydrogen atoms 3 and 4; however, the two corresponding C−H bonds

are chemically equivalent. As such, when defining n-atom reaction matrices, the number of

possible CM updates grows rapidly as the number of atoms increases because commonalities

in chemical reactivity are ignored.

Instead, the approach described below rests on defining a small number of reaction classes

which operate on small numbers of atoms, rather than defining CM update operations for

the full n-atom system, in a similar manner as employed in the RMG scheme.21 This simpli-

fication is illustrated in Fig. 1(b). Here, rather than describing dissociation reactions using

a library of n-atom CM update matrices (Fig. 1(a)), an equivalent definition of this set of

reactions is to define a 2× 2 CM update matrix giving the changes in bonding between any

two atoms i and j for the reaction-class (e.g. dissociation here), as well as identifying the

atom indices i and j; this information is equivalent to providing a full n×n CM update ma-

trix describing dissociation. In other words, by defining a simpler reaction-class CM update

matrix, we implicitly reduce the number of CM update matrices which would be required

to completely define the set of association/dissociation reactions; using reaction-class CM

updates, we simply have a single 2×2 CM update matrix for a dissociation reaction, and the

atom indices i and j then identify which atoms participate in this reaction. In what follows,

we use Ri(I) to indicate reaction-class i operating on the set of atomic indices I.

The important point here is that the definition of reaction classes, rather than n-atom

reaction matrices, dramatically reduces the number of matrix operations which must be
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defined in order to describe the reactivity of a chemical system. Furthermore, reaction-

classes can be easily defined using ‘chemical common-sense’, with standard reactions, such

as dissociation, association or elimination, all being readily defined using a small number of

reaction-classes.

2.3 Mechanism searching as a global optimization problem

In the above, we have highlighted how:

1. Reactant and product CMs can be readily evaluated using input reactant and product

molecular structures;

2. Chemical reactions can be defined as matrix addition or subtraction operations;

3. With a few simple ‘chemical common-sense’ restraints, one can readily generate a

flexible library of possible chemical reaction operations for any given molecular system.

We now show how these ingredients can be used to search for a reaction mechanism (i.e.

sequence of elementary steps) which connect user-defined reactant and product structures.

We assume that we have input reactant and product molecular structures, which can be

converted into CMs GR and GP , respectively. In addition, we assume that we have a library

of M chemically-allowed reactions,
[

R1(I1),R
2(I2), . . . ,R

M(IM)
]

, where I indicates the set

of atomic indices which are modified by each reaction.

The goal is then to find a sequence of elementary reactions, as well as participating atomic

indices, which connect GR and GP . In other words, we seek the reaction steps such that

GP = GR +
Nr
∑

i=1

Rm(i)(Ii), (3)

where we allow a maximum of Nr elementary steps, m(i) labels the elementary reaction-class

occurring at step i, and Ii labels the set of atomic indices in the n-atom molecular structure

which are operated upon by chemical reaction Rm(i).
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Now, suppose we have generated a trial sequence of reaction steps
[

Rm(1)(I1),R
m(2)(I2), . . . ,R

m(Nr)(IM)
]

and associated atom indices Ii (i = 1, 2, . . . , Nr). Using Eq. 3 it is straightforward to cal-

culate the product CM which would be generated upon applying this trial sequence to GR;

we label the resulting product CM as G̃P , and note that our goal is to find the reaction

sequence and associated atomic indices such that G̃P = GP .

For any trial sequence, we can define an error function as the simple element-wise differ-

ence between the trial product CM and the target product CM, given by:

F =
∑

j>i

(

G̃P
ij −GP

ij

)2

. (4)

Clearly, when F = 0, we have identified a sequence of elementary reaction steps (and asso-

ciated atomic indices) that directly connect the input reactant and product CMs; in other

words, a trial path with F = 0 represents a possible reaction mechanism to convert GR into

products GP .

With the above development, we see that the search for reaction mechanism can be trans-

formed into an optimization problem; we seek the sequence of Nr reactions R
m(i)
i and atomic

indices Ii for which F = 0, as illustrated schematically in Fig. 2. Any trial solution can be

readily defined as a discrete series of reaction and atomic indices; this discrete optimization

problem can, in principle, be addressed using a wide variety of optimization strategies, with

examples including genetic algorithms, SA or army ants algorithm. In the examples given

below we use SA, with moves at each iteration corresponding to changes in the reaction-

class and/or atomic indices of a randomly-selected reaction in the current sequence of Nr

steps. After this change is made, the new error function is evaluated using Eq. 4, and the

standard Metropolis method is used to accept or reject the move. After a sufficient number

of iterations, it is found that a reaction sequence with F = 0 can be generated with some

reliability. However, it is important to note that, because this optimization takes place solely

in the discrete space of CMs, the evaluation of F is very fast, such that large numbers of
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SA moves can be generated and tested in a short space of time; for example, a representa-

tive calculation with 106 Monte Carlo moves takes about one minute on a standard laptop

computer.

Reactants

Products

GR

GP

Error


measure

Reaction 1

Reaction 2

Reaction 3

Figure 2: Overview of optimization scheme for multi-step mechanism proposal. Starting
with user-defined reactants and products, the end-point connectivity matrices, GR and GP,
are evaluated. Next a series of CM updates are proposed leading to generation of a sequence
of new connectivity matrices; in this case, we illustrate a path (black dotted line), with
the colored circles representing the different possible connectivity matrices which can be
generated by matrix updates. After a maximum fixed number of reaction-steps Nr, the
resulting connectivity matrix is used to evaluate an error measure F describing distance
from the target connectivity matrix; simulated annealing by modifying the intermediate
reaction steps is then used to minimize this error measure.

An important factor in the success of this this graph-based optimization procedure, as

demonstrated below, is that it can be easily directed to prevent exploration of reaction-

path sequences which lead towards non-physical CMs. Specifically, for some trial reaction

sequence, as each term is summed in Eq. 3 (i.e. after each proposed elementary step) one
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can perform checks on the current CM to ensure that standard chemical valence ranges, or

similar restraints, are not violated. As an example, one would expect thermodynamically-

stable many-atom molecules containing carbon to only exhibit bonding motifs in which the

valence of carbon is between one and four. So, if an intermediate CM generated during

the summation of Eq. 3 leads to formation of a molecular species with a carbon atom

with a valence of six, one can reject this reaction sequence on simple chemical ‘common-

sense’, with little runtime cost to the algorithm. In practice, this can be achieved during SA

by giving these constraint-violating reaction-sequences an arbitrarily large error function,

such that they are always rejected during the Metropolis test. This chemical constraints

procedure can also be used to direct the reaction-sequence search towards specific types of

chemistry, such as searching only for reaction sequences in which all carbon-carbon double

bonds remain intact; this tunable specificity is not greatly exploited in the reactions modeled

below, beyond ensuring that reactions take place at a nanocluster surface, but represents an

interesting avenue to explore further.

2.4 Molecular structure generation using CMs

The minimization of F described above results in a sequence of elementary reactions and asso-

ciated atomic indices participating in each reaction,
[

Rm(1)(I1),R
m(2)(I2), . . . ,R

m(Nr)(IM)
]

.

For further analysis, such as evaluation of thermodynamics and kinetic properties, we then

require the atomic coordinates of all of the intermediate molecular structures generated along

this sequence of elementary reaction-steps. In other words, we need to generate molecular

structures which conform to the bonding pattern encoded in each intermediate CM.

To achieve this, we can use GRPs to impose a target CM on a molecular structure. The

GRP is a function of both atomic coordinates r and a target CM GT , and is defined to be

zero only when the CM calculated from r corresponds exactly to GT . As such, starting from

some reasonable initial atomic coordinates and target CM, optimization of the GRP yields

a molecular structure which corresponds to the target CM.
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The GRP W (r,G) used here is similar to that used in previous work,35,36 and has the

following functional form:

W (r,G) =
∑

j>i

[

δ(Gij − 1)
[

H(rmin
ij − rij)σ1(r

min
ij − rij)

2 +H(rij − rmax
ij )σ1(r

max
ij − rij)

2
]

+ δ(Gij)σ2e
−r2ij/(2σ

2

3
)

]

+ Vmol(r,G).

(5)

The summation in Eq. 5 runs over all pairs of atoms. The first term is a harmonic restraining

force which acts on pairs of atoms which are bonded in order to keep their bond-length

between the fixed limits rmin
ij and rmax

ij . The “delta” function is defined such that

δ(x) =















1 if x = 0,

0 otherwise,

(6)

so the term δ(Gij − 1) implies that the corresponding term operates on bonded atoms i and

j. Furthermore, H(x) is the Heaviside function, defined as:

H(x) =















0 if x < 0,

1 if x > 0.

(7)

So, H(rmin
ij − rij) is zero as long as rij > rmin

ij ; in this case, this first harmonic restraint term

does not contribute to the GRP. If, on the other hand, rij < rmin
ij , then H(rmin

ij − rij) = 1

and the first term does contribute to the potential energy. In particular, a harmonic term of

the form σ1(r
min
ij − rij)

2 is applied to the system, where σ1 is a user-defined constant. The

effect of this potential energy term is to push the atoms i and j to bond lengths such that

rij > rmin
ij . In other words, this term pushes the atoms apart until they are some minimum

distance rmin
ij away from each other. The second harmonic restraint term has a similar

effect, but instead of maintaining some minimum distance, it makes sure that a bonded pair
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of atoms always remain closer than some maximum allowed distance rmax
ij . Together, the

influence of the harmonic restraint terms in Eq. 5 is to ensure that a pair of bonded atoms

always have bond-lengths between the pre-defined limits rmin
ij and rmax

ij . The final term in

the pair-potential of Eq. 5 acts as a repulsive potential between pairs of atoms which are

not bonded. The δ(Gij) term makes sure that this term only applies to pairs of atoms for

which Gij = 0. The remainder of this term is a simple Gaussian repulsive potential with a

strength parameter σ2 and a range parameter σ3.

In addition to the pairwise additive terms in Eq. 5, we also include a molecular term

which only operates between distinct molecular species. Here, the Vmol(r,G) term has the

following form:

Vmol(r,G) =
∑

J>I

[H(Rmin
−RIJ)σ4(R

min
−RIJ)

2], (8)

where RIJ is the distance between the centers-of-mass of two molecules I and J , and Rmin is

a user-defined minimum separation distance between any pair of molecules. By comparing

to the bonding term in Eq. 5, we see that the molecular term Vmol is designed to make sure

that distinct molecules are simply “kept apart” from each other.

The GRP defined in Eq. 5 is clearly not unique, but provides a simple pair-potential-like

PES which depends on both the target CM and the atomic coordinates. Optimization of

atomic coordinates under W (r,GT ) yields a molecular structure which obeys the bonding

restraints of the target CM; this approach can therefore be used to convert between the CM-

space within which our reaction-mechanism search works, into the atomic coordinate-space

required for further reaction-path analysis calculations. As a final point, we note that the

GRP employed here is a simple pair potential which does not account for the finer details

of molecular structure; as demonstrated below, geometry optimization with an empirical

force-field or ab initio quantum chemistry calculation can subsequently be used to correct

molecular structures.
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2.5 Algorithm summary

Putting together the different aspects described above, our final reaction-mechanism proposal

scheme proceeds as follows:

1. Input molecular structures for reactants (rR) and products (rP ) are converted into the

corresponding CMs GR and GP , respectively;

2. A maximum number of allowed reactions in the reaction sequence, Nr, is selected;

3. The initial reaction sequence is set to simply be a series of Nr ‘null’ reactions, corre-

sponding to zero CM changes at each step, and the initial error function F is evaluated;

4. A SA simulation is then performed for a maximum ofNmax iterations. At each iteration,

one of the CM updates in the current reaction sequence is updated, and the new

reaction-sequence is accepted or rejected based on the Metropolis criterion using F as

a target minimization function;

5. Once a reaction-sequence with F = 0 is found, the SA calculation is terminated;

6. For the optimized reaction sequence, molecular coordinates for each elementary step are

generated by optimization under each successive CM; in each case, the initial molecular

configuration for optimization is simply that produced by optimization at the previous

step (noting that the input reactant configuration is used as the starting point for the

optimization in the first elementary reaction step);

7. Finally, further analysis is performed using the molecular coordinates of each individual

elementary step, such as geometry optimization or NEB refinement.

The outcomes of this algorithm are: (i) identification of a set of elementary reactions, as

well as the atoms participating in each reaction, which lead from input reactants to input

products, (ii) initial molecular coordinates for a series of images along each elementary

reaction-path, which can be used in further analysis.
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3 Application, Results and Discussion

In this Section, we apply our double-ended reaction path finding method to three different

reactions, all occurring in the presence of a model platinum cluster catalyst: (i) oxidation

of carbon monoxide, (ii) water-gas shift reaction, and (iii) aromatization of n-hexane to

benzene. In each case, our goal is to use our reaction-path search algorithm to identify a

sequence of elementary reactions connecting defined reactants and products. We do not

claim that the reaction sequences generated are the minimum-energy sequences, just that

they represent ‘chemically-sensible’ reaction mechanisms leading from reactants to products;

further analysis of a large number of such paths would be required to positively identify the

globally minimum-energy reaction sequence, as discussed later in Section 4.

3.1 General computational details

All simulations used a custom-written computer code, and were performed on a standard

laptop computer. Details of simulation parameters are given in Table 1, notably GRP pa-

rameters and approximate cut-off distances. As described below, NEB was used to confirm

that the generated reaction sequences for each studied reaction can be converted into atomic

coordinate-space; for computational convenience, and because we are only interested in qual-

itative calculations as an envisaged first step in a hierarchy of increasingly-accurate analysis

simulations, we use the ReaxFF38,39 PES to describe intra- and intermolecular interactions

during all geometry optimizations and NEB refinements. Of course, the approach described

above is not tied to any particular PES model; for example, we could have equally used

density functional theory (DFT) to perform NEB, but the additional computational expense

is not justified here.

In all of the reactions considered below, we used a small set of chemical reaction types

in the library of possible CM updates for the SA search. In particular, we limited the

set of possible chemical reactions to simple association/dissociation reactions, as well as 3-
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Table 1: Parameters of the graph-restraining potential, and effective atomic radii for
connectivity-matrix calculation.

Parameter Value / atomic units
σ1 0.01
σ2 0.02
σ3 2.20
σ4 0.05

Atom type Effective radius / a0
C 0.72
O 0.72
H 0.40
Pt 1.46

body insertion/elimination reactions, as shown in Table 2. This reaction library is intended

to be somewhat generic; of course, more tailored reaction libraries for any system under

consideration could be easily developed too, allowing a large degree of flexibility in the

reaction search. However, we note that an important condition is imposed on the reaction

library considered here; specifically, all reactions must involve one of the platinum catalyst

atoms. This is to force the target reaction to take place at the Pt cluster, as might be

expected in a ‘real-world’ nanoparticle catalysis system.

Table 2: Library of reaction classes used in simulated annealing searches. As described in
the main text, to ensure that reactions occur at the Pt7 cluster, one of the reactive atomic
species is assigned as Pt in each reaction class.

Reaction Notes
A− Pt −−→←−− A+ Pt Single atom association/dissociation
A− Pt− B −−→←−− A− B + Pt Elimination
A− Pt + B −−→←−− A− B + Pt Atom transfer

At each iteration of the SA calculations, one of two updates were attempted at random.

The first update move attempted to change the atomic indices of a randomly selected reaction

step in the current reaction-sequence; the second possible update move attempted to change
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both the reaction type (drawn from the available reaction library) and the associated atomic

indices. A typical starting temperature for the SA simulation was 200 × 103 K (here, we

are assuming that the function F is given in atomic units; typical changes of ∆F = ±1 in

atomic units necessitate such high temperatures to ensure that sufficient moves are accepted

early in the SA calculation).

Following identification of a reaction-sequence with F = 0, atomic coordinates for Nr

reaction-sequence end-points; linear interpolation between these structures was then used

to generate n = 10 images along each elementary reaction step. Optimization of atomic

coordinates under action fo the GRP for each successive CM in the reaction-sequence was

performed using a simple steepest-descents algorithm until the RMS of the atomic forces

was less than 5× 10−4 Eha
−1
0 .

When required, NEB calculations were performed by first optimizing the geometry of each

reaction end-point using the ReaxFF PES, then subsequently using the QuickMin algorithm

to refine the internal images in the reaction path. NEB refinement continued until the RMS

forces on the images was less than 3× 10−3 Eha
−1
0 .

3.2 Oxidation of carbon monoxide

As a first example, we consider oxidation of carbon monoxide40–42 in the presence of a Pt7

cluster, namely:

2CO + O2 −−→ 2CO2.

The initial reactant configuration comprised two carbon monoxide molecules (CO), one oxy-

gen molecule (O2), and a Pt7 cluster with D5h symmetry (as determined to be the lowest-

energy structure in previous calculations43). The target product configuration comprised

two carbon dioxide (CO2) molecules, in addition to the Pt7 cluster. These input reactant

and product configurations were used to generate the target CMs, GR and GP .

Subsequently, we performed a SA optimization to search for a reaction-sequence connect-
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ingGR andGP , using the library of reaction-moves shown in Table 2. The maximum allowed

length of the reaction sequence was (somewhat arbitrarily) chosen to be Nr = 12, although

we note that a “null” reaction (resulting in no change in CM) is included in the allowed

library of moves, so it is possible that the actual number of active reactions in the sequence

Nr represents the maximum number of active chemical reactions. SA was performed for a

maximum of 106 iterations.

Figure 3 shows the results of NEB refinements for each of the Nr = 12 elementary steps in

a reaction-sequence with F = 0. This reaction-sequence was located after around 600× 103

SA iterations (see inset of Fig. 3). Repeated simulations show that our approach can reliably

find a reaction-sequence connecting reactant and product structures within a few hundred

thousand iterations, although we note that the determined reaction-sequence is, of course,

not always the same. Here, we focus on a representative reaction path, and the challenge of

further sampling over multiple reaction-paths is discussed below.

The sequence of molecular structures generated along the indicative CO oxidation re-

action pathway are also shown in Fig. 3. The first reaction involves adsorption of O2 at

the Pt7 surface, followed by dissociation of O2 into two individual oxygen atoms on the Pt

cluster surface; this molecular oxygen dissociation step has the highest potential energy bar-

rier along the entire reaction path (∼ 140 kJ mol−1). In subsequent reaction steps, the two

separate CO molecules adsorb at Pt sites adjacent to the atomic oxygen, then participate

in dissociative reactions to form CO2, with the barriers to these dissociative steps being of

the order 40-90 kJ mol−1. Of course, we anticipate that the actual calculated barriers are

less accurate than using, for example, DFT or other ab initio methods, but our results sug-

gest that the ReaxFF model provides a qualitatively correct picture of the relative potential

energy surface along the reaction path.

The important result in terms of this work is that our double-ended reaction-search

method has proven capable of generating candidate reaction mechanism for a complex multi-

step reaction, using only minimal “chemical common-sense” as input. To move further, to-
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wards mechanistic hypothesis testing, one could repeat this double-ended GDS simulation

multiple times to generate multiple candidate mechanisms; NEB refinements for each se-

quence of reaction paths would then enable identification of the “most likely” mechanism,

while reaction-rate calculations via TST would enable one to make contact with experimen-

tal rate-laws. These sorts of simulations will be computationally-demanding (depending on

the exact number of independent reaction sequences generated), but provide a well-defined

approach to mechanism testing; this approach will be the subject of future work.

Figure 3: Automatically-proposed reaction mechanism for CO oxidation on Pt7 nanoparticle.
The colored central line shows the calculated potential energy profile for a series of 12 NEB
calculations, each connecting end-points generated by simulated annealing combined with
structure refinement under the GRP; each different colored segment in the line shows one
of the NEB simulations, with the dots showing the potential energies of the NEB images
in each refinement. Selected optimized structures along the reaction profile are also shown.
The upper-right panel shows the variation in the reaction-sequence error function F during
the simulated annealing optimization calculation; note that the error drops to zero after
around 600× 103 iterations.
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3.3 Water-gas shift reaction

The second example considered here is the water-gas shift reaction (WGSR), a key route for

generating molecular hydrogen:

2CO + H2O −−→ H2 + 2CO2.

The WGSR is typically catalyzed by metal nanoparticles of Pt, Cu or Au, supported on

alumna or ceria.41,44,45 The mechanism of the WGSR has been suggested to proceed via

either a redox mechanism or an associative mechanisms; however, insight into the atomistic

details of the mechanism is complicated by a number of factors, including catalyst size

effects, the influence of the support, and the role of the catalyst redox state. We note that

the influence of these factors can be investigated using our double-ended reaction-sequence

search; however, the aim of this initial investigation is to determine whether our approach can

successfully predict possible reaction-mechanisms for complex reaction systems. Ultimately,

as noted above, we envisage that full investigation of complex mechanistic questions would

require generation of multiple candidate reaction mechanisms, followed by evaluation of each

using ab initio calculations and reaction rate theory.

Figure 4 shows the results of two independent reaction-sequence calculations for the

WGSR; in each calculation, Nr = 12. Each calculation was performed with the same set of

possible chemical reaction-classes, but using different random-number sequences in each SA

simulation; however, both illustrated reaction paths have F = 0, and correspond to plausible

reaction mechanisms using the allowed set of CM updates. As an aside, the general behavior

of our approach seems to be that, as long as Nr is “large enough” to allow sufficient flexibility

in the reaction-path, the current SA approach can find a zero-error (F = 0) reaction sequence

with good reliability; however, exactly how one should choose Nr without prior bias on the

mechanism is an area which requires further investigation.

The upper reaction-sequence in Fig. 4 proceeds with initial association of the water
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molecule at the Pt7 surface, followed by dissociation of both hydrogen atoms. This sequential

double-dissociation event actually leads to the double-peaked NEB energy profile observed

at the second step of the upper reaction-path in Fig. 4. In subsequent steps, the hydrogen

atoms diffuse across the Pt7 cluster surface. Meanwhile, the CO molecule can be seen to

bind (via the carbon atom) to a Pt atom adjacent to the surface-bound oxygen, followed

by rearrangement to form a loosely-bound CO2 molecule. In the latter reaction steps, the

surface-bound CO2 and H2 molecules dissociate to form the target products.

In contrast, the lower reaction sequence in Fig. 4 proceeds in a different manner, high-

lighting the fact that our SA protocol does not just generate a single reaction sequence but

is flexible enough to generate multiple candidates; as above, we emphasize that assessing

exactly which reaction sequence is kinetically or thermodynamically preferred would require

a second assessment step requiring comparison of thermodynamic properties and free energy

barriers for multiple candidate pathways. In the second candidate reaction sequence, the

broad reaction steps are similar to the first, with dissociation of hydrogen from water fol-

lowed by recombination to form molecular hydrogen running in parallel with CO adsorption

and CO2 elimination. However, the key difference here seems to be be that the dissociation

of hydrogen from water is split into a two-step process, with the first hydrogen atom dissoci-

ating to occupy an interstitial site in the Pt7 cluster, and the second dissociation producing a

surface-bound hydrogen atom. After rearrangements of the hydrogen atoms, the remainder

of the pathway then broadly follows the upper reaction sequence, obviously leading to the

same target products, although it is notable that the barriers to CO2 dissociation in the

reaction

COads +Oads −−→ CO2

are quite different for the two reactions shown. In the upper reaction, the barrier to this

reaction is around 74 kJ mol−1, compared to roughly 250 kJ mol−1 for the lower reaction

sequence. The difference here seems to lie in the nature of the binding site of the adsorbed

oxygen atom. In the upper reaction sequence, the oxygen atom is bound at one of the
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edges of Pt7 cluster, shared by two Pt atoms, whereas the lower reaction sequence finds

the oxygen atom bond in a hollow formed by three Pt atoms, leading to stronger binding

(at least according to the ReaxFF model used here) and a larger potential energy barrier

to dissociation. Most interestingly from our point-of-view is that these sorts of insights

emerge directly from automatically-generated reaction-sequences and NEB analysis, without

requiring a user-guided search over relevant reactive conformations.

3.4 Aromatization of hexane

The final example application for our approach is the aromatization of n-hexane to benzene,

C6H14 −−→ C6H6 + 4H2.

This reaction has been observed to occur on solid surfaces, clusters and zeolites,46,47typically

at reaction temperatures over 700 K. The complexity of this reaction, as well as the diversity

of catalytic species, suggests an equally complex manifold of possible reaction mechanisms;

our intention here is not to fully investigate all possible mechanisms, but simply to demon-

strate that our graph-based search approach can successfully determine candidate reaction

mechanisms even in the case of complex many-step reactions.

Figure 5 illustrates one of the candidate mechanisms for n-hexane aromatization which

was postulated by our graph-based optimization procedure. This F = 0 reaction-sequence

contains Nr = 20 steps, and was found after roughly 600 × 103 SA iterations, as shown in

the inset of Fig. 5. Rather than present NEB results for all 20 reaction steps, we only show

the selected reaction end-points along the reaction-sequence for clarity.

The illustrated reaction-path proceeds with dissociative adsorption of n-hexane at the

Pt7 surface, cleaving one of the C−H bonds in a terminal CH3. After further hydrogen

dissociation events, an intermediate structure is formed in which the two ends of the C6 chain

form a bridge on the surface of the Pt7 cluster. Subsequent hydrogen rearrangements on the
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Figure 4: Automatically-proposed reaction mechanisms for the water-gas shift reaction
(WGSR) on a Pt7 nanoparticle. The two colored central lines show the calculated potential
energy profiles for a series of 12 NEB calculations, each connecting end-points generated
by simulated annealing combined with structure refinement under the GRP; each differ-
ent colored segment in the line shows one of the NEB simulations, with the dots showing
the potential energies of the NEB images in each refinement. Selected optimized struc-
tures along both reaction profiles are also shown. The two different sets of potential energy
profiles shown arise from two independent runs of our simulated-annealing algorithm for
reaction-sequence generation; both reaction sequences have F = 0, and so both correspond
to plausible mechanisms which can be generated using the allowed reaction set.
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Pt7 cluster, followed by dissociation events, leads to step-wise generation of four molecular

hydrogen molecules, with the final step in the process being simultaneous dissociation and

completion of the benzene ring. The overall reaction is energetically-favored by around 50

kJ mol−1, although we note that the performance of ReaxFF is not well-characterized for

this system; nevertheless, the stability of the geometry optimization process at each stage, as

well as the overall characteristics of the optimized structures, suggest that these structures

are at least ‘chemically sensible’ according to the ReaxFF prescription.

We emphasize that the reaction mechanism suggested in Fig. 5 is just one of many

possible. Repeated runs of our SA algorithm give different reaction sequences; efficiently

sifting through this set of reaction mechanism candidates to search for the MEP is the next

anticipated step in the development of our reaction sampling scheme. It seems very likely

that an alternative reaction-path would be overall favoured compared to the one shown in

Fig. 5, which is found to demonstrate several intermediate steps which are strongly ’uphill’

based on the calculated potential energy values.

Compared to CO oxidation and WGSR, n-hexane aromatization represents a much more

challenging reaction system; the increased number of atoms means that the possible number

of reactions available at each intermediate step is very large. However, we find that the

SA optimization process proceeds quite straightforwardly; as a rough estimate, we find that

∼ 90% of SA runs (each performed with different random number sequence) are successful

when Nr = 20. However, this success rate does decrease as Nr is decreased, presumably

due to the the random-walk becoming ‘trapped’ in certain reaction pathways due to lack of

flexibility. Although this observation is encouraging, there is obviously some further work

required to understand the impact of algorithm parameters such as Nr in order to provide a

robust computational strategy.
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Figure 5: Automatically-proposed reaction mechanism for aromatization of n-hexane on a
Pt7 nanoparticle. The central line shows the energies of the geometry-optimized reactants
and products for Nr = 20 reactions along a pathways connecting reactants (C6H14 +Pt7) to
products (C6H6 + 4H2 + Pt7); selected structures along his reaction path are shown.
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4 Conclusions

In this Article, we have developed and successfully tested a new automated approach to

generating reaction sequences connecting user-defined reactant and product structures. Our

approach is based on optimizing an error function which quantifies the difference between

the target connectivity matrix of the product structure and the connectivity matrix obtained

by applying a series of chemical reactions to the input reactant structure; by updating the

sequence of chemical reactions along the path, we turn the search for a reaction sequence

connecting reactants and products into a task in optimization. In the present Article, we have

used a simple SA method to perform this optimization, but it could equally be performed

by other optimization schemes.

A major advantage of our scheme is that is is very fast because it works solely in the space

of the connectivity matrices of the reactants, products and intermediate structures. We have

also shown how, by optimizing atomic coordinates under the action of a graph-restraining

potential energy surface, we can generate atomic coordinates for each reaction in a proposed

reaction sequence; this then enables further analysis, such as using NEB refinement (as

performed above) or transition-state theory rate calculations.

Our approach towards automatic reaction mechanism proposal has been tested for three

different reactions occurring on Pt7 clusters, namely CO oxidation, the water-gas shift re-

action, and n-hexane aromatization. In each case, we find that we can generate candidate

reaction steps connecting reactants and products in a reliable manner, with a typical opti-

mization simulation taking less than a minute on a standard laptop computer. We have also

demonstrated how the emerging reaction paths can be combined with NEB refinement to

generate potential energy profiles and atomic mechanisms for further analysis.

Although successful in our original aims of developing a scheme for proposing ‘double-

ended’ reaction mechanisms, there are some clear avenues to improve our approach. For

example, a better understanding of how the maximum path-length Nr influences the opti-

mization efficiency would be beneficial. In addition, it is currently unclear how the number
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of ‘chemically-sensible’ reaction sequences connecting defined end-points changes as one in-

creases Nr, changes the constraints on chemical valences, or modifies the identities of reaction

classes; again, better insight here might lead to optimization improvements.

Overall, however, this paper represents a potential first step towards novel schemes aimed

at, for example, automatic catalyst performance prediction or proposing retrosynthetic paths

from complex organic molecules. In particular, there is scope to combine our reaction mecha-

nism proposal scheme with the recently-developed AARON code48 for automated transition-

state optimization for catalytic reactions, as well as providing input data for microkinetic

modelling schemes which are increasingly finding application in homogeneous catalysis.35,49

However, perhaps the most exciting opportunity is the goal of developing new computational

schemes for direct homogeneous catalyst design and optimization;50 these aspects, as well as

further optimization of our approach, will be discussed in the near-future.
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(7) Keçeli, M.; Elliott, S. N.; Li, Y.-P.; Johnson, M. S.; Cavallotti, C.; Georgievskii, Y.;

Green, W. H.; Pelucchi, M.; Wozniak, J. M.; Jasper, A. W., et al. Automated com-

putational thermochemistry for butane oxidation: A prelude to predictive automated

combustion kinetics. Proc. Combust. Inst. 2019, 37, 363 – 371.

(8) Chen, X.; Goldsmith, C. F. A Theoretical and computational analysis of the methyl-

vinyl + O2 reaction and its effects on propene combustion. J. Phys. Chem. A 2017,

121, 9173–9184.

(9) Class, C. A.; Liu, M.; Vandeputte, A. G.; Green, W. H. Automatic mechanism gener-

29



ation for pyrolysis of di-tert-butyl sulfide. Phys. Chem. Chem. Phys. 2016, 18, 21651–

21658.

(10) Laidler, K. J. Chemical kinetics, 3rd ed.; Harper Collins: New York, 1987.

(11) Henriksen, N. E.; Hansen, F. Y. Theories of molecular reaction dynamics: The micro-

scopic foundation of chemical kinetics ; Oxford University Press, 2011.

(12) Mills, G.; Jónsson, H. Quantum and thermal effects in H2 dissociative adsorption:

Evaluation of free energy barriers in multidimensional quantum systems. Phys. Rev.

Lett. 1994, 72, 1124–1127.

(13) Henkelman, G.; Uberuaga, B. P.; Jónsson, H. A climbing image nudged elastic band

method for finding saddle points and minimum energy paths. J. Chem. Phys. 2000,

113, 9901.

(14) Henkelman, G.; Jónsson, H. Improved tangent estimate in the nudged elastic band

method for finding minimum energy paths and saddle points. J. Chem. Phys. 2000,

113, 9978.

(15) Henkelman, G.; Jónsson, H. A dimer method for finding saddle points on high di-

mensional potential surfaces using only first derivatives. J. Chem. Phys. 1999, 111,

7010–7022.

(16) Peters, B.; Heyden, A.; Bell, A. T.; Chakraborty, A. A growing string method for deter-

mining transition states: Comparison to the nudged elastic band and string methods.

J. Chem. Phys. 2004, 120, 7877–7886.

(17) Zimmerman, P. M. Reliable transition state searches integrated with the growing string

method. J. Chem. Theory Comput. 2013, 9, 3043–3050.

(18) Peters, B.; Liang, W.; Bell, A. T.; Chakraborty, A. Biasing a transition state search to

locate multiple reaction pathways. J. Chem. Phys. 2003, 118, 9533–9541.

30



(19) Pozun, Z. D.; Hansen, K.; Sheppard, D.; Rupp, M.; Müller, K.-R.; Henkelman, G.

Optimizing transition states via kernel-based machine learning. J. Chem. Phys. 2012,

136, 174101.

(20) Govind, N.; Petersen, M.; Fitzgerald, G.; King-Smith, D.; Andzelm, J. A generalized

synchronous transit method for transition state location. Comput. Mat. Sci. 2003, 28,

250 – 258, .

(21) Gao, C. W.; Allen, J. W.; Green, W. H.; West, R. H. Reaction mechanism genera-

tor: Automatic construction of chemical kinetic mechanisms. Comput. Phys. Commun.

2016, 203, 212 – 225.

(22) Simm, G. N.; Vaucher, A. C.; Reiher, M. Exploration of reaction pathways and chemical

transformation Networks. J. Phys. Chem. A 2019, 123, 385–399.

(23) Wang, L.-P.; Titov, A.; McGibbon, R.; Liu, F.; Pande, V. S.; Mart́ınez, T. J. Discovering

chemistry with an ab initio nanoreactor. Nature Chem. 2014, 6, 1044–8.

(24) Maeda, S.; Ohno, K. Global mapping of equilibrium and transition structures on po-

tential energy surfaces by the scaled hypersphere search Method: Applications to ab

Initio surfaces of formaldehyde and propyne molecules. J. Phys. Chem. A 2005, 109,

5742–5753.

(25) Ohno, K.; Maeda, S. Automated exploration of reaction channels. Phys. Scripta 2008,

78, 058122.

(26) Ohno, K.; Maeda, S. A scaled hypersphere search method for the topography of reaction

pathways on the potential energy surface. Chem. Phys. Lett. 2004, 384, 277–282.

(27) Maeda, S.; Morokuma, K. Finding reaction pathways of type A + B → X: Toward

systematic prediction of reaction mechanisms. J. Chem. Theory Comput. 2011, 7, 2335–

2345.

31



(28) Maeda, S.; Morokuma, K. Toward predicting full catalytic cycle using automatic reac-

tion path search method: A case study on HCo(CO)3-catalyzed hydroformylation. J.

Chem. Theory Comput. 2012, 8, 380–385.

(29) Kale, S.; Sode, O.; Weare, J.; Dinner, A. R. Finding chemical reaction paths with a

multilevel preconditioning protocol. J. Chem. Theory Comput. 2014, 10, 5467 – 5475.

(30) Zimmerman, P. M. Automated discovery of chemically reasonable elementary reaction

steps. J. Comput. Chem. 2013, 34, 1385–1392.

(31) Kim, Y.; Choi, S.; Kim, W. Y. Efficient basin-hopping sampling of reaction interme-

diates through molecular fragmentation and graph theory. J. Chem. Theory Comput.

2014, 10, 2419–2426.

(32) Kim, Y.; Kim, J. W.; Kim, Z.; Kim, W. Y. Efficient prediction of reaction paths through

molecular graph and reaction network analysis. Chem. Sci. 2018, 9, 825–835.

(33) Goldsmith, C. F.; West, R. H. Automatic generation of microkinetic mechanisms for

heterogeneous catalysis. J. Phys. Chem. C 2017, 121, 9970 – 9981.
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