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Abstract

With the advent of prosody annotation standards such as tones and break indices (ToBI), speech

technologists and linguists alike have been interested in automatically detecting prosodic events in

speech. This is because the prosodic tier provides an additional layer of information over the short-

term segment-level features and lexical representation of an utterance. As the prosody of an utterance

is closely tied to its syntactic and semantic content in addition to its lexical content, knowledge of

the prosodic events within and across utterances can assist spoken language applications such as

automatic speech recognition and translation. On the other hand, corpora annotated with prosodic

events are useful for building natural-sounding speech synthesizers. In this paper, we build an

automatic detector and classifier for prosodic events in American English, based on their acoustic,

lexical, and syntactic correlates. Following previous work in this area, we focus on accent

(prominence, or “stress”) and prosodic phrase boundary detection at the syllable level. Our

experiments achieved a performance rate of 86.75% agreement on the accent detection task, and

91.61% agreement on the phrase boundary detection task on the Boston University Radio News

Corpus.
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I. INTRODUCTION

Spoken utterances are characterized not only by segment-level (spectral) correlates of each

sound unit, but also by a variety of suprasegmental effects that operate at a level higher than

the local phonetic context [1]. The most prominent among these are as follows:

• modulation of intensity to impart emphasis to certain syllables or words;

• modulation of intonation patterns which reflect the class of the utterance (question,

affirmation, etc.) as well as the speaker’s intent and emotional state;

• timing, which refers to subtle variations in the rate and length of syllables, coupled

with pauses that serve to separate linguistic “phrases” within the utterances.

These suprasegmental effects occur at the syllable, word, and utterance level. Together, they

encode rhythm, intonation, and lexical stress, which constitute the prosody of spoken
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utterances. As human listeners make heavy use of the above cues in the understanding process,

they evidently carry a lot of information that is likely to be useful for spoken language

understanding and generation systems [2], [3].

A. Motivation for Prosodic Event Annotation

As mentioned previously, prosody can be very useful because it encodes aspects of higher level

information not completely revealed by segmental acoustics. Below, we list sample scenarios

where prosody can play an important role in augmenting the abilities of spoken language

systems.

1. Speech Act Detection: Intonation patterns at the end of an utterance can provide an

indication of specific speech acts or utterance categories (question, statement,

exclamation, etc.).

2. Word Disambiguation: Knowledge of syllable stress or accent patterns can help in

word or word-category disambiguation; a common example for this is the word

content, which functions as a noun when stress is imparted to the first syllable (con-

tent), and as an adjective when stress is imparted to the second syllable (con-tent).

3. Speech Recognition: The correlation between accent/prominence patterns and words

can be exploited to build joint lexical-prosodic models which can improve speech

recognition performance in terms of reducing word-error rate (WER).

4. Natural Speech Synthesis: One of the challenges in natural-sounding speech synthesis

systems is to generate human-like prosody to accompany the segmental acoustic

properties. This includes local effects (such as syllable accent), suitably timed

boundaries, which reflect the syntactic structure of the utterance, as well as

modulation of pitch at a global level to produce appropriate intonation patterns.

However, most current systems either completely disregard such information, or use it in

limited, unprincipled ways for the simple reason that there is no established way to employ

them. The main issues with using prosodic cues for spoken language applications are 1) the

asynchronous nature of acoustic–prosodic features and consequently 2) the difficulty in

modeling the relationship between the acoustic–prosodic features, segmental acoustics, lexical

items, and syntactic structure of the utterance. Having a symbolic representation of prosodic

events in terms of discrete labels greatly simplifies the task of learning these relationships;

however, such discretization, if not performed carefully, may result in loss of information from

the prosodic tier.

The tones and break indices (ToBI) annotation standard [4], [5] was developed in the early

1990s in an attempt to solve this problem, and to address the broader issue of representing

prosodic events in spoken language in an unambiguous fashion. As such, ToBI is not a perfect

scheme, and has been accused over the years of harboring several deficiencies [6], but it is the

closest there is to a standard annotation system, and has been accepted as such by speech

technologists and linguists working in this area.

B. ToBI Annotation Scheme

The ToBI standard uses four interrelated “tiers” of annotation in order to capture prosodic

events in spoken utterances.

1. The orthographic tier contains a plain-text transcription of the spoken utterance.

2. The tone tier marks the presence of pitch accents and prosodic phrase boundaries,

which are defined as follows. A pitch accent can be broadly thought of as a prominence

or stress mark. Two basic types of accents, high (H) and low (L) are defined, based
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on the value of the fundamental frequency (F0) with respect to its vicinity; more fine-

grained accent marks, such as low-high (L + H*) and high-low (H + L*) are based on

the shape of the F0 contour in the immediate vicinity of the accent. Prosodic phrase

boundaries serve to group together semantic units in the utterance. These are divided

in two coarse categories, weak intermediate phrase boundaries and full intonational
phrase boundaries, each of which can be high (H) or low (L).

3. The break-index tier marks the perceived degree of separation between lexical items

(words) in the utterance. Break indices range in value from 0 through 4, with 0

indicating no separation, or cliticization, and 4 indicating a full pause, such as at a

sentence boundary. This tier is strongly correlated with phrase boundary markings on

the tone tier—boundary locations usually score 3 or above on the break index tier.

4. The miscellaneous tier is used to annotate any other information relevant to the

utterance that is not covered by the other tiers. This may include annotation of

nonspeech events such as disfluencies, etc.

A ToBI labeling guide along with several sample utterances annotated with ToBI labels is

available in [5].

Although ToBI is by far the most well-known and widely used prosody annotation standard,

it is not the only one in existence. The International Transcription System for Intonation [7]

(INTSINT) is a standard that is intended to function as an International Phonetic Alphabet

(IPA) for describing the intonation contour of an utterance. Eight discrete symbols (T: top, M:

mid, B: bottom, H: higher, L: lower, S: same, U: upstep, and D: downstepped), are used to

parameterize the intonation contour. Of these, the first three (T, M, and B) are absolute, i.e.

defined with respect to the speaker’s pitch range, while the other five (H, L, S, U, and D) are

relative to the preceding target. The primary utility of INTSINT is to provide a parameterization

of the overall intonation structure of the utterance, whereas ToBI is geared towards annotation

of events that are linguistic in nature. As a result, INTSINT is more or less language

independent, whereas a different version of ToBI has to be provided for each language (English,

German, Japanese, Korean, and Greek are some of the languages for which complete ToBI

system descriptions exist [8]).

Other prosody annotation systems include Intonational Variation in English [9] (IViE), which

is derived from ToBI and is geared towards analysis and comparison of the intonational

variation among different dialects/varieties of English, and TILT [10], which provides a

numerical (continuous) parameterization of the intonation contour (as opposed to symbolic

parameterization in INTSINT).

Although some annotation or parameterization systems may be better suited to specific tasks

than ToBI (for instance, INTSINT, and TILT are more suitable for parameterizing the

intonation contour), ToBI is more general purpose and is well suited for capturing the

connection between intonation and prosodic structure. Another factor that has motivated most

previous work in automatic prosodic annotation to use ToBI or its subsets is the wide

availability of the Boston University Radio News Corpus, described in Section II. This corpus

has been hand-annotated with ToBI labels, and is now a standard data set for training and

evaluating automatic prosody annotation techniques.

In this paper, we focus on detecting a simpler subset of elements in the ToBI tone tier—

specifically, we are interested in determining the presence or absence of pitch accents and

phrase boundaries, regardless of their fine categories. As the title of the paper suggests, these

events can be detected not only from their acoustic correlates (energy, syllable duration, F0

range, and contour, etc.), but also from the lexical and syntactic elements contained in an

enriched textual representation of the utterance. Such a representation might include the
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orthography, part-of-speech (POS) and even a syntactic parse of the orthography of the

utterance. The relationship of prosody to the acoustic, lexical, and syntactic structure of spoken

utterances is discussed in further detail in following sections.

C. Previous Work on ToBI-Like Prosodic Event Detection

Initial attempts at automatic detection of prosodic events are presented in the work by

Wightman et al. [11] and Ross and Ostendorf [12]. In [11], binary prominence and boundary

labels were assigned to syllables based on posterior probabilities computed from acoustic

evidence (such as F0, energy, and duration features) using a decision tree, combined with a

probabilistic (bigram) model of accent and boundary patterns. Their method achieved an

accuracy of 84% for prominence detection and 71% accuracy for boundary detection at the

syllable level on the Boston University corpus. Thus, for prominence detection, they obtain

performance levels that approach levels of agreement between human labelers (quoted as 86%–

94%) for this task. However, their boundary detection performance is lower than agreement

levels between human annotators (95%–98% for intonational phrase boundaries). In addition

to prominence and boundary detection, they also conduct experiments on break index labeling,

achieving an accuracy rate of 60% for exact index match and 90% for a match within +/−1 of

the true index.

In [12], the authors present an automatic pitch accent and boundary tone labeling system which

predicts pitch accent labels and boundary tone types using a multilevel hierarchical model

based on a decision tree framework. In addition to detecting presence versus absence of pitch

accents, they also attempt to perform fine-grained labeling of accent and boundary types. The

fine-pitch accent categories include high, down-stepped, and low; fine boundary categories

include L-L%, H-L%, and L-H%. With a single speaker training and test set, they obtained

87.7% accuracy for binary presence versus absence of pitch accent at the syllable level. Pitch

accents detected using the syllable level decision tree were then classified into fine categories

using a pitch accent type classifier. They obtain an accuracy of 72.4% for the three-class pitch

accent categorization task, measured over the subset of syllables that were correctly marked

by the pitch accent detector as being accented. However, since very few syllables carry the

“low” pitch accent, this three-way classifier was only marginally better than a chance-level

accent type assignment that assigned a “high” pitch accent to all syllables (chance level

accuracy was 71.8%). Their boundary tone classifier operates at the intonational phrase level.

Intonational phrases are identified as those segments marked with a break index value of 4 or

above on the ToBI break index tier. For boundary locations identified in this deterministic

fashion, the three-way boundary tone classifier produced boundary labels that were 66.9%

accurate, as opposed to the chance level of 61.1%, where all boundary tones were labeled as

L-L%. These accuracy figures are quoted at the intonational phrase level rather than at the

word or syllable level.

Syrdal et al. [13] attempt to predict binary pitch accents and intonational boundary tones labels

directly from lexical cues (text, punctuation, part-of-speech, etc.) using a text-to-speech (TTS)

engine to obtain a “default” starting point for manual labelers. They determined that manual

labeling of ToBI labels with this starting point was significantly faster than starting from

“scratch” i.e. with no prior knowledge of pitch accent and boundary tone placement.

More recent efforts are reported in Chen et al. [14] and Ananthakrishnan and Narayanan

[15]. The former used a Gaussian mixture model (GMM)-based acoustic–prosodic model and

an artificial neural network (ANN)-based syntactic–prosodic model built from POS tags in a

maximum-likelihood framework to achieve binary pitch accent detection accuracy of 84.21%

and intonational boundary detection accuracy of 93.07% at the word level. The latter

experimented with an ASR-like structure for prosodic event detection, using a coupled-HMM

structure to model the dynamic prosodic features and an n-gram-based syntactic–prosodic
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model to obtain 75% agreement on the prominence detection task and 88% agreement on the

boundary detection task (combining both intermediate and intonational phrase boundaries) at

the syllable level. This system also has binary pitch accent and boundary event targets.

D. Our Current Approach

In this paper, we attempt to combine different sources of information to improve accent and

boundary detection performance. While our focus in this paper is automatic annotation of

corpora with prosodic event tags, we develop our model structure in a way that makes it easy

to integrate with existing ASR architectures. We assume that, in addition to the speech data,

we also have available the corresponding orthographic transcription annotated with POS tags.

We collapse all categories of ToBI-style accent and boundary labels to single “accent” and

“boundary” categories, respectively. Thus, we have two binary classification problems that we

treat independently—presence versus absence of pitch accents, and presence versus absence

of boundaries. We associate prosodic events with specific syllables, because the latter are

traditionally regarded as the smallest linguistic units at which these phenomena manifest

themselves.

Using statistics, we analyze the effect of these prosodic events on their acoustic correlates,

such as F0, short-time energy, and timing cues; we also study their relationship to the syntactic

part-of-speech, and to the lexical entities with which they correspond. Armed with this

knowledge, we build classifiers that assign prosodic events to syllables from the unlabeled test

data set using acoustic evidence extracted from the speech data. The classifiers also generate

posterior probability scores for each class given the acoustic evidence. The relationship of

prosody to syntactic POS and individual lexical items is exploited by building factored n-gram

language models that capture such dependencies. Finally, for the pitch accent detection

problem, we also incorporate prior knowledge from existing lexica that provide canonical

pronunciation information (including stress marks) for a large body of words. Our work differs

from previous efforts in the following respects.

• We use acoustic, lexical, and syntactic features as opposed to [11], who use only

acoustic evidence, and [12] and [13], who use only lexical and syntactic features. Our

lexical and syntactic feature set is much simpler than that used in [14]. In particular,

we do not use syntactic phrase boundaries obtained from parsing the text for the

boundary detection task.

• We detect pitch accent at the linguistic syllable level, similar to [11] and [12], but

different from [14], who do so at the word level. This is because prosodic events such

as pitch accents are associated with specific syllables, rendering this approach more

suitable for tasks such as word disambiguation, where two words may have the same

phonetic pronunciation, but different syllable accent patterns (see example in Section

I-A)

• Previous work on boundary detection emphasizes intonational phrase boundaries

only. Our boundary detection task is different, because we consider intermediate as

well as intonational phrase boundaries as part of our “boundary” category. This is a

much more difficult task than just intonational phrase boundary detection described

in previous work.

• We use a maximum a posteriori (MAP) framework for prosodic event detection as

opposed to the maximum-likelihood (ML) framework used in [14]. Moreover, we use

an n-gram structure for our prosodic language model, which makes for easier

processing and decoding using the Viterbi algorithm, as well as integration with

existing automatic speech recognition (ASR) systems. Another novelty of our work
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is the use of factored backoff to estimate smooth probabilities for the prosodic

language model (see Section IV-B)

• The work described in [14] makes use of a prosodic lexicon that encodes all possible

combinations of pitch accent and phrase boundaries for a given word. While this

improves performance by restricting the search space, building such a lexicon is a

time-consuming task that does not scale to other corpora. Our solution is to incorporate

canonical stress information from a public domain electronic pronunciation dictionary

within the statistical classification framework. We show that this corpus-independent

approach leads to significant gains in pitch accent detection accuracy over using the

lexical tokens alone.

The remainder of this paper is organized as follows. Section II discusses the data corpus used,

and the acoustic, syntactic, and lexical features extracted from the data for training and testing.

Section III presents analyses of the acoustic, syntactic, and lexical correlates of accent and

boundary events. Section IV explains the basic architecture of our prosodic event-detection

system, and the assumptions that underly the structure. Section V details the experiments we

conducted and the prosody recognition results we obtained. Finally, Section VI contains a brief

discussion of some of the open problems in this area, the limitations of our current approach,

and how it may be improved and applied to spoken language systems.

II. DATA CORPUS AND FEATURES

The Boston University Radio News Corpus (BU-RNC) [16] is a database of broadcast news

style read speech that contains ToBI-style prosodic annotations for part of the data. The

availability of these annotations have made it the corpus of choice for most experiments on

prosodic event detection and labeling, including all those cited in Section I-C. The database

contains speech from three female (f1a, f2b, and f3a) and four male speakers (m1b, m2b,
m3b, and m4b). Data labeled with ToBI-style labels is available for six speakers, namely f1a,
f2b, f3a, m1b, m2b, and m3b, which amounts to about 3 h of speech. In addition to the raw

speech and prosodic annotation, the BU-RNC also contains the following:

• orthographic (text) transcription corresponding to each utterance;

• word- and phone-level time-alignments from automatic forced-alignment of the

transcription;

• POS tags corresponding to each token in the orthographic transcription.

In order to obtain time-alignments at the linguistic syllable level, we syllabify the orthographic

transcriptions using a deterministic algorithm based on the rules of English phonology [17],

and since the resultant syllables are simply vowel-centric collections of the underlying phone

sequences, we are able to generate syllable-level time alignments from phone-level alignments,

which are available in the corpus.

For our experiments, we pooled all utterances that were ToBI-transcribed and created five

cross-validation training and test sets. We then pruned the test sets so that no story repetitions

by the same speaker coexisted in the training and test partitions of a given cross-validation set.

This resulted in a training set size of 37 047 syllables and a test set size of 7343 syllables,

averaged across the five cross-validation sets. The average syllable vocabulary (number of

unique syllables) of the training sets was 2850, while that of the test sets was 1623. The average

number of out-of-vocabulary syllables in the test sets was 250 (15.4% relative to the test

vocabulary). Of the syllables in the training sets, an average of 12 705 (34.3%) carried pitch

accents, while 6307 (17.0%) were associated with boundary events (counting both intermediate

and intonational phrase boundaries). Of the syllables in the test sets, an average of 2560 (34.9%)
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carried pitch accents, and 1304 (17.7%) were associated with boundary events. Thus, the

training and test sets exhibit similar chance levels for pitch accent and boundary events.

With the enriched transcriptions available in this corpus, we are then able to extract a variety

of acoustic, lexical, and syntactic features as described below.

A. Acoustic Features

Prosody has a marked effect on suprasegmental features such as F0, energy, and timing in the

vicinity of the event. Accent and boundary events are marked by exaggerated movements of

the F0 contour. Accented syllables show an increase in the local energy profile. Preboundary

syllable lengthening is a subtle timing variation found in the vicinity of boundary events [18].

Our acoustic features are derived from these cues, and are listed below.

• Features derived from F0 include within-syllable F0 range (f0_range), difference

between maximum and average within-syllable F0 (f0_maxavg_diff), difference

between minimum and average within-syllable F0 (f0_avgmin_diff), and difference

between within-syllable average and utterance average F0 (f0_avgutt_diff).

• Features derived from timing cues include normalized vowel nucleus duration for

each syllable (n_dur) and pause duration after the word-final syllable (p_dur, for

boundary detection only)

• Features derived from energy include within-syllable energy range (e_range),

difference between maximum and average within-syllable energy (e_maxavg_diff),
and difference between minimum and average energy within the syllable

(e_avgmin_diff).

The use of differences rather than absolute values for F0- and energy-related features serves

to normalize the data against variation between speakers, especially between males and

females, but preserves the variations produced by prosody. We normalized the syllable nucleus

(vowel) duration on a per vowel-type basis, such that for each vowel-type, the normalized

duration feature is zero mean and unit variance. This serves to eliminate absolute duration

differences due to vowel-instrinsic properties (for example, the high-front vowel iy is usually

much longer than the neutral schwa), while preserving differences due to pitch accent or

boundary events. The pause duration feature used for boundary detection was not normalized.

In addition to the above features, which are extracted directly from the speech data and the F0

track, we also include the number of phonemes in a syllable as an additional dimension to the

acoustic feature vector. The complete set of acoustic features used for pitch accent and

boundary detection is shown in Table I. Thus, our acoustic features are encoded as nine-

dimensional vectors, one for each syllable. We do not consider acoustic dependencies across

syllables.

B. Lexical and Syntactic Features

As we will demonstrate in Section III and Section V, prosodic events in an utterance can be

accurately predicted from the lexical and syntactic content of the underlying orthography

[19]. For example, content words such as nouns, adjectives, and verbs are much more likely

to contain prominent syllables than function words, such as articles and determiners. Phrase

boundaries, too, are more likely to follow content words than function words. Similarly, certain

syllables occur much more frequently in content words than in function words and are more

likely to be accented than syllables that appear mostly in function words.

We use individual syllable tokens as lexical features and POS tags as syntactic features. For

the accent detection problem, we also include the canonical stress pattern for the word; this is

obtained from a standard pronunciation dictionary that includes stress marks. These features
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are used to build probabilistic models of prosodic event sequences. These “prosodic language

models” have a structure similar to the word-level n-grams used in speech recognition, and are

used to constrain and refine hypotheses generated by classifiers that operate only on the acoustic

evidence.

III. STATISTICAL ANALYSES OF ACOUSTIC, LEXICAL, AND SYNTACTIC

FEATURES

Before implementing classification algorithms using the features described in Section II, we

analyze these features in order to determine which ones are important for classification, and

to verify if indeed they are capable of discriminating between the prosodic categories that we

wish to separate. For the acoustic features, the former is accomplished using a feature selection

algorithm, and the latter, using statistical hypothesis tests. In the case of lexical and syntactic

features, we collect frequency counts to establish what types of lexical items or POS tags

correspond well with accent and boundary events. These tests are conducted on the entire

labeled corpus. Details of these analyses are presented next.

A. Analysis of Acoustic Features

We conduct a feature selection experiment using the information gain criterion [20] in order

to rank the acoustic features by importance. This was implemented using the WEKA machine

learning toolkit [21]. Table I lists acoustic features for pitch accent and boundary detection in

decreasing order of importance based on this criterion. According to this ranking criterion,

syllable nucleus duration is the most important determinant of pitch accent. Pause duration and

nucleus duration are key indicators of boundary events. F0 and energy range also play an

important role in discriminating between presence versus nonpresence of accent and boundary

events.

Given the nature of our acoustic features, a simple two-way hypothesis test can also be

conducted in order to determine whether the acoustic features are likely to be useful for

classification. We test each feature independently in order to determine whether the mean value

of the feature differs significantly across the positive and negative samples for each

classification problem. Here, “positive” samples refer to syllables that carry a pitch accent or

boundary; conversely, “negative” samples correspond to those syllables that do not carry accent

or boundary events. We define the null and alternate hypotheses as follows.

H0: the mean value of feature fi does not differ between positive and negative samples.

H1: the mean value of feature fi differs between positive and negative samples

Analysis of variance (ANOVA) [22] is a commonly used statistical test to determine if two

population means are different. However, standard ANOVA assumes that the variable being

tested is normally distributed within each category label. In our case, most of the features are

nonnegative; hence, this assumption is invalid. We therefore use a nonparametric form of

ANOVA known as the Kruskal–Wallis test, which only makes the assumption that the samples

are drawn independently. The significance level (p-value) reported by this test is lower than

0.001 for all but two acoustic features for pitch accent detection (f0_avgutt_diff and

e_maxavg_diff), for which p ≤ 0.15, corresponding to their low ranking by the information gain

criterion. However, since they do carry some discrimination information, we include them in

the acoustic feature set for pitch accent detection. The significance value reported by this test

is below 0.001 for all features used in the boundary detection task. This indicates that the null

hypothesis can be rejected with high confidence for most features. We conclude from this test

that the acoustic features are likely to contain information that will discriminate between

accent/boundary events and nonevents.
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B. Analysis of Lexical and Syntactic Features

We use individual syllable tokens as lexical features and POS tags (at the word level) as

syntactic features in order to predict prosodic events from nonacoustic evidence. We gather

unigram frequency counts from these features in order to establish their relationship to accent

and boundary events in the speech data. Fig. 1(a) and (b) shows the distribution of five randomly

chosen syllable tokens between positive and negative samples of accent and boundary events,

respectively. Each token appears more than 80 times in the training corpus. Fig. 1(c) and (d)

shows a similar distribution for five randomly chosen POS tags in the corpus. Each of the tags

considered appears several hundred, if not a few thousand times, in the corpus. In this case,

since POS tags are associated with whole words rather than individual syllables, an accent label

associated with a POS tag implies that one of the syllables that constitute the word is accented.

Boundary events are associated only with word-final syllables; hence, a boundary label

associated with a POS tag simply means that the final syllable of the corresponding word is at

a boundary location.

These figures show a clear preference of certain syllable tokens and POS tags for specific

prosodic events. For instance, in test data that statistically resemble the corpus used to compute

the above statistics, there is approximately an 80% chance that the syllable token k_aa_n will

be accented; on the other hand, the there is only a 13% chance that the token b_iy will be

accented. Similarly, nouns (indicated by the tag NNS) have a 73% chance of being associated

with boundary events, whereas adjectives (JJ) have only a 20% chance of being located at a

prosodic phrase boundary. From this analysis of unigram frequency counts, we conclude that

lexical and syntactic cues are likely to play an important role in recognition of accent and

boundary events in speech.

IV. ARCHITECTURE OF THE PROSODIC EVENT DETECTOR

Our prosodic event detector has a MAP structure and is modeled on the lines of a standard

ASR system. We seek the sequence of prosodic events that maximizes the posterior probability

of the event sequence given the acoustic, lexical, and syntactic evidence. In the following

subsections, we develop the system architecture for each feature type separately, and then

discuss feasible ways to merge them for performance improvement.

A. Prosodic Event Detection Using Acoustic Evidence

We wish to find the sequence of prosodic events  such that

(1)

(2)

where A = {a1,a2,…,an} is the sequence of acoustic feature vectors, one for each syllable.

Since our acoustic–prosodic classifiers return posterior probabilities p(pi|ai), we can classify

each syllable independently, in which case we approximate (1) as

(3)

We can incorporate context information by using the form of (2), where it is possible to model

p(P) as an n-gram of prosodic labels (we call this a de-lexicalized prosodic language model).

For a trigram language model
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(4)

where

Eqation (4) is the architecture employed by Wightman et al. [11]. They use a bigram prosodic

language model with a decision tree providing the label posterior probabilities. In this paper,

we compare linear discriminant (LD), GMM, and neural network (NN) classifiers [23], [24]

trained on acoustic features. Since the de-lexicalized prosodic LM has a binary vocabulary, it

can be estimated very robustly even from small amounts of data. Thus, it is possible to model

the prosody sequence using more context than it is to model word or syllable sequences; we

use a 4-gram context for the prosodic LM. A small variation of this method is used for boundary

detection; we specify that boundaries can only coincide with word-final syllables. Therefore,

the terms α(pi|ai) are computed only for these syllables. For the word-initial and word-medial

syllables, they are set to unimodal values so that the “no-boundary” event is always chosen.

B. Prosodic Event Detection Using Lexical Evidence

The most likely sequence of prosodic events P* given only the sequence of syllables S can be

found as follows:

(5)

where the joint distribution p(S, P) can be modeled in an n-gram fashion; for example, a trigram

approximation gives

However, as detailed in Section II, the vocabulary of syllables is quite large in relation to the

training corpus, and it is difficult to robustly estimate this distribution even with the n-gram

approximation. Moreover, the test data exhibits a significant out-of-vocabulary (OOV) rate for

the syllables (15.4% relative to the test vocabulary). We therefore employ a factored backoff

scheme [25], where the probability of the current syllable-event pair is conditioned on previous

syllable-event pairs, but backs off to lower order distributions by dropping syllable tokens if

reliable estimates cannot be obtained for the full conditional distribution. Since the syllable

token sequence is known, the distribution p(si, pi|si−1, pi−1, si−2, pi−2) may be replaced, without

loss of generality, by the expression p(pi|si, si−1, pi−1, si−2, pi−2). In this scheme, if an unseen

factor, such as an OOV syllable, occurs as a conditioning variable in the term p(pi|si, si−1,

pi−1, si−2, pi−2), the backed off estimate that does not contain this variable is substituted for the

complete expression. Fig. 2 shows the backoff graph we used for building the lexical–prosodic

language model. The graph shows that we keep dropping lexical factors up to the point where

we back off to the de-lexicalized prosodic LM described in Section IV-A. We use a fixed

backoff path in this case. In practice, we use more (4-gram) history for the prosodic event

factors and less (trigram) history for the syllable tokens.

Ananthakrishnan and Narayanan Page 10

IEEE Trans Audio Speech Lang Processing. Author manuscript; available in PMC 2009 January 1.

N
IH

-P
A

 A
u
th

o
r M

a
n
u
s
c
rip

t
N

IH
-P

A
 A

u
th

o
r M

a
n
u
s
c
rip

t
N

IH
-P

A
 A

u
th

o
r M

a
n
u
s
c
rip

t



C. Integrating Information From a Pronunciation Lexicon

The CMU dictionary [26] is a widely available pronunciation lexicon of over 125 000 words

that is commonly used in large-vocabulary ASR tasks. In addition to a phonetic transcription

of each word, it also encodes the canonical stress pattern for each word. We can look up each

word in the test set from the lexicon and use the canonical stress pattern as another stream of

evidence for pitch accent detection. We have, then, in addition to the syllable sequence S, the

sequence of canonical stress labels L, whose elements are binary features. The problem then

reduces to finding

(6)

where the joint distribution can be approximated by its n-gram factors in a manner similar to

that described in Section IV-B. The sparsity problem can again be alleviated by the use of

factored backoff, where in this case there are three factors per syllable instead of two.

D. Prosodic Event Detection Using Syntactic Evidence

We use syntactic evidence in the same way as we used lexical evidence to determine the most

likely sequence of prosodic events

(7)

where, as above, the joint distribution can be expressed as a product of its n-gram factors

This syntactic–prosodic distribution is much easier to estimate than the lexical-prosodic

distribution, because the vocabulary of POS tags is quite small (ca. 30–35 tags in all), and

hence it is easy to obtain robust estimates even from limited amounts of training data.

One difference between the syntactic– and lexical–prosodic models is that the former is built

at the word level. This is not an issue for determining boundaries, because the boundary is

constrained to coincide with the final syllable of the word; hence, there can only be one

boundary event per word. No such restriction is placed on pitch accents, as they can be

associated with any syllable within the word. Thus, for the pitch accent detection task, the

syntactic–prosodic model indicates whether some syllable within the word is accented, but

does not provide information as to which one is. Even so, this model helps eliminate false-

positive decisions by constraining all syllables within nonaccented words to the “no-accent”

tag. Note that we do not use information obtained from a syntactic parse of the orthography.

E. Combining Acoustic, Lexical, and Syntactic Evidence

We would like to combine each of the above streams of evidence {A, S, POS, L} in a principled

fashion in order to maximize performance of the prosody recognizer. Fig. 3 illustrates the

dependencies between these variables in the form of a directed graph. The solid arrows indicate

deterministic relationships, while the dotted ones represent probabilistic dependencies that we

must model. We take the view that the word sequence W, or equivalently, its features {S, POS,
L} are responsible for generating the prosody of the spoken utterance, which in turn modulates

the acoustic parameters such as F0, energy, and duration, producing the acoustic feature

sequence A. In doing so, we ignore higher-level factors such as the utterance class (question,

statement, etc.) and the speaker’s emotional state that also play a role in determining the
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sequence of prosodic events. The observed variables in this graph are W, the corresponding

lexico-syntactic feature sequence {S, POS, L}, and the acoustic feature sequence A. The

sequence of prosodic events P is to be inferred. Hence

(8)

where (8) follows from our assumption that the acoustic observations are conditionally

independent of the lexical and syntactic features given the prosody labels. However, the

distribution p(S, L, POS|P)cannot be robustly estimated because the joint vocabulary (ca. 2850

× 2 × 35) is very large as compared to the available training data. We therefore use a naïve-

Bayesian approximation such that the factors are easily and robustly estimated

(9)

Note that the feature sequence L is not available for the boundary detection task. Making this

approximation, and substituting (9) into (8) gives

(10)

where

The combined recognition model hence reduces to a product of the individual acoustic, lexical,

and syntactic models, respectively.

V. EXPERIMENTAL RESULTS

We conduct a number of prosodic event detection experiments using acoustic, lexical, and

syntactic cues, as discussed in Section IV. In this section, we describe our experimental setup

and recognition results for the individual and combined models. All performance figures in

this section are obtained using five-fold cross validation with training and test splits as

described in Section II. For each classification experiment, we list the accent and boundary

detection accuracy as well as the corresponding false positive (FP) percentages. For the

boundary detection task, we list overall detection accuracy as a fraction of all syllables, as well

as word-final detection accuracy as a fraction of just the word-final (WF) syllables. The latter

is a more useful metric, since word-initial and -medial syllables are always forced to the “no-

boundary” category by our classifiers. We also report confidence intervals in terms of

significance values (p-values) wherever we make comparisons between the performance of

different classifiers and feature sets. We use the Wilcoxon signed rank test to compute

significance values, because it is nonparametric, works with small sample sizes, and makes no

assumptions regarding the distribution of the values (in this case, accuracy rates) being

compared.
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A. Baseline

We set up a simple baseline based on the chance level of pitch accent and boundary events

computed from the training data. Approximately 34% of training syllables carry an accent,

while only about 17% of syllables coincide with boundaries. We form a lattice where each test

syllable can take on positive or negative labels with the corresponding a priori chance level

computed from the training corpus and rescore this lattice with the de-lexicalized prosodic LM

to obtain a baseline system. The baseline pitch accent and boundary detection accuracies were

67.94% and 82.82% (overall), respectively. Note that our baseline boundary detection accuracy

(based on the chance level for boundaries) is higher than the IPB detection accuracy of 71%

reported in [11] for the radio news task. However, unlike [11], we provide figures for

intermediate and intonational boundaries together.

B. Acoustic Prosodic Event Detector

We employed three different classifiers (LD, GMM, and NN) to obtain the prosody labels from

the acoustic evidence. The GMM and NN classifiers also provide posterior probabilities for

the prosodic events given the evidence. We first tested these classifiers in “independent-

syllable” mode (3), and chose the best performing one for combination with the de-lexicalized

prosodic LM.

1) LD Classifier—The LD classifier was used to obtain a simple baseline for classification

based on acoustic evidence. The weights are trained using standard batch least-squares (the

“pseudoinverse” method). This classifier achieved an independent syllable classification

accuracy of 71.15% for pitch accent detection and 89.30% (overall) for the boundary detection

task.

2) GMM Classifier—We trained GMM-based classifiers for pitch accent and boundary

events using the EM algorithm. The number of component mixtures was chosen using the

Bayesian information criterion (BIC). Although it not optimal in the sense of minimizing

classification error, the BIC score provides a convenient way to select the number of mixtures

based on a minimum-description length criterion. Specifically, the BIC score is simply the log-

likelihood of the training data given the GMM parameters penalized by a function of the number

of parameters and training samples. Based on this metric, the best choice for the number of

mixtures was 18. This classifier achieved an independent syllable classification accuracy of

72.18% for the pitch accent detection task and 89.41% (overall) for the boundary detection

task.

3) NN Classifier—The small difference in performance between the GMM and LD classifiers

despite the large difference in the number of model parameters suggests that the acoustic

features are not modeled well by GMMs. This led us to use a neural network for classifying

prosodic features. We built a two-layer feedforward neural network with nine input units, 25

hidden units, and two output units, one for each class. We used linear activation for the input

units, sigmoidal activation for the hidden units, and softmax activation for the output units.

The neural network was trained using standard back-propagation. This classifier achieved an

independent syllable classification accuracy of 74.10% for pitch accent detection task and

89.99% for the boundary detection task.

4) Acoustic Classifier + De-Lexicalized LM—We combine posterior label probabilities

from the best performing acoustic classifier, the neural network, with label sequence constraints

imposed by a 4-gram de-lexicalized prosodic LM. This is achieved by constructing a sausage

lattice with prosodic variants of each syllable forming the lattice arcs. Each arc is weighted by

the posterior probability assigned by the acoustic classifier (neural network). This lattice is

then rescored with the n-gram de-lexicalized prosodic LM. This resulted in an absolute
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accuracy improvement of 5.97% for pitch accent detection (significant at p ≤ 0.05). However,

accuracy actually decreased by 0.4% (p ≤ 0.05) for the boundary detection task. This is probably

due to the fact that boundary events are quite far apart, and their context cannot be captured

by narrow n-gram models. In the BU corpus, boundary events occur on average once every six

to seven syllables; constructing such long range n-gram LMs is not feasible even for a binary

vocabulary. We found this to be the case empirically as well; a 5-gram LM performed worse

than the 4-gram with which we report the above results. Table II summarizes classification

accuracy results using acoustic evidence.

C. Lexical Prosodic Event Detector

In this setup, we attempt to uncover prosodic events using only lexical evidence, i.e. the syllable

tokens and, for the accent detection task, the canonical stress sequence obtained from a

pronunciation lexicon. The lexical-prosodic LMs were implemented using a factored backoff

scheme according to Fig. 2 in order to alleviate problems due to data sparsity. We built these

models using the fngram tools that are part of the well-known SRILM toolkit [27]. The test

transcriptions were used to construct unweighted lattices for each utterance; these lattices have

a sausage structure and encode all possible combinations of syllable tokens and prosodic events

for the corresponding utterances. They were then scored with the language model, and the best

paths through the lattices were obtained using Viterbi search. This yielded the most likely

sequence of prosodic events.

This experiment was conducted both with and without the canonical stress patterns from the

pronunciation lexicon (for pitch accent detection) in order to study the effects of such a
priori knowledge on system performance. The results are summarized in Table III. We observe

that classification accuracy from syllable tokens alone exceeds the performance of a purely

acoustic evidence based classifier by a significant margin (82.92% versus 80.07%, p ≤ 0.05).

However, prediction of boundary events using lexical evidence alone was 4.26% less accurate

(P ≤ 0.05) than predicting them using acoustic evidence. We also note, for the accent

classification task, that the use of a pronunciation lexicon leads to an absolute classification

accuracy improvement of 2.25% (p ≤ 0.05) over a classifier that uses only the syllable tokens.

D. Syntactic Prosodic Event Detector

The structure of the syntactic prosodic event detector is similar to that of the lexical prosody

recognizer, except for two differences. The first is that we use a standard backoff trigram to

model the joint distribution of POS tags and prosodic events, which are treated as compound

tokens. As mentioned earlier, the POS vocabulary is quite small, and no sparsity issues are

likely to arise even with a relatively small training set. The second difference is that this

recognizer detects prosodic events at the word level rather than at the syllable level. This is not

an issue for the boundary detection task, as we force all non-word-final syllables to the negative

label. However, the syntactic-prosodic LM does not influence classification of individual

syllables that comprise the accented variant of a word. Syllables within an accented word are

assigned pitch accents according to the chance level observed in training data. Table III

summarizes accent and boundary detection accuracy for this recognizer. As expected, we

observe that this method results in a performance gain over the lexical classifier for the

boundary classification task (87.99% versus 85.73%, p ≤ 0.05), but produces significantly

worse results on the pitch accent detection task (70.70% versus 85.17%, p ≤ 0.05), only slightly

better than the baseline. This is expected, because for multisyllabic words that are identified

as being accented, the syntactic model does not predict which syllable carries the pitch accent.

E. Combined Acoustic, Lexical, and Syntactic Prosodic Event Detector

Having tested prosodic event detection performance with each feature stream separately, we

now combine them in accordance with (10). The issue of combining the syntactic-prosodic
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LM and lexical-prosodic LM arises again, because the former is built at the word level and the

latter, at the syllable level. We address this problem by representing the syntactic lattice as a

finite-state acceptor (FSA) and the word-to-syllable mapping as a finite-state transducer (FST).

Scores from the acoustic model are embedded in the FST. The syntactic FSA is scored with

the syntactic–prosodic LM and then composed with the mapping FST. This produces an

syllable-token level FSA that incorporates syntactic and acoustic scores, which is finally

rescored with the lexical-prosodic LM to obtain the best sequence of labels. We implemented

the composition and other FSM operations with the AT&T FSM toolkit [28].

In addition to combining all feature streams, we also tested classifiers that used only acoustic

and lexical features, and another that combined only acoustic and syntactic features. These

experiments were conducted in order to examine the effects of the assumption underlying (9).

Table IV summarizes the performance of the combined feature classifiers. We note that the

combining all feature streams produces the most accurate pitch accent classification results,

whereas boundary classification accuracy is highest for the classifier that combines only

acoustic and syntactic evidence. Addition of the lexical feature stream actually decreases

performance by 0.23%; however, this result was not significant at p ≤ 0.05. This lack of

performance improvement probably arises from the fact that lexical features (syllable tokens)

are poorer indicators of boundary events than POS tags and therefore do not provide any

additional information over the syntactic features. We note that for pitch accent detection, the

combined system that uses canonical stress patterns from the pronunciation dictionary performs

better than the combined system that does not use these stress patterns (86.75% versus 86.06%,

p ≤ 0.05). Finally, we also derive word-level pitch accent detection performance from syllable

level annotations—a word carries a pitch accent if any syllable within that word is identified

as carrying an accent. The baseline performance for this task was 72.73%, and on combining

acoustic, lexical and syntactic features, we obtained a significant performance improvement

up to 84.59%.

Fig. 4 shows a sample output of the combined prosodic event detector for the first 2.4 s of the

utterance f1bs01p1 in a Praat TextGrid display. The figure contains seven tiers. Tier 1 shows

the speech signal; tier 2 shows the spectrogram with superimposed F0 and intensity tracks; tier

3 shows syllable-level transcription with time-alignments; tier 4 shows time-aligned word-

level transcriptions; tier 5 shows ToBI-style pitch accents and boundaries as annotated in the

corpus; tier 6 shows accent events assigned to syllables (U = unaccented, A = accented); tier

7 shows boundary events aligned with syllables (N = no boundary, B = boundary). In this

example, all pitch accent events were correctly identified and assigned to their corresponding

syllables, but there is one error in the boundary tier, where the syllable f_r_iy has been assigned

a boundary event, where, in fact, there is none (this may be attributed to the statistical nature

of the boundary detector, similar to word errors in ASR—our system is, after all, a “speech

recognizer” for prosodic events).

VI. DISCUSSION AND FUTURE WORK

In this paper, we developed a pitch accent detection system that obtained an accuracy of

86.75%, and a prosodic phrase boundary detector that obtained an accuracy of 91.61% at the

linguistic syllable level on a human-annotated test set derived from the BU-RNC. Both systems

approach the agreement level between human labelers for these tasks. We incorporated

acoustic, lexical and shallow syntactic features within a MAP framework, which, combined

with the n-gram prosodic language models, makes it easy to integrate with existing ASR

systems. We determined from our experiments that lexical syllable tokens are useful for pitch

accent detection, but not so effective for boundary detection. On the other hand, syntactic POS

tags play an important role in boundary detection, but are not as useful for predicting pitch
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accent events. We also determined that canonical stress labels from a pronunciation dictionary

are useful for pitch accent detection.

Our pitch accent detector performs better than that described in [11] (86.75% versus 84% at

the syllable level). Although [14] also report 84.21% accuracy on this task, the systems are not

directly comparable, as we assign pitch accents to syllables, while their system operates at the

word level. The work by Ross and Ostendorf [12] reports pitch accent detection accuracy of

87.7% at the syllable level; however, this is on a very small test set using data from only one

speaker, whereas we report results on six speakers (three male, three female) using speaker-

independent prosody models.

Our boundary detection task is more difficult than that described in previous work, because

they focus only on intonational phrase boundary detection, whereas we consider both

intermediate and intonational phrase boundaries as valid boundary events. Our boundary

detection performance significantly exceeds that reported in [11] (91.61% versus 71% at the

syllable level), but lags that reported in [14] (87.29% versus 93.07% at the word level).

However, the figures quoted in [11] and [14] are for intonational phrase boundary detection

only. Also, unlike [14], we do not use phrase opening/closing information from a syntactic

parse of the text for the boundary detection task. Our task cannot be compared with the

boundary tone classification problem described in [12], because they perform classification of

boundary tones that have been deterministically identified from the ToBI break index tier, and

not boundary tone detection itself.

As discussed in Section I-A, automatic recognition of pitch accent and boundary events in

speech can be very useful for tasks such as word disambiguation, where a group of words may

be phonetically similar but differ in placement of pitch accent, or in their location with respect

to a boundary. At a higher level, knowledge of these prosodic events can be useful for spoken

language understanding systems. For instance, in building a speech-to-speech translation

system, we would like the suprasegmental structure in the target language to be equivalent to

that of the utterance in the source language. Mapping prosodic events to a finite set of categories

is a good starting point for this task.

There are several open problems that still need to be addressed. First, we work with binarized

versions of the ToBI label set, disregarding the fine categories i.e. types of pitch accents and

boundaries. These fine categories are annotated on the basis of the intonation pattern in the

vicinity of the syllable associated with the prosodic event. However, to distinguish between

these types using automatically extracted features is a difficult problem because 1) we rely on

syllable time alignments generated from automatic forced alignment of the speech, which is

not very accurate, and 2) intonation patterns used by human annotators to make these fine

distinctions often occur in an asynchronous fashion, and do not always lie within the time-

window indicated by forced alignment. As a result, extracting reliable features for

distinguishing fine categories becomes very difficult. Indeed, most previous work, including

that cited in this paper, focuses on binary pitch accent and boundary tone detection. An

exception is [12], who report results on fine categorization of pitch accents and boundary tones.

However, as their results show, fine categorization does not yield significant improvement over

chance level category assignment (72.4% versus 71.8%) for three-way pitch accent

categorization. For boundary tone locations deterministically identified from the ToBI break

index tier, three-way classification of tone category was somewhat better (66.9% versus 61.1%

for chance level assignment).

Second, for our current approach to be useful, we require a training corpus that is annotated

with pitch accent and boundary labels. The BU-RNC is a broadcast news style corpus, and

models trained with this data may not generalize well to spontaneous speech, which is usually
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the input for most spoken language understanding systems. We would therefore like to

experiment with semisupervised and unsupervised techniques to perform the labeling task

where such annotations are not available in the training set. Previous work on unsupervised

prosodic event detection has focused exclusively on acoustic evidence [29]. In [30], we

describe an unsupervised algorithm for accent and boundary event detection using acoustic,

lexical, and part-of-speech evidence. The algorithm described in that paper uses information

from an unsupervised clustering process to bootstrap lexical and syntactic probability models

for improved performance.

Finally, in our current approach, we assume that the orthography and syntactic features (POS

tags) corresponding to the spoken utterances are available. In many cases, however, we have

only the speech utterance and wish to detect prosodic events directly from the acoustic signal,

either for improving speech recognition performance or to extract other paralinguistic

information such as speech acts, emotion, etc. One possible approach is discussed in Hasegawa-

Johnson et al. [31], who use a lexical–syntactic–prosodic LM in order to simultaneously obtain

word hypotheses as well as accent and boundary labels. More generally, incorporating prosodic

cues in ASR to improve word recognition performance is a difficult problem, and we would

like to see if operating at a lower level of granularity (such as accent and boundary events) will

improve performance. In recent experiments [32], we obtained modest but statistically

significant word-error rate improvement by reranking ASR n-best lists with prosody models

similar to the ones described in this paper.
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Fig. 1.
Unigram frequency distributions of selected syllable tokens and part-of-speech (POS) tags

between positive and negative classes for pitch accent and boundary detection tasks. The

figures show a clear preference of syllable tokens for specific categories. POS tags

corresponding to content words (NNS, JJ, etc.) are much more likely to be associated with

accented words than those that correspond to function words (DT, CC, etc.). (a) Syllable-accent

distribution. (b) Syllable-boundary distribution. (c) POS-accent distribution. (d) POS-

boundary distribution.
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Fig. 2.
Backoff graph for estimating lexical-prosodic LM. At each step, we drop a conditioning

variable. Lexical tokens are dropped first.
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Fig. 3.
Directed graph illustrating dependencies among variables. W is the sequence of words. S, L,

and POS are the corresponding sequence of syllable tokens, canonical stress labels, and part-

of-speech tags, respectively. P is the sequence of prosodic events and A is the sequence of

acoustic–prosodic features. We treat the prosody labels as hidden variables influenced by

(observed) lexical and syntactic features of the underlying orthography. The hidden prosodic

event sequence generates acoustic observations.
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Fig. 4.
Sample prosodic event detector output for utterance f1as01p1. The first 2.4 s of the utterance

is shown. Tier 1 shows the speech signal; tier 2 shows the spectrogram with superimposed F0

and intensity tracks; tier 3 shows syllable-level transcription with time-alignments; tier 4 shows

time-aligned word-level transcriptions; tier 5 shows ToBI pitch accents and boundaries as

annotated in the corpus; tier 6 shows accent events assigned to syllables (U: unaccented, A:

accented); tier 7 shows boundary events aligned with syllables (N: no boundary, B: boundary).
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TABLE I

ACOUSTIC FEATURES RANKED BY IMPORTANCE
Accent features Boundary features

n_dur p_dur
f0_avgmin_diff n_dur
e_avgmin_diff f0_maxavg_diff

e_range f0_range
f0_range e_range

f0_maxavg_diff f0_avgmin_diff
n_phones e_maxavg_diff

f0_avgutt_diff e_avgmin_diff
e_maxavg_diff f0_avgutt_diff
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TABLE II

ACOUSTIC PROSODY RECOGNIZER: PERFORMANCE
Accent Accent FP

LD 71.15% 7.24%

GMM 72.18% 9.75%

NN 74.10% 8.64%

NN + de-lex LM 80.07% 10.14%

Boundary Boundary FP
All WF All WF

LD 89.30% 83.47% 1.02% 1.68%

GMM 89.41% 83.65% 2.20% 3.63%

NN 89.99% 84.61% 2.30% 3.80%

NN + de-lex LM 89.59% 83.95% 5.09% 8.41%
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TABLE III

LEXICAL/SYNTACTIC PROSODY RECOGNIZER: PERFORMANCE
Accent Accent FP

Tokens Only 82.92% 8.09%

Incl. lexicon 85.17% 8.65%

Syntax only 70.70% 2.13%

Boundary Boundary FP
All WF All WF

Tokens Only 85.73% 77.59% 4.08% 6.75%

Syntax only 87.99% 81.31% 2.28% 3.77%
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TABLE IV

COMBINED PROSODY RECOGNIZER: PERFORMANCE
Accent Accent FP

Baseline 67.94% 11.33%

Acoustic + Lexical (with pron.) 86.37% 7.64%

Acoustic + Syntactic 76.04% 7.25%

Acous. + Lex. + Syn. (no pron.) 86.06% 6.58%

Acous. + Lex. + Syn. (with pron.) 86.75% 8.08%

Word-level baseline 72.73% 6.66%

Combined system (world-level) 84.59% 9.33%

Boundary Boundary FP
All WF All WF

Baseline 82.82% 72.78% 0.17% 0.28%

Acoustic + Lexical 90.41% 85.31% 4.63% 7.65%

Acoustic + Syntactic 91.61% 87.29% 4.61% 7.61%

Acous + Lex. + Syn. 91.38% 86.91% 5.51% 9.11%
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