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numeric values. This makes its conclusions more robust and enables it to handle parameter-
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Abstract -.

"') This thesis explores automating the qualitative analysis of physical systems. Scientists and

engineers model many physical systems with ordinary differcntial equations. They deduce •

the behavior of the systems by analyzing the equations. Most realistic models are nonlinear,

hence difficult or impossible to solve explicitly. Analyst's must resort to approximations or

to sophisticated mathematical techniques. b describca, program, called PLR (for Piecewise

Linear Reasoner), that formalizes an analysis strategy employed by experts. PLR takes

parameterized ordinary differential equations as input and produces a qualitative description

of the solutions for all initial values. It approximates intractable nonlinear systems with

piecewise linear ones, analyzes the approximations, and draws conclusions about the original

systems. It chooses approximations that are accurate enough to reproduce the essential

properties of their nonlinear prototypes, yet simple enough to be analyzed completely and

efficiently. -'

PLR uses the standard phase space representation. It builds a composite phase diagram for

a piecewise linear system by pasting together the local phase diagrams of its linear regions.

It employs a combination of geometric and algebraic reasoning to determine whether the

trajectories in each linear region cross into adjoining regions and summarizes the results in

a transition graph. Transition graphs explicitly express many qualitative properties of sys-

tems. PLR derives additional properties, such as boundeduess or periodicity, by theoretical

methods. PLR's analysis depends on abstract properties of systems rather than on specific

numeric values. This makes its conclusions more robust and enables it to handle parameter- .' -

ized equations transparently. I demonstrateTeLR on several common nonlinear systems and

on published examples from mechanical engineering.
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Chapter 1

Introduction

Differential equations provide a rich language fo describing smoothly varying phenomena.

Scientists and engineers model many physical systems with differential equations, including

circuits, motors, buildings, chemical reactions, physiology, the motions of celestial bodies,

and the interactions of competing populations. They predict the behavior of the physical

systems by deducing the properties of the solutions to the differential equations. This thesis

describes a computer program, called PLR (for Piccewise Linear Reasoner), that automates

the analysis. It takes parameterized ordinary differential equations as input and produces a

qualitative description of the solutions for all initial values.

Although simple mathematical techniques exist for systematically determining the solu-

tions to linear equations, most nonlinear equations require sophisticated idiosyncratic tech-

niques or resist analysis altogether. Artificial intelligence researchers have responded to the

apparently refractory nature of the general problem by lowering their level of aspiration to

much weaker deductions about the qualitative behavior of physical systems. They have re-

placed differential equations with impoverished modeling languages and inference methods. 5

I see no need to sacrifice the powerful tools developed by generations of mathematicians just

because they do not solve every differential equation directly. Instead, I have developed a

program that emulates a strategy whereby human experts successfully applly those tools to

complicated equations.

Experts transform intractable equations into tractable ones by principled approximat ions

that preserve the significant properties of the original equations. The approximations also

offer a framework for more detailed investigation if necessary. Experts try linear approxi-

8A



mations first. When these prove inadequate, they shift to piecewise linear ones. Piecewise

linear approximations can be made accurate enough to reproduce the essential properties of

their nonlinear prototypes, yet simple enough to be analyzed completely and efficiently. The

principal goal of this thesis is to demonstrate a mechanical technique for constructing and

analyzing piecewise linear approximations of differential equations. Thle analysis depends on

abstract properties of the approximation, such as whether certain lines slope up or down,

rather than on specific numeric values. This makes the conclusions more robust and permits

the technique to handle parameterized equations transparently.

1.1 Phase Space

PLR uses the standard phase space representation for systems of first-order differential equa-

tions, which stresses the long-term qualitative form of solutions for all initial values, while

downplaying exact solutions. It converts higher-order equations to first-order ones by intro-

ducing new variables as synonyms for higher derivatives. The phase space for a system

xi, = MfIx,,...x,); iZ 1.,n(1)

with dependent variables xl,... ,x,, is the Cartesian product of the xi's domains. Points

in phase space represent states of the system. Curves on which equation (1.1) is satisfied,

called trajector. ;, represent solutions. A phase diagram for a system depicts its phase

space and trajectories graphically. The topological and geometric properties of trajectories

characterize the qualitative behavior of solutions. For example, a point trajectory, called a

fixed point, indicates a constant solution, whereas a closed curve indicates a periodic solution.

These abstract descriptions are generally the best that one can do, since most systems lack

closed-form solutions.

1.2 The Algorithm

PLR analyzes systems of first-order differential equations according to the algorithm shown

in Figure 1.1. Initially, PLR constructs a simple piecewise linear approximation that contains

9 0



few linear regions. It refines this model into a progression of increasingly accurate ones by

repeatedly splitting the linear regions. It compares the phase diagram of each approximation

to that of the previous one. Refinement ends when no new qualitative properties appear.

PLR only handles systems of two equations, but the underlying algorithm extends to larger

systems, as discussed in the final chapter.

input: a system of ODE's

make initial piecewise linear approximation

[ analyze initial approximation I

frefine current approximation

analyze current approximation S

newye
properties? 

ye

no

output: current analysis

Figure 1.1: The abstract PLR algorithm

PLR builds a composite phase diagram for a piecewise linear system by combining the S.

local phase diagrams of its linear regions. It employs the standard theory of linear equations

to ascertain the local phase diagrams. Linear systems have simple well-understood dynamics.

Either all trajectories are periodic, all approach a unique constant solution, called a fixed

point, or all approach infinity. In some cases, two asymptotes partition phase space into four

disjoint sets.

PLR pastes together the local phase diagrams by determining which sequences of regions

trajectories can traverse. It tests whether trajectories cross between adjacent regions by

examining the behavior of the corresponding linear systems on the common boundaries. It

summarizes the results in a transition graph whose nodes and links represent regions and

transitions. Each path through the transition graph of a piecewise linear systum indicate-

that trajectories traverse the corresponding regions in the prescribed order. Transition graphs

10
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explicitly express many qualitative properties of systems. Loops denote trajectories that

remain in one region forever, whereas longer cycles denote trajectories that continually shift

between a sequence of regions. PLR derives additional properties, such as boundedness and

periodicity, by global analysis of the original equations.

For example, PLR derives the properties of the equation

g

0" + 7-sin 0 = O; g, I > O, (1.2)

which describes the angular displacement of an undamped pendulum of length 1, by piecewise

linearizing the nonlinear term sin 0, as shown in Figure 1.2. The local phase diagrams of the 0

three linear regions in the (9, 9') phase plane appear in Figure 1.3. PLR divides the plane into

regions A through G (Figure 1.4a), splits D into D1 through D5, and constructs a transition

graph (Figure 1.4b). It concludes that trajectories in the cycles C-D2-G-D4 and DI follow

closed paths around the origin, whereas those in F-D5-B and A-D3-E move continually from ...'a

right to left and from left to right respectively. In physical terms, the pcndulum rocks back

and forth in the former cases and spins around in the latter. Global analysis of equation (1.2)

establishes that every rocking trajectory has a fixed magnitude and period. PLR refines the

original linearization by bisecting each interval in the approximation of sin 0, as shown in

Figure 1.5. The new phase diagram (Figure 1.6) fails to produce additional behaviors. PLR

assumes that further refinement is pointless and halts.

100
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-pi -pi/2 pi/2 pi

-- iS

Figure 1.3: Local phase diagrams for the piecewise linear pendulum equations: dots, thick

solid lines, and dashed lines indicate fixed points, boundaries between linear regions, and

asymptotes.

p pE rocking spinning
p 2 2 p

A D3 E

- - D2

-C . 6I D4 D2 D5 D3 
).

, " ¢ . ... ., [..... . - .S.~

D4 .

B D5 F B

(a) (b)

Figure 1.4: (a) Phase diagram and (b) transition graph for the pendulum

-pi 3pi pi pi pi pi 3pi
4 - - - 4 4 24

Figure 1.5: Refinement of the piecewise linearization from Figure 1.2 obtained by inserting

a new linearization point between each adjacent pair of existing points.
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-pi -pi/ 2  pi/2 pi
D G1 HI Ji K 1

Al H2

A2, E J2*. 2 L N2
"'B - -H3_

*C2 F G3 M F2.

C - - H4 - .

"Q G4 H5 J I '

Figure 1.6: Phase diagram for the refined pendulum approximation

1.3 Thesis Overview

The pendulum example illustrates my approach to automatic analysis of differential equa-

tions. PLR exploits powerful mathematical techniques, drawn from the repertoire of scientists

and engineers, to solve hard problems. It derives the qualitative behavior of complicated

equations by constructing and analyzing suitable piecewise linear approximations. It aug-

ments the results with direct analysis if applicable. In this thesis, I substantiate my approach

by describing PLR in detail and demonstrating its capabilities.

The thesis is organized as follows. I explain how PLR constructs piecewise linear ap-

proximations in the next chapter. In the following chapter, I describe the algorithm, called

piecewise analysis, by which it constructs phase diagrams and transition graphs of piecewise

linear systems. In Chapter 4, I demonstrate piecewise analysis on several common nonlinear

systems and on published examples from mechanical engineering. Piecewise analysis cannot

determi- - some global properties of trajectories. For example, it cannot tell that the tra-

jectories of the pendulum have fixed magnitudes. Chapter 5 describes theoretical tools with

which PLR deduces global behavior, including that of the pendulum. PLR uses these tools to

compare transition graphs and refine piecewise approximations, as explained in chapter 6.

Every stage of PLR requires sophisticated inequality reasoning to determine the qualita-

tive properties of algebraic expressions. Inequalities determine the shape of piecewise linear

functions, the behavior of linear systems, the links in transition graphs, and the results of

theoretic analysis. In chapter 7, 1 present an inequality prover that does the job quickly

13
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and effectively. It employs a sequence of increasingly sophisticated strategies: when one fails

to resolve an inequality, it tries the next. Chapter 8 describes the tools with which PLR

manipulates parameterized functions: a mathematical reasoner that derives their extrema,

zeros, and other properties and a qualitative sketcher that draws them.

Chapter 9 contains a review of literature and a comparison between PLR and the con-

ventional Al approach involving weak constraints. In tile final chapter, I assess PLR's

strengths and weaknesses and discuss future work. The biggest challenge is to extend PLR

beyond second-order systems. I show that piecewise analysis carries over directly to higher-

dimensional systems. To the extent that theoretical techniques for higher-dimensional sys-

tems exist, they can automated within the PLR framework.

14 WV
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Chapter 2

Choosing a Piecewise Linear

Approximation

The first step in analyzing an unsolvable system of nonlinear differential equations is to

approximate it with piecewise linear equations. PLR can construct piecewise linear ap-

proximations for many systems automatically. The user need only intervene when it fails, as

discussed below. Other analysis systems always require their users to specify approximations.

Users of typical numerical packages must choose appropriate algorithms, error margins, ini-

tial guesses, and step sizes. Similarly, de Kleer and Brown [7, p. 26] note that qualitative

reasoning requires users to derive the confluences for systems by themselves. Like those

systems, PLR focuses on analysis, but unlike them, it also has significant model construction

capabilities.

The first class for which PLR can make piecewise linear approximations consists of the

separable systems
n

= f(x,,.. ., )= (xj); = 1,... ,n. (2.1)
j=1

in whicti each component fj(x,...,x,,) is a sum of univariate terms. PLR approximates

each fi by replacing its nonlinear terms with piecewise linear ones and adding the results.

It chooses a set of significant points for each term, fits lines between successive pairs of

significant points, and extends the first and last lines to the lower and upper bounds of

the phase space. The significant points of a term are its local extrema and finite domain

boundaries, components of fixed points of the system, and any additional points designated

by the user. The extrema and boundaries guarantee that the approximations will roughly

15
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resemble the original terms, whereas the fixed point components align the phase spaces of

the approximate and original systems. PLR linearizes terms with a single significant point

by bracketing that point with two additional points, as shown in Figure 2.1.

b I

b
\ \ / I/I

(a) (b) 0

Figure 2.1: Special-case piecewise linearizations (s and b indicate significant and bracketing

points): (a) unimodal function without zeroes (b) monotone function

For example, PLR derives the piecewise linear equations

{ with f(x) x12{ 1/2 for x < -1/2 (2.2)
Y' AX) - Y-X/2 for x > -1/2

from the Lienard equation

x" + X2 + = 0 (2.3)

by replacing the nonlinear term x2 + x with two lines (Figure 2.2). The significant points

-1 and 0 are the x components of the system's fixed points (-1, 0) and (0, 0), whereas the

significant point -1/2 is a minimum. The first line connects the minimum to the zero at -1

and extends to -oo. The second connects the minimum to the zero at 0 and extends to o. N

z~~0 1 1| X

Figure 2.2: Piecewise linearization of x% + x

The algorithm for separable systems extends to networks of nonlinear components con-

nected by linear laws, such as circuit models. PLR approximates the nonlinear component,

16



models with piecewise linear ones as before. The equations for the resulting network are

piecewise linear. Users can represent components that display hysteresis with nonplanar

phase spaces. Future versions of PLR will automate the process. Figure 2.3 illustrates the

phase space for a component that follows the curves 1 through 3 as x increases from -c to

c and returns via 4 through 6 as x decreases back to -c. Each curve determines a region in

phase space. Region 4 lies to the right of 3; region 1 lies to the left of 6. All other adjacencies

are planar. I explain how PLR implements nonplanar phase spaces in Section 3.7.

-C -b -a C

1 2 3II Z\

-c- '-a b cJa C -c a b c

2 Vr
k 6 54

6 '4

Figure 2.3: Nonplanar phase space for a hysteresis curve

In general, PLR cannot piecewise linearize nonseparable systems, such as X'(XI)2= 0.

The previous strategy does not apply to products (and other functions) of piecevise linear

functions that contain nonlinear terms. However, PLR handles the important special case

X 9+g(x)x' + u(x') + v(x) =0 (2.4)

by recasting it as

x" + G'(x) + u(x') + v(x) = 0 (2.5)

with G(x) = fg(x). It piecewise linearizes G, u, and v according to the algorithm above, ,,.

substitutes the linearizations into equation (2.5), and converts the resulting piecewise lin-

ear second-order equation to a first-order system. An example of this method appears in

Section 4.1.
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PLR invokes the QMR mathematical reasoner, described in Section 8.1, to calculate the

extrema, zeros, and fixed points of nonlinear univariate functions. When QMR fails, the user

must n this S

thesis except for the function g(O) - f(O + a) + f(O - a) with

f(0) = (r2 + 2r + 2- 2rcos O)-/2sinO (4.10)

and with r and a positive constants, which describes the force applied to a pendulum by a

horseshoe magnet (Sec. 4.3). QMR lacks the prerequisite trigonometric manipulation skills

for calculating the extrema of g. A better symbolic algebra system could handle functions

like g, but no system can analyze every useful function [36].

Piecewise linearization involves a tradeoff between accuracy and simplicity: more lines

produce more accurate results at the price of larger transition graphs and phase diagrams.

PLR resolves the conflict by constructing simple initial approximations, which only capture 5

the most basic features of the original equations, and refining them when necessary. In

the next two chapters, I will demonstrate that these initial approximations often provide

accurate pictures of qualitative behavior. I will discuss how and when PLR refines them in

Chapter 6.

1
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Chapter 3

Constructing a Phase Diagram for a

Piecewise Linear System

PLR constructs a phase diagram for a second-order system of piecewise linear equations

by partitioning phase space into regions in which the system is linear, analyzing the linear

systems, and combining the results. It pastes together the local analyses into a global phase

diagram by determining which sequences of regions trajectories can traverse. It does this

in two stages: transition analysis and case analysis. Define region R to access region S if

and only if some local trajectory of R crosses into S. In transition analysis, PLEt constructs

the accessibility relation between pairs of adjacent regions. In case analysis, it extends the

results to sequences of regions. I will illustrate phase diagram construction on the piecewise

linear equations (2.2) that PLR chooses to apprximate the Lienard equation (2.3), as shown

in the previous chapter.

3.1 Local Analysis of Linear Equations

PLR employs the standard theory of linear equations [19, ch. 1-6] to derive the phase diagram

of a second-order linear system. First, it calculates the two eigenvalues of the system. Their

disposition in the complex plane determines the structure of the phase diagram. A zero

eigenvalue indicates a degenerate system, which PLR cannot handle. Figure 3.1 lists the

possibilities for a nondegenerate system and shows the associated phase diagrams. The

unique fixed point of the system is placed at the origin of each phase diagram. The first row

of diagrams shows the three types of qualitative behavior for distinct real eigenvalues: a sink
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when both are negative, a saddle when they have opposite signs, and a source when both are

positive. Two asymptotes, indicated by dashed lines, partition the trajectories into disjoint

sets. The second row shows improper sinks and sources, which arise when the eigenvalues S

are real and identical. They resemble sinks and sources, but have a single asymptote. The

third row shows the complex cases. The two eigenvalues are complex conjugates, so they

have the same real part. A spiral sink or source occurs when the real part is negative or

positive and a center when it is zero.

3.2 Region Formation

PLR partitions the phase space for a system of two piecewise linear equations into maximal

regions on which both equations are linear. The boundaries between regions consist of the

lines x = xi and y = yi at which the piecewise linearizations in the x and y coordinates

change. PLR calculates the fixed points and eigenvalues of the linear systems associated

with the regions. It subdivides regions that have real eigenvalues along their asymptotes. It.

determines the local phase diagrams for the regions from their eigenvalues and fixed points,

as explained in the previous section. For example, Figure 3.2 shows the regions, labeled A

through E, that PLR constructs for the piecewise linear Lienard equations (2.2). The thick

line denotes the boundary x = -1/2 at which the piecewise linearization changes. The left-

hand linear system has a saddle (labeled s) at the point (-1,0) and the right-hand system

has a spiral sink (labeled ss) at the origin. PLR splits the left-hand region into subregions

A through D along the asymptotes of the saddle, denoted by dashed lines.

-. 5 y 1

A- +

\ A E

Figure 3.2: Phase diagram for the Lienard example

D "0'
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3.3 Transition Analysis

PLR determines whether local trajectories of a region access an adjacent region by examining

their behavior on the boundary between the two. It only examines boundaries between linear

regions of the piecewise linear system. Trajectories cannot cross boundaries within linear

regions (produced by asymptotes) because linear systems have unique solutions for each

initial value. They can only access adjacent regions because linear systems have continuous

solutions. PLR handles boundaries of the form Y = u(x) and x = u(y) with u a closed-form

differentiable function and the free variable ranging over an interval. Multi-valued mappings

must be split into their branches.

For a trajectory to cross from region R to S via boundary u, its tangent t at the intersec-

tion point with u must form an acute angle with the normal n, as shown in Figure 3.3. In

algebraic terms, the inner product t • n must be positive. Conversely, the entire trajectory

remains in Rift. n < 0 on u. PLR calculates t =a[ x ] from the linear system on R

= a [ + b (3.1)y y

and derives n from Figure 3.4. It tries to prove t- n < 0 on u using the BOUNDER inequality

reasoner described in Chapter 7. It assumes that R accesses S if the proof fails. This

assumption sometimes introduces spurious transitions because no algorithm can prove all

true inequalities. When the proof succeeds, PLR deduces that R does not access S.

R S

tS

U

Figure 3.3: Trajectory crossing from R to S via u: the tangent t at the crossing point must

form an acute angle with n, the normal to u that points into S.
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E

y = u(x) boundary x = u(y) boundary

y>u(x) onR y <u(x) on R x >u(y) on R x <u(y) on R

S') u'(y) -u'(y)

Figure 3.4: Formulae for the normal n to u pointing from R to S

In the piecewise linear systems that PLR constructs, all the boundaries between regions

are lines. This makes transition analysis much easier and precludes spurious transitions. The 4'

inequality t . n < 0 is linear in x and y, hence resolvable by BOUNDER, because n is constant

and t contains only linear terms. The line t n = 0 divides the plane into a region on which

the inequality holds and a region on which it does not. When u intersects this line, it splits

into one line segment that trajectories cross and another that they do not (Figure 3.5a). .A

When u lies entirely in one region, either all or no trajectories cross (Figure 3.5b). In the

Lienard example (Figure 3.2), t - n < 0 evaluates to y < 0 on the boundary between A and

E and to y > 0 between E and B. The line y = 0 delimits the segments of the boundaries

that trajectories cross. Arrows mark the middles of these segments. S

u t.n=O u

R S tn R S

t.n>0 t.n>O t.n<O

t. n<O

(a) (b)

Figure 3.5: (a) t. n = 0 intersects u (b) it does not

3.4 Transition Graphs -.

PLR records the results of transition analysis in a transition graph. Nodes represent regions

and fixed points. Links between regions represent accessibility relations. Self-loops and links

from regions to fixed points repre.ent unbounded and bounded trajectories that remain

in one region forever. Unbounded trajectories can remain in a region forever if they move
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monotonically in directions where it is unbounded. Bounded trajectories must asymptotically

approach a sink or periodically rotate around a center. Figure 3.6 summarizes the semantics

of transition graphs. Figure 3.7 shows the transition graph for the Lienard example.

nodes links

O region - cross into S

, X 'I

Olr sink ( )\ 9 approach a sink

center circumscribe a center

Rsaddle approach infinity '

source

Figure 3.6: Semantics of transition graphs

!A

0

tq* **'

D C

Figure 3.7: Transition graph for the Lienard example

PLR does not construct nodes for pseudo fixed points: fixed points that lie outside the

regions in which their linear systems are in effect. Trajectories cannot remain in a region

whose linear system has a pseudo sink forever; they must leave it to approach the fixcd point. S

Section 4.1 describes a system with pseudo sinks.
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3.5 Case Analysis

The transition graph for a system contains every path that trajectories traverse, but may

also contain vacuous paths that no trajectories traverse. A path R-S-T is vacuous when none

of the trajectories that enter region S from R crosses into T. For example, the path B-E-B

in Figure 3.7 is vacuous because trajectories that enter E from B remain there, spiraling

toward the origin, and cannot return to E. Some trajectories do cross from E to B, but not

those that originate in B. In other words, the link E-B is conditioned by the predecessor

of E. Similarly, path B-E-C is vacuous. Case analysis converts conditional links to sets of

simple links. It eliminates vacuous paths by deleting simple links that prove untraversable.

PLR represents the dependence of transitions on predecessors by partitioning regions

of out-degree greater than one into subregions of out-degree one. Each subregion consists

of all points through which trajectories cross into a specific successor. Subregions initially

inherit the predecessors of their parents. Let region S above have subregions S,..., Sk. The

conditional link S-T in the original transition graph translates into one of the simple links

S1-T,... ,Sk-T. The refined graph for the piecewise Lienard equations appears in Figure 3.8a.

The conditional links E-B and E-C translate into the simple links E2-B and E3-C.

..

' (a) '(b)

Figure 3.8: (a) Region splitting and (b) case analysis for the piecewise Lienard equations -'

Refining a transition graph guarantees that every vacuous path contaiiis an untraversable '

I

link by the definition of subregions. A link R-S is untraversable if Si and the boundary be-

tween R and S are disjoint. PLR could detect all untraversable links if it, could precisely
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traecor Iboundary I boundary I boundary

I Itrjcoy I

success false negative true negative

Figure 3.9: Rule-out example: points to the left of the dashed line are disjoint from the

boundary in the x dimension.

determine the boundaries of subregions. It cannot do so in practice because the boundaries S

are the solutions to complicated, generally unsolvable, algebraic and transcendental equa-

tions. Instead, it embeds each subregion in a larger set consisting of all points that satisfy

certain algebraic constraints. If all points on the boundary between R and S satisfy the

constraint for Si, the boundary and Si must be disjoint. PLR deletes every link for which it

succeeds in proving this. In the Lienard example, it deletes the links from B to E2 and E3,

thus eliminating all vacuous paths (Figure 3.8b).

When refining a transition graph, PLR does not recursively split regions that have out- 4
degree greater than one because it could not characterize the boundaries of the results.

Creating recursive subregions would increase the complexity of transition graphs without

improving their predictive power. In the Lienard example, A has out-links to El, E2, and 0

E3, but i annot describe the subsets of A that access the individual El.

The constraii. s for a subregion rule out points whose trajectories are disjoint from the

boundary with the subregions' successor in either coordinate. I chose this constraint over

the weaker constraint that trajectories are disjoint from the boundary because it reduces

directly to an inequality that PLR can evaluate. The two constraints are equivalent when

every boundary between linear regions consists of a line parallel to an axis, as is the case

in the approximations that PLR constructs. Subtler constraints may be required in future

implementations that construct nonlinear boundaries. Figure 3.9 shows three applications

of PLBn's constraint: one where it succeeds, one where it fails although the weaker condition

holds, and one where the weaker condition does not hold. 0

Let boundary b separate a subregion Si from its successor. Let p be a, point whose .r
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component is less than the lower bound I of the projection of b on the x axis. (These are the

points to the left of the dashed lines in Figure 3.9.) The constraint for Si rules out p if the

x component of the trajectory through p

Rla) decreases monotonically, or

R2a) has an upper bound less than 1, or

R3a) decreases toward a local minimum outside S.
6

Figure 3.10 illustrates these cases. The same rules apply to the y coordinate. Analogous

rules Rlb-R3b apply to a point one of whose components is greater than the upper bound

of b.

b b b A
II p 1

p1  IISI SI SI

Ria R2a R3a

Figure 3.10: Rule-out constraints for a point p to the left of a boundary

The exact form of the constraint for a subregion depends on the linear system of the

containing region. In a system with real eigenvalues a1 and a 2 , trajectories have components

cle c ' t 
+ C2 e

t " + k (3.2)

with cl :id c2 linear functions of the initial value. The ci have fixed signs on each region

because the lines ci = 0 where they change sign are asymptotes, which lie entirely on bound-

aries between regions. Equation (3.2) is either monotonic or unimodal depending on the

signs of the c's and a's, as shown in Figure 3.11. For initial values less than boundaries,

PLR constructs an identically false constraint in case 1 of the figure and an identically true %

constraint in case 2. In case 3, it instantiates R3a and in case 4, it instantiates Rla and

R2a. It handles initial values greater than boundaries analogously.
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case behavior

1. c1 > 0, 1 C > 0, c2 > 0,a 2 > 0 or monotone increasing

c1 > 0,al > 0,c 2 <0O,a 2 <0 or

C1 <0al <0, C2 < 0,a2 < 0

2. ci < O, a > 0, c2 < 0, a2 > 0 or monotone decreasing

C1< 1 > 0, C2 > 0, a 2 <0 or

c1 > 0, a <0,C2 > 0,a2 <0

3. c1 > 0,al > 0, c2 < 0,a 2 > 0 or unimodal; minimum at log(-c 2 a 2/C1a1 )

Cl > O, a > 0, c 2 > 0, a 2 < 0 or al - a2

c1 < 0, a < 0, c2 > 0, 2 < 0
log(-c 2a 2 /c~ 1 Cl ON

4. otherwise unimodal; maximum at •
otherwise a-a 2

Figure 3.11: Behavior of C1ea ' t + C2e 0 2t + k for real al, a 2 with a, > a 2

Systems with complex eigenvalues have components S

ceakt sin(/3t + -f) + k (3.3)

with c > 0 and -y functions of the initial point. PLR does not instantiate rule R1 (a or b)

because these functions are never monotonic. It instantiates R3 with the first extremum of ,

equation (3.3). When a < 0, the extrema decrease monotonically in absolute value, so the

global maximum and minimum occur at the first two. PLR uses these values in R2. When

a > 0, it invokes BOUNDER (Ch. 7) on equation (3.3) to calculate bounds for R2. •

PLR obtains additional rule-out constraints for the linear system

X = ax + by ()

y' = cx + dy S

from the "energy" function

Ve(x,y) = (ad - bc)x ' + (ax + by) 2  (3.5)

described in Section 5.2. Equation (3.4) describes a system whose fixed point occurs at the

origin. PLR reduces a general system with fixed point (x0 , yo) to this case by substituting ./i

x - x0 for x and y - Yo for y. The function V increases, is constant, or decreases along all

trajectories depending on whether

Ve =2(d + a)(ax + by)' (3.6)
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is positive, zero, or negative. e is positive for sources, zero for centers, negative for sinks

and nonzero for saddles. In the nonpositive cases, the trajectory through p cannot cross

boundary b if V(p) > Ve(q) for every q in b. In the nonnegative cases, it cannot cross if

V,() < Vj(q). In the Lienard example, PLR rules out the links from B to E2 and E3 with

an energy constraint.

Transitions from regions to sinks and centers, representing trajectories that remain near

fixed points forever, have different rule-out constraints than transitions between regions. A

trajectory cannot stay in a region forever if either component has an extremum outside the

region or increases monotonically in a direction where the region is bounded. This constraint

enables PLR to delete the links from A, C, F, and G to D1 in the transition graph for the

undamped pendulum (Figure 1.4).

3.6 Correctness and Computational Complexity

A sound transition graph for a piecewise linear system contains a link A --+ B if A accesses

B, that is some trajectory crosses from region A to region B. A complete transition graph 0

contains A -+ B only if A accesses B. Piecewise analysis derives sound transition graphs for

arbitrary piecewise linear systems. It constructs a sound initial graph for a system by linking

each region with all its neighbors. Trajectories cannot cross between disjoint regions because

of their continuity. Transition analysis and case analysis preserve soundness by only deleting

links that they prove uncrossable. These conclusions rest upon the soundness of BOUNDER,

which I prove in Chapter 7. Piecewise analysis is incomplete. It retains uncrossable links

when BOUNDER fails on true inequalities.

Piecewise analysis is sound and complete for systems in which the boundaries between

regions are lines, rather than general closed-form analytic curves. The inequalities that

it must resolve are linear in the state variables. They are resolvable by BOUNDER unless ,

externally-specified nonlinear constraints exists. Hence, PLR is sound and complete, since

the regions that it constructs have linear boundaries. Completeness of PLR with respect to

other classes of nonlinear systems is an open problem.

In general, the soundness and completeness of piecewise analysis hinges on its ability to
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resolve inequalities. One could implement an unsound and complete version by choosing an

unsound and complete inequality prover and modifying transition analysis and case analysis
0

to delete every link that they cannot prove crossable. However, no implementation can

be sound and complete because no algorithm can prove all inequalities between extended

elementary functions, as shown by Richardson [36].

The computational complexity of PLR depends on that of BOUNDER, which is exponen-

tial in the length of its input. If all externally-specified constraints are linear, this can be

reduced to polynomial time by replacing BOUNDER with the Karmarkar algorithm. I have

not implemented that complicated algorithm.

3.7 Other Phase Spaces

The preceding sections of this chapter presuppose a planar phase space in which regions

are adjacent if and only if they share a common boundary. Some systems have clearer,

simpler descriptions in other phase spaces. Periodic systems call for phase spaces that

equate equivalent states. For example, the natural space for the pendulum equations

0S

1 9(3.7) :
W' = - -1sin

consists of a cylinder (Figure 3.12a), each of whose points (O,w) represents the infinite set

of equivalent states

(0 + 2rn,w) : n ...,-2,-1, 0,1,2,...). (3.8)

By the same token, a torus is the natural space for a system of two periodic equations. [

-f)i w ,,

W.).

------->

(a) (b)

Figure 3.12: (a) a cylindrical phase space and (b) the corresponding adjacency map
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PLR represents cylinders, tori, and other non-planar phase spaces by generalizing the

definition of adjacency. It permits any pair of regions to be adjacent along any pair of 0

boundaries, instead of requiring them to share a common boundary. According to this

scheme, any two regions can be adjacent, but no region can be adjacent to two regions along a

single boundary. Each adjacency instance includes a homeomorphism (a continuous function

that has a continuous inverse) between the corresponding pair of connected boundaries, as

Figure 3.13 illustrates. The identity fnction on a boundary, used implicitly so far, defines

planar adjacency. The function

(O,w) -+ (0 - 21r,w) (3.9)

from the line 0 = ir to 0 = -7r defines the cylindrical phase space for the pendulum (Fig-

ure 3.12b), whereas the function

(O,w)- (0- 2r,w- 2r) (3.10) N""

defines a torus. PLR can construct cylinders and tori automatically. Other types of adjacency

must be specified by the user.

a b

1 4

Figure 3.13: A generalized adjacency instance between a and b S

Generalized adjacencies do not affect linear analysis or transition analysis because both

occur wiLhin individual regions. Case analysis applies rule-out constraints to the images

of boundaries instead of the boundaries themselves. In the remainder of the thesis, all

adjacencies are identity maps on shared boundaries, unless stated otherwise.

3
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Chapter 4

Examples

The first three sections of this chapter demonstrate piecewise analysis on several differential

equations that model important physical laws and engineering devices. PLR constructs the

piecewise linear approximations from the given equations. In the final section, I discuss a

proposal by Kalman for engineers to analyze piecewise linear models of servo-mechanisms. 0

I show that PLR handles all the examples in his paper and draws the desired conclusions.

4.1 Van der Pol Equations 0

Van der Pol equations often arise in oscillatory dynamic systems. Figure 4.1 depicts a simple

example from network theory: a capacitor, an inductor, and a nonlinear resistor connected
0

in series. By Kirchoff's laws, the current through the circuit obeys the equation

i" + k(i2 - 1)i' + i=0, (4.1)

L LC i:>,

L

VC +C 3RC(i

Figure 4.1: A circuit governed by van der Pol's equation
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with C the capacitance, L the inductance, and k a scaling factor. The symbolic parameters

here and throughout this chapter are declared positive. Intuitively, the system oscillates

because the nonlinear resistor adds energy to the circuit at low currents and drains energy

at high currents. PLR reformulates the nonlinear term (i2 -1)i' as (i3/3-i)' and approximates

i3 /3 - i with the piecewise linear function

2(i + v'3)/3(vf3- 1) for i < -1

f(i) = -2i/3 for -1 < i < 1 (4.2)

2(i- vr3)/3(v'3 - 1) for i > I

by the method shown in chapter 2. Figure 4.2 illustrates the original term and its piecewise

linear approximation. The analysis of the resulting system

S'=y (4.3) S

follows the general pattern described in the previous chapter, although the symbolic pa-

rameters k, L, and C complicate the process somewhat. PLR must consider two cases,

corresponding to whether the characteristic equation has real or complex roots. The fact

that f'(i) is undefined on the boundaries between linear regions does not pose a problem; it

suffices for the analysis that the one-sided derivatives exist.

3

Figure 4.2: Piecewise Linearization of i3 /3 - i

The characteristic equation has complex roots for small values of k and real roots for large

values.' In physical terms, these cases represent under-damped and over-damped systems.

Figures 4.3 and 4.4 show the phase diagrams and transition graphs for small and large k. In S

'Throughout the chapter, I ignore the case of a zero discriminant, which produces an improper node,

because of its rarity and similarity to the nonzero cases. PLR handles it analogously.
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both cases, the regions between the boundaries i = ±1 have a source at (0, 0) (labeled sr and

rr for spiral and real repeller) and the regions outside have a pseudo sink at (0, 0). Transition

analysis determines that trajectories cross the boundaries from left to right at points above

the origin and from right to left below. For small k, case analysis rules out transitions from

B to A2 by rule R3a and from C to Al by rule R3b. The graph consists of a single cycle

around the origin: C-A2-B-A1. For large k, case analysis rules out transitions from A and B

to El by Rla and from G and J to C1 by Rlb (p. 27). The graph contains a single cycle in

which all paths terminate: C2-D-E2-H. Both graphs show that all trajectories spiral around

the origin, but tell nothing of whether they move inward, move outward, or wobble around.

Global analysis, described in Chapter 5, proves that they converge to a unique limit cycle.

C sr A B

Figure 4.3: Phase diagram and transition graph for the van der Pol equation: small k

YS

G C

SJ 4  C DAI

rr.

I0, El ~N
H(-

E B,

Figure 4.4: Phase diagram and transition graph for the van der Pol equation: large k
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4.2 Gravitational Pendulum

The standard model for the gravitational pendulum is

0" i /J' +of sin0 = 0, (4.4)
m

with 0 the angle between the arm and the vertical, 1 the length of the (weightless rigid)

arm, m the mass of the bob, g the gravitational constant, and pi the damping coefficient

(Figure 4.5). In the introduction, I discussed informally the special case of an undamped

pendulum, obtained by setting it = 0. The analysis in this and the following sections takes

place in the cylindrical phase space obtained by identifying the lines 0 = -7r and 0 = ir. The

symmetry and 2r periodicity of the pendulum equation make this space natural.

Figure 4.5: A gravitational pendulum

PLR obtains the approximate pendulum equations

2g )(4.5){m'2f9~± 0a

with

0 + -r for -_r < < --

22
0- 7r for <O0<7r .

by piecewise linearizing sin 0 (Figure 1.2). The first and third systems have saddles at (±r, 0)

because their characteristic roots

+35/ 2i9 (4.7)
2m 4M2 IY

3,.5



are real and of opposite signs. The two saddles coincide in the cylindrical phase space. The

second system has a center at the origin in the undamped case. It has a real or spiral sink

in the damped case depending on whether it is over- or under-damped, that is whether the

discriminant

i2 2rg (4.8)

is positive or negative.

The phase diagrams and transition graphs for the three cases appear in Figures 4.6, 4.7,

and 4.8. The undamped pendulum can oscillate below the horizontal (D1-(O, 0)), oscillate

above the horizontal (C-D2-G-D4), or spin around forever (F-D5-B and A-D3-E). Case anal-

ysis rules out some links, such as C-D3 and G-D5, by energy constraints and others, such

as C-D4 and G-D2, by rules R3a and R3b. The under-damped pendulum transition graph

contains analogues of the undamped pendulum's paths along with links from higher energy

paths to lower energy ones, which no longer violate energy constraints. The pendulum can

change from spinning to oscillating and from oscillating above the horizontal to oscillating

below. The over-damped pendulum can spin or approach the origin, but not oscillate. The

transition graphs do not establish that every damped pendulum trajectory approaches the

origin asymptotically. The next chapter shows how global analysis proves this. %

pi pi

-pi w 2"

Di C F A

A 7)E

D /

S C J
___D c Q4 D 2 D 5 D 3

B F

O B E

Figure 4.6: Phase diagrams and transition graph for the undamped pendulum N
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-pi 2 w 2
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s - C0 -4 c
S s G; j

B F

Figure 4.7: Phase diagrams and transition graph for the under-damped pendulum

I E3 A3

pi pi
-P 2 w 2 Al A2 E2

\ E .4 ,

A -

D1 El
N"

S . -- r s 4 s -

. - .

" B D \ - H -"

H3 B D3

Figure 4.8: Phase diagrams and transition graph for the over-damped pendulum 5
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4.3 Magnetic Pendulums

The simple pendulum model presupposes that the force on the bob is independent of the 

bob's location. The model for a variable force, such as attraction between a magnet and a

metallic pendulum (Figure 4.9), is more complicated. The magnetic force points from the

bob to the magnet with magnitude inversely proportional to the distance between them.

I will ignore gravitation (even though PLR can handle it), since it complicates the model

without producing new behavior. The resulting equation is

0" + LO' + wl(r + 1)f(0) = 0, (4.9) -
m

with

f(O) = (r2 + 2r + 2- 2rcosO)- 312 sin O, (4.10)

r a scaling factor, w the coefficient of magnetic attraction, and the other constants as in

equation (4.4). Straightforward analysis establishes that f is odd and bimodal with a positive

maximum in the interval (0, r/2) and a negative minimum in (-7r/2,0). These facts enable

PLR to piecewise linearize f, as shown in Figure 4.10. The analysis of the corresponding

equations is unaffected by the exact, r-dependent locations and values of the extrema. It is '

identical to that of the piecewise linear gravitational pendulum equations (4.5).

.-

magnet

Figure 4.9: A metallic pendulum attracted by a magnet

The magnetic and gravitational pendulums have the same qualitative behavior, even..

though the restoring force varies in the former and remains constant in the latter. Significant

differences manifest themselves in the presence of competing forces. Two constant forces.

such as gravitation, behave the same as one: their vector sum. Yet replacing the single %

~.%
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Figure 4.10: Piecewise linearization of f(O)

magnet in Figure 4.9 with a horseshoe magnet, as shown in Figure 4.11, completely changes

the pendulum's motion. The horseshoe pendulum obeys the equation

0" + LO' + wl(r + 1)g(O) = 0 (4.11)

m

with g(O) = f(0 + a) + f(0 - a) and a the angle between each pole and the vertical, The

function g has the same general shape as f when r is large with respect to a and /I (Fig-

ure 4.12a). A distant horseshoe magnet causes the same motion as a single magnet because

the bob cannot distinguish between its poles. As r shrinks, g's slope at the origin grows

until it becomes positive and two additional extrema appear (Figure 4.12b). The bob begins

to feel the effect of each pole separately at this point. I had to perform this analysis and

construct the piecewise linearizations by hand because QMR cannot handle g, as explained

in Chapter 2.

peole pole

Figure 4.11: A metallic pendulum attracted by a horseshoe magnet

Figure 4.13 contains the phase diagram and transition graph of an undamped pendulum in?

for a nearby horseshoe magnet. The pendulum can spin (A-D3-E-13-.J and IK-15-F-D5-,3)

oscillate between )oth poles (D:3-E-15-F and C-D3-E-12-L-15-F-D.1), oscillate around the left, %
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'q I

(a) (b)

Figure 4.12: Piecewise linearizations of g(O) for fixed a,II: (a) large r (b) small r

pole (D2-G and D1-(O,O)), or oscillate around the right pole (14-H and 11-(0,0)). Saddles

appear at (0, ±-r) and (0, 0) where the poles cancel each other. A center appears where

each pole is strongest. Additional spurious paths, such as C-D3-E-13-J, are ruled out by the

methods described in Section 5.2. Adding damping to the model changes the centers to sinks.

The transition graph contains the previous links along with links from higher energy paths

to lower energy ones. Adding gravitation changes the origin to a sink. The two existing sinks

persist when the poles of the magnet can overcome the weight of the bob, but disappear ,

when they cannot. Global analysis discovers that the pendulum's oscillations damp out in

the presence of friction and continue forever in its absence. 'IJI

A D3 E

A, E

D H c L 4s 12 L

C C

... . I. 
.. . .

F% D 5F1 '

B %* I F

Figure 4.13: Transition graph and regions for the horseshoe magnet pendulum
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4.4 Automatic Control Systems

Kalman -23] derives the qualitative behavic,, of feedback control systern- hy constructing

phase diagrams of piecewise linear approximations to the differential equations that govern P

them. Like PLR, he builds a composite phase diagram for a piecewise system by combining

the local diagrams of its linear regions. He combines the local diagrams by inspection; the

concepts of transition analysis and case analysis are not developed. Kalman demonstrates the

usefulness of his approach for engineers with several examples involving servo-mechanisms.

PLR handles all the examples in his paper and draws the desired conclusions. 'V

In his first example, Kalman models a positional servo-mechanism by the equation

el ± e ~f(e) = 0 (4.12)

containing a piecewise linear gain element

f(ef)= kle for le < e0  (4.13)

k 2e for lel > eo

with T, eo, k1 , and k2 positive parameters. He analyzes the system in the (e, e') phase plane.

The linear system on the region lei < eo has a sink at (0, 0) and the other two systems have

pseudo sinks at (0, 0). Kalman assumes that the first sink is real and the second two are '

complex, which amounts to declaring kit < 1/4 and k2 t > 1/4. lIe also declares k2 > k,

to ensure that the system responds slowly to small errors, but quickly to large ones. He

sketches several composite trajectories by patching together partial trajectories of the linear

systems (Figure 4.14). They appear to spiral toward the origin for a while, then approach

it asymptotically. The transition graph that PLR constructs (Figure 4.15) proves that all

trajectories follow this path. PLR can also sketch individual trajectories, as I will explain in

Section 8.3. It handles Kalman's remaining examples analogously to the first one.

0
.j. 'p
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(a) (b)

Figure 4.14: Trajectories for equation (4.12) drawn by Kalman (a) partial trajectories of

linear systems (b) composite trajectories
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Figure 4.15: PLR's phase diagram and transition graph for equation (4.12)
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Chapter 5

Global Analysis

The examples in the previous chapter demonstrate the strengths and weaknesses of piecewise

analysis. Although a transition graph for a system of differential equations captures the

sequences of regions that trajectories traverse, it can miss some global properties. PI.R

addresses these lacunae with theoretical analysis that provides definitive information about S

the global behavior of many differential equations, including the examples from the previous

chapter.

5.1 The Poincar -Bendixson Theorem

PLR classifies systems of differential equations by the asymptotic behavior of their trajecto-

ries. The first three classes are trajectories that approach a fixed point, unbounded trajecto-

ries, and periodic trajectories. The Poincar6- Bendixson theorem [28, Ch. 10] states that all

other trajectories of a two-dimensional system approach either a periodic trajectory, called

a limit cycle, or a set of trajectories connecting fixed points, called a sepantrix. Figure 5.1

demon.- ates these possibilities. The remainder of this chapter describes propositions with

which PLR determines the asymptotic behaviors that occur in particular systems. I demon-

strates these propositions on the examples from Chapter 4. In the next chapter, I explain

how PLR interprets transition graphs according to asymptotic behavior.
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limit cycle separatrix

Figure 5.1: Asymptotic trajectories that approach a closed curve. All other bounded

trajectories of a second-order system approach a fixed point by the Poi ncar6- Bend ixson
theorem

5.2 Liapunov Functions

The first few methods for determining asymptotic behavior involve the physical principle

of conservation of energy. Every state of a system has a certain energy, a nonnegative real

number. This quantity is constant along trajectories of conservative systems and nonincreas-]

ing along trajectories of dissipative systems. For example, the total energy of a mechanical

system is the sum of the kinetic and potential energies of its components. The gravitational

pendulum described in Section 4.2 has a single component, the bob, with kinetic energy &Xk

m (lW)2/2, potential energy mngl(1 - cos 0), and total energy 01-,

2(,w + mgl(1 - Cos 0). (5.1),,. :,

The system is conservative in the undamped case (,u = 0) and dissipative in the damped

case (p > 0).

The energy function determines the asymptotic behavior of trajectories in conservative ,2

and dissipative systems. The trajectories of a conservative system lie on the level curves of

the energy function. The level curves of the undamped pendulum are E(O, w) =c with c a

positive constant, or . .,..

0. =+ ( m g( - Cos 0)) (5.2) ,'.,a

in explicit form. The two components form a single periodic trajectory for c < 2nigl, a

separatrix for c = 2mgl, and two unbounded trajectories for c > 2mgl (Figure 5.2). The
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open curves map into closed curves in cylindrical space because they have the same value I
at both end points. In physical terms, the pendulum oscillates, approaches (±ir, 0), or spins

depending on whether its total energy is less than, equal to, or greater than the potential

energy at the maximum elevation 0 =±r.

Figure 5.2: Level curves for the undamped pendulum 0

The trajectories of a dissipative system cannot ascend energy levels. They either remain

on some energy level where dissipation does not occur or approach a stationary point of the

energy function with respect to the system. For example, the fixed points of the damped

pendulum are the only stationary points of its total energy. Every trajectory approaches

one of these points asymptotically. The system has no dissipation-free energy levels because

friction acts at all points where the pendulum moves, which is everywhere except at fixed

points.

The discussion of energy functions applies to any nonnegative differentiable function

V : --* R that is nonincreasing along trajectories of a system of differential equations

z' f- (. These are called Liapunov functions after their inventor. Define V OV/cDzi.

The function V is nonincreasing along trajectories iff the quantity
n ,

V7(z) = grad V(z) . f(z) = V S(z)f(z) (5.3)

is nonpositive, since each trajectory O(t) satisfies

n n
v'(O(t)) = y z (O(t))Oi(t) yV(O(t))fi(¢()) (t)) ), (5.4)

i=1 i=1

by the chain rule and the definition of a solution. V is called a strict Liapunov function

when V < 0.

4" 5
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A fixed point 2 of a system z' = f(z) is stable when there exists a neighborhood U of 2

and a differentiable function V such that

1. V(i) =0 and V(z) > Ofor z EU-Z-

2. V/<OonU-2.

If V < 0 in condition 2, Z is asymptotically stable. These theorems, proved by Liapunov,

formalize my intuitive discussion of dissipative systems. The quantity V represents energy;

the condition V < 0 expresses dissipation. The equation V(z) = c represents a surface

for c > 0. By condition 1, the surface has a component that contains 2 for c sufficiently

small and shrinks to 2 as c approaches zero. By condition 2 and equation (5.3), the tangent

to a trajectory on the boundary of a component points into the component or along the

boundary. This implies that a trajectory remains in every component it enters. The strict

version of condition 2 asserts that the tangent points into the component, implying that a

trajectory crosses into the interior of every component it enters. This argument, illustrated in

Figure 5.3, establishes Liapunov's theorem informally. Hirsch and Smale [19, Ch. 9] provide

a rigorous proof.

V(z) <C

Figure 5.3: Trajectory pointing into a component

The total energy, E, is a Liapunov function for the undamped pendulum and a strict

Liapunov function for the damped pendulum. It is nonnegative, differentiable, and the

system derivative

E(Ow) = -p(lw) 2  (5.5)
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is identically zero for i = 0 and negative for p > 0. The fixed point (0, 0) is stable for t = 0

and asymptotically stable for i > 0, by Liapunov's theorems. The fixed point (±r,0) is

unstable because it has a positive eigenvalue.

The concept of total energy generalizes to systems of the form

'=y (5-6/)m

y' -g(x)y - h(x)

that consist of a dissipative force g and a restoring force h that are functions only of position.

Every example in the previous chapter belongs to this category. The state variables x and y

represent the position and velocity of an abstract particle of unit mass. The potential energy

of the system equals the integral of the restoring force over displacement H(x) = ff h(s) ds

and the kinetic energy equals y2 /2. The total energy

V,, x, y H () +(5.7)

2

has system derivative

1 4(X y) = g(X)y 2  (5.8)

V is a Liapunov function when H is nonnegative and g is nonpositive. PLR tests these con-

ditions with BOUNDER. If they hold, it prunes paths in the transition graph along which lie

increases. For example, it prunes the path C-D3-E-13-J in Figure 4.13 because the maximum

energy in C is less than the minimum energy in J.

The following propositions about Liapunov functions justify my informal discussion of

the pendulum's asymptotic behavior. The proofs appear in Brauer and Nohel [8, Ch. 5].

PLR applies these propositions to systems (5.6) for which it proves , Liapunov. Automatic

constru-+ion of other Liapunov functions is a topic for further research. PLR can, however,

apply any function that users provide.

Proposition 5.1 Let V be a Liapunov function for a system. If V 0, each trajectory lies

on a surface V(z) = c for some c > 0.

This proposition holds for a Liapunov function V when g 0. The equation V c has

two solutions S

y = 1 2(c - 11(x)) (5.9)

4 7



on each interval of x values satisfying c > H(x). The two solutions can form a closed curve,

an open curve, or two curves (Figure 5.4). In the second and third cases, the domains of

the curves can be finite, semi-infinite, or infinite. Each closed curve is a separatrix when

h(x) = 0 at either of its zeroes and a periodic trajectory otherwise. An open curve is two

trajectories when h(x) = 0 at its zero and a single trajectory otherwise. Trajectories never

spiral toward a limit cycle or separatrix.

closed curve open curve two curves

Figure 5.4: Components of V(x, y) = c

Piecewise analysis fails to discover that every trajectory of the undamped gravitational

pendulum equation is periodic except for a separatrix between the oscillating and spinning 0

trajectories. PLR proves this by applying Proposition 5.1 to E. The same proof works for

the undamped magnetic pendulum equation (4.9). The proposition applies to the undamped

horseshoe magnet equation (4.11), as well. PLR infers that the cycles in its transition graph

(Figure 4.13) represent periodic trajectories.

Proposition 5.2 Let a system have a Liapunov function V satisfying: lim V(z) = o.

All trajectories are bounded. 0

The condition implies that every level curve is bounded. Every trajectory lies in the

closed region bounded by the initial energy curve, as discussed above. This implies the

result. In a cylindrical phase space, a sequence I1(0 ,wi)II approaches oo iff the sequence 1wil

does, since 101 < 21r. Hence, the total energy, E, of the damped gravitational pendulum

satisfies the precondition of Proposition 5.2, implying that all trajectories are bounded. The

proposition also holds for simple and horseshoe damped magnetic pendulums.
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Proposition 5.3 Let a system have a Liapunov function V with V(O) = 0. Define S =

{z f/V(z) = 0. Let M be the largest invariant subset of S. All bounded trajectories approach

M asymptotically. 3
An invariant set is one that trajectories never leave after entering. Energy dissipates

along every trajectory outside S. Trajectories approach S as their energy dies away. They

remain near M by its definition. For equation (5.6), S is

{(X,y)lg(x) = 0 V y = 0}. (5.10)

A point (F, 9) in S such that y 0 cannot be in M. The analyticity of g and the requirement

that g(±) = 0 imply that g(x) :# 0 in some neighborhood n of t. The trajectory through

(., 9) is strictly monotonic in x at t because x' = y. It immediately enters n, thus leaving S.

This means that ( ' M. A point (.,0) in S is in M iff h(±) = 0 by a similar argument.

PLR finds these points with QMR (Sec. 8.1). ,. \

The set M for the total energy of the damped gravitational pendulum or damped simple

magnetic pendulum consists of the fixed points: (0, 0) and (±r, 0). Propositions 5.2 and 5.3

imply that every trajectory approaches one of these points asymptotically. PLR infers that .

the infinite walks in the corresponding transition graphs (Figures 4.7 and 4.8) are vacuous.

It cannot apply Proposition 5.3 to the damped horseshoe pendulum because QMR cannot

solve V(z) = 0 for that system.

5.3 Other Methods

The remaining methods for determining asymptotic behavior implement the following propo-

sitions whose proofs appear in Chapter 11 of Lefschetz [28].

Proposition 5.4 A system has no separatrices if its fixed points are all sinks or all sources.

Every separatrix contains a pair of (possibly equal) trajectories, u and v, and a fixed

point, f, such that lim u(t) = f and lim v(t) = f. This cannot happen if the fixed points-,

are all sinks or all sources. PLR rules out separatrices for the Lienard equation (2.3) and van

der Pol equation (4.1) by this proposition. More sophisticated conditions, mainly involving

index arguments, appear in Lefschetz.
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Proposition 5.5 Define the divergence of a two-dimensional system z' f(z) as "S*%

a f (5.11)

8Z1  
9
Z2  S

A closed set C in which the divergence is everywhere positive or everywhere negative (possibly

with a finite number of exceptions) does not contain a periodic trajectory or a separatrix going

from and to a single fixed point.

Suppose there exists a closed trajectory -. The integral of the divergence along 7 equals

zero. The integral over the interior of 7 has the same value by Green's theorem. But the

integral cannot be zero because the divergence is everywhere positive or everywhere negative.

This contradiction refutes the existence of -y. The divergence of the system (5.6) is -g(x), so

Proposition 5.5 holds iff g is almost everywhere positive or almost everywhere negative. The

Lienard, gravitational pendulum, and magnetic pendulum equations satisfy the condition

trivially with g a positive constant.

The last three propositions apply to (5.6) with g and h continuous and h Lipschitz. A ,

function f is Lipschitz if 3kVxVylf(x) - f(Y)l < kix - yl.
~0

Proposition 5.6 Let G(x) = fo'g(s) ds. Given

1. g(x) is even and g(0) < 0,

2. lim G(x) = oo,

3. G has a single positive zero: a, N

4. g(x) is positive for x > a, and .

5. h(x) is odd and xh(x) > 0 for x #0.

The system has a unique, orbitally stable limit cycle.

The first four conditions guarantee that the system gathers energy for small values of Ap

x and dissipates energy for large values. The final condition states that the restoring force

always points inward. The result justifies my intuitive claim in Section 4.1 that all trajectories

of the van der Pol equation approach a unique limit cycle. Trajectories outside the limit
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cycle spiral inward, whereas those inside spiral outward. Piecewise analysis determines that

all trajectories spiral around the origin, but could not tell whether they move inward, move

outward, or wobble around. PLR resolves the ambiguity with Proposition 5.6.

Proposition 5.7 Let there exist positive numbers a, b,u, and v such that:

1. g(x) > a for JxJ > u, and

2. h(x)> b for x > v and h(x) < -b for x < -v.

There exists a compact set that all trajectories enter and never leave.

Intuitively, trajectories must eventually stop expanding if, for large enough displacements,

g dissipates energy and h points inward. The van der Pol equation satisfies these conditions.

Stronger results hold when g always dissipates energy and h increases monotonically with

displacement.

Proposition 5.8 Let there exist positive numbers a, b,c, and v such that:

1. g(x) > a,

2. h(x) > b for x > v and h(x) < -b for x < -v,

3. h'(x) > c, and

4. h"(x) exists and is bounded.
k'44

All trajectories converge to one another. 0

PLR applies each of the propositions in this chapter to every system that it analyze It

tests the preconditions with the BOUNDER inequality prover (Ch. 7) and the QMR mathe- ,I

matical reasoner (Sec. 8.1). The next chapter describes how PLR uses the results.

51-
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Chapter 6

Transition Graph Interpretation

In this chapter, I explain how PLR compares the transition graphs for different piecewise

linearizations of a system of differential equations. The goal is to determine whether one

graph captures features of trajectories that the other misses. PLR uses this information to

improve its initial piecewise linearization. It inserts additional linearization points until new 0

features stop appearing in the resulting transition graphs. It can also compare externally

specified piecewise linearizations with its own. PLt cannot compare transition graphs di-

rectly because each graph describes trajectories in terms of the regions defined by a specific

piecewise linearization. It must derive region-independent descriptions of trajectories from

the graphs and compare them.

PLR characterizes a transition graph by the qualitative features of its cycles and paths.

It characterizes each cycle by the fixed points it encloses and by the possible asymptotic

behaviors of its trajectories. Figure 6.1 lists the admissible behaviors. PLR determines

which behaviors specific systems exhibit with the propositions described in the previous

chapter. The number, location, and stability properties of limit cycles and of separatrices

are not included in the description because these facts are hard or impossible to ascertain.

Reasoning about them is a topic for future research.

For example, in the transition graph of the piecewise van der Pol equation for small

values of igure 4.3), the cycle A1-C-A2-B encloses the fixed point (0, 0). Its trajectories

approach a unique limit cycle, as shown in Proposition 5.6. PLR represents this with the

ordered pair ({(0, 0)}, {limit-cycle}), which does not express the uniqueness of the limit, cycle.

The cycle E2-It-C2-D in the transition graph for large values of k has the same description.
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name description

fixed-point approaches a fixed point

unbounded approaches infinity directly

unbounded-spiral spirals toward infinity

periodic is periodic

limit-cycle is or approaches a limit cycle

separatrix approaches a separatrix

Figure 6.1: Admissible asymptotic behaviors for a trajectory

PLR characterizes paths in a transition graph by the asymptotic behavior of their trajec-

tories. It only considers maximal length paths, which represent complete trajectories. These

trajectories subsume the partial trajectories of shorter paths. The final node of a maximal

path characterizes its trajectories. If a path ends at the node for fixed point p, its trajectories

approach p asymptotically. PLR represents this as the ordered pair ({p}, {fixed-point}).' If

a path ends at a region node, the linear system for the region determines the asymptotic

behavior of its trajectories. All such trajectories must directly approach one of the infinity

points: (-00,-oo), (- , oo), (oc,-oo), or (oo,oo). They cannot approach a fixed point

because the path does not end in a fixed point node. Nor can they spiral toward infinity

without leaving the region. PLR invokes QMR (described in Chapter 8) to infer the infinity '-

point, i, that trajectories approach and represents the result as ({i), {unboundedj).

Figure 6.2 lists the abstract descriptions of the examples discussed in the previous chap-

ters. Trajectories of the Lienard equation approach the origin along the path A-El-(0, 0)

or approach (-oo, -oo) along A-E3-C or D. All trajectories of the van der Pol equation

approach a unique limit cycle for both small and large values of k. The trajectories of the

undamped pendulum equation are periodic. Those on the paths DI-(0,O) and D4-C-D2-

G enclose the origin, while those on F-D5-B and A-D3-E enclose no fixed points. In the

damped case, all trajectories approach (0,0). The trajectories of the horseshoe pendulum 0

are periodic, enclosing none, one, or both of the two fixed points pi and p2. Although PLR

determines the behavior of each example uniquely, that need not be the case in general.

PLR uses this abstraction to improve its initial approximations of systems. It bisects

'It omits unstable fixed points for simplicity because few or no trajectories approach them. They can be

included if desired. % %

.53

VS
":.4;



name equation description Figures

Lienard (2.3) ({(0, 0)}, {fixed-point}), 3.8b

({(- o,--oo)}, {unbounded})

van der Pol (4.1) ({(0, 0)), {limit-cycle}) 4.3, 4.4

undamped pendulum (1.2) ({(0, 0)}, {periodic}),({}, {periodic}) 4.6

damped pendulum (4.4) ({(0,0)}, {fixed-point}) 4.7, 4.8

horseshoe pendulum (4.11) ({}, {periodic}),({p' I, {periodic}l), 4.13

({p2}, {periodic}),( {pl, p2} , {periodic} ,

Figure 6.2: Qualitative features of systems

every finite interval in the approximation, analyzes the resulting system, and compares the

abstract description of its transition graph to that of the original transition graph. It repeats

this process until the new abstract description equals the old one. (This termination criterion

is motivated by numeric integration algorithms that refine partitions until their intermediate

results change less than some tolerance.) For example, Figure 6.3 shows how PLR refines ,' "p

its initial approximation of the Lienard equation (2.3). The transition graph for the refined

system (Figure 6.4) is acyclic with sink nodes D, G, and (0,0). Trajectories that remain

in D or G approach (-oo, -oc); the rest approach (0,0). The description of the refined

graph is identical to that of the original, listed in Figure 6.2, so refinement ends. Figure 6.5

demonstrates the close resemblance between the phase diagram of the actual Lienard equa- .

tion and that of the original piecewise linear approximation. I explain how PLR produces

phase diagrams in Section 8.3.

The motivation behind refinement is that finer approximations lead to more accurate

predictions because they more closely resemble the actual equations. In fact, the sequence of

refinements converges to the actual behavior of any individual system, but need not converge

uniformly over all instances of a parameterized system. The refinement algorithm seeks the

simplest approximation that captures the qualitative features of the original for all parameter

values. Following qualitative analysis, numeric analysis can determine an approximation

that reproduces the trajectories of the original for specific parameter values to within a.

prespecified numeric tolerance. This approximation will contain orders of magnitude more ,

intervals than the qualitative one, enough to make piecewise analysis intractable.

5,4

*~~~~~~~~~~~~J ",.*I'. J ~ ~ ~ ~ q ~ '. . . ' ~ '



3pi2pi 4i
000

Figure 6.3: Refinement of the Lienard equation (2.3): initial approximation above and

refined version below.
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Figure 6.4: Phase diagram and transition graph for the refined Lienard equation
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Figure 6.5: Phase diagrams of (a) the Lienard equation (b) its initial approximation

I chose a bisection refinement strategy for its simplicity and uniform applicability, but

other strategies can easily be substituted. One might split intervals at inflection points and %

zeros of higher derivatives in addition to the extrema and zeroes of the original approxima-

tion. Another possibility is to split intervals where the derivative changes rapidly into more

pieces than one splits intervals where it changes slowly. ,

This chapter concludes the description of the major components of PLR: construction of

initial piecewise linear approximations, piecewise analysis, global analysis, transition graph

interpretation, and refinement. The next two chapters describe PLR's principal utilities: the 0

BOUNDER inequality prover and the QMR mathematical reasoner.
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Chapter 7

Inequality Reasoning

7.1 Introduction

This chapter describes a program called BOUNDER that proves inequalities between func-

tions over all points satisfying a finite set of constraints: equalities and inequalities between

functions. I have designed BOUNDER for the purpose of efficiently resolving inequalities that

arise in PLR and other realistic modeling problems. It handles universally quantified in-

equalities, which make up the majority of these problems, but ignores the complexities of

arbitrary quantification. BOUNDER manipulates extended elementary functions: polynomials

and compositions of oxponentials, logarithms, trigonometric functions, inverse trigonometric

functions, absolute values, maxima, and minima. It cannot prove every true inequality in

its domain, since Richardson [36] proves this problem undecidable. It can, however, resolve

all the inequalities that arise in this thesis and many more. Inequality provers for decidable

subsets of the extended elementary functions, such as the linear functions, do not meet the

needs of PLR or of my other research. $

Bo- .DER tests whether a set of constraints, S, implies an inequality a < b by calculat- )P

ing upper and lower bounds for a - b over all points satisfying S. It proves the inequality

when the upper bound is negative or zero, refutes it when the lower bound is positive, and

fails otherwise. Specific bounding methods perform well on some subset of the extended ele-

mentary functions, but poorly elsewhere, so BOUNDER maintains a hierarchy of increasingly

complex methods. When one fails to resolve an inequality, it tries the next. Although com-

plex methods derive tighter bounds than simple ones for most functions, exceptions exist.
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Hence, the hierarchy derives tighter bounds than even its most powerful component. It also V

performs well on hard problems without wasting time on easier ones.

BOUNDER consists of a simplifier, a context manager, and four bounding algorithms: S

bounds propagation, substitution, derivative inspection, and iterative approximation. The

simplifier reduces input inequalities to equivalent but shorter inequalities by canceling com-

mon terms and replacing monotonic functions with their arguments. For example, x + 1 <

y+Isimplifies to x < y,-x < -y tox > y, x 3  to <y, and e' < eV tox < y.

The simplifier only cancels multiplicands whose signs it can determine by bounds propaga-

tion. The context manager organizes constraint sets in the format required by the bounding

algorithms. The bounding algorithms derive upper and lower bounds for a function over

all points satisfying a constraint set. In the remainder of this chapter, I describe these

components, compare BOUNDER with other inequality reasoners, and draw conclusions.

BOUNDER distinguishes between strict and non-strict inequalities. This mechanism con-

sists mainly of careful bookkeeping, based on the properties of continuous functions. For

instance, a sum can only attain its upper or lower bound if both addends can attain theirs.

From here on, I will speak only of non-strict inequalities, since BOUNDER handles the strict

case analogously.

7.2 The Context Manager

The context manager (cM) manages constraint sets for the other components. The simplest

constraints, called relational constraints, are equalities and inequalities between extended

elementary functions. CM derives an upper or lower bound for a variable x from an inequality

L < R by reformulating it as x < U or x > U with U free of x. It derives upper and lower

bounds for x from an equality L = R by reformulating it as x = U. Inequality manipulation

may depend on the signs of the expressions involved. For example, the constraint ax < b can

imply x < b/a or x > b/a depending on the sign of a. In such cases, CM attempts to derive the

relevant signs from other members of the constraint set using bounds propagation. If it fails, %

it ignores the constraint. (Another possibility would be to create a disjunctive constraint,

explained below.) Constraints whose variables cannot be isolated, such as x < 2x, are 0
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ignored as well. CM gathers the bounds that it derives from a set of relational constraints

into a simple context. The number of variables in a constraint is linear in its length and each

variable requires linear time to isolate. Isolation may require deriving the signs of all the 0

subexpressions in the constraint. Theorem 1 implies that this process takes linear time. All

told, processing each constraint requires quadratic time in its length. Subsequent complexity

results exclude this time.

The context manager also handles propositional constraints, boolean combinations of

relational constraints. A set of propositional constraints is equivalent to the conjunction of

its members. CM eliminates negation from this conjunction by replacing every instance of

a # b with a < b V b < a, every instance of -'(a < b) with b < a, and so on. It recasts the

resulting formula in disjunctive normal form as a disjunction of conjunctions of relational

constraints. CM creates a simple context for each disjunct and collects the results into a

disjunctive context. 0

The bounding algorithms and the inequality prover reduce disjunctive contexts to simple

ones. The upper bound of a function in a disjunctive context is the maximum of its upper

bounds in all disjuncts and the lower bound is the minimum of its lower bounds. For example,

the constraint x < -1 V x > 2 implies a lower bound of 1 for x2 . Similarly, an inequality % -

holds in a disjunctive context iff it holds in all disjuncts. The remainder of this chapter deals

solely with relational constraints and simple contexts, hereafter abbreviated to constraints

and contexts.

Two pairs of functions form the interface between the context manager and the inequality

prover and bounding algorithms. Given a variable x and a constraint set S, the functions

VAR-LBS(x) and VAR-UBS(x) return the maximum of x's numeric lower bounds in S and the •

minimum of its numeric upper bounds. The functions LOWERs(X) and UPPERs(X) return %

the maximum over all lower bounds, both symbolic and numeric, and the minimum over %

all upper bounds. Both VAR-LB and LOWER derive lower bounds for x, whereas both VAR- 0

UB and UPPER derive upper bounds. However, LOWER and UPPER produce tighter bounds ,

then VAR-LB and VAR-UB because they take symbolic constraints into account. Figure 7.1 -

demonstrates the respective bounds that these functions derive. All four functions run in

constant time once the contexts are constructed.
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numeric constraints all constraints
VAR-LBs(X) VAR-UBs(x) LOWERs(X) UPPERs(X)

a 11 oo 1 -4/b

b -2 0 max{-2,-4/a,c} min{0,c}

C -00 00 b b

Figure 7.1: Numeric and general bounds for S = {a > 1, b < 0, b > -2, ab > -4, c b}

7.3 Bounding Algorithms

This section contains the details of the four bounding algorithms: bounds propagation,

substitution, derivative inspection, and iterative approximation. Each algorithm derives

tighter bounds than its predecessor, but takes more time. Each invokes all of its predecessors

for subtasks, except that derivative inspection never calls bounds propagation. The bounding
@

algorithms define the extended elementary functions on the extended real numbers in the

standard fashion, that is 1/ ± o = 0, log 0 = -oo, 2' = o, and so on. Throughout this

chapter, "number" refers to an extended real number.

7.3.1 Bounds Propagation

The bounds propagation algorithm bounds a compound function by bounding its components

recursively and combining the results. For example, the upper bound of a sum is the sum

of the upper bounds of its addends. The recursion terminates when it reaches numbers and

variables. Numbers are their own bounds; VAR-LB and VAR-UB bound variables. Figure 7.2

contains the bounds propagation algorithm, BPs(e), for a function e over a set of constraints

S. One can represent e as an expression in its variables x 1,... , x,, or as a function c(x) of the

vector x = (XI)... , x,n). From here on, these forms are used interchangeably. The notations

1b, and ub, abbreviate the lower and upper bounds LBS(c) and UBs(c). Figure 7.3 contains

the subroutine that bounds exponentials. Figure 7.4 shows the upper bound subroutine for

trigonometric functions. The lower bounds are obtained by replacing max with min, 00 with

-o, TRIG-UB with TRIG-LB, and line 1.1 with

1.1' 3
fn E Z lb,, < (2n- 1)7r < uba -1
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e is 1b, be

1 a number c C

2 a variable VAR-LBs(C) VAR-Uls(c)

3 a + b lb, + lbb ub, + ubb

4 ab min {blbb, lbaubb, max {lba lbb, 1flbb,

ubalbb, ubaubb} ubaibb, ubdllbb} L

5 a b  EXPT-LBs(a, b) EXPT-UBs(a,b)

6 niin a, b) m i iilba, lbbl Tfifln ba, ubb}

7 max { a, b} max {lba, lbb} max { uba, ubb}

8 log a log 1b, log Uba

9 jai

9.1 lba < 0 < uba 0 max {-1b, ub(,l

9.2 else min {IbI, ubl} max {Ilb j, ub~j}

10 trigonometric TRIG-LBS(e) TRIG-UBs(e)

Figure 7.2: The BPs(e) Algorithm

Case EXPT-LBs(a, b) EXPT-UBs(a, b)

1 lba > 0 exp(lbbloga) exp(ubbloga)

2 b = P- with p, q integers

2.1 p,q odd and positive [lba]b [ubalb

2.2 p, q odd and uba < 0 [ubal [Iba]b

2.3 p even exp(bblogjla) exp(ubblog al)

2.4 else -0 o 00

3 else -0o 00

Figure 7.3: Bounding Algorithms for Exponentials

e is TRIG-UBs(e)

1 sin a

1.1 3n E Z lba < (2n + )7r < ub 1

1.2 else max{sin lba, sin uba) '

2 cosa TRIG-UBs(sin(a +-taa

3 tan a

.3i ]E Z 1b,, < (n + )r < ub no

3.2 else tan uba

4 arcsin a

4.1 1b, > -1 A ub_ < I arcsin ub,

4.2 else no

5 arccos a

5.1 1b,, > -1 A ub_ < 1 arccos lba

5.2 else no

6 arctan a arctan uba S

Figure 7.4: Upper bounds for Trigonometric Functions
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and by interchanging all instances of lb and ub that appear in the second column.

The correctness and complexity of BP are summarized in the theorem:

Theorem 1 For any extended elementary function e(x) and set of constraints S, bounds

propagation derives numbers lb, and ub, satisfying

Vx.satisfies(x, S) =. lb< < e(x) < ub, (7.1)

in time proportional to e's length.

Proof: The proof is by induction on e's length. First, consider correctness. Numbers and I 0

variables are the only inputs of length 1. Numbers satisfy condition (7.1) identically and

variables satisfy it by the definitions of VAR-LB and VAR-UB. Suppose condition (7.1) holds

for inputs of length less than n and let e be of length n. BP bounds e by combining the

bounds of its components, a and b, in one of steps 3-10 (Figure 7.2). The correctness of the 0

bounds on a and b follows from the inductive hypothesis, since they have length less than n.

It remains to verify that the combination rules yield valid bounds. Straightforward algebraic

manipulations, performed in full by Moore f32J, confirm steps 3,4,6,7 and 9. Step 8 follows

from the fact that log x increases monotonically in x, with the provision that undefined LB-%

values represent -cc and undefined UB values, oo. The remaining steps, 5 and 10, call the

exponential and trigonometric bounding algorithms respectively.

Step 1 of the exponential bounding algorithm (Figure 7.3) uses the monotonicity of the

exponential function along with the identity ab = exp(bloga) for a > 0. The inductive

hypothesis does not establish the correctness of the bounds on b log a because the expression

has length n. I must apply the arguments for steps 4 and 8 of BP to the bounds of a and
0

b. Steps 2.1 and 2.2 are valid because the function ab respectively increases and decreases

monotonically in a for those choices of b. In step 2.3 the equality ab = lalb holds, so the

proof of step 1 applies. Finally, steps 2.4 and 3 yield valid bounds vacuously. 0

The correctness of the trigonometric bounding algorithms (Figure 7.4) follows from the %

properties of piecewise monotonic functions. Suppose an interval A partitions into a set

of subintervals D on which a function f decreases monotonically and a set I on which f

increases monotonically. The maximum (minimum) of f on A occurs at the right (left)

0

62

IX
"Ad~~,x We -, e



endpoint of some interval in I or at the left (right) endpoint of some interval in D. When

specialized to the individual trigonometric functions, this result implies the correctness of

their bounds. This completes the correctness proof.

Next, consider the time-complexity of BP, t(n). Inputs of length 1, numbers and variables,

take constant time. A unary function of length n takes time t(n- 1) to calculate the bounds of

its argument plus constant overhead. A binary function of length n takes time t(i)+t(n-i-1) S

to calculate the bounds of its arguments, with i the length of its first argument, plus constant

overhead. Induction proves that t(n) is of order kn, with k the maximum overhead required

for any step of BP. I

BP achieves linear time-complexity by ignoring constraints among variables or multiple

occurrences of a variable in an expression. It derives excessively loose bounds when these

factors prevent all the constituents of an expression from varying independently over their

ranges. For instance, the constraint a < b implies that a - b cannot be positive. Yet given .

only this constraint, BP derives an upper bound of cc for a - b by adding the upper bounds

of a and -b, both cc. As another example, when no constraints exist, the joint occurrence

of x in the constituents of x2 + X implies a global minimum of -1/4. Yet BP deduces a lower

bound of -oo by adding the lower bounds of x2 and x, 0 and -cc. Subsequent bounding

algorithms derive optimal bounds for these examples. Substitution analyzes constraints

among variables and the final two algorithms handle multiple occurrences of variables. All

three obtain better results than BP, but pay an exponential time-complexity price.

7.3.2 Substitution

The si' litution algorithm constructs bounds for an expression by replacing some of its

variables with their bounds in terms of the other variables. Substitution exploits all solvable .

constraints, whereas bounds propagation limits itself to constraints between variables and

numbers. In our previous example, substitution derives an upper bound of 0 for a - b from

the constraint a < b by bounding a from above with b, that is a- b < b-b = 0. Substitution

is performed by the algorithms SUPs(c, H) and INFs(e, 1/), which calculate upper and lower

bounds on e over the constraint set S in terms of the variable set H. When H is empty, the

bounds reduce to numbers.
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Figures 7.5 and 7.6 contain the SUP function and its auxiliary, sUPP. One obtains the

INF function from Figure 7.5 by interchanging all occurrences of SUP and INF and replacing

SUPP with INFF, UPPER with LOWER, EXPT-SUP with EXPT-INF, TRIG-SUP with TRIG-INF,

and max with min. Also, step 9 is replaced with:

9' lal

9.1 INFs(a,H) <0< SUPs(a,H) 0 0

9.2 else min {IINFs(a, H)I, ISUPS(a, H)I}

The INFF function is obtained from Figure 7.6 by replacing SUPP with INFF and UB with LB.

The auxiliary functions EXPT-SUP, EXPT-INF, TRIG-SUP, and TRIG-INF are derived from 0

the exponential and trigonometric bounding algorithms (Figures 7.3 and 7.4) by replacing

UBS(a) with SUPs(a, H), replacing LBs(a) with INFs(a, H), and so on for b. The expression

v(e) denotes the variables contained in e. In the remainder of this section, I will focus on

suP. INF is analogous.

e is SUPs(e, H) h

1 v(e) C H e

2 a variable SUPPS(e, SUPs(UPPERs(e),H U {e})) O

3 a +b

3.1 v(b) - v(a) _ H SUPs(a, H) + SUPs(b, H)

3.2 else SUPs (a + sups(b, H U v(a)), H)

4 a b

4.1 LBs(a) > 0 0

4.1.1 v(b) - v(a) _ H max {SUPs(a,H)suPs(b,H),INFs(a,H)suPs(b,H)1

4.1.2 else SUPs(a suPs(b, H U v(a)), H)

4.2 UBs(a) < 0

4.2.1 v(b) - v(a) It max {SUPs(a, H)INFs(b, H), INFs(a, H)INFs(b, H)}

4.2.2 else SUPs(a INFs(b, H u v(a)), H)

4.3 else max {SUPs(a, H)sUPs(b, H), SUPs(a, II)INFs(b, H),

INFs(a, H)sups(b, H), INFS(a, H)INFs(b, H)}

5 a6  EXPT-SUPs(a, b, H)

6 min{a, b} min {SUPs(a, H), SuPs(b, I)}"

7 max{a, b} max {SUPs(a, H), SuPs(b, H)) 0

8 log a logSUPs(a,H)

9 Ial max {IINFs(a, H) ISUPs(a, H)1 I

10 trigonometric TRIG-SUPs(e, H) ,. -

Figure 7.5: The SUPs(e, H) Algorithm
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case SUPPs(x, B)
1 x v(B) B

2 B=rx+A; rER, x v(A)

2.1 r> 1 00

2.2 r<I A_-r
3 B = min{C, D} min {SUPPs(x, C), SUPPs(x, D)}

4 B = max{C, D} max {suPPs(x, C), supps(x, D)}

5 else UBs(B)

Figure 7.6: The SUPPs(x,B) Algorithm .1
In step 1, SUP calculates the upper bounds of numbers and of variables included in H.

It analyzes a variable, x, not in H by constructing an intermediate bound 0

B = SUPs(UPPERs(X), H U {x}) (7.2)

for x and calling SUPP to derive a final bound. If possible, suPP derives an upper bound for

x in H directly from the inequality x < B. Otherwise, it applies bounds propagation to B.

For instance, the inequality x < 1 - x yields an upper bound of 1/2, but x < x 2 
- 1 does

not provide an upper bound, so sUPP returns UBS(X 2 
- 1).

SuP exploits constraints among variables to improve its bounds on sums and products. If

b contains variables that a lacks, but which have bounds in a's variables, SUP constructs an

intermediate upper bound, U, for a + b or ab by replacing b with these bounds. A recursive

application of suP to U produces a final upper bound. (Although not indicated explicitly in

Figure 7.5, these steps are symmetric in a and b.) If a and b have the same variables, SUP

bounds a + b and ab by recursively bounding a and b and applying bounds propagation to

the results. For example, given the constraints c > 1, d > 1, and cd < 4, SUP derives an

interm( 'tte bound of 3c/4 for c - 1/d by replacing -ld with -c/4, its upper bound in c.

This bound is derived as follows:

{d } = 1TF~{} 1 1 c~ (7.3) 0SUP(-- ,{(c}) =-INF(,{} 1C (7.d3))- /c

SUp uses the recursive call d{4

3c 33cP( 4 SUPP(, SUP( d,{C})) SUPP(C, INF(d,{c}) SUPP(c 3)= 3 (7.4)

to derive a final bound of 3 for c - ld.
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Substitution produces valid bounds for any input, variable set, and constraints. A!,hough

the proof requires a joint induction on both sup and INF, I will present only the sup half,

since the INF half is completely analogous. At first glance, it seems possible that SUP fails to

terminate on some inputs. Step 2 bounds a variable by invoking suP recursively on a more

complex expression, its UPPER. Similarly, steps 3.1, 4.1.2, and 4.2.2 bound their inputs by

recursing on intermediate values of unknown complexity. The following lemma rules out

infinite recursion and allows us to proceed to the correctness theorem:

Lemma 2 The algorithms SUPs(e,H) and INFs(e,H) terminate for any input e, variable

set H, and constraint set S. 0

Proof: The auxiliary functions EXPT-SUP and TRIG-SUP terminate if SUP does, since they

call it at most twice and apply a few extended elementary functions to the results. Regardless

of SUP, SUPP always terminates because each recursive call, in steps 2 and 3, decreases the

length of b, while the other steps terminate directly. It remains to show that SUP makes

only finitely many recursive calls on any input. Let T be the invocation tree of recursive

calls made by sup for some e, H, and S. Each node n is labeled with the input e, and

variable set H. of its corresponding SUP call. A node n takes step k if e,, matches case k of

SUP (Figure 7.5). Let V denote the union of e's variables with those appearing in S. The

variables of every e,, form a subset of V. Consider some path p through T (Figure 7.7). Each 41

node 1 of p that takes step 2 adds some member of V to the set Hm of its successor m. No

step removes elements from H, so this variable appears in all subsequent H,. At most IVI .

nodes of p can take step 2 before some node takes step 1 and terminates the path.

p

Slast step 2 .

..... last step 3.2, 4.1.2, or 4.2.2
r

Figure 7.7: A path p through T

Let q be the sub-path of p beginning with the successor of the last node that takes step

2. By the argument above, p is finite iff q is finite. Let the free set of a node , lenote the
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variables of e, not in H,. Suppose n's predecessor, m, takes step 3.2, 4.1.2, or 4.2.2 and

n corresponds to the outer suP of that step. The expression em has the form a + 6 or ab

with b containing some variable not in v(a) U ti4, whereas e, contains only variables from

v(a) U H,,. This implies that n'; free set is a proper subset of re's, since H,, equals fI,,. A

None of SUP's steps except 2 increases the free set of a node over that of its predecessor.

Path q contains no instances of step 2, so it can contain only finitely many such successors

of nodes that take steps 3.2, 4.1.2, and 4.2.2 before it reaches a node with an empty free set

and terminates at step 1. Let r be the sub-path of q beginning with the successor of the last

node that takes one of these threc steps. Each of r's nodes takes a step that reduces the size

of its input, so r must terminate. This proves q, and hence p, finite. I 1

The following theorem establishes the correctness of substitution:

Theorem 3 For every extended elementary function e, variable set H, and constraint set

S, the expressions i = INFs(e, 1I) and s = suPs(e, H) satisfy the conditions: ."

i and s are expressions in H (7.5)

Vx.satisfies(x, S) =t' i(x) e(x) < s(x) (7.6)

Proof: I will prove that every finite invocation tree for sup satisfies conditions (7.5) and (7.6)

by induction on tree depth. This proves the theorem, since both algorithms always produce

finite trees by Lemma 2. Trees of depth 1 return bounds of e, which satisfy condition (7.5)

trivially and (7.6) identically. Suppose the theorem holds for trees of depth less than n and

consider a suP tree T of depth n > 1. The correctness of all recursive calls follows from the

inductive hypothesis. It remains to prove that the root node satisfies both conditions.

Step ' of SUP cannot occur since n is greater than 1. By inductive hypothesis and by

the definition of the UPPER function, the second argument to SUPP in step 2 of SUP is an

expression in II U {je} that bounds e. This implies directly that step 1 of supp satisfies

conditions (7.5) and (7.6). Steps 2.1, 2.2, and 2.3 satisfy them vacuously, by elementary %

algebra, and by Theorem 1 respectively. Since the other steps satisfy the conditions, the V.

definitions of min and max guarantee that steps 3 and 4 do too.

Steps 3.2, 4.1.2, and 4.2.2 of suP generate an intermediate upper bound, u, by bounding

one of e's constituents. Their final result, SUP(u, H), satisfies conditions 7.5 and 7.6 by the
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inductive hypothesis. The validity of u follows from the facts

(step 3.2) k<l € a+k<a+l-

(step 4.1.2) a > O A k < = ak < al

(step 4.2.2) a < O A k > 1 ak < al

by the inductive hypothesis. SuP's remaining steps, including the auxiliary functions EXPT-

sup and TRIG-SUP, apply the combination rules of BP, appearing in Figures 7.2-7.4, to the

sup and INF of e's constituents. Their results satisfy condition (7.5) because the constituents

do. Condition (7.6) holds by Theorem 1. I

Substitution utilizes constraints among variables to improve on the bounds of BP, but

ignores constraints among multiple occurrences of variables. It performs identically to BP on

the example of x2 + x, deriving a lower bound of -oo. Yet that bound is overly pessimistic

because no value of x minimizes both addends simultaneously. The last two bounding

algorithms address this shortcoming.

7.3.3 Derivative Inspection

The derivative inspection algorithm, DI, calculates bounds for a function f from the signs

of its partial derivatives. If the partial derivative of f with respect to x is non-negative

over an interval [l,r], then f's minimum and maximum on the interval, for any choice of its

other variables, occur at I and r respectively. If the partial derivative is non-positive, the

maximum occurs at I and the minimum at r. In the example from the previous section,

the derivative of x1 + x is non-positive on [-00, -1/2] and non-negative on [-1/2, 0]. This

information enables DI to derive an optimal lower bound of -1/4 for x2 + x, as opposed to

INF's bound of -oo.

Before describing DI in detail, I will introduce some notation. Let S be a set of constraints

and x a vector (x,..... x) of variables. The range of xi in S is the interval

Xi = [INFs(xi, {}), SUPs(xi, {})] (7.7)

and the range of x in S is the Cartesian product X = X, x ... x X, of its components'

ranges. Theorem 3 implies that

Vx.satisfies(x, S) = x E X (7.8)
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One can split X in dimension i by choosing a point pi in Xi and forming two subsets, one

with the additional constraint xi < pi and the other with xi > pi. One can collapse X to a

point in dimension i by adding the constraint xi = pi to S. If X is collapsed in all directions, 1'V

it reduces to a point.

Di bounds a function f(x) by partitioning X into subregions on which f(x) is monotonic.

The maximum upper bound and minimum lower bound over all subregions bound f(x) from

above and below on X. These bounds are valid over the set of points whose components

satisfy S, since all such points belong to X by equation 7.8. DI splits X in each dimension

i by dividing Xi into maximal intervals of the following types: 0

decreasing suP(0.1, {}) 0

increasing IN01(z) >0 (7.9)

unknown neither of the above.

If f(x) increases in xi on a subregion, it must attain its minimum over that subregion when

xi equals its left endpoint and its maximum when xi equals its right endpoint. If f (x)

decreases, the endpoints are reversed. Either way, DI can collapse the subregion to a point

in dimension i. Figure 7.8 shows the results of this procedure for the function x2 - 2 on the

region ([-1, 1], [-1, 1). The upper and lower bounds, ui and li, are found directly for each

interval because no intervals are unknown. X2

13 12

t-ll3' I -_ _ ¢. ,

xI x I

-'U 3  U2  X

U 4  
U 1 1

L _ 14 11
-l

Figure 7.8: Derivative inspection for x -x
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Derivative inspection takes time proportional to the number of regions into which f's

domain splits. For this reason, it only applies to functions whose partial derivatives all

have finitely many zeroes in X. When every Xi consists solely of increasing and decreasing

intervals, derivative inspection yields optimal bounds directly, since all regions reduce to

points. Otherwise, one must use another bounding algorithm to calculate bounds on the

non-trivial subregions. This two-step approach generally yields tighter bounds than applying

the second algorithm directly on f's entire domain, since the subregions are smaller and often

reduce to points along some dimensions.

7.3.4 Iterative Approximation

Iterative approximation, like derivative inspection, reduces the errors in bounds propagation

and substitution caused by multiple occurrences of variables. Instead of bounding a function

over its entire range directly, it subdivides the regions under consideration and combines the

results. Intuitively, BP's choice of multiple worst case values for a variable causes less damage

on smaller regions because all these values are less far apart. Figure 7.9 illustrates this idea

for the function x 2 
- x on the interval [0,1]. Part (a) demonstrates that BP derives an

overly pessimistic lower bound on [0, 1] because it minimizes both -x and x2 independently.

Part (b) shows that this factor is less significant on smaller intervals: the minimum of the "

two lower bounds, -3/4, is a tighter bound for x2 - x on [0, 1] than that of part (a). One

can obtain arbitrarily tight bounds by constructing sufficiently fine partitions.

n m n mn m

0 1 0

LB(x 2 - X) 2-1 4

(a) (b)

Figure 7.9: Illustration of iterative approximation for x 2 - x on [0, 11. The symbols m and

n mark the values of x that minimize -x and x2 respectively.

Iterative approximation generalizes interval subdivision to multivariate functions and 0

increases its efficiency, using ideas from Moore [32] and Asaithambi et at. [2]. It converges
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1. Apply DI to f and S, pair each resulting region with its MUB value, sort the

pairs in decreasing order of MUB, and set list to the sorted list. I
2. (Z, b) +- head(list); list +- tail(list) {The MUB of b is Z.}

3. If U(X) = 0 or b - MLB(Z) < e return b. m

4. Choose an i in U(Z) which maximizes w(Zi).

5. Calculate Z1 and Z2 by bisecting Z in dimension i and collapsing the

results in increasing and decreasing directions.

6. For j = 1,2 do

6.1 Delete from list every pair (Z', Y) for which Y < f(m(Z)). ._

6.2 Insert (Zj, MUB(Zj)) into list in proper order. --

7. Go to step 2.

Figure 7.10: Algorithm IA(f(),S,e)

to the true bounds of any continuously differentiable function on a bounded domain. Let X0

denote the range of the vector x in constraint set S, as defined in the previous section. The IA

algorithm, shown in Figure 7.10, calculates an upper bound for a continuously differentiable

function, f(x), on a finite region, X 0 , by iteratively dividing and shrinking Xo. It derives a

lower bound by negating the upper bound of -f(x). By Theorem 3, these bounds are valid

over the set of points whose components satisfy S.

Let c denote the collection of subsets of X0 produced by DI on input f(x) and S. The

least upper bound, LUB, of f on X0 equals the maximum LUB of f over c, as explained in

the previous section. IA uses a modified version of the UB function, MUB, to estimate the

LUB on regions. Initially, it pairs each member of c with its MUB value and sorts the pairs in

decreasing order of MUB. (The list can be implemented efficiently by a balanced tree.) The is

first MUB value in the list is an upper bound for f on X0 . At each iteration, IA splits the

first region, Z, by bisecting an unknown component (defined in equation (7.9)) and inserting

the resulting subregions into the list in proper order.

It would be inefficient to split Z in an increasing or decreasing direction, i, since the

optimal value of xi is known. In fact, the range of x, consists of its optimal value. Derivative

inspection imposes this condition on the initial partition and TA maintains it by collapsing

each subregion of Z to its left endpoint in every decreasing direction and to its right endpoint

in every increasing diretion. Also, it would be pointless to consider regions on which f

cannot attain its maximum. One such case occurs when the MUB value, b', of an entry •

(Z', b') is less than f's value at the middle of Z , or Z2 . To improve efficiency, IA deletes
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these entries.

The MUI3 function is defined as follows:

MUB(X) - f(m(X)) + UBX (xi - mi(X))-f-(X) (7.10)

The set U(X) contains all dimensions in which f(x) has unknown direction in X and the

vector m(X) denotes the middle of X, whose component mi(X) equals the midpoint of Xi.

The MLB function is defined analogously, with LB replacing UB in equation (7.10). Moore

[32] proves that these functions bound f on all subsets of Xo, that is

VX C- XoVx E X.MLB(X) _ f(x) < MUB(X) (7.11)

This implies that the LUB of f on X lies between its MUB and MLB.

Define the width of the interval [a, b] as b - a and the width of the region X, w(X), as

the maximum over the widths of its components. Moore proves that

VX C Xo.MUB(X) - MLB(X) < Lw(X) (7.12) %

with L a constant. This result assists in the proof that IA terminates.

Lemma 4 Let x = (xl,..., x,,) have finite range X in S. For every positive c and function

f(x) continuously differentiable on X, IA terminates within

M= J w(X,) (7.13) 0

iterations, where L is the constant of equation (7.12).

Proof: First, suppose list contains only the region X after step 1. Each interval Xk can be

decomposed by a sequence of bisections into at most

2Lw(Xk) (7.14)

subintervals without splitting some interval narrower than C/L. All told, X can be decom-

posed into at most Al regions without splitting such an interval. By the choice of i in step 4,

IA can only split an interval narrower than C/L if the region Z is narrower than C/L. This .*- .

never happens because such a Z satisfies the second disjunct of step 3, terminating the S

iteration, by equation (7.12). Hence, at most A1 iterations can occur.
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Next, suppose list contains regions X, ..., X k after step 1. Applying the argument above

to each region shows that IA terminates within

)k 
n

() w(Xi) (7.15)

iterations. The jth addend in this equation equals the volume of X3, whereas the product

in equation (7.13) equals the volume of X. The sum cannot exceed the product because the

XJ are pairwise disjoint subsets of X. I

The following theorem establishes the correctness of iterative approximation:

Theorem 5 Let x have finite range in S. For every positive e and continuously differentiable

function f(x), iterative approximation calculates a number, b, satisfying

Vx.satisfies(x, S) = 0 < b - f(x) < c (7.16)

Proof: It follows from Lemma 4 that IA terminates at step 3. If it halts because U(Z) is

empty, b is the LUB of f on Z because Z reduces to a point. If IA halts because b - MLB(Z)

is less than e, then b is at most e greater than the LUB by equation (7.11). Either way,

b approximates the LUB of f on Z, which equals the LUB on X, within C. This implies

condition (7.16) by equation (7.8). I

For some applications and functions, other termination tests perform better than step 3

of Figure 7.10. Asaithambi et al. [2] prove that the test

max{MUB(Z 1 ),MUB(Z 2 )} _< b (7.17)

generates optimal bounds for rational functions. If one only needs to establish that f is not S

greater :,an a particular bound, b0 , then b < bo is a sufficient condition for termination.

This case arises when the inequality prover proves that c < d by establishing that c - d has

an upper bound of 0.

7.4 Related Work

In this section, I discuss, in order of increasing generality, existing programs that derive

bounds and prove inequalities. As one would expect, the broader the domain of functions Al"
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and constraints, the slower the program. The first class of systems bounds linear functions

subject to linear constraints. Vald6s-Prez [44] analyzes sets of simple linear inequalities of

0
the form x - y > n with x and y variables and n a number. He uses graph search to test

their consistency in cv time for c constraints and v variables. Malik and Binford [29] and

Bledsoe [3] check sets of general linear constraints for consistency and calculate bounds on

linear functions over consistent sets of constraints. Both methods require exponential time in

the worst case, although they often perform better in practice. The former uses the Simplex

algorithm, whereas the latter introduces preliminary versions of BOUNDER's substitution

algorithms. Bledsoe defines suP, suPP, INF, and INFF for linear functions and constraints

and proves the linear versions of Lemma 2 and Theorem 3. In fact, these algorithms produce

exact bounds, as Shostak [40] proves.

The next class of systems bounds nonlinear functions, but allows only range constraints.

All resemble BOUNDER's bounds propagation and all stem from Moore's [32] interval arith-

metic. Moore introduces the rules for bounding elementary functions on finite domains by

combining the bounds of their constituents. His algorithm takes linear time in the length of

its input. Bundy [111 implements an interval package that resembles BP closely. It gener-

alizes the combination rules of interval arithmetic to any function that has a finite number

of extrema. If the user specifies the sign of a function's derivative over its domain, Bundy's

program can perform interval arithmetic on it. Unlike BOUNDER's derivative inspection al-

gorithm, it cannot derive this information for itself. Many other implementations of interval

arithmetic exist, some in hardware.

Moore proposes a simple form of iterative approximation, which Skelboe [42], Asaithambi

et al. [2], and Ratschek and Rokne [35, ch. 4] improve. BOUNDER'S iterative approximation

algorithm draws on all these sources.

Simmons [41] handles functions and constraints containing numbers, variables, and the

four arithmetic operators. He augments interval arithmetic with simple algebraic simplifica-

tion and inequality information. For example, suppose x lies in the interval [-1 1]. Simmons

simplifies x -x to 0, whereas interval arithmetic produces the range [-2, 2]. He also deduces

that x < z from the constraints x < y and y < z by finding a path from x to z in the graph

of known inequalities. The algorithm is linear in the total number of constraints. Although
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more powerful than BOUNDER'S bounds propagation, Simmons's program is weaker than Ak
substitution. For example, it cannot deduce that x2 > y 2 from the constraints x > y and

y> 0.

Brooks [10, sec. 31 extends Bledsoe's sup and INF to nonlinear functions and argues

informally that Lemma 2 and Theorem 3 hold for his algorithms. This argument must be

faulty because his version of SUPH(e, {}) recurses infinitely when e equals x + 1/x or x + x2,

for instance. Brooks's program only exploits constraints among the variables of sums rx + B

and of products x"B with r real, x a variable of known sign, B an expression free of x, and

n an integer. In other cases, it adds or multiplies the bounds of constituents, as in steps 3.1,

4.1.1, 4.2.1, and 4.3 of BOUNDER's SUP (Figure 7.5). These overly restrictive conditions rule

out legitimate substitutions that steps 3.2, 4.1.2, and 4.2.2 permit. For example, BOUNDER

can deduce that 1/x - 1/y >_ 0 from the constraints y >_ x and x > 1, but Brooks's algorithm

cannot. On some functions and non-empty sets H, his algorithm makes recursive calls with

H empty. This produces needlessly loose bounds and sometimes causes an infinite recursion.

Bundy and Welham [12, sec. 41 derive upper bounds for a variable x from an inequality

L < R by reformulating it as x < U with U free of x. If U contains a single variable, they try •

to find its global maximum, M, by inspecting the sign of its second derivative at the zeroes

of its first derivative. When successful, they bound x from above with M. Lower bounds

and strict inequalities are treated analogously. Bundy and Welham use a modified version of

the PRESS equation solver [12, 13] to isolate x. As discussed in section 7.2, inequality manip-

ulation depends on the signs of the expressions involved. When this information is required,

they use Bundy's interval package to try to derive it. The complexity of this algorithm is .

unclear, since PRESS can apply its simplification rules repeatedly, possibly producing large

intermeuiate expressions. BOUNDER contains both steps of Bundy and Welham's bounding

algorithm: its context manager derives bounds on variables from constraints, while its deriva-

tive inspection algorithm generalizes theirs to multivariate functions. PRESS may be able

to exploit some constraints that BOUNDER ignores because it contains a stronger equation

solver than does BOUNDER.

Constraint propagation is a popular Al technique for bounding expressions. Given a

network of constraints between variables (or, more generally, terms), propagation incremen- .'
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tally refines the set of possible values for each variable by repeatedly selecting and enforcing

constraints. For example, consider the constraints a + b = c and a > b + 1 and the initial

ranges a,b,c E [1, 10]. Enforcing a + b = c yields the tighter ranges: a E [1,9], b E [1,9], and 0

cE [2,10]. Next, enforcing a > b+ 1 yields a E [2,9], b E [1, 8], and c E [2, 10]. Davis [16]

reviews a wide range of constraint propagation algorithms, classifies them, and derives their

computational complexity. He shows that interval propagation is intractable or undecid-

able for all but the simplest constraints: order relations and simple linear inequalities. The

standard Waltz constraint propagation algorithm may fail to terminate for general linear ,

constraints, even though a polynomial time algorithm exists.

The final class of systems consists of theorem provers for predicate calculus that treat e

inequalities specially. These systems focus on general theorem proving, rather than problem-

solving. They handle more logical connectives than BOUNDER, including disjunction and

existential quantification, but fewer functions, typically just addition. Bledsoe and Hines [5]

derive a restricted form of resolution that contains a theory of dense linear orders without Y, -4,.

endpoints. Bledsoe et al. [6] prove this form of resolution complete. Finally, Bledsoe et al.

[4] extend a natural deduction system with rules for inequalities. Although none of these

authors discuss complexity, all their algorithms must be at least exponential.

7.5 Conclusions

Current inequality reasoners are weak, brittle, or inefficient because they treat all inputs

uniformly. Interval arithmetic systems, such as Bundy's and Simmons's, run quickly, but

generate exceedingly pessimistic bounds when dependencies exist among components of func- S

tions. These dependencies are caused by constraints among variables or multiple occurrences

of a variable, as discussed in Section 7.3.1. The upper bound of a-b given a < b demonstrates

the first type, while the lower bound of x + x given no constraints demonstrates the second.

Each of the remaining systems is brittle because it takes only one type of dependency into

account. Iterative approximation, suggested by Moore, and derivative inspection, performed

in the univariate case by Bundy and Welham, addi,-s the second type of dependency, but

ignore the first. Conversely, substitution, used (in a limited form) by Brooks and Simmons,
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exploits constraints among variables, while ignoring multiple occurrences of variables. All

these systems are inefficient because they apply a complex algorithm to every input without

trying a simple one first.

BOUNDER overcomes the limitations of current inequality reasoners with its hierarchical

strategy. It resolves simple problems in linear time with bounds propagation, an inter-

val arithmetic based algorithm. If this fails, it applies more powerful methods. It uses a

substitution to analyze dependencies among variables and derivative inspection and itera-

tive approximation to analyze multiple occurrences of variables. Together, these techniques

cover far more cases than any single-algorithm system. Yet unlike those systems, BOUNDER

does not waste time applying overly powerful methods to simple problems.

Every stage of PLR uses BOUNDER. Inequalities determine the extrema of piecewise linear

functions, the stability characteristics of linear systems, the links in transition graphs, and

the applicability of rule-out constraints in case analysis. The preconditions for most proposi-

tions in theoretical analysis include inequalities. More generally, an inequality reasoner like

BOUNDER should be an important component of future general-purpose symbolic algebra

packages.

0
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Chapter 8

Manipulating Parameterized

Functions ...

PLR invokes the QMR mathematical reasoner to analyze parameterized functions during

piecewise linearization and the Qs sketcher to draw phase diagrams. Also, it can depict the

local behavior of a piecewise linear system by analyzing the solutions to its linear equations

with QMR and sketching the results with Qs. QMR solves the differential equations with the

familiar algorithm from the theory of linear systems: Laplace transform, partial fractions

expansion, and inverse Laplace transform. It uses a symbolic algebra package for these tasks

and to simplify expressions, solve algebraic equations, and calculate limits.' I developed

QMR and QS as part of my S.M. research. This chapter outlines them. See references [37, 38]

for details about QMR and reference [39] for details about QS.

8.1 QMR

QMR infers the qualitative properties of functions: signs of the first and second derivatives, 0

discontinuities, singularities, and asymptotes, which it records in data structures called Q-

behaviors. It handles a large class of parameterized functions on the reals, including extended

elementary functions: polynomials and compositions of exponentials, logarithms, trigono-

metric functions, inverse trigonometric functions, absolute values, maxima, and minima.

For example, the Q-behavior for the function (x - a) - ' appears in Figure 8.1.

'One version uses MACSYMA (30J and another uses the dynamicist's workbench (1]. A REDUCE version is

being developed.
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attribute value

f(x) (x- a) - '

sign of f'(x) undefined at a; negative elsewhere

sign of f"(x) negative on (-oo, a); undefined at a; positive on (a, oc)

discontinuities f(a) undefined; lir f(x) = -oo; lim f(x) = oo

singularities f'(a) undefined; lim f(x) = -o:
x- a

Figure 8.1: The Q-behavior of f(x) = (x - a) - '

QMR can either analyze primitive functions from first principles of calculus or match them

against stored patterns. It analyzes compound functions by analyzing their constituents re-

cursively and combining the results. For instance, it constructs the Q-behavior for (x-a)' by V:v

substituting x - a for x in the Q-behavior for x2 and constructs the Q-behavior for x + ex by

combining those of x and e'. Three combination algorithms suffice because each compound

function must consist of a sum, product, or functional composition of its constituents. QMR

may produce several alternate Q-behaviors, depending on algebraic relations between pa- %

rameters. For example, composing e' with ax produces a decreasing, constant., or increasing

function, depending on a's sign. It can also specialize Q-behaviors by instantiating some or '

all of their parameters.

QMR invokes BOUNDER to resolve inequalities over sets of constraints. It constructs a

Q-behavior for each possibility when BOUNDER pronounces an inequality ambiguous. This

strategy certainly derives all possible Q-behaviors for any input, but produces spurious ones

as well in cases where BOUNDER fails to prove valid inequalities. No program can produce
0

exact Q-behaviors for all extended elementary functions [36]. Nevertheless, QMR handles

many complicated functions, as demonstrated in this thesis and in the above references.

8.2 Qualitative Sketching

Qs sketches families of parameterized real univariate functions. It can sketch any function

that QMR can analyze and any Q-behavior whatsoever. For example, Figure 8.2 contains the

sketch of the Q-behavior that QMN derives for (.r - a) - ' (shown ini Figure 8.1). Qs is useful
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because sketches provide better insight into global behavior than verbal or other descriptions.

It handles parameterized functions with infinite domains and unbounded values, whereas

conventional plotting programs require bounded numeric functions on finite domains. Also, 0

Qs explicitly recognizes discontinuities, singularities, asymptotes, and periodicity, whereas 'Pe -V

conventional plotters cannot. 
lot,

> 0

Figure 8.2: Qs Sketch of (x - a)-' %

Qs sketches a function by invoking QMR to construct its Q-behaviors and sketching

each of them separately. It chooses a set of interesting points for each Q-behavior, picks . .5

at- appropriate scale, lays out the points on the plane, and connects them with smooth

curves. The interesting points for a Q-behavior consist of its boundaries, extrema, inflection

points, discontinuities, singularities, and any additional points designated by the user. QMR

can infer every type of interesting point (except for user designated ones) directly from Q-

behaviors. The scale is a function from symbolic expressions to real numbers that preserves ,5 5-

inequalities and bounds derivable by BOUNDER. This guarantees that the sketch expresses

the key relations between interesting points. For example, the scaled value of a in Figure 8.2
5- - ''

should be positive and half that of 2a.

Let p and q be two finite adjacent interesting points. If f is continuous at p and q, QS -

draws a smooth curve between the pairs (p, f(p)) and (q, f(q)) with initial derivative f'(p)

and final derivative f'(q). If f is discotinuous and bounded at p or q, QS uses the left or ,,. .

right limit respectively in place of the (possibly undefined) value. Similarly, it, substitutes

the left and right derivatives for f'(p) and f'(q) at sharp points and cusps. Ai unbounded
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discontinuity at p is asymptotic to the line x = p. Qs extends the sketch to the top of the

y axis when the limit is oc and to the bottom when it is -oo. It marks the asymptote with %

a dashed line. Infinite interesting points are treated analogously to unbounded finite ones.

Qs extends the sketch to the left end of the axis for -oo and the right end for oo. If the -'
limit is a finite number lir, it marks the asymptote y = lim with a dashed line.

Figure 8.3 illustrates these ideas with two sketches. All constants are declared positive

in these examples. The left-hand figure contains the sketch of x3 - 3ax; its interesting points

are: boundaries at ±oo, extrema at ±X'r/a, and an inflection point at 0. The right-hand

figure contains the sketch of x with interesting points: -oo, 0, a, 2a and oo. The sketch

includes (a, 0) and (0, 1/2) because axis crossing. have been designated interesting. There is

a vertical asymptote at x = 2a and a horizontal one at y = 1.

, a3 \'-'V

a 3 > 3a a ->

3/2

-sqrt(a) sir(a)

3/2

- 2a

-" 3ax -
x - 2a -w

Figure 8.3: Sample QS sketches 0

8.3 Sketching Phase Diagrams

PLR sketches phase diagrams exactly as shown in the previous chapters, although I have

substituted hand-drawn sketches to save paper and improve legibility. It invokes the Qs %

sketcher to draw the axes and the boundaries between regions. It then labels the regions S

and marks the middle of each crossable boundary with an arrow. It can sketch systems
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containing parameterized boundaries because QS can handle parameterized functions. A

sample screen image of PLR's graphics appears in Figure 8.4.

PLR constructs individual trajectories of a system of differential equations through nu-

meric simulation and superimposes them on its phase plane sketch. It can simulate the

original system or its piecewise linear approximations. The user can construct a complete

phase diagram of a system or of its piecewise approximations by choosing several initial points

in each region of the transition graph that PLR derives. He can assess the accuracy of a piece- A

wise linearization by comparing its simulated trajectories with those of the original system.

For example, Figure 8.4 compares PLR's phase diagram of the van der Pol equation (4.1) to

that of the piecewise linear approximation (4.3) with k, L, C = 1. The approximation pre-

serves the qualitative behavior of the original: all trajectories spiral toward a unique limit

cycle. The numeric deviation between trajectories with identical initial conditions provides a

quantitative measure of resemblance. It is small near the origin, but grows rapidly with Ilx.

If the error grows unacceptably large, the user must refine the approximation, as explained

in Chapter 6.

;;100

(a) (b)

Figure S4: Comparison of PLR'S phase diagrams of (a) the van der Po] equation (4.1) and

(b) the piecewise linear approximation (4.3) with k, L, C = 1. hA,?

Before simulating a system, PLR must instantiate its symbolic parameters with real hum-

hers. Either the user provides the values, or PLR chooses defaults that satisfy the constraints
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specified for the parameters. The user enters an explicit initial value or chooses a point on

the phase plane with the screen cursor. PLR constructs the trajectory through the selected

point by simulating the system forward and backward in its free variable. The current

implementation uses the Runge-Kutta method of order four [33, Chap. 15], but any other

integration algorithm could be substituted transparently. I only describe the forward stage

here; the other is analogous. PLR guides the simulation with the transition graph from

piecewise analysis. It calculates the current region at each simulation step and records the

sequence of previously traversed regions. It halts the simulation if this list grows longer than

a prespecified multiple, k, of the number of regions in the phase plane. A trajectory that

fulfills this condition must traverse a cycle in the transition graph k times. Heuristically,

its global behavior becomes apparent after this number of traversals. PLR also halts if the

simulation approaches a fixed point, becomes unbounded, or remains in one region forever.

8.3
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Chapter 9

Review of Literature

Although the artificial intelligence community has ignored piecewise linear models, other

modelers use them widely. Electrical engineers approximate nonlinear circuit components,

such as transistors, with piecewise linear ones, as described by Chua [14] and Desoer and

Kuh [18]. Kalman [23, 24] builds piecewise linear models of servo-mechanisms and other

nonlinear devices through similar approximations. Itkis [20] and Zinober [45] develop tools

for analyzing variable structure systems: feedback systems with piecewise linear control

functions. Cook [15, Ch. 4) summarizes their methods and discusses other applications of

piecewise linear differential equations.

Other commonly used techniques for analyzing nonlinear differential equations fall into

the following categories: explicit solutions, dynamic systems theory, numeric simulation, and

qualitative reasoning. Few systems have explicit solutions. Even when a modeler obtains an

explicit solution, he must often expend considerable effort to infer its qualitative properties

because of its complexity. Dynamic systems theory provides powerful tools for deriving

qualitative behavior. At present, though, these tools apply to a limited number of systems -

and require a high level of mathematical sophistication of their users. PLR invokes dynamic

systems theory when possible, as described in Chapters 5 and 6, but relies mainly on analysis

of piecewise linear models. %

Simulation yields low-level, numeric data about systems for specific parameter values

and initial conditions. Modelers must interpret the data and generalize the results. This

process becomes difficult for systems containing many parameters. Important properties of

the model can be missed in interpretation for lack of raw data. For example, discontinuities
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and extrema might fall between the observed or simulated points, while asymptotes may exist

beyond their range. One can also overlook important properties due to the sheer volume of

raw data. Generalization can fail too, since a model need not behave in a certain manner

for all parameter values just because it does so for certain ones.

Despite these problems, simulation handles most systems very well, including those too

complex for other methods. PLR comes to augment simulation, not supplant it. In many S

applications, it tells practitioners everything they need to know about systems automati- 4

cally, saving them the time and effort of simulation. In the remaining cases, it provides a,",.

basis for efficient simulation. One need only simulate in regions that contain potentially

interesting, but unresolved, trajectories. The results of piecewise analysis also help guide

the interpretation of simulation data.

Qualitative reasoning [7] (QR) is a paradigm for deriving the abstract behavior of dynamic

systems.' It manipulates abstract versions of numbers, functions, and differential equations,

called qualitative values, quantities, and confluences, respectively. Qualitative values cor- %

respond to points and intervals on the real line. They are organized into ordered sets of .

alternating intervals and points called quantity spaces. One useful quantity space, called IQ,

consists of minus: the interval (-oo, 0), zero: the point 0, and plus: the interval (0, co).

I abbreviate these to -, 0, and +. A quantity is a function from an independent variable %

(usually time) to a quantity space; the nth qualitative derivative of a quantity q, denoted

by anq, is the IQ value of its nth derivative. The QR versions of addition and multiplication

are partial functions from pairs of qualitative values to qualitative values. For instance, the

sum of the IQ values + and - is undefined, while their product equals -. The operator

M + (M-) denotes a smooth monotonically increasing (decreasing) transformation of its ar-

gument. Confluences state equalities between expressions: sums, products, and monotone

transformations of quantities and their derivatives.

Instead of differential equations, QR uses sets of confluences to describe dynamic systems.

Let us define the state of a quantity as its qualitative value and the IQ value of its first

qualitative derivative. A system's state consists of the vector of the states of its quantities.

'The concepts and terminology of QR are not completely agreed or by practitioners. In the following •

discussion, I attempt to abstract the common themes of their research, while respecting common usage.
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QR uses constraint propagation and properties of continuous functions to derive a graph

of a system's possible behaviors from its confluences and the initial values of its quantities.

The nodes represent system states and the links indicate possible transitions. Each walk

through the graph describes a possible behavior of the system. Multiple walks result from

ambiguities in the confluences and the analysis algorithm. For example, when b equals +

and c equals - the confluence a = b + c leaves the value of a ambiguous.

In its current form, QR falls far short of telling modelers what they need to know about

nonlinear systems. It can only provide extremely abstract descriptions, such as "the quantity

f increases for a while, reaches a maximum, and decreases thereafter." More information

is required to analyze actual devices, physical laws, and other models: local properties

in interesting regions such as estimates of maxima, minima, and rates of change as well

as global properties such as stability, periodicity, limit cycles, and asymptotic behavior.

QR abstracts away the details required to derive this information by representing dynamic

systems with confluences instead of differential equations. It cannot even express many

important functional properties, such as linearity, exponential decay, asymptotic approach,

oscillation, damped oscillation, stability, and limit cycles. .

QR also generates spurious behaviors. One cause, described by Kuipers [26], is the

local character of its analysis. In addition, the abstract nature of confluences introduces

ambiguities that differential equations preclude. For example, the equation y' = y -y' implies

that y' is negative whenever y exceeds 1, whereas the corresponding confluence leaves the sign

completely ambiguous. Consequently, QR concludes that y can increase toward infinity, even

though it is bounded from above. Kuipers [251 notes that this type of ambiguity crops up in

physiological models of second-order or higher. The same result holds for other domains.

Raiman [34] addresses a special case of this problem by incorporating assertions of the

form "quantity a is negligible in relation to quantity b" into QR. His extension does not

solve our example because neither y 2 nor y is negligible with respect to the other. Nor does

similar work by Mavrovouniotis and Stephanopoulos [31].

From an abstract perspective, QR reduces to an extremely restricted form of piecewise

linear reasoning.2 The phase space for quantities ql,. . . , q,, is the Cartesian product of their

2The reduction ignores the putative causal ordering that QP imposes during simulation. See Iwasaki and
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quantity spaces Q, x... x Q, . Each Qi divides phase space along the itb coordinate. Together

they partition it into n-dimensional boxes. For example, the phase space for the IQ-valued

quantities x and v (Figure 9.1) partitions into nine rectangles. Five of these are degenerate:

four represent boundaries ([0, -1, [0, +], [-, 0], and [+,0]) and one represents a point ([0,0]).

I find degenerate regions confusing and unnecessary. It is better to represent boundaries and

points explicitly, as does PLR.

V

[-,+1 [0, + [+,+1

,0,01 [+,0

1-, -[ 0],-] +

I- , -] 10, -] [+, -] N

(a) (b)

Figure 9.1: Phase Space for IQ-valued quantities x and v: (a) nondegenerate regions

(b) all regions.

QR derives its graph of possible behaviors through a weak form of transition analysis.

Let region A be adjacent to region B along the boundary qi = k with Ai < k and Bi > k. QR

inserts a link from A to B unless the confluences for A imply Oqi :5 0 and from B to A unless

the confluences for B imply Oqi > 0. The weakness of qualitative arithmetic, discussed above,

causes this algorithm to produces more spurious links than does PLR's transition analysis. *4

Qualitative reasoning programs cannot perform case analysis. It is impossible to apply, or

even express, PLR's rule-out constraints within the framework of confluences and qualitative

arithmetic. Existing programs do not perform theoretical analysis either, although Lee [27]

suggests doing so. He uses an ad hoc energy constraint to derive the asymptotic behavior of

a linear spring, without exploiting the underlying general concept of a Liapunov function, ,

discussed in Section 5.2.

We have seen that commonly used analysis techniques for nonlinear dynamic systems

Simon (21, 22] and de Kleer and Brown [17] for an alternate theory of causality.
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are inadequate. Simulation yields low-level, numeric data about individual systems, whereas

qualitative reasoning draws needlessly general conclusions because it ignores known analytic

techniques. Some researchers are interested in QR as a tool for cognitive simulation, in which

case its analysis may be appropriate. However, it is too weak a tool for expert-level reasoning

about complex models. PLR provides an intermediate level of analysis that meets the needs

of scientists and engineers. It remains to be seen whether one can match PLR's analysis by

incorporating a richer set of confluences and stronger analysis algorithms into QR.
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Chapter 10

Conclusions

This thesis explores automating the qualitative analysis of physical systems. Scientists and *

engineers model many physical systems with ordinary differential equations. They deduce the

behavior of the systems by analyzing the equations. Automating the analysis is challenging

because realistic models are nonlinear, hence difficult or impossible to solve explicitly. I

have attacked the problem with a strategy whereby human experts analyze complicated

differential equations. The resulting program, PLR, approximates intractable systems with

tractable piecewise linear systems, analyzes the approximations, and draws conclusions about

the originals. It augments the conclusions with theoretical analysis of global behavior when

possible. The examples in Chapter 4 demonstrate the power of this approach.

10.1 Future Work

PLR is a first pass at exploiting piecewise linear approximations for automating the qual- N'

itative analysis of differential equations. There are many directions to extend each of its •

compol .l.ts. The current algorithm for making piecewise linear approximations fails on

nonseparable systems. A smarter program would exploit analytic properties of systems,

domain constraints, and user requirements to overcome that limitation. It could neglect

semantically i:,significant terms and linearize other terms on a case by case basis, rather

than applying the current algorithm uniformly. When necessary, it would choose regions

with nonlinear boundaries, thus trading off ease of analysis for expressive power. It could

also approximate significant or rapidly-varying regions with more lines than other regions,
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as discussed in Chapter 6.

While constructing phase diagrams of piecewise linear systems, PLR could piece together

global separatrices from critical local trajectories, such as asymptotes. For example, it could

detect the separatrix of the undamped pendulum (Figure 1.4), which separates spinning

trajectories from rocking ones, by linking the four asymptotes via the two critical trajectories,

indicated by dotted curves. In the phase diagram of the Lienard equation (Figure 6.5b), it

could link the descending asymptote with the dotted local trajectory, thus detecting the

boundary between unbounded trajectories and ones that approach the origin. Case analysis

would benefit from more subtle rule-out constraints for nonlinear boundaries, as discussed

in Section 3.5.

PLR could determine the asymptotic behavior of additional systems if its current knowl-

edge of dynamic systems theory, described in Chapter 5, were to be extended. In particular,

it could exploit domain knowledge and analytic properties of systems to construct and modify

Liapunov functions instead of relying solely on the prespecified energy function. Reasoning

about the number, location, and stability properties of the limit cycles and separatrices in

a system poses another challenge. The current implementation of PLR makes no use of the _

simulation data that it produces. The user must choose the parameter values and starting

points, interpret the results, and vouch for their accuracy. Future versions of PLR should

verify their approximations, transition graphs, and asymptotic predictions by performing

and examining simulations of significant trajectories, such as separatrices and limit cycles.

10.1.1 Higher-Dimensional Systems

Although the current implementation of PLR only handles second-order systems, most of the

algorithms extend to higher-order systems. The techniques for constructing and analyzing

piecewise linear equations carry over directly from two dimensions to k > 2 dimensions.

The linear regions generalize from rectangles to k-dimensional polygons; their boundaries

generalize from curves to surfaces of dimension k - 1. The disposition of eigenvalues still

determines local behavior, but the number of possibilities and asymptotes grows rapidly

with k. The geometric criterion of transition analysis remains the same, as does its algebraic S

realization, t • n < 0. The length of the inequality grows linearly in k. This increases the
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likelihood of BOUNDER introducing spurious transitions by failing to prove valid instances.

However, the inequalities are linear, hence resolvable in polynomial time, when the bound-

aries between regions are hyperplanes. The rule out conditions R1-R3 of case analysis apply ,

to k-dimensional systems. They grow harder to apply as k increases because larger values

of k produce more complex local solutions.

Far fewer theoretical tools exist for determining the asymptotic behavior of k-dimensional

systems than for two-dimensional ones. Liapunov functions (propositions 5.1, 5.2, and 5.3)

and the divergence test (proposition 5.5) carry over, but the Poincar6-Bendixson theorem

does not hold. Trajectories can wander chaotically through phase space without approaching

a fixed-point, limit cycle, or separatrix. Sparrow [43] describes a parameterized system of

three piecewise linear equations

f = f(x3) -x,,
= -with =/ -8.4X 3 -+ 3.35 for x 3 < 3/7 (10.1) I

X2 = - X 8.4rx 3 -0.25 - 3.6r for x3  ! 3/7,(,0.1

-i3 =-- X2 - X3

that exhibits chaotic behavior for some values of r. His example is extremely simple; it

contains a single piecewise linear term with two linear regions. Brockett [9] presents a more

complicated example. Understanding chaotic behavior is an open research topic for dynamic

systems researchers. The current state of the art precludes systematic analysis by humans,

let alone by computers.

10.2 Scope and Limitations

PLR ref' upon two hypotheses about piecewise linear systems: (1) they can reproduce the

essential properties of nonlinear differential equations and (2) their global properties are .

derivable from local solutions and transition graphs. When the second hypothesis fails,

PLR can turn to other methods. For example, it deduces by theoretical means that all the

trajectories of the damped pendulum equation approach the origin, since piecewise analysis *4-11a ..

(Figures 4.7 and 4.8) leaves the question open. It could also extract such information from

closer analysis of the piecewise equations, as described by Cook [15], or from simulation.
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When the first hypothesis fails, piecewise analysis fails. For example, the first-order Ok

equation y' = y2 with the initial condition y(O) = yo has the solution

Yo (.,0..)
y(t) = 1 - Vot (10.2)

which approaches ±oo as t approaches 1/yo and is undefined for t = 1/yo. Piecewise linear

equations cannot reproduce this behavior because their solutions, kect , are finite for all values

of t. None of the examples that I have examined display this behavior. Perhaps physical

constraints, such as the finite size and energy of real systems, prevent it from arising in

practice. In any case, other types of essentially nonlinear behavior exist in nature. New

tools are required to represent and analyze them.

Even when both hypotheses hold, PLR can fail due to limitations in its approximation

algorithm, inequality prover, or other components. For example, it cannot construct the

initial approximation of the horseshoe pendulum (Section 4.3) because QMR fails to derive

the qualitative properties of the function g. Advances in inequality proving and computer

algebra should solve many of these problems. Nevertheless, the current implementation of

PLR handles many complicated systems. It can answer all of the questions some of the time,

some of the questions all of the time, but not all of the questions all of the time. That's

research.

In this thesis, I demonstrate that a computer program can automatically derive the

qualitative behavior of complicated systems of ordinary differential equations by constructing

and analyzing appropriate piecewise linear approximations. The program emulates the initial
%.

strategy of human experts. The next question is how to proceed when that strategy fails.

Humans turn to a combination of theoretical tools and numeric analysis. I propose developing S

programs that do the same.

9-,
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