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This paper implements a deep learning-based modulation pattern recognition algorithm for communication signals using a
convolutional neural network architecture as a modulation recognizer. In this paper, a multiple-parallel complex convolutional
neural network architecture is proposed to meet the demand of complex baseband processing of all-digital communication
signals. The architecture learns the structured features of the real and imaginary parts of the baseband signal through parallel
branches and fuses them at the output according to certain rules to obtain the final output, which realizes the fitting process to
the complex numerical mapping. By comparing and analyzing several commonly used time-frequency analysis methods, a time-
frequency analysis method that can well highlight the differences between different signal modulation patterns is selected to
convert the time-frequency map into a digital image that can be processed by a deep network. In order to fully extract the
spatial and temporal characteristics of the signal, the CLP algorithm of the CNN network and LSTM network in parallel is
proposed. The CNN network and LSTM network are used to extract the spatial features and temporal features of the signal,
respectively, and the fusion of the two features as well as the classification is performed. Finally, the optimal model and
parameters are obtained through the design of the modulation recognizer based on the convolutional neural network and the
performance analysis of the convolutional neural network model. The simulation experimental results show that the improved
convolutional neural network can produce certain performance gains in radio signal modulation style recognition. This
promotes the application of machine learning algorithms in the field of radio signal modulation pattern recognition.

1. Introduction

Secure and efficient transmission of information is the basic
requirement of wireless communication. In the actual com-
munication system, the baseband signal cannot be transmit-
ted directly due to the channel spectrum characteristics and
the modulation is usually used to load the code element
information carried by the baseband signal to the digital
characteristics of the sinusoidal signal and then transmit it
through the antenna [1]. Depending on the specific channel
type and occupancy, the choice of modulation type can vary,

and in turn, the signal after different modulations can exhibit
different structural and statistical characteristics in the time-
frequency domain. Modulation recognition refers to the use
of mathematical models such as machine learning to select
the correct modulation type for a received signal, from a
given number of modulation systems, after supervised train-
ing. MR is an important application of pattern recognition in
the field of signal processing and has significant practical
importance in both collaborative and noncollaborative com-
munication [2]. With deep learning networks being widely
used in speech recognition, image feature learning, etc. and
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achieving many practical results, it has led researchers to
introduce deep learning into the process of modulation pat-
tern recognition of communication signals, hoping to make
communication devices capable of self-learning and self-
renewal, so that they can better cope with the problems and
challenges brought about by the complex electromagnetic
environment and the increase of modulation patterns in the
future [3].

Modulation pattern recognition is one of the key technol-
ogies for software radio, communication countermeasures,
and illegal spectrum monitoring, which has important mili-
tary and civil values. In the military field, the future war is
an information-driven war and electronic countermeasures
are an important part of information warfare and modula-
tion pattern recognition is one of the functions that must
be considered in the receiver design process, where the
receiver automatically demodulates the intercepted signals
through modulation pattern recognition technology. In elec-
tronic reconnaissance and jamming, modulation technology
is the key to implement precise jamming, which in turn dis-
rupts enemy communications. In civil applications, modula-
tion pattern recognition technology is a key technique to
identify the illegal use of frequency bands to prevent spec-
trum abuse and interference with normal communications
[4]. Traditional modulation pattern identification methods
include maximum likelihood hypothesis testing methods
and statistical pattern recognition-based methods, the former
with high complexity and poor robustness to models and
parameters and the latter with performance strongly corre-
lated with human-selected feature parameters. In recent
years, machine learning (ML) technology is hot and ML is
one of the most important branches of artificial intelligence,
which can classify and predict data intelligently and has
excellent recognition performance, and the research of mod-
ulation pattern recognition applying ML is receiving more
and more attention and interest. Therefore, this paper studies
deep learning-based algorithms for digital communication
signal modulation and recognition.

This thesis focuses on the deep learning-based modula-
tion pattern recognition method for communication signals.
The scheme adopts a multibranch CNN architecture to real-
ize the convolutional mapping of the input signal in the com-
plex domain and complete the preprocessing work of signal
denoising and channel equalization to improve the input
for modulation recognition; it investigates the impact of
abstract features learned by CNN and artificially designed
expert features, multiple machine learning classification
models on modulation recognition, and modulation recogni-
tion algorithms; with the help of a general-purpose software
radio platform, a variety of modulation signal sequences are
collected with the help of a general-purpose software radio
platform, the data sets used for training and testing are estab-
lished, and the algorithms are designed and coded and vali-
dated by a deep learning framework and software platform.
The first chapter is the introduction part of the thesis, which
introduces the background and significance of the thesis and
finally gives the research content and structural arrangement
of the thesis. Chapter 2 is the related work section, which sys-
tematically describes the research status and analyzes the

advantages and disadvantages of domestic and foreign tech-
nologies in modulation identification, signal denoising, and
channel equalization. The third chapter analyzes and studies
the communication signal feature processing and explains
the specific implementation of the algorithm, and finally,
the design study of the modulation identifier is carried out.
Chapter 4 is the analysis of the results. By analyzing the per-
formance of the algorithm proposed in this paper and simu-
lation tests, the method can identify the modulation patterns
of communication signals well under low signal-to-noise
ratio, which proves the feasibility and effectiveness of the
method. Chapter 5 summarizes the full text of the work
and provides an outlook.

2. Related Work

The maximum likelihood hypothesis testing method based
on decision theory theoretically ensures that its decision
results are optimal under the Bayesian least-cost criterion
and can guarantee the performance of the method in a cer-
tain low signal-to-noise environment. However, the main
drawbacks of the method are as follows: more a priori knowl-
edge is required, such as signal-to-noise ratio, carrier fre-
quency, symbol rate, oversampling multiplier, and other
parameters, and secondly, the existence of unknown param-
eters leads to a complex computational push-to process and
high computational complexity, which is difficult to imple-
ment in practical production [5]. The classification function
is relatively single, and all common modulation types cannot
be identified by one framework; in the actual channel, the
noise is not necessarily Gaussian white noise and there are
multipath fading, time delay, Doppler effects, and other
effects [6]. The maximum likelihood hypothesis testing
method based on decision theory is more susceptible to these
influences and less robust [7]. Mishra et al. implemented
deep learning-based denoting by improving the deep net-
work structure. In the literature [8], the authors used ResNet
to remove rain noise from photographs and the experimental
results showed that the model has superior denoting perfor-
mance [9]. Gupta et al. utilized a single-layer, stacked LSTM
network to identify seven signals such as 2ASK, 4ASK, BFSK,
4FSK, BPSK, QPSK, and 16QAM [10]. Patnaik et al. used
CNN and DBN to identify CPFSK, BPSK, and 16QAM sig-
nals [8]. The cascade structure is poorly parallelized; the
model is too complex, and the training is time-consuming.
In addition, the temporal signal loses some timing features
after the convolutional layer [11].

In order to take full advantage of the temporal and struc-
tural features of the signal, this paper studies CNN and LSTM
parallel modulation-style recognition algorithms. In order to
further improve the signal recognition performance, the inte-
grated learning algorithm of the heterogeneous basis classifier
is also studied [12]. Since deep learning can automatically
extract features from large-scale data and perform learning,
it can be quickly developed and widely used [13]. Although
the deep learning parameter design still lacks some theoretical
proofs and has some shortcomings, practice has proved that
applying deep learning of themodulation recognition problem
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is a very effective method and it is worthy of in-depth research
and exploration.

3. Machine Learning Decision Theory-Based
Communication Signal Modulation
Pattern Recognition

3.1. Communication Signal Feature Processing. With the
increase in computer processing speed and storage capacity,
the design and implementation of CNN has gradually
become an exhibition trend [14]. In this chapter, a convolu-
tional neural network-based communication signal modula-
tion pattern recognition method is used to determine the
modulated signal [15]. Firstly, the received modulated signal
is preprocessed by normalization and time-frequency feature
image generation to generate the test set of the training set
required for network training; secondly, the classifier for
modulated pattern recognition of communication signal,
CNN, is designed and built and the training set is input to
CNN for training to obtain the CNN network model; finally,
the modulated signal to be recognized is preprocessed to gen-
erate the test set of the dataset and the CNN networkmodel is
obtained. Finally, the modulated signal to be identified is pre-
processed to generate a test set in the dataset and the training
set is input into the CNN network model to identify the mod-
ulation pattern of the communication signal. The method
takes the time-frequency domain map as the input and the
modulation pattern of the signal as the output, and the spe-
cific algorithm flow chart is shown in Figure 1.

The digital signal (−1, +1) to be transmitted is mapped to
N carriers (IFFT) and superimposed together and then sent.
For example, there is a bandwidth of 1000M and the size of
the IFFT is 1024. In this case, the bandwidth of 1000M is
divided into 1024 parts. The purpose is to reduce the band-
width and thereby reduce the ISI. Then, the frequency of
the first carrier is 1000M/1024, the frequency of the second
carrier is 2∗1000M/1024, and so on. The function of this part
is to make N carriers orthogonal to each other to eliminate
interference between carriers.

The effect of noise and the channel makes the communi-
cation signal amplitude vary very much. If the acquired time
domain signal is used directly for time-frequency analysis, it
will cause some difficulties in processing the time-frequency
map after time-frequency analysis. Therefore, the signal has
to be normalized [16]. In this paper, the acquired time
domain signal will be normalized by the min-max normaliza-
tion method, which is indicated below. The amplitude of the
modulated signal is simply scaled by the min-max normali-
zation method, and the modulated signal amplitude is taken
to be compressed between the interval [0, 1], so that the
amplitude values of the modulated signal are relatively close
to each other and the effect of channel fading on the signal
amplitude is reduced.

G inf
� �

=
inf −min infð Þ

max INFð Þ −min INFð Þ
: ð1Þ

A feature is an abstract representation of an object or a

class of objects. Relative to objects, features use a set of low-
dimensional tensors to express the focal properties of the
original object and are the key to distinguishing multiple
objects. The features together with the training set data deter-
mine the theoretical upper limit of the machine learning task,
and the models and algorithms are intended to approximate
this limit as closely as possible. Therefore, the selection of fea-
tures should be cantered on the task [17]. For the modulation
recognition task, the selection of features can be divided into
two stages: one is based on manually designed export fea-
tures; the other is based on CNN self-learning abstract fea-
tures. This section will elaborate and analyze these two
kinds of features [18].
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In the convolutional layer, each convolutional kernel can
be considered as a linear system for extracting a certain fea-
ture, but before the training of the network, the operational
parameters of the whole system are unknown, so the weight
parameters of the convolutional kernels are randomly initial-
ized, and the parameters of this system can only be updated
by the BP algorithm to continuously optimize by reducing
the value of the objective function, and when the training is
completed, the system can be used to extract the input fea-
tures. The cascade of convolutional layers allows the input
signal to be mapped by layers of abstraction to obtain the fea-
ture vector needed by the classifier.

Bij =M h nð Þj ji−j ∣ ��!
i+j

h nð Þj
� �

: ð3Þ

In the encoder stage, it is downsampled by the pooling
layer to compress the size of the output feature map, after
the signal is mapped by the convolution layer of CAE, and
after several identical operations, it reaches the bottom con-
volution layer and the output of the bottom layer can be
considered as the abstraction of the original input signal h
(n); in the decoder stage, these abstract features are contin-
uously up sampled by the deconvolution layer and finally
reach the top output layer. The goal of CAE is to make
the output consistent with the input, and the computational
process can be characterized as “compression before recon-
struction” [19].

The result obtained after the time-frequency analysis of
the modulated signal is a representation of the modulated
signal in the time-frequency plane, which cannot be precisely
input into the deep neural network model for processing.
Therefore, it is necessary to convert the time-frequency
map of the signal to generate a digital image first and then
use the deep learning algorithm to identify the modulation
of the signal [20]. Usually, the color image can be greyed
out by using the maximum value method or the component
method or the average method. Among them, the compo-
nent method uses one of the three components of R, G, and
B in the color image as the gravy value; the maximum value
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method uses the maximum value as the gravy value; the aver-
age value method uses the average of the three components of
R, G, and B in the color image as the gravy value. Different
gray scale processing methods will produce different gray
scale feature images [21]. In this paper, we select the gray
scale processing method of the average method and its gray
scale value calculation formula is

Gray xð Þ =
R +G + B

3
∗ β + μ: ð4Þ

By generating gray scale feature images of modulated sig-
nals with different signal-to-noise ratios, it is found that
when the signal-to-noise ratio is low, the modulated signals
are more affected by the background noise, which makes
them appear more disordered in the gray scale feature images
and the feature information becomes somewhat blurred [22].
When the signal-to-noise ratio is high, the modulated signals
are less affected by the background noise and their gray scale
feature images are clearer and more regular. By comparing
the binary feature image and gray scale feature image, it is
found that the medium gray scale feature image can retain
almost all the original feature information and has certain
noise immunity.

For noise, Gaussian white noise can be used, because the
noise of general signals is mainly divided into two categorie-
s—one is external noise and the other is internal noise of the
receiver. The general noise characteristics of the collected sig-
nal are very similar to Gaussian white noise, so it is appropri-
ate to replace the internal noise of the receiver with Gaussian
white noise. For the amplitude of the noise level, in order to
ensure a certain detection probability, the signal-to-noise
ratio is required to be greater than 10db.

3.2. Research on Modulation Recognition Algorithm Based on
the Neural Network.Decision trees can be divided into classi-
fication trees and regression trees based on the nature of the

data labels. When the data labels are continuous values, we
call the decision tree in a regression tree; when the data labels
are a series of discrete values, it is referred to as a classifica-
tion tree. Each leaf node of the classification tree represents
a classification result, and the branches of the tree are equiv-
alent to the features on which the classification is founded.
Since the digital signal modulation identification in this
paper is a classification problem, the decision trees discussed
refer to classification trees without separate emphasis. The
creation of a classification tree can be summarized as follows:
training data is input to the decision tree model and new
branches are derived from the root node to the leaf nodes
using a recursive approach based on the direction of data
flow determined by the judgment conditions in the internal
nodes until a leaf node is generated. Classification trees can
be generated using a variety of algorithms [23].

Classification trees are generated by discriminating
branches according to internal node conditions, which are
essentially a feature selection process. In algorithms such as
ID3, information entropy is used to perform feature selection
[24]. The so-called information entropy can be understood as
a quantitative indicator of data uncertainty. For example, for
the training data set S, the information entropy is calculated
using the following formula:

F sð Þ = λ ∗ 〠
255

n=0

h nð Þ log2h nð Þ: ð5Þ

In the CART algorithm, the concept of information first
is not continued but replaced by the GINI value [25]. If there
is a data set S, the actual set of categories to which the data set
belongs is L (N):

L Nð Þ = λ ∗ 〠
j

i

G i ∣ jð Þh i ∣Nð Þh j ∣Nð Þ: ð6Þ
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Figure 1: Flowchart of modulation pattern recognition of communication signal based on the convolutional neural network.
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CNN consists of a series of convolutional layers, pooling
layers, and fully connected layers, of which the convolutional
layer is the core of CNN [26]. Convolution is a mathematical
operation performed on two functions, a linear operation
that satisfies the exchange law of addition and the union of
multiplication, and other operational properties can be
divided into the following notation.

U xð Þ =V xð Þ ∗W xð Þ: ð7Þ

The above equation is a convolution operation on a one-
dimensional continuous time system, where V ðxÞ represents
the input to the model; W ðxÞ is called the kernel function,
and U ðxÞ is the model output. The two-dimensional discrete
convolution can be expressed as follows:

U i, jð Þ =M i, jð Þ ∗N i, jð Þ = 〠
m,n

i,j

M m, nð Þ

N i −m, j − nð Þ
: ð8Þ

In the convolution operation of the input, a large number
of feature maps will be obtained; if it was directly input to the
next layer, it will make the input signal of the next layer too
large. Generally, before the feature map is input to the next
layer, the output feature map pooling operation, on the one
hand, can reduce the number of parameters and training
time; on the other hand, it can reduce redundancy and
enhance generalization. The pooling function generally uses
the overall statistical features of the neighbouring outputs at
a specified location to replace the network’s output at that
location. Before the final output, CNN changes the obtained
feature map into a one-dimensional form before the classifi-
cation output [27].

Communication signals not only have temporal charac-
teristics but also have different constellation maps for differ-
ent modulation signals. This suggests that communication
signals have strong spatial characteristics, so this paper
explores the CNN-based modulation pattern recognition
method [28]. For the received baseband I and Q signals, they
are concentrated to form a 2∗256 size matrix, which is
denoted by I2∗256, and the elements in I2∗256 are denoted by
Iðm, nÞ. For signals, different processing of I and Q informa-
tion will produce distinct recognition effects, and specifically
for CNN networks, different kernel sizes will directly affect
the classification performance.

After completing the training, the algorithm can integrate
the base classifiers by linear weighting. In the first step, the
initial value of the weight is determined here. It should be
pointed out that H ðXÞ is called the weight of the base classi-
fier, which essentially means the importance of each classi-
fier. The specific definition is as follows.

H Xð Þ = log2〠ln
1 − Ex

Ex

∗ β: ð9Þ

Next, DX is updated, and finally, the base classifiers of X
iterations are summed to form the final classifier H. In the
process of updating the parameters of the network iteratively,
the stochastic gradient descent method is used because the

descent gradient of the optimized objective function does
not depend on a single sample for calculation during the net-
work training process but each iteration samples a random
portion of data from the training data set and passes it into
the neural in the network training process. The gradient of
the decline of the optimization objective function does not
depend on a single sample for calculation. The specific flow
of the modulation recognition algorithm in this article is
shown in Figure 2.

3.3. Modulation Identifier Design Study. Simulation analysis
shows that the time-frequency map of the signal can describe
the modulation pattern characteristics of the communication
signal well. In this paper, the time-frequency map is used as
the input of the CNN and the size of the time-frequency
image is generally 32∗32, 64∗64, and 128∗128. First, this
paper will compare the performance of neural networks with
a different number of convolutional layers; then, it will com-
pare the neural networks with different input sizes; finally, it
will compare neural networks with different convolutional
kernel sizes to get an optimal network model.

Considering the characteristics of the modulation pattern
of the communication signal and the size of the time-
frequency map, the CNN contains a convolutional layer
and a pooling layer to extract the effective feature vector;
the nonlinearity of the network model is provided by the acti-
vation function Re LU used after each convolutional layer,
and using the Re LU function as the activation function can
suppress the gradient disappearance or explosion that occurs
during the training of the network; the last layer is the final
layer and is a fully connected layer used to integrate local fea-
tures to obtain global features of the input data; finally, the
global features are classified and identified by using the
SOFTMAX activation function [29–33]. The following will
illustrate the effects of different neural network structures
on the classification recognition of modulated signals from
three aspects: the number of nonconvolutional layers, the
input size, and the convolutional kernel size.

In this paper, convolutional kernels of size lama are used
extensively, which is equivalent to convolutional kernels to
map the real and imaginary parts of the input signal h ðnÞ
separately. The h ðnÞ can only characterize the amplitude
information of the signal, while the frequency and phase
information need to be jointly characterized by the real and
imaginary parts. However, according to the convolutional
layer algorithm, if a convolutional kernel of size 2 × m is
used, the size of the output feature map will be reduced to 1
× 1024, so only one convolutional layer of 2 ×m is used in
RESTNET. In order to obtain the resonant feature mapping
of the convolutional layer for the frequency and phase of
the input signal, this paper proposes using MR-Net in series
with the traditional sequential structure to build a CNN as
a modulation recognition network. Where the input signal s
ðnÞ is the recovered signal from the received signal y ðnÞ
input to the pretrained Recover-Net, finally, the classification
probability vector is obtained using the SOFTMAX layer
output.

This paper proposes to verify the communication modu-
lation awareness algorithm in a real environment by building

5Wireless Communications and Mobile Computing



a wireless communication transceiver platform. NI-USRP is
based on the public version of the software radio platform
USRP Radio by NI Instruments, and some of the external cir-
cuitry is modified. NI-USPR hardware has a common
software-defined radio (SDR) architecture, and in its FPGA
digital signal processing logic, the communication transmit-
ter modulates user data into digital baseband data and the
output becomes analogy baseband signal I/Q by high-speed
digital-to-analogy converter DAC, and after filtering out high
harmonics and spurious by a low-pass filter, the analogy
baseband signal is up converted to transmit carrier frequency
915MHz by analogy RF quadrature, and the communication
transmission is completed by power amplification and
antenna; at the communication receiver, the antenna receives
the faint at the receiving end, the weak wireless communica-
tion signal received by the antenna is adjusted by low-noise
amplification, then, the analogy RF quadrature downconver-
sion is completed, and the I/Q baseband signal is output to
the high-speed analogy-to-digital converter ADC, and the
quantized IQ data stream is sent to the FPGA digital signal
processing logic. The FPGA digital signal processing logic is
used to implement the digital downconversion (DDC) at
the receiver side and digital upconversion (DUC) at the
transmitter side. In the figure, the upsampling and downsam-
pling logic adjusts the sampling rate of the complex baseband
signal to achieve efficient processing of the nonbroadband
communication signal and to facilitate further processing
via Ethernet to the host computer.

4. Results and Analysis

4.1. Algorithm Performance Analysis. The test set of 10,000
data samples in the radio signal data set was tested on the
classic convolutional neural network and the improved con-
volutional neural network, and the final prediction results
were obtained. The modulation pattern recognition accuracy
results of different algorithms are shown in Figure 3. It can be
seen in Figure 3 that the improved convolutional neural net-

work has a 3.5% higher modulation pattern recognition accu-
racy than the classic convolutional neural network. The
results show that the improved convolutional neural network
and classical convolutional neural network proposed in this
paper have advantages in the accuracy of modulation pattern
recognition.

The running time of the CNN algorithm with different
numbers of convolutional layers is given in Figure 4. It can
be seen that the running time of the CNN algorithm increases
with the increase of the number of convolutional layers. Con-
sidering the ACRP and the running time of CNN algorithm,
this paper determines to use two convolutional layers, with
the first layer having 14 dimensions and the second layer
having 5 dimensions.
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Figure 2: Modulation recognition algorithm flow.
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Figure 5 shows the correct recognition rates of the pro-
posed CNN algorithm for BPSK, QPSK, 8PSK, 16APSK,
16QAM, 32QAM, and 32APSK signals. As can be seen from
the figure, the correct recognition rate of all the seven signals
is higher than 92.13% when the signal-to-noise ratio is
greater than 2dB; the CNN algorithm has the highest recog-
nition rate for 16QAM signals, followed by QPSK signals; the
CNN algorithm has the worst recognition performance for
32QAM signals, followed by 8PSK signals.

The individual signal recognition rates of the CNN algo-
rithm show the seven signals when SNR = 6 dB are shown in
Figure 6. It can be seen that at the SNR of 4 dB, the CNN
algorithm has good recognition performance and only 40

samples are misconceived overall and the ACRP reaches
98%; the recognition rates of 16APSK, 16QAM, and QPSK
signals all reach 100%, and the recognition rates of 32APSK
and BPSK signals reach. The recognition rates of 16APSK,
16QAM, and QPSK signals are 99.99%, 32APSK and BPSK
signals are 99.7% and 98.91%, respectively, and the recogni-
tion rates of 32QAM and 8PSK signals are 93.9%.

4.2. Communication Signal Simulation Test Analysis. For the
simulation test, a test set containing 5 modulated signals of
2ASK, 2FSK, 2PSK, AM, and FM was used, of which the
number of samples in the test set was 3000. The average rec-
ognition accuracy of the five types of signals from −10 dB to
10 dB is tested, and the test results are presented in
Figure 7(a). Recognition accuracy of each signal-to-noise
ratio from −10dB to 10 dB for each of the five types of signals
is shown in Figure 7(b). As the S/N ratio increases, the aver-
age recognition rate of each type of signal also increases grad-
ually, and finally, the average recognition rate of all five types
of signals at 10 dB is greater than 97.1%. The recognition
rates of 2FSK and AM are 99.99%; the recognition rate of
FM increases rapidly from 99.3% to 99.76% at the beginning
and then remains unchanged; while the recognition rates of
2ASK and 2PAK are relatively low at −10 dB, 84.3% and
90%, respectively. With the increase of SNR, the recognition
rate of 2FSK and the recognition rates of 2FSK and FM sig-
nals also increase as the S/N ratio increases. However, when
the signal-to-noise ratio is small, the energy of the noise is
higher than the energy of the signal, so that 2ASK and
2PSK are drowned in the background noise, leading to a
decrease in the recognition rates of 2ASK and 2PAK. Finally,
the recognition rates of both 2ASK and 2PAK reach 97.2% at
10 dB. It can be concluded that the higher the signal-to-noise
ratio, the better the recognition effect of the convolutional
neural network, and at a lower signal-to-noise ratio, the
recognition effect slightly decreases but it can still perform
classification recognition; the convolutional neural network
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Figure 4: Running time of algorithms with different numbers of
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has good performance in modulation recognition and also
has certain antinoise performance.

The database required for the network is produced by
preprocessing the measured signals with the same number
of samples as in the simulation test, which is 3000, and then
tested. The test results are shown in Figure 8. In Figure 8, it
can be seen that the recognition rate of the measured signals
is higher than 95.36% after the classification and recognition
by the modulated recognizer designed in this paper. It also
verifies the conclusion that the convolutional neural network
has good recognition performance in modulation recognition.

The accuracy of the training set and the accuracy of the
validation set change with the number of iterations, and the
loss value of the training set and the loss value of the valida-
tion set change with the number of iterations. Figure 9 shows
the loss of the training set. The relationship between the value
and the loss of the validation set and the number of iterations
are shown. Through comparison, it is found that the trans-
formation trends of the training set accuracy and the
validation set accuracy are basically the same, while the trans-

formation trends of the training set loss value and the valida-
tion set loss value are not consistent. It can be seen in Figure 9
that after 10 iterations of training, the loss value of the train-
ing set continues to decrease, while the loss value of the vali-
dation set shows a trend of oscillating transformation. It
shows that the network has an overfitting phenomenon and
the complexity of the network needs to be reduced.

For continuous phase modulation signal, this paper con-
siders the GMSK signal, which is a commonly used commu-
nication modulation signal with high spectrum utilization
and high noise and channel interference immunity. Unlike
modulation types such as MPSK and MQAM, GMSK signals
do not have fixed theoretical constellation points in the com-
plex plane, as shown in Figure 10, where we demonstrate the
effect of Recover-Net on GMSK signals before and after
recovery from the time domain waveform; the channel is still
an indoor channel simulated by MATLAB with SNR = 10 dB.
It can be observed that the amplitude and phase recovery of
the time domain waveform by Recover-Net is good and there
is only a small deviation in the details at some peaks, with

−10 0 10

90

95

100

Average recognition rate (%)
Si

gn
al

 t
o

 n
o

is
e 

ra
ti

o
 (

d
B

)

(a)

–10 –5 0 5 10

85

90

95

100

Recognition accuracy rate (%)

Si
gn

al
 t

o
 n

o
is

e 
ra

ti
o

 (
d

B
)

2ASK

2FSK

2PSK

AM

FM

(b)

Figure 7: Comparison of average recognition accuracy and recognition accuracy.

0 10 20 30 40 50 60 70 80 90 100
0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

N
u

m
b

er
 o

f 
it

er
at

io
n

Loss value

Training set loss

Validation set loss value

Figure 9: The relationship between the training set loss value and
the validation set loss value and the number of iterations.

94

95

96

97

98

99

100

101

FM

AM 2 PSK

2 FSK

2 ASK

Measured recognition rate (%)

Figure 8: Measured signal test results.

8 Wireless Communications and Mobile Computing



EVM = 204:17%, MER = −6:26 dB for the prerecovery signal
and EVM = 12:14%, MER = 18:14 dB, and SER = 0:038%.

5. Conclusion

In this paper, the problem of communication signal modula-
tion pattern recognition based on deep learning is studied.
Firstly, the mechanism of communication signal generation
and the related theory of deep learning are introduced to pro-
vide the theoretical basis for the identification of modulated
signals. Secondly, from the time-frequency domain of the sig-
nal, multiple time-frequency analysis methods are compared
to select the time-frequency analysis method that better char-
acterizes the modulated signal and the feature image genera-
tion algorithm is used to convert the time-frequency image
into a database that can be used by the neural network. Finally,
through the design of the modulation recognizer based on the
convolutional neural network and the analysis of the perfor-
mance of the convolutional neural network, a convolutional
neural network model is established to realize the fast and
accurate recognition of modulation patterns of communica-
tion signals in a complex electromagnetic environment and
it can have good recognition effect under the condition of
low signal-to-noise ratio. Compared with classical convolu-
tional neural network modulation pattern recognition, recog-
nition accuracy is improved; the convolutional neural network
can be improved by changing the network layer structure,
using a sequential convolutional module structure or using
small convolutional kernel to extract the fine details in the
radio signal; the characteristics of the radio signal will be
clearer, compared with classical convolutional neural network
modulation pattern recognition; the improved convolutional
neural network not only shortens in training time but also
improves the recognition accuracy. Theoretical analysis and

computer simulation results show that the proposed algorithm
based on the machine learning decision theory for communi-
cation signal modulation and recognition is practical, effective,
and easy to implement and has the value of application in
practical engineering.
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