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Facial expression is one of the most powerful, natural,
and immediate means for human beings to communicate
their emotions and intentions.Facial displays indicateemo-
tion (Ekman, 1993) and pain (Craig, Hyde, & Patrick,
1991), regulate social behavior (Cohn & Elmore, 1988;
Eibl-Eibesfeldt, 1989; Fridlund, 1994), reveal brain func-
tion (Ekman, Davidson, & Friesen, 1990; Fox & David-
son, 1988) and pathology (Katsikitis & Pilowsky, 1988;
Rinn, 1984), and signal developmental transitions in in-
fants (Campos, Bertenthal, & Kermoian, 1992; Emde,
Gaensbauer, & Harmon, 1976). To make use of the infor-
mation afforded by facial expression, reliable, valid, and
efficient methods of measurement are critical.

Human-observer–based (i.e., manual) methods of cod-
ing facial expression are labor intensive, semiquantitative,
and difficult to standardize across laboratories or over
time. Training is time consuming (approximately 100 h
with the most descriptive methods), and coding criteria
may drift with time (Bakeman & Gottman, 1986; Martin
& Bateson, 1986). Implementing comprehensive sys-
tems has been reported to take up to 10 h of coding time
per minute of behavior, depending on the comprehen-
siveness of the system and the density of behavior changes
(Ekman, 1982). Such extensive effort discourages stan-
dardized measurement and may encourage the use of less
specific coding systems with unknown convergent valid-
ity (Matias, Cohn, & Ross, 1989). These problems tend to
promote the use of smaller sample sizes (of subjects and
behavior samples), prolong study completion times, and
thus, limit the generalizability of study findings.

Within the past decade, there has been significant ef-
fort toward automatic recognitionof human facial expres-
sion, using computer vision. Several such systems (Essa
& Pentland, 1997; Padgett, Cottrell, & Adolphs, 1996;
Yacoob & Davis, 1997) have recognized,under controlled
conditions, a small set of emotion-specified expressions,
such as joy and anger. Others (Bartlett, Hager, Ekman, &
Sejnowski, 1999; Lien, Kanade, Cohn, & Li, 2000; Tian,
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Previous researchin automatic facialexpression recognition has been limited to recognition of gross
expression categories (e.g., joy or anger) in posed facial behavior under well-controlled conditions
(e.g., frontal pose and minimal out-of-plane head motion). We have developed a system that detects a
discrete and important facial action (e.g., eye blinking) in spontaneously occurring facialbehavior that
has been measured with a nonfrontal pose, moderate out-of-plane head motion, and occlusion. The
system recovers three-dimensional motion parameters, stabilizes facial regions, extracts motion and
appearance information, and recognizes discrete facial actions in spontaneous facial behavior. We
tested the system in video data from a two-person interview. The 10 subjects were ethnically diverse,
action units occurred during speech, and out-of-plane motion and occlusion from head motion and
glasseswere common. The video data were originally collected to answer substantive questions in psy-
chology and represent a substantial challenge to automated action unit recognition. In analysis of
blinks, the system achieved 98% accuracy.
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Kanade, & Cohn, 2000, 2001, 2002) have achieved some
success in the more difficult task of recognizing facial
action units (AUs) of the Facial Action Coding System
(FACS: Ekman & Friesen, 1978). AUs are the smallest
visibly discriminable changes in facial expression. In a
series of studies (Cohn, Zlochower, Lien, & Kanade,
1999; Lien et al., 2000; Tian et al., 2001, 2002), our
group has developed a system that recognizes 20 of ap-
proximately 30 AUs that have a known anatomic basis
and occur most frequently in emotion expression and
paralinguistic communication (Kanade, Cohn, & Tian,
2000;Sayette, Cohn,Wertz, Perrott, & Parrott, 2001). AUs
are recognized whether they occur alone or in combina-
tions. The ability to recognize AUs, whether they occur
alone or in combinations, is an important feature, be-
cause AUs may occur in thousands of combinations
(Ekman, 1982) and the appearance and timing of AUs
can vary, dependingon the AUs with which they co-occur
(analogous to coarticulation effects in speech).

A limitation of almost all research to date in automatic
facial expression recognition is that it is limited to delib-
erate facial expression recorded under controlled condi-
tions that omit significant head motion and other factors
that complicate analysis. Automatic recognitionof facial
AUs in spontaneously occurring facial behavior presents
multiple challenges. These include camera orientation,
head motion, occlusion, differences between deliberate
and spontaneous expression, and individual differences
among subjects.We first will review each of these factors.
We then will report one of the first attempts to automat-
ically recognize AUs in spontaneous facial behavior dur-
ing social interaction, with nonfrontal pose, moderate
out-of-plane head motion, and moderate occlusion.

Camera Orientation and Rigid Head Motion
Most research in facial expression recognitionhas been

limited to image sequences in which the face is oriented
toward the camera. Although frontal pose is a reasonable
assumption when subjects are asked to model facial ex-
pressions or talk in front of a camera (as in “talking head”
or TV news applications), in most social interaction re-
search, cameras are oriented about 15º–30º to the side, in
order not to interfere with face-to-face interaction. With
variation in camera orientation, face appearance changes
qualitatively. As one example, the relative symmetry of
facial features is lost (Liu, Schmidt, Cohn, & Weaver,
2002), and facial features become occluded when cam-
era orientation is no longer frontal. Systems that have
been trained on relatively symmetric frontal views may
generalize poorly to face images acquired from oblique
camera angles.

A related problem is head motion. Moderate to large
head motion is common in naturally occurring behavior
and often accompanies change in expression. Kraut and
Johnson (1979) found that smiling typically occurs while
turning toward another person. Camras, Lambrecht, and
Michel (1996) found that infant surprise expressions
often occur as the infant pitches his or her head back. To
control for head motion, previous research has used head-

mounted cameras (Pantic, 2002) or has selected image
sequences in which head motion is absent (Bartlett et al.,
1999; Donato, Bartlett, Hager, Ekman, & Sejnowski,
1999). When head motion is allowed, it typically is lim-
ited to motion that is parallel to the image plane of the
camera (i.e., planar head motion; Tian et al., 2001; Ya-
coob & Davis, 1997). For head motion that is planar or
nearly so, an affine or perspective transformation of im-
ages (Lien et al., 2000) can align images so that face po-
sition, size, and orientation are kept relatively constant
across subjects and these factors do not interfere signif-
icantly with feature extraction. The problem occurs with
out-of-plane motion of more than about 5º, which is typ-
ical in spontaneous facial behavior. Out-of-plane head
motion is a particular challenge for computer vision sys-
tems, because the face looks different when the head
pitches up or down or turns from side to side (i.e., yaw),
which occludes facial features. A computer vision sys-
tem must be robust to variations in camera orientation
and out-of-plane head motion.

Deliberate Versus Spontaneous Facial
Expression

Most facial expressiondata have been collected by ask-
ing subjects to perform a series of expressions. These di-
rected facial action tasks typically are more intense and
includemore appearance changes than do those that occur
spontaneously (Zlochower, 2001). They also are likely
to differ in appearance and timing from spontaneously
occurring behavior (Cohn & Schmidt, 2003). Deliberate
and spontaneous facial behaviors are mediated by sepa-
rate motor pathways—the pyramidal and extra-pyramidal
motor tracks, respectively (Rinn, 1984).As a consequence,
fine motor control of deliberate facial actions often is in-
ferior to and less symmetric than that which occurs spon-
taneously. Many people, for instance, are able to raise their
outer brows spontaneouslywhile leaving their inner brows
at rest; few can perform this action voluntarily. Sponta-
neous depression of the lip corners (AU 15) and raising
and narrowing the inner corners of the brow (AU 1 + 4)
are common signs of sadness. Without training, few peo-
ple can perform these actions deliberately, which, inciden-
tally, is an aid in lie detection (Frank & Ekman, 1997).
Spontaneous smiles show a highly consistent relation be-
tween duration and amplitude that is characteristic of
ballistic motion; for deliberate smiles, these parameters
are uncorrelated, to which observers may be particularly
sensitive (Cohn & Schmidt, 2003). Differences in the
temporal organization of spontaneous and deliberate fa-
cial actions are particularly important to automatic facial
expression analysis, in that many pattern recognition ap-
proaches, such as hidden Markov modeling, are highly
dependent on the timing of appearance change.

Individual Differences Among Subjects
Face shape, texture, color, and facial and scalp hair

vary with sex, ethnic background, and age (Bruce &
Young, 1998). Infants, for instance, have smoother, less
textured skin and often lack facial hair in the brows or
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scalp. The eye opening and contrast between iris and
sclera differ markedly between Asians and Northern Eu-
ropeans, which may affect the robustness of eye tracking
and of facial feature analysis more generally. Beards,
eyeglasses, or jewelry may obscure facial features. Such
individual differences in appearance can have important
consequencesfor face analysis.Few attempts to study their
influence exist. In our experience (Cohn, Tian, & Forbes,
2000), algorithms for optical flow and high-gradient
component detection that have been optimized for young
adults perform less well when used in infants. The re-
duced texture of infants’ skin, their increased fatty tis-
sue, juvenile facial conformation, and lack of transient
furrows may all have contributed to the differences ob-
served in face analysis between infants and adults.

In addition to individual differences in appearance,
there are individual differences in expressiveness, which
refers to the degree of facial plasticity, relative intensity
of facial expression, bias for particular facial expres-
sions, and overall rate of expression. Individual differ-
ences in these characteristics are well established and are
important aspects of individual identity (Cohn, Schmidt,
Gross, & Ekman, 2002; Moore, Cohn, & Campbell,
1997; Schmidt & Cohn, 2001). An extreme example of
variability in expressiveness occurs in individuals who
have incurred damage to the facial nerve or central ner-
vous system (Van Swearingen, Cohn, & Bajaj-Luthra,
1999). To develop algorithms that are robust to individ-
ual differences in facial features and expressiveness, it is
essential to include subjects of varying ethnic back-
ground, age, and sex and to allow for facial hair, jewelry,
or eyeglasses that may obscure or hide facial features.

We report one of the first attempts to automatically
recognize AUs—in particular, eye blinking—in sponta-
neous facial behavior during social interaction with non-
frontal pose, moderate out-of-plane head motion, and
moderate occlusion in diverse subjects. The image data
were collected in order to investigate a socially and psy-
chologically important topic, deception, rather than to
test facial expression algorithms. We focus here on eye
blinking. Measurement of blinking is important in sev-
eral fields, including neurology, physiology, and psy-
chology. Blink rate varies with physiological and emo-
tional arousal, cognitive effort, and deception (Ekman,
2001; Holland & Tarlow, 1972; Karson, 1988).

The face analysis system recovers three-dimensional
(3-D) motion parameters, stabilizes facial regions, ex-
tracts motion and appearance information, and recog-
nizes AUs in spontaneous facial behavior. Manual pro-
cessing is limited to marking several feature points in the
initial image of the stabilized image sequence. All other
processing is automatic. In an initial test, reported below,
the system recognized blinks with 98% accuracy.

METHOD

Database
We used video data from a study of deception by Frank and Ekman

(1997). The subjects were 20 young adult men. Data from 10 were

available for analysis. Seven of the 10 were Euro-American, 2 were
African-American, and 1 was Asian. Two wore glasses. The sub-
jects either lied or told the truth about whether they had stolen a
large sum of money. Prior to stealing or not stealing the money, they
were informed that they could earn as much as $50 if successful in
perpetuating the deception and could anticipate relatively severe
punishment if they failed. By providing strong rewards and pun-
ishments, the manipulation afforded ecological validity for decep-
tion and for truth-telling conditions.

The subjects were video recorded using a single S-Video camera.
Head orientation to the camera was oblique, and out-of-plane head
motion was common. The tapes were digitized into 640 3 480 pixel
arrays with 16-bit color resolution. A certified FACS coder at Rut-
gers University, under the supervision of Dr. Frank, manually
FACS-coded start and stop times for all AUs in 1 min of facial be-
havior in the first 10 subjects. Certified FACS coders from the Uni-
versity of Pittsburgh confirmed all the coding.

In this report, we focus on automatic analysis of blinks (AU 45
in FACS). We included for analysis all instances of blink (AU 45)
for which two independent teams of certified FACS coders agreed;
95% of those examined (167 blinks) met this criterion and were in-
cluded in the analyses. The average number of blinks per subject
was 16.70, with a standard deviation of 10.86. We also include the
few instances of eyelid flutter that occurred, defined as two or more
rapidly repeating blinks (AU 45) with only partial eye opening
(AU 42 or AU 41) between them. In flutter, the modal interval be-
tween blinks was one frame, with a maximum of two frames. These
instances of flutter occurred in 3 subjects, with 1 subject accounting
for 12 of the 14 that occurred. For each subject, we included an equal
number of nonblink intervals of equal duration, for comparison.

Overview of Face Analysis System
Figure 1 depicts an overview of the face analysis system (Auto-

mated Face Analysis, Version 3) used for automatic recognition of
blinks (FACS AU 45) and flutter. A digitized image sequence is
input to the system. The face region is delineated in the initial frame
either manually or by using a face detector (Rowley, Baluja, &
Kanade, 1998). The image in which the head is most upright is cho-
sen as the reference image. Head motion (6 degrees of freedom
[dfs] ) is recovered automatically. With the recovered motion pa-
rameters, the face region is stabilized—that is, warped to a view of
common orientation. Facial features are extracted in the image se-
quence, and AUs are recognized. The present study is limited to
analysis of the eye region. The modules for feature extraction and
analysis of other face regions (e.g., forehead and brows) are not
considered.

Automatic Recovery of 3-D Head Motion and
Stabilization of Eye Region

To estimate 3-D head motion, one option is to use an anatomi-
cally based face model in which the exact proportions of facial fea-
tures are represented (DeCarlo & Metaxas, 1996; Essa & Pentland,
1997). To work well, such anatomic models require fitting a large
number of parameters that are dependent on the exact shape of the
individual face, which typically is unknown. These parameters
must be precisely estimated throughout an image sequence. When
precise initialization and tracking are not available, better recovery
may be achieved by using a simpler 3-D geometric model. In our
approach, we use a cylindrical head model to estimate the 6 dfs of
head motion, whose parameters are horizontal and vertical position,
distance to the camera (i.e., scale), pitch, yaw, and roll.

A cylindrical model is fit to the initial face region, and the face
image is cropped and “painted” onto the cylinder as the initial ap-
pearance template. For any given frame, the template is the head
image in the previous frame that is projected onto the cylindrical
model. To estimate head motion, we first warp the head image to the
cylindrical model with the pose being that of the template; that is,
we assume that the pose has remained unchanged from the template
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Figure 1. Overview of Automated Face Analysis, Version 3.

Figure 2. Automatic recovery of three-dimensional (3-D) head motion and image stabilization. (A) Frames 1,
10, and 26 from the original image sequence. (B) Automatic face tracking in the corresponding frames. (C) Sta-
bilized face images. (D) Localized eye regions.
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to the current frame. We then compute the difference between the
warped image and the template, to provide the initial estimate of
pose. To obtain the final estimate of pose, we iterate this process to
further refine the estimate by using a model-based optical flow algo-
rithm (Lucas & Kanade, 1981; Xiao, Kanade, & Cohn, 2002). This
algorithm is implemented with an iterative hierarchical image pyra-
mid (Poelman, 1995) so that rapid and large head motion may be
tracked. Although the algorithm assumes that lighting remains un-
changed from one frame to the next, we have found that the algorithm
is relatively robust to the typical variations in lighting found in indoor
settings.

Major potential sources of error in estimating head motion in-
clude nonrigid motion (e.g., facial expression) and occlusion (e.g.,
a hand moving in front of the face). When they occur, some pixels
in the template may change in the processed image or even disap-
pear. We do not want these pixels to contribute to motion estimation.
When estimating optical flow from one frame to the next, these pix-
els will have relatively large error. To minimize their influence, pixels
with large error are given less weight in estimating motion between
frames, so that they contribute less than do other pixels. The specific
technique that we use is iteratively reweighted least squares (Black,
1992). In this way, the potential influence of nonrigid motion and
occlusion are minimized in estimating rigid head motion.

Head templates change while tracking occurs. Once head pose is
estimated in a new frame, the region facing the camera is extracted
as the new template. Because head poses are recovered, using tem-
plates that are constantly updated, and the pose estimated for the
current frame is used in estimating the pose in the next frame, er-
rors would accumulate unless otherwise prevented. To solve this
problem, the first frame and the initial head pose are stored as a ref-
erence. When the estimated pose for the new frame is close to the
initial one, the system rectifies the current pose estimate by regis-
tering this frame with a reference one. The reregistration prevents
errors from accumulating and enables the system to recover head pose
when the face reappears after occlusion, such as when the head moves
momentarily out of the camera’s view. By reregistering the face
image, the system can run indefinitely.

The system was tested successfully in image sequences that in-
clude maximum pitch and yaw as large as 40º and 75º, respectively,
and a time duration of up to 20 min (Xiao et al., 2002). The preci-
sion of recovered motion was evaluated with respect to the ground
truth obtained by a precise position and orientation measurement
device with markers attached to the head and found to be highly
consistent (e.g., for 75º yaw, absolute error averaged 3.86º; for de-
tails, see Xiao et al., 2002). Although a head shape is not actually a
cylinder, a cylinder model is found to be adequate and, indeed, con-
tributes to system stability and robustness.

An example of system output can be seen in Figure 2. From the
input image sequence (Figure 2A), the head is tracked, and its pose
is recovered, as described above (Figure 2B). Once the head pose is
recovered, we can stabilize the face region by transforming the
image to a common orientation (Figure 2C) and then can localize a
region of interest, which, in the present study, is the eye region (Fig-
ure 2D), as will be described below.

Eye Action Classification
The eye region consists of the iris, sclera, upper and lower eyelids,

and eyelashes. If we divide the eye region into upper and lower por-
tions (Figure 3), the gray-scale intensity distribution of the upper
and lower portions would change as the eyelid closes and opens dur-
ing blinking. Gray-scale intensity can range from 0 (black) to 255
(white). When the eye is open, the relatively light gray-scale inten-
sity of sclera is averaged with the darker gray-scale values of the
upper eyelashes, pupil, and iris. As the eyelid closes, gray-scale in-
tensity in the upper eye region increases as the eyelashes move into
the lower region and the pupil and iris become occluded by the rel-
atively brighter (i.e., higher gray-scale intensity) skin of the now ex-
posed upper eyelid. In pilot testing and in the present study, we found
that even in dark-skinned subjects, gray-scale intensity in the upper
eye region is greater when the eyes are closed rather than open. We
can use this knowledge to automatically track closing and opening
of the eye and to recognize blinks from nonblinks once the eye re-
gion is stabilized with respect to rigid motion.

Automatic Feature Extraction in the Eye Region
The input face image sequence (Figure 2A) has been automati-

cally processed to obtain the stabilized image sequence (Figure 2C,
as described above). We then def ine the eye region by manually
marking four feature points in the first frame of the stabilized image
sequence. These feature points in the first frame are the inner and
outer eye corners, the center of the upper eyelid, and just below the
center of the lower eyelid. The pixel coordinates of these feature
points in the first frame then are used to define the upper and lower
eye regions in each frame of the stabilized image sequence. Fig-
ure 3 shows an example from Frames 1, 5, 6, 7, and 9 of a stabilized
image sequence in which the eye changes from open to closed. Note

Figure 3. Upper and lower portions of the eye region in Frames 1, 5, 6, 7, and 9 from a stabilized
image sequence in which the eye changes from open to closed.

Figure 4. Blink detection algorithm.The number and duration
of nonblinks, blinks, and flutters are detected by counting the
number of peaks (Np) and crossings (Nc) in the gray-scale inten-
sity curves. If Np 5 0, there is a nonblink; if Np 5 1 and Nc Þ 0,
a blink; if Np � 2 and Nc Þ 0, a flutter.
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that as the eye closes, the gray-scale intensity of the upper eye re-
gion becomes lighter as the upper eyelid progressively covers the
iris and pupil and the eyelashes on the upper eyelid move into the
lower eye region.

For now, we treat only the right eye (image left). The classifica-
tion categories of eye actions are blink, flutter, and nonblink. For
this classification, the average gray-scale intensity is calculated for
the upper and the lower eye regions. When the eye is open, mean
gray-scale intensity in the upper half is smaller than that in the
lower half and reverses when the eye is closed. When mean inten-
sities for the upper and the lower regions are plotted over time, they
cross when an eye closes and opens. The intensity curve for the
upper eye peaks when the eye is completely closed (AU 45). By
counting the number of crossings (Nc) and the number of peaks
(Np) in the gray-scale intensity curves, we can detect the timing,
number, and duration of eye blinking:

Np = 0 ® Nonblink
Np = 1 and Nc p 0 ® Blink

and

Np � 2 and Nc p 0 ® Flutter,

where Np = number of peaks and Nc = number of crossings in the
gray-scale intensity curves for the upper and the lower eye regions
(Figure 4).

Figure 5 shows examples of the gray-scale intensity curves for
nonblink (Figure 5A), blink (Figure 5B), and flutter (Figure 5C).

RESULTS

The accuracy of blink detection was assessed in two
ways. First, we compared the sensitivityof the algorithm
with quantitativechanges in eye closure to that of human
judges. Second, we compared the accuracy of automatic
blink detection with that of human FACS coders.

To evaluate the sensitivity of the blink detection algo-
rithm to variation in eye opening and closing, we com-
pared automatic and manual (human) processing. Stabi-
lized eye image sequences in which AU 45 (blink)
occurred were analyzed using the algorithm described
above. Gray-scale intensity of the upper eye region, as

Figure 5. Examples of gray-scale intensity curves for nonblink, blink, and flutter.

A) Nonblink

B) Blink

C) Flutter
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determined automatically, was normalized over the
range of 0 to 1. A normalized intensity of 1 corresponded
to the open eye, and 0 corresponded to the closed eye.
The digitized images then were randomly sorted. Two re-
searchers, blind to the results of automatic processing,
then manually sorted each sequence from eye open to
closed to open. They next estimated the degree of eye
opening on a scale from 0 (eye closed) to 1 (eye open).
In each of the 10 sequences examined, the manual rat-
ings of eye open by each of the two researchers were
highly consistent with automatic measurement of gray-
scale intensity. Figure 6 shows the graphical results for
one of the 10 sequences examined. The manual ratings
by each of the raters were highly consistent with those of
the others and with the results of automatic processing of
gray-scale intensity. In the example shown, the consis-
tency between Rater 1 and automatic processing (r =
.95) was comparable to the consistency found in manual
ratings between Rater 1 and Rater 2 (r = .96). These
findings were typical of the close correspondence be-
tween manual ratings of eye state and automatic pro-
cessing.

Table 1 shows the recognition results for blink detection
in all the image data, in comparison with the manual
FACS coding. The algorithm achieved an overall accu-
racy of 98%. Six of 14 instances of flutter were incor-
rectly recognized as single blinks. Rapid transitions from
AU 45 to AU 42 to AU 45, in which eye closure remains
nearly complete, were occasionally recognized as a sin-

gle blink. Transitions from AU 45 to AU 41 (drooping
upper eyelid) to AU 45 were more frequently detected.
The measure we used (crossing of average intensities)
was not consistently sensitive to the slight change be-
tween complete closure (AU 45) and closure that was
nearly complete (AU 42). If blink and flutter are com-
bined into a single category (which is common practice
among FACS coders), classification accuracy of eye clo-
sure and opening was 100%.

DISCUSSION

This study is one of the first to attempt automatic AU
recognition in naturally occurring facial behavior. All
other work in automated facial expression recognitionhas
been limited to analysis of deliberate facial expressions
that have been collected under controlled conditions for
purposes of algorithm development and testing. We an-

Table 1
Comparison of Manual FACS Coding

and Automatic Recognition

Automatic Recognition

Manual FACS Coding Blink (AU45) Flutter Nonblink

Blink (AU 45) 153 0 0
Flutter 6 8 0
Nonblink 0 0 167

Note—Overall agreement = 98% (kappa = .97). Combining blink and
flutter agreement = 100%.

Figure 6. Comparison of manual ordering of eye closure by Rater 1 and Rater 2 and au-
tomatic ordering using automatic facial expression analysis.
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alyzed image data from Frank and Ekman (1997), who
collected them under naturalistic conditions in the course
of psychological research on deception, and not with the
intentionof automated facial expression analysis. We ana-
lyzed spontaneouslyoccurring behavior, rather than posed
expressions. The data presented significant challenges in
terms of heterogeneity of subjects, brightness, occlusion,
pose, out-of-planehead motion, and low intensity of AUs.

To meet these challenges, we developed Automated
Face Analysis, Version 3, which automatically estimates
3-D motion parameters, stabilizes face images for analysis,
and recognizes facial actions, using a face-component–
based approach to feature extraction. We emphasized the
aspect of automated analysis of feature extraction, local-
ization, and tracking; manual processing was limited to
feature marking in a single initial frame, and all other pro-
cessing was fully automatic. This focus contrasts with re-
cent efforts by Bartlett, Braathen, Littlewort, Sejnowski,
and Movellan (2001) to analyze spontaneousfacial behav-
ior that requires manual labeling and registration of each
image.

Automated Face Analysis, V.3, successfully recog-
nized blinks from nonblinks for all the examples in the
database. It also was able to distinguish flutter, with
lower accuracy. We found that automated analysis of fa-
cial images still presents significant challenges. Many
previously published algorithms, including our own, that
worked well for frontal faces and good lighting condi-
tions fail with images under nonfrontal facial poses, full
6 df head motions, and ordinary lighting.Precise and re-
liable extraction and localization of features is the key to
the success of automated FACS coding, for facial ex-
pression and emotion analysis. The 3-D model–based
stabilization technique presented here for stabilizing the
arbitrary and unknown head motion is one such example.
In the next phase of our research, we will expand the size
and diversity of our database of FACS-coded sponta-
neous facial behavior and increase the number and com-
plexity of AUs that can be recognized automatically in
this context. We also will include explicit analysis of the
timing of facial actions in relation to context and commu-
nicative intention (Cohn & Schmidt, 2003; Schmidt &
Cohn, in press). Although challenges remain, these find-
ings support the feasibility of developing and implement-
ing comprehensive,automated facial expression analysis
in research on emotion and nonverbal communication.
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