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Abstract 

Previous research in automatic facial expression recognition has been limited to 
recognition of gross expression categories (e.g., joy or anger) in posed facial 
behavior under well-controlled conditions (e.g., frontal pose and minimal out-of-
plane head motion). We have developed a system that detects a discrete and 
important facial action (e.g., eye blinking) in spontaneously occurring facial 
behavior that has been measured with non-frontal pose, moderate out-of-plane 
head motion, and occlusion.  The system recovers 3D motion parameters, 
stabilizes facial regions, extracts motion and appearance information, and 
recognizes discrete facial actions in spontaneous facial behavior. We tested the 
system in video data from a 2-person interview. The 10 subjects were ethnically 
diverse, action units occurred during speech, and out-of-plane motion and 
occlusion from head motion and glasses were common. The video data were 
originally collected to answer substantive questions in psychology, and represent 
a substantial challenge to automated AU recognition. In analysis of blinks, the 
system achieved 98% accuracy.   

 

Introduction 

 Facial expression is one of the most powerful, natural, and immediate means 
for human beings to communicate their emotions and intentions.  Facial displays 
indicate emotion (Ekman, 1993) and pain (Craig, Hyde, & Patrick, 1991), regulate 
social behavior (Cohn & Elmore, 1988; Eibl-Eibesfeldt, 1989; Fridlund, 1994), 
reveal brain function (Ekman, Davidson, & Friesen, 1990; Fox & Davidson, 
1988) and pathology (Katsikitis & Pilowsky, 1988; Rinn, 1984), and signal 
developmental transitions in infants (Campos, Bertenthal, & Kermoian, 1992; 
Emde, Gaensbauer, & Harmon, 1976).  To make use of the information afforded 
by facial expression, reliable, valid, and efficient methods of measurement are 
critical. 
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 Human-observer-based (i.e., manual) methods of coding facial expression are 
labor intensive, semi-quantitative, and difficult to standardize across laboratories or 
over time.  Training is time consuming (approximately 100 hours with the most 
descriptive methods), and coding criteria may drift with time (Bakeman & 
Gottman, 1986; Martin & Bateson, 1986).  Implementing comprehensive systems 
is reported to take up to 10 hours of coding time per minute of behavior depending 
upon the comprehensiveness of the system and the density of behavior changes 
(Ekman, 1982).  Such extensive effort discourages standardized measurement and 
may encourage the use of less specific coding systems with unknown convergent 
validity (Matias, Cohn, & Ross, 1989).  These problems tend to promote the use 
of smaller sample sizes (of subjects and behavior samples), prolong study 
completion times, and thus limit the generalizability of study findings.   
 
   Within the past decade, there has been significant effort toward automatic 
recognition of human facial expression using computer vision.  Several such 
systems (Essa & Pentland, 1997; Padgett, Cottrell, & Adolphs, 1996; Yacoob & 
Davis, 1997) have recognized under controlled conditions a small set of emotion-
specified expressions, such as joy and anger. Others (Bartlett, Hager, Ekman, & 
Sejnowski, 1999; Lien, Kanade, Cohn, & Li, 2000; Tian, Kanade, & Cohn, 2000, 
2001, 2002) have achieved some success in the more difficult task of recognizing 
facial action units of the Facial Action Coding System (FACS: Ekman & Friesen, 
1978).  Actions units (AU) are the smallest visibly discriminable changes in 
facial expression.  In a series of studies (Cohn et al., 1999; Lien et al., 2000; Tian 
et al., 2001, 2002), our group has developed a system that recognizes 20 of 
approximately 30 action units that have a known anatomic basis and occur most 
frequently in emotion expression and paralinguistic communication (Kanade, 
Cohn, & Tian, 2000; Sayette, Cohn, Wertz, & Perrott, 2001). Action units are 
recognized whether they occur alone or in combinations. The ability to recognize 
action units whether they occur alone or in combinations is an important feature 
because action units may occur in thousands of combinations (Ekman, 1982), and 
the appearance and timing of action units can vary depending on the action units 
with which they co-occur (analogous to co-articulation effects in speech).  
 
 A limitation of almost all research to date in automatic facial expression 
recognition is that it is limited to deliberate facial expression recorded under 
controlled conditions that omit significant head motion and other factors that 
complicate analysis.  Automatic recognition of facial action units in 
spontaneously occurring facial behavior presents multiple challenges. These 
include camera orientation, head motion, and occlusion, differences between 
deliberate and spontaneous expression, and individual differences among subjects.  
We first review each of these factors.  We then report one of the first attempts to 
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automatically recognize action units in spontaneous facial behavior during social 
interaction with non-frontal pose, moderate out-of-plane head motion, and 
moderate occlusion.   
 
Camera orientation and rigid head motion  
 
 Most research in facial expression recognition has been limited to image 
sequences in which the face is oriented toward the camera.  While frontal pose is 
a reasonable assumption when subjects are asked to model facial expressions or 
talk in front of a camera (as in ‘talking head’ or TV news applications), in most 
social interaction research cameras are oriented about 15-30 degrees to the side in 
order not to interfere with face-to-face interaction. With variation in camera 
orientation, face appearance changes qualitatively. As one example, the relative 
symmetry of facial features is lost (Liu, Schmidt, Cohn, & Weaver, 2002) and 
facial features become occluded when camera orientation is no longer frontal. 
Systems that have been trained on relatively symmetric frontal views may 
generalize poorly to face images acquired from oblique camera angles. 
 
 A related problem is head motion. Moderate to large head motion is 
common in naturally occurring behavior and often accompanies change in 
expression.  Kraut and Johnson (1979) found that smiling typically occurs while 
turning toward another person. Camras, Lambrecht, and Michel, (1996) found that 
infant surprise expressions often occur as the infant pitches her head back. To 
control for head motion, previous research has used head mounted cameras 
(Pantic, 2002) or selected image sequences in which head motion is absent 
(Bartlett et al., 1999; Donato, Bartlett, Hager, Ekman, & Sejnowski, 1999). When 
head motion is allowed, it typically is limited to motion that is parallel to the 
image plane of the camera (i.e., planar head motion) (Tian et al., 2001; Yacoob & 
Davis, 1997).  For head motion that is planar or nearly so, an affine or 
perspective transformation of images (Lien, Kanade, Cohn, & Li, 2000) can align 
images so that face position, size, and orientation are kept relatively constant 
across subjects, and these factors do not interfere significantly with feature 
extraction. The problem occurs with out-of-plane motion of more than about 5 
degrees, which is typical in spontaneous facial behavior. Out-of-plane head 
motion is a particular challenge for computer vision systems because the face 
looks different when the head pitches up or down or turns from side to side (i.e., 
yaw), which occludes facial features. A computer vision system must be robust to 
variation in camera orientation and out-of-plane head motion. 
 
Deliberate versus spontaneous facial expression 
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 Most facial expression data have been collected by asking subjects to perform 
a series of expressions.  These directed facial action tasks typically are more 
intense and include more appearance changes than those that occur spontaneously 
(Zlochower, 2001).  They also are likely to differ in appearance and timing from 
spontaneously occurring behavior (Cohn & Schmidt, In press).  Deliberate and 
spontaneous facial behavior are mediated by separate motor pathways, the 
pyramidal and extra-pyramidal motor tracks, respectively (Rinn, 1984).  As a 
consequence, fine-motor control of deliberate facial actions often is inferior to and 
less symmetric than that which occurs spontaneously.  Many people, for 
instance, are able to raise their outer brows spontaneously while leaving their 
inner brows at rest; few can perform this action voluntarily. Spontaneous 
depression of the lip corners (AU 15) and raising and narrowing the inner corners 
of the brow (AU 1+4) are common signs of sadness.  Without training, few 
people can perform these actions deliberately, which incidentally is an aid in lie 
detection (Frank & Ekman, 1997). Spontaneous smiles show a highly consistent 
relation between duration and amplitude that is characteristic of ballistic motion; 
for deliberate smiles, these parameters are uncorrelated, to which observers may 
be particularly sensitive (Cohn & Schmidt, In press).  Differences in the 
temporal organization of spontaneous and deliberate facial actions are particularly 
important to automatic facial expression analysis in that many pattern recognition 
approaches, such as Hidden Markov Modeling, are highly dependent on the 
timing of appearance change.   
 
Individual differences among subjects 
 

Face shape, texture, color, and facial and scalp hair vary with sex, ethnic 
background, and age (Bruce & Young, 1998).  Infants, for instance, have 
smoother, less textured skin and often lack facial hair in the brows or scalp.  The 
eye opening and contrast between iris and sclera differ markedly between Asians 
and Northern Europeans, which may affect the robustness of eye tracking and 
facial feature analysis more generally. Beards, eyeglasses, or jewelry may obscure 
facial features. Such individual differences in appearance can have important 
consequence for face analysis.  Few attempts to study their influence exist.  In 
our experience (Cohn, Tian, & Forbes, 2000), algorithms for optical flow and 
high-gradient component detection that have been optimized for young adults 
perform less well when used in infants. The reduced texture of infants' skin, their 
increased fatty tissue, juvenile facial conformation, and lack of transient furrows 
may all have contributed to the differences observed in face analysis between 
infants and adults.  
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 In addition to individual differences in appearance, there are individual 
differences in expressiveness, which refers to the degree of facial plasticity, 
relative intensity of facial expression, bias for particular facial expressions, and 
overall rate of expression.  Individual differences in these characteristics are well 
established and are important aspects of individual identity (Cohn, Schmidt, 
Gross, & Ekman, 2002; Moore, Cohn, & Campbell, 1997; Schmidt & Cohn, 
2001).  An extreme example of variability in expressiveness occurs in 
individuals who have incurred damage to the facial nerve or central nervous 
system (Van Swearingen, Cohn, & Bajaj-Luthra, 1999). To develop algorithms 
that are robust to individual differences in facial features and expressiveness, it is 
essential to include subjects of varying ethnic background, age, and sex, and to 
allow for facial hair, jewelry or eyeglasses that may obscure or hide facial 
features. 
 
 We report one of the first attempts to automatically recognize action units, 
in particular eye blinking, in spontaneous facial behavior during social interaction 
with non-frontal pose, moderate out-of-plane head motion, and moderate 
occlusion in diverse subjects.  The image data were collected in order to 
investigate a socially and psychologically important topic, deception, rather than 
to test facial expression algorithms.  We focus here on eye blinking. 
Measurement of blinking is important in several fields, including neurology, 
physiology, and psychology. Blink rate varies with physiological and emotional 
arousal, cognitive effort, and deception (Holland. & Tarlow, 1972; Ekman, 2001; 
Karson, 1988).  
 
   The face analysis system recovers 3D motion parameters, stabilizes facial 
regions, extracts motion and appearance information, and recognizes action units 
in spontaneous facial behavior.  Manual processing is limited to marking several 
feature points in the initial image of the stabilized image sequence.  All other 
processing is automatic. In an initial test, reported below, the system recognized 
blinks with 98% accuracy. 
 

Method 
Database 
 
 We used video data from a study of deception by Frank and Ekman 
(1997). Subjects were 20 young adult men. Data from 10 were available for 
analysis. Seven of the 10 were Euro-American, 2 African-American, and 1 Asian. 
Two wore glasses.  Subjects either lied or told the truth about whether they had 
stolen a large sum of money.  Prior to stealing or not stealing the money, they 
were informed that they could earn as much as $50 if successful in perpetuating 
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the deception and could anticipate relatively severe punishment if they failed. By 
providing strong rewards and punishments, the manipulation afforded ecological 
validity for deception and for truth-telling conditions.   
 
 Subjects were video recorded using a single S-Video camera.  Head 
orientation to the camera was oblique and out-of-plane head motion was common. 
The tapes were digitized into 640x480 pixel arrays with 16-bit color resolution. A 
certified FACS coder at Rutgers University under the supervision of Dr. Frank 
manually FACS-coded start and stop times for all action units in 1 minute of 
facial behavior in the first 10 subjects.  Certified FACS coders from the 
University of Pittsburgh confirmed all coding. 
 
 In this report we focus on automatic analysis of blinks (AU 45 in FACS).  
We included for analysis all instances of blink (AU 45) for which two 
independent teams of certified FACS coders agreed; 95% of those examined (167 
blinks) met this criterion and were included in the analyses. The average number 
of blinks per subject was 16.70 with standard deviation of 10.86. We also include 
the few instances of eyelid “flutter” that occurred, defined as two or more rapidly 
repeating blinks (AU 45) with only partial eye opening (AU 42 or AU 41) 
between them. In flutter, the modal interval between blinks was 1 frame, with a 
maximum of 2 frames. These instances of flutter occurred in 3 subjects, with 1 
subject accounting for 12 of 14 that occurred. For each subject, we included an 
equal number of non-blink intervals of equal duration for comparison.  
 

Overview of face analysis system 

 Figure 1 depicts an overview of the face analysis system (Automated Face 
Analysis version 3) used for automatic recognition of blinks (FACS AU 45) and 
flutter.  A digitized image sequence is input to the system. The face region is 
delineated in the initial frame either manually or by using a face detector 
(Rowley, Baluja, & Kanade, 1998). The image in which the head is most upright 
is chosen as the reference image. Head motion (6 df) is recovered automatically. 
Using the recovered motion parameters, the face region is stabilized; that is, 
warped to a view of common orientation. Facial features are extracted in the 
image sequence and action units are recognized. The current study is limited to 
analysis of the eye region. The modules for feature extraction and analysis of 
other face regions (e.g., forehead and brows) are not considered. 
 

Insert Figure 1 About Here 
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Automatic recovery of 3d head motion and stabilization of eye region 
 

To estimate 3d head motion, one option is to use an anatomically based 
face model in which the exact proportions of facial features are represented (De 
Carlo & Mataxas, 1996; Essa & Pentland, 1997).  To work well, such anatomic 
models require fitting a large number of parameters that are dependent on the 
exact shape of the individual face, which typically is unknown.  These 
parameters must be precisely estimated throughout an image sequence. When 
precise initialization and tracking are not available, better recovery may be 
achieved by using a simpler 3d geometric model. In our approach, we use a 
cylindrical head model to estimate the 6 degrees of freedom (df) of head motion, 
whose parameters are horizontal and vertical position, distance to the camera (i.e. 
scale), pitch, yaw, and roll. 

 
A cylindrical model is fit to the initial face region, and the face image is 

cropped and "painted" onto the cylinder as the initial appearance template. For 
any given frame, the template is the head image in the previous frame that is pro-
jected onto the cylindrical model.  To estimate head motion, we first warp the 
head image to the cylindrical model with pose that of the template; that is, we 
assume that pose has remained unchanged from the template to the current frame.  
We then compute the difference between the warped image and the template to 
provide the initial estimate of pose. To obtain the final estimate of pose, we iterate 
this process to further refine the estimate by using a model-based optical flow 
algorithm (Lucas & Kanade, 1981; Xiao, Kanade, & Cohn, 2002). This algorithm 
is implemented with an iterative hierarchical image pyramid (Poelman, 1995) so 
that rapid and large head motion may be tracked. While the algorithm assumes 
that lighting remains unchanged from one frame to the next, we have found that 
the algorithm is relatively robust to the typical variations in lighting found in in-
door settings. 

 
Major potential sources of error in estimating head motion include non-rigid 

motion (e.g., facial expression) and occlusion (e.g., a hand moving in front of the 
face).  When they occur, some pixels in the template may change in the proc-
essed image or even disappear. We do not want these pixels to contribute to mo-
tion estimation. When estimating optical flow from one frame to the next, these 
pixels will have relatively large error. To minimize their influence, pixels with 
large error are given less weight in estimating motion between frames so that they 
contribute less than other pixels. The specific technique that we use is iteratively 
re-weighted least squares (Black, 1992).  In this way, the potential influence of 
non-rigid motion and occlusion are minimized in estimating rigid head motion. 
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Head templates change while tracking. Once head pose is estimated in a 
new frame, the region facing the camera is extracted as the new template.  Be-
cause head poses are recovered using templates that are constantly updated and 
the pose estimated for the current frame is used in estimating the pose in the next 
frame, errors would accumulate unless otherwise prevented. To solve this prob-
lem, the first frame and the initial head pose are stored as a reference. When the 
estimated pose for the new frame is close to the initial one, the system rectifies the 
current pose estimate by registering this frame with a reference one. The re-
registration prevents errors from accumulating and enables the system to recover 
head pose when the face reappears after occlusion, such as when the head moves 
momentarily out of the camera's view. By re-registering the face image, the sys-
tem can run indefinitely.  

 
The system was tested successfully in image sequences that include 

maximum pitch and yaw as large as 40 o and 75 o, respectively, and time duration 
of up to 20 minutes (Xiao, Kanade, & Cohn, 2002). The precision of recovered 
motion was evaluated with respect to the ground truth obtained by a precise posi-
tion and orientation measurement device with markers attached to the head and 
found to be highly consistent (e.g., for 75o yaw, absolute error averaged 3.86 o).  
For details, see Xiao, Kanade, & Cohn (2002). While a head shape is not actually 
a cylinder, a cylinder model is found to be adequate and indeed contributes to 
system stability and robustness.  

 
Insert Figure 2 About Here 

 An example of system output can be seen in Figure 2. From the input 
image sequence (Figure 2A), the head is tracked and its pose recovered as 
described above (Figure 2B). Once the head pose is recovered, we can stabilize 
the face region by transforming the image to a common orientation (Figure 2C) 
and then localize a region of interest, which in the current study is the eye region 
(Figure 2D), as described below.    
 
Eye action classification 
 
 The eye region consists of the iris, sclera, upper and lower eyelids, and the 
eyelashes. If we divide the eye region into upper and lower portions (Figure 3), 
the grayscale intensity distribution of the upper and lower portion would change 
as the eyelid closes and opens during blinking. Grayscale intensity can range from 
0 (black) to 255 (white).  When the eye is open, the relatively light grayscale 
intensity of sclera is averaged with the darker grayscale values of the upper 
eyelashes, pupil, and iris.  As the eyelid closes, grayscale intensity in the upper 
eye region increases as the eyelashes move into the lower region and the pupil and 
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iris become occluded by the relatively brighter (i.e., higher grayscale intensity) 
skin of the now exposed upper-eyelid.  In pilot testing and in the present study, 
we found that even in dark-skinned subjects, grayscale intensity in the upper eye 
region is greater when the eyes are closed rather than open. We can use this 
knowledge to automatically track closing and opening of the eye and recognize 
blinks from non-blinks once the eye region is stabilized with respect to rigid 
motion. 

Insert Figure 3 About Here 
Automatic feature extraction in the eye region 
 
 The input face image sequence (Figure 2A) has been automatically 
processed to obtain the stabilized image sequence (Figure 2C as described above).  
We then define the eye region by manually marking four feature points in the first 
frame of the stabilized image sequence. These feature points in the first frame are 
the inner and outer eye corners, the center of the upper eyelid, and just below the 
center of the lower eyelid. The pixel coordinates of these feature points in the first 
frame then are used to define the upper and lower eye regions in each frame of the 
stabilized image sequence.  Figure 3 shows an example from frames 1, 5, 6, 7, 
and 9 of a stabilized image sequence in which the eye changes from open to 
closed. Note that as the eye closes, the grayscale intensity of the upper eye region 
becomes lighter as the upper eyelid progressively covers the iris and pupil and the 
eyelashes on the upper eyelid move into the lower eye region. 
 

Insert Figure 4 About Here 
 
 For now we treat only the right eye (image left). The classification 
categories of eye actions are blink, flutter, and non-blink. For this classification, 
the average grayscale intensity is calculated for the upper and for the lower eye 
regions. When the eye is open, mean grayscale intensity in the upper half is 
smaller than that in the lower half and reverses when closed. When mean 
intensities for the upper and lower regions are plotted over time, they cross when 
an eye closes and opens. The intensity curve for the upper eye peaks when the eye 
is completely closed (AU 45). By counting the number of crossings (Nc) and the 
number of peaks (Np) in the grayscale intensity curves, we can detect the timing, 
number, and duration of eye blinking:  
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Np = 0  Non-blink 
Np = 1 and Nc ≠ 0  Blink 
Np ≥ 2 and Nc ≠ 0  Flutter 
Where Np = Number of peaks and Nc = Number of crossings in the 
grayscale intensity curves for the upper and lower eye regions 
(Figure 4). 

 
Insert Figure 4 About Here 

 
Figure 5 shows examples of the grayscale intensity curves for blink (Figure 5A), 
non-blink (Figure 5B), and flutter (Figure 5C).  

 
Insert Figure 5 About Here 

 
Results 

  
 The accuracy of blink detection was assessed in two ways. First, we 
compared the sensitivity of the algorithm to quantitative changes in eye closure to 
that of human judges.  Second, we compared the accuracy of automatic blink 
detection with that of human FACS coders.   
  
 To evaluate the sensitivity of the blink detection algorithm to variation in 
eye opening and closing, we compared automatic and manual (human) 
processing.  Stabilized eye image sequences in which AU 45 (blink) occurred 
were analyzed using the algorithm described above.  Grayscale intensity of the 
upper eye region as determined automatically was normalized over the range of 0 
to 1. Normalized intensity of 1.00 corresponded to the open eye, and 0.00 
corresponded to the closed eye.  The digitized images then were randomly 
sorted.  Two researchers, blind to the results of automatic processing, then 
manually sorted each sequence from eye open to closed to open. They next 
estimated the degree of eye opening on a scale from 0 (eye closed) to 1 (eye 
open). In each of 10 sequences examined, the manual ratings of eye open by each 
of the two researchers were highly consistent with automatic measurement of 
grayscale intensity.  Figure 6 shows graphical results for one of the 10 sequences 
examined.  The manual ratings by each of the raters were highly consistent with 
each other and with the results of automatic processing of grayscale intensity.  In 
the example shown, the consistency between Rater 1 and automatic processing (r 
= .95) was comparable to the consistency found in manual ratings between Rater 
1 and Rater 2 (r = .96).  These findings were typical of the close correspondence 
between manual ratings of eye state and automatic processing. 

Insert Figure 6 About Here 
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 Table 1 shows recognition results for blink detection in all image data in 
comparison with the manual FACS coding. The algorithm achieved an overall 
accuracy of 98%.  Six of 14 instances of flutter were incorrectly recognized as 
single blinks.  Rapid transitions from AU 45 to AU 42 to AU 45, in which eye 
closure remains nearly complete, were occasionally recognized as a single blink. 
Transitions from AU 45 to AU 41 (drooping upper eyelid) to AU 45 were more 
frequently detected. The measure we used (crossing of average intensities) was 
not consistently sensitive to the slight change between complete closure (AU45) 
and closure that was nearly complete (AU 42).  If blink and flutter are combined 
into a single category (which is common practice among FACS coders), 
classification accuracy of eye closure and opening was 100%. 
 

Insert Table 1 About Here 
 

Discussion 
  
 This study is one of the first to attempt automatic action unit recognition 
in naturally occurring facial behavior. All other work in automated facial 
expression recognition has been limited to analysis of deliberate facial 
expressions that have been collected under controlled conditions for purposes of 
algorithm development and testing. We analyzed image data from Frank and 
Ekman (1997) who collected them under naturalistic conditions in the course of 
psychological research on deception and not with the intention of automated 
facial expression analysis. We analyzed spontaneously occurring behavior rather 
than posed expressions. The data presented significant challenges in terms of 
heterogeneity of subjects, brightness, occlusion, pose, out-of-plane head motion, 
and the low intensity of action units.   
  
 To meet these challenges, we developed Automated Face Analysis version 
3 that automatically estimates 3D motion parameters, stabilizes face images for 
analysis, and recognizes facial actions using a face-component based approach to 
feature extraction.  We emphasized the aspect of automated analysis of feature 
extraction, localization and tracking; manual processing was limited to feature 
marking in a single initial frame, and all other processing was fully automatic. 
This focus contrasts with recent efforts by Bartlett, Braathen, Littlewort, 
Sejnowski, & Movellan (2001) to analyze spontaneous facial behavior that 
requires manual labeling and registration of each image.   
  
 Automated Face Analysis v.3 successfully recognized blinks from non-
blinks for all the examples in the database. It also was able to distinguish, with 
lower accuracy flutter.  We found that automated analysis of facial images still 
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presents significant challenges.  Many previously published algorithms, 
including our own, that worked well for frontal faces and good lighting conditions 
fail with images under non-frontal facial poses, full 6 df head motions, and 
ordinary lighting. Precise and reliable extraction and localization of features is the 
key to the success of automated FACS coding, facial expression and emotion 
analysis.  The 3D-model based stabilization technique presented here for 
stabilizing the arbitrary and unknown head motion is one such example.  In the 
next phase of our research, we expand the size and diversity of our database of 
FACS-coded spontaneous facial behavior and increase the number and 
complexity of action units that can be recognized automatically in this context.  
We also include explicit analysis of the timing of facial actions in relation to 
context and communicative intention (Schmidt & Cohn, Submitted; Cohn & 
Schmidt, In press). While challenges remain, these findings support the feasibility 
of developing and implementing comprehensive, automated facial expression 
analysis in research on emotion and non-verbal communication.   
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Table 1 
Comparison of Manual FACS Coding and Automatic Recognition. 

Automatic Recognition  
 Blink

(AU45)
F l u t t e r  Non-Blink 

 
Blink 
(AU45) 

153
 
0 

 
0 

Flutter 6 8 0 

 
 
 
Manual 
FACS 
Coding 

Non-Blink 0 0 168 
 
Note. Overall agreement = 98% (kappa = .97). Combining blink and flutter 
agreement = 100%. 
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Figure Caption 
 
Figure 1. Overview Automated Face Analysis version 3. 
Figure 2. Automatic recovery of 3D head motion and image stabilization.  A) 
Frames 1, 10, and 26 from the original image sequence. B) Automatic face 
tracking in the corresponding frames. C) Stabilized face images. D) Localized eye 
regions.  
Figure 3. Upper and lower portions of the eye region in frames 1, 5, 6, 7, and 9 
from a stabilized image sequence in which the eye changes from open to closed. 
Figure 4. Blink detection algorithm. The number and duration of non-blinks, 
blinks and flutter are detected by counting the number of peaks (Np) and 
crossings (Nc) in the grayscale intensity curves. If Np = 0  non-blink; if Np =1 
and Nc ≠ 0  blink; if Np ≥ 2 and Nc ≠ 0  flutter.  
Figure 5. Examples of grayscale intensity curves for non-blink, blink, and flutter. 
Figure 6. Comparison of manual ordering of eye closure by Rater 1 and Rater 2 
and automatic ordering using automatic facial expression analysis.  
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