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Abstract

Acquisition of the standard plane is the prerequisite of biometric measurement and diagno-

sis during the ultrasound (US) examination. In this paper, a new algorithm is developed for

the automatic recognition of the fetal facial standard planes (FFSPs) such as the axial, coro-

nal, and sagittal planes. Specifically, densely sampled root scale invariant feature transform

(RootSIFT) features are extracted and then encoded by Fisher vector (FV). The Fisher net-

work with multi-layer design is also developed to extract spatial information to boost the

classification performance. Finally, automatic recognition of the FFSPs is implemented by

support vector machine (SVM) classifier based on the stochastic dual coordinate ascent

(SDCA) algorithm. Experimental results using our dataset demonstrate that the proposed

method achieves an accuracy of 93.27% and a mean average precision (mAP) of 99.19%

in recognizing different FFSPs. Furthermore, the comparative analyses reveal the superiori-

ty of the proposed method based on FV over the traditional methods.

Introduction

Due to the relatively low cost, real-time imaging capability, and avoidance of radiation expo-

sure [1–4], ultrasound (US) has been widely used for pregnancy diagnosis. During the US-

based diagnosis progress, the clinician first identifies the standard plane by checking the exis-

tence of main anatomical structures, and then examines the plane for further diagnosis and in-

terpretation of the fetal growth. The acquisition of standard plane requires substantial

experience as well as good knowledge of the human anatomy. Hence, this task is extremely

challenging for novices and time consuming even for experienced examiners. Highly accurate

automatic recognition of standard plane is not only extremely useful in assisting both
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experienced and inexperienced examiners, but also beneficial to underprivileged countries

since trained imaging experts might be scarce in such countries.

Recently, considerable effort has been devoted to automatic recognition of the standard

plane from US images [1, 2, 5–12]. Due to the high similarity between the standard and non-

standard planes, high intra-class variations of standard plane caused by various gestational

ages, different fetal postures, various scanning orientations, and the presence of speckles and

artifacts in US images, automatically recognizing standard planes remains challenging. The

first step to address low accuracy in recognition is to find the proper feature representation.

State-of-the-art feature representations include single feature (i. e., Haar-type, histogram of

gradient (HoG) or scale invariant feature transform (SIFT)) as well as combination of motion,

intensity, shape, and edges [2, 13–16]. In recent years, densely sampled SIFT [5, 17–21] has be-

come a promising technique for image representation. Enhancement to the SIFT includes the

root scale invariant feature transform (RootSIFT) [22], which not only inherits good property

of SIFT such as invariance to scale and rotation, but also improves the recognition perfor-

mance. Furthermore, it is extremely simple to convert from SIFT to RootSIFT without intro-

ducing additional requirements for computation and storage [22]. In view of this, RootSIFT is

selected for the feature extraction in the proposed standard plane recognition algorithm.

In order to enhance the recognition performance and efficiency, dense features are usually

encoded prior to transformation into a histogram of occurrence. Currently, the most popular

encoding methods for learning and recognition are locally linear embedding (LLE) [23], vector

of locally aggregated descriptor (VLAD) [20], and Fisher vector (FV) [17, 24], which essentially

are extensions of the bag of visual words (BoVW) [25]. In the last decade, deep learning has at-

tracted considerable attention and is applied in a myriad of field due to its powerful discrimina-

tive learning ability [26]. The feature statistics especially high-order statistics with the

introduction of feature weights outperforms the standard handcrafted representation or binary

representation [27]. Moreover, it is known that feature hierarchy with multilayer feature en-

coding [28] is very effective in exploiting both architecture and feature hierarchy information,

which are useful in enhancing classification performance. Inspired by the promising perfor-

mance of deep learning and feature hierarchy, feature hierarchy with multilayer design is inves-

tigated in this work to improve the FFSP recognition performance.

The recognition task is achieved by processing the encoded features using the popular sup-

port vector machine (SVM) method since it can obtain global optimal values and overcome the

over-fitting problem in classification [29–31]. As shown in [32], stochastic dual coordinate as-

cent (SDCA) is a novel approach which possesses advantages over traditional stochastic gradi-

ent descent (SGD) method [33], such as faster convergence rate and higher efficiency in

learning as compared to SGD. In addition, SDCA provides the duality gap value (the difference

between primal and dual energy). Therefore, we applied SDCA to effectively address the con-

vex quartic programming optimization problem in SVM.

By exploring the state-of-the-art techniques, we propose an effective solution to automati-

cally recognize the fetal facial standard plane (FFSP) from US images. Our goal is to assist clini-

cians to automatically localize the FFSP during US examinations. The main contributions of

this paper are four-fold. Firstly, feature extraction is based on the densely sampled RootSIFT

descriptor and normalization of these features is subsequently performed. Secondly, the ex-

tracted features are encoded by FV to incorporate the generative model and higher order differ-

ence of the features. Thirdly, learning and recognition of the FFSPs is performed by a SVM

classifier based on the SDCA algorithm. Fourthly, the multilayer Fisher network with feature

hierarchy is applied to enhance the performance of the proposed method.
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RelatedWork

Due to the importance of the standard plane from US images for US scanning and diagnosis in

clinical practices, automatic localization of standard plane from US images has become a hot

topic and attracted a myriad of interest [2, 9, 34]. For example, Carneiro et al. [2] proposed to

locate the standard planes from 3D US data using probability boosting tree technique and mar-

ginal learning space. Rahmatullah et al. [9] proposed to automatically detect the standard

plane from the 3D US volume. In [34], Cuingnet et al. suggested a system to perform fast align-

ment of fetal head based on 3D US image using random forest and template deformation. Al-

though 3D US is a promising imaging modality for prenatal examination, 2D exam is still the

preferred approach due to its better imaging quality, wider availability of 2D scanners, and

higher familiarity with experienced users.

More recently, numerous works were proposed to localize standard planes from 2D US im-

ages by detecting major anatomical structures [8, 11, 12]. For instance, Zhang et al. [8] pro-

posed to intelligently identify and detect the standard plane of the gestational cancer using

local context information and cascaded AdaBoost. Rahmatullah et al. [11] presented a method

to detect anatomical structures from manually extracted abdominal US images by integration

of global and local features. This method is semi-automatic and the reported detection accura-

cy is still inadequate for clinical use and diagnostic purposes. Kwitt et al. [12] proposed to local-

ize target structures from US videos by building kernel dynamic texture (KDT) models, which

were evaluated based on the US videos acquired from three different phantoms. Since actual

patient data is much more complex than phantom data, further investigation is required to

evaluate the effectiveness of their proposed method.

Other works reported in [15, 16, 34, 35] are based on object classification method, which are

similar to our proposed recognition system. In [15], the low level GIST feature based on Gabor

filter was adopted for echocardiogram view classification. Kernel-based SVM classifier was

used for an 8-way view classification. The work in [16] utilized the HOG feature and SVM clas-

sifier. In [35], a set of novel salient features were located from the edge-filtered motion magni-

tude images for 2D echocardiogram view classification at scale invariant points. The extracted

features are then encoded using local spatial, textural, and kinetic information. A hierarchical

feature dictionary was learnt for view classification based on SVM classifier with pyramid

matching kernel.

Methodology

System Framework

Several pre-processing of the original US images including noise reduction and image enhance-

ment are applied prior to automatic recognition of FFSP to enhance the FFSP recognition.

After pre-processing, the regions containing the axial, coronal, and sagittal planes (namely re-

gion of interest, ROI) are selected to reduce the search range. The features in the ROI region

are extracted using dense sampled RootSIFT and then encoded by FV. The procedure for fea-

ture vector construction and representation is shown in Fig 1, and the framework of the pro-

posed FFSP recognition system is illustrated in Fig 2. As shown in the framework, the input US

image is partitioned into patches, and each patch is represented by the patch descriptor using

component-wise RootSIFT. To reduce the number of descriptor, the input US images are

down-sampled to a fixed sizeM (M is defined as 480 in our algorithm) without changing the

image aspect ratio, and images smaller thanM ×M remain unchanged. The feature descriptor

extracts the RootSIFT from the downsampled image, and then the Gaussian mixture model

(GMM) is applied to the extracted descriptor to generate k Gaussians (k is set to 80 to trade-off
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between complexity and efficacy in our algorithm) based on the assumption of a diagonal co-

variance matrix. After GMM, a set of k Gaussians are encoded by FV into a single vector. A his-

togram is formed by calculating the number of occurrence count of FV representatives. Feature

vector is normalized by the feature normalization (i.e., signed power law normalization). Final-

ly, one-versus-rest SVM classifier based on SDCA is employed to determine a predicted class

based on the cosine similarity metric.

Fig 1. Steps for feature vector extraction. After preprocessing and region of interest (ROI) detection, the root scale invariant feature transform (RootSIFT)
is adopted for feature extraction. The extracted features are clustered by Gaussian mixture model (GMM) and then encoded by Fisher vector (FV). The final
feature vectors are represented by histogram.

doi:10.1371/journal.pone.0121838.g001

Fig 2. Framework of the proposed fetal facial standard plane (FFSP) recognition system. Images in training and testing phases go through same
processing, which comprises root scale invariant feature transform (RootSIFT), Gaussian mixture model (GMM), and Fisher vector (FV). RootSIFT is used
for extracting the features, followed by GMM for soft clustering the extracted features. GMM parameters such as mean and covariance are encoded by FV.
After encoding, histogram is adopted as the final feature for classification. The recognition decision rule is based on the classification output.

doi:10.1371/journal.pone.0121838.g002
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Inspired by the promising performance of the popular deep learning method, the multilayer

Fisher network architecture is explored to further enhance the FFSP recognition performance.

The motivation to design the multi-layer Fisher network with feature hierarchy is that it is able

to extract more discriminative information than the single layer Fisher network. Fig 3 illus-

trates the feature hierarchy with multilayer Fisher networks.

Feature Extraction

The RootSIFT is selected for feature extraction due to its advantage for non-linear processing

and denoted as:

RootSIFT ¼ sqrtðSIFT=sumðSIFTÞÞ: 1

Feature extracted by RootSIFT is similar to applying the Hellinger (short for Hel. in this

paper) kernel to the original SIFT feature, and hence it outperforms SIFT by kernel method.

Hel. or Chi2 distance demonstrates better recognition performance than Euclidean distance.

The better performance is attributed to the fact that the Euclidean distance is sensitive to larger

values, whereas Hel. distance is often dominated by the smaller values. Hel. distance for l1 nor-

malized x and y (n-vectors) is computed as:

Hðx; yÞ ¼
Xn

i�1

ffiffiffiffiffiffiffi
xiyi
p

: 2

Assuming kxk2 = kyk2 = 1, Euclidean distance is defined as:

dEðx; yÞ ¼ kx � yk2
2
¼ kxk2

2
þ kyk2

2
� 2xTy ¼ 2ð1� xTyÞ: 3

By replacing x with x0 (x0 is obtained by the element-wise square root), x0 is then l2 normal-

ized, the Euclidean distance in the feature map space becomes equivalent to the Hel. distance

in the original space:

x0Ty0 ¼ Hðx; yÞ: 4

Using RootSIFT descriptor, the Euclidean distance on SIFT in every step is modified to the

Hel. distance with little or no additional requirement on computational cost and storage.

Fig 3. Illustration of multilayer Fisher network with feature hierarchy, where SIFT is scale invariant
feature transform, PCA is principle component analysis, and SVM is support vector machine.

doi:10.1371/journal.pone.0121838.g003
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Multilayer Fisher Vector with Spatial Stacking

It is noted that spatial relationships [25] among local appearances play an important role in rec-

ognition of the underlying structure of US image. Meanwhile, it has been proved that global or

local structure information with multilayer feature hierarchy is effective in improving the descrip-

tive power of the image representation. By incorporating the spatial location of images, spatial

pyramid model in [25] achieves better performance compared to BoVW. Spatial pyramid is ap-

plied to divide the image into regions to incorporate spatial distribution information. The feature

vector extracted from the densely sampled [19] RootSIFT can be stacked with the feature from

each FV region to devise the hierarchy of feature. Accordingly, the multilayer feature vectors are

built by concatenating all features extracted from every layers and regions. Fig 4 shows the dense

sampling and spatial layout in the FFSP recognition task. Dense sampling is integrated with Root-

SIFT to densely extract features with a multi-resolution grid. Finally, the means and variances of

the occurrence of each visual word are concatenated to form the spatial layout of FV, which is the

main difference between spatial pyramid model and spatial layout model of FFSP recognition.

Fisher Vector

Motivated by encouraging results in [17], the generative GMMmodel in image representation

is applied in our system to improve its recognition performance. Fig 5 shows the standard pipe-

line of FV. Given a codebook learned by the K-means: {μk,k = 1,. . .,K}, a set of local descriptors:

{xm,m = 1,. . .,N}, the steps to extract the feature vector are as follows:

1. Assign neighboring:

NNðxmÞ ¼ argmin
mk

kxm � mkk: 5

1. Compute vk:

vk ¼
X

xm:NNðxmÞ¼mk

xm � mk: 6

1. Concatenate vk and normalize all feature vectors.

Fig 4. Illustration of dense sampling and spatial stacking. Features are sampled densely in each region. A pyramid model represents the multiple
regions. Each layer is spatially stacked and then represented by multilayer Fisher vector (FV).

doi:10.1371/journal.pone.0121838.g004
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For a graphical representation, the dimension of a fixed length vector vk is dependent on the

number of parameters. In order to optimize parameters that better fit the data, higher order

statistics (i.e. derivative) are concatenated. A GMMmodel is built to fit the feature vectors and

the derivatives of log-likelihood of the GMMmodel are encoded by FV. For this approach, the

Gaussian means and variances of the first and second order derivatives [17] between dense fea-

tures and GMM center are computed as:

F
ð1Þ
k ¼

1

N
ffiffiffiffiffi
wk

p
XN

m¼1
gmðkÞ

xm � mk

sk

� �

; 7

F
ð2Þ
k ¼

1

N
ffiffiffiffiffiffiffiffi
2wk

p

XN

m¼1
gmðkÞ

ðxm � mkÞ
2

s2

k

� 1

� �

; 8

where {wk,μk,σk} are the GMMmixture weights, means, and diagonal covariance. γm(k) is the

soft assignment weight of them-th feature xm of the k-th Gaussian. By concatenating the differ-

ence vectors together: � ¼ ½. . .;Fð1Þ
1
;Fð2Þ

1
; . . .;Fð1Þk ;Fð2Þk ; . . .�, FV ϕ is obtained. The main pur-

pose of the encoding is to discriminate the distribution difference between a specific test image

and all fitted training image. FV is soft assigned VLAD with high-order statistics and an essen-

tial extension of BoVW. For D dimensional feature vector, the main difference between the

BoVW and FV can be represented as:

�BoVWðxmÞ ¼ ½0; . . .; 0; 1; 0; . . .; 0�; 9

�FVðxmÞ ¼ ½0; . . .; 0; Fð1Þk ;Fð2Þk

|fflfflfflfflffl{zfflfflfflfflffl}

2Dnon�zerodim

; 0; . . .; 0�: 10

The dimension of FV is higher than traditional BoVWmethod, and hence PCA [17, 20] is

usually applied to reduce the dimension of feature vector which leads to shorter processing

time. Since the uncorrelated features and GMM covariance matrices of diagonal assumption

are consistent, PCA whitening is also applied to ensure that assumption of diagonal covariance

matrix is satisfied. In our system, a total of 128 feature vector is generated per image pixel,

which is reduced to 64 using PCA (note that the feature dimension after PCA is empirically set

Fig 5. Pipeline of fetal facial standard plane (FFSP) based on Fisher vector (FV). Dense sampled patches are represented by low level descriptor first
and then principle component analysis (PCA) is performed on the descriptors. Spatial layout is used to represent different partitions.

doi:10.1371/journal.pone.0121838.g005
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based on our dataset). For further detail of the dimensionality reduction procedure, the readers

can refer to the supplementary information.

SVMClassifier Based on SDCAMethod and Learning

SVM has been extensively used in recognition algorithms to find global optimal solution using

statistical learning theory and structure risk minimization principle. The main strength of SVM

is that it can handle large dimensional data, and thus SVM is used to perform the recognition of

the FFSP. A one-versus-rest scoring scheme is implemented to recognize different planes in the

US image database. The scoring function for the hyperplaneH in SVM classifier is defined as:

H : wTxi þ b ¼ 0; i ¼ 1; 2; . . .; n; 11

where x1,x2,. . .,xn are input vectors in R
D, b ∊ R is a bias parameter, w1,w2,. . .,wn are weighting

vectors, and T denotes the transpose operator. The main objective of SVM is to obtain optimal

w1,w2,. . .,wn values. SDCA is explored to obtain these optimal values since it is able to achieve

high accuracy by dual-prime objectives. Meanwhile, the objective function in SVM can be mini-

mized by SDCAwith different loss functions. Given the labels y1,. . .,yn in {±1}, the SVM problem

with linear kernel and without bias term is denoted as:

CiðaÞ ¼ maxf0; 1� yiag: 12

This problem can be converted to solve minw2RdPðwÞ, where:

P wð Þ ¼ 1

n

Xn

i¼1
Ci w

Txið Þ þ l

2
kwk2

" #

: 13

In our work, the dual problem in Eq (16) is solved by SDCA:

maxðOðaÞÞ
a2Rn

;whereO að Þ ¼ 1

n

Xn

i¼1
�C�

i
�aið Þ � l

2
k 1

ln

Xn

i¼1
aixik

2

" #

: 14

Let w að Þ ¼ 1

ln

Xn

i¼1
aixi, and initialize at: w

(0) = w(α(0)), the objective function at each iteration

t is obtained by:

�C�
i
� ai

ðt�1Þ þ Dai

� �� �
� ln

2
kwðt�1Þ þ 1

ln
Daixik

2

: 15

The updated rule is as follows:

aðtÞ  aðt�1Þ þ Daiei: 16

wðtÞ  wðt�1Þ þ ðlnÞ�1Daixi: 17

The final outputs are obtained by averaging the output of α and w obtained from SDCA

method. For the theoretical analysis of this approach, the interested readers can refer to [32]

for more detail.
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Experimental Results

Experiment Setup

The experimental dataset is composed of 187 images of axial plane, 192 images of coronal

plane, 203 images of sagittal plane, and 1153 images without any FFSPs (non-FFSP). All images

were extracted from US videos acquired by a commercial US scanner (Acuson Sequoia 512,

Siemens Medical Solutions, USA) from Shenzhen Maternal and Child Health Hospital. Fetal

gestational age is between 20 and 36 weeks. Conventional US sweep was performed to obtain

the videos of pregnant women in the supine position by a radiologist with more than five years

of experience in US obstetrics. The typical training samples are shown in Fig 6. Our system was

implemented by the mixed programming technology of Matlab and C++. The feature extrac-

tion time for an image (size: 576×768) is 0.59 seconds (32GBs RAM, double quad-core multi-

threaded server with a single CPU). The whole processing time for the testing step requires less

than 1 second on a single CPU core (in the case of 2 pixel SIFT density). In our experiments,

linear denotes no kernel is applied, whereas Chi2 and Hel. denote the corresponding kernels,

respectively. It should be noted that all fetal images in this experiment have informed written

consent from all subjects, and the study protocol was reviewed and approved by the Ethics

Committee of Shenzhen University.

The FFSP recognition problem is quantitatively evaluated by the recognition accuracy (the

ratio between the number of correctly classified samples and the actual number of samples for

each class). Quantitatively expressed recognition metrics such as mean average precision

(mAP), average accuracy, false positive rate (FPR) (how many images in this class are classified

in the other classes), and false negative rate (FNR) (misclassifying a FFSP image as a non-stan-

dard one) are also employed to evaluate the FFSP recognition system. Without loss of generali-

ty, the experimental results are based on multilayer network using feature hierarchy information.

The experiments are repeated at least 10 times and the average results are reported. Our experi-

ments for the proposed system are designed to answer the following questions:

1. Can the SDCA, FV, and normalization method improve the FFSP recognition results based

on the dense RootSIFT features?

Fig 6. Different planes of fetal ultrasound (US) image samples for training (left upper is axial plane, right upper is coronal plane, left bottom is
sagittal plane, and right bottom is non-fetal facial standard plane (FFSP)).

doi:10.1371/journal.pone.0121838.g006
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2. Is it possible to improve the FFSP recognition result using normalization and discriminative

learning?

3. Does deep FV based on feature hierarchy improve the FFSP recognition result by multilayer

design?

Effect of Stochastic Dual Coordinate Ascent

The comparison of SDCA and the traditional SGD method based on different feature encoding

methods is shown in Table 1. Note that the testing time in Table 1 does not include feature ex-

traction time. This table reveals that the SDCA method has achieved comparable or better per-

formance than the traditional SGD method, which is consistent with the analysis reported in

[32]. It also indicates that the dual-primal objective in SDCA is helpful to improve the recogni-

tion performance. From these observations, we infer that the aggregating vectors improve ac-

curacy and mAP results. As illustrated in Table 1, the result of FV outperforms BoVW and

VLAD algorithms in terms of mAP and accuracy results, but the computational time in train-

ing using FV method is higher than BoVW and VLAD methods. It is also found that Chi2 ker-

nel is the most effective kernel methods among the three selected methods for the FFSP

recogntion. One possible explanation for these results is that SDCA obtains more optimal

SVM solutions using the dual-prime objective than the prime objective in SGD.

The training time for the FFSP data is shown in Table 1. SDCA outperforms SGD in terms

of training time. Due to offline training, the constraint of the realtime application is often de-

termined by testing rather than training. SDCA significantly improves the computational effi-

ciency of the SVM classifier, and it is observed that less than 1s in testing is taken for FFSP

even with Chi2 kernel. This observation indicates that the FFSP system is suitable for realtime

application. Apart from the better performance achieved by SDCA than SGD, the processing

Table 1. Accuracy, mean average precision (mAP), training and testing time comparison of stochastic gradient decent (SGD) and stochastic dual
coordinate ascent (SDCA) method in terms of bag of visual word (BoVW), vector of locally aggregated descriptor (VLAD), Fisher vector (FV) using
linear, hell (Hel.) and chi2 methods.

Algorithms Kernels Methods Accuracy mAP Training Time(S) TestingTime (S)

BoVW Linear SGD 0.7100 0.9305 157.6702 0.0024

SDCA 0.8820 0.9922 140.5053 0.0018

Hel. SGD 0.8140 0.9473 152.2601 0.0019

SDCA 0.8923 0.9928 152.0241 0.0018

Chi2 SGD 0.8425 0.9829 444.2517 0.0021

SDCA 0.9054 0.9931 358.5726 0.0020

VLAD Linear SGD 0.8419 0.9894 670.0718 0.0022

SDCA 0.8938 0.9937 360.7802 0.0015

Hel. SGD 0.8287 0.9873 592.0701 0.0024

SDCA 0.8813 0.9928 337.4783 0.0015

Chi2 SGD 0.8419 0.9862 1845.1721 0.0021

SDCA 0.8813 0.9928 1118.8032 0.0020

FV Linear SGD 0.9077 0.9933 1321.0592 0.0020

SDCA 0.9224 0.9907 778.1201 0.0017

Hel. SGD 0.8938 0.9931 1060.1001 0.0021

SDCA 0.9207 0.9919 612.6392 0.0017

Chi2 SGD 0.8813 0.9940 3161.5600 0.0022

SDCA 0.9320 0.9919 2031.5000 0.0019

doi:10.1371/journal.pone.0121838.t001
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time of SDCA is shorter than SGD as shown in Table 1. The reason is that SDCA has a clear

stopping condition with the duality gap calculation, and hence SDCA is more efficient than

SGD. Furthermore, SDCA is a generic principle applicable to many algorithms and simple to

implement. Although other on-line learning algorithms are closely related to SDCA (i.e., pas-

sive- aggressive algorithm), the fast convergence rule makes SDCA a desirable and promising

solution for the FFSP learning and recognition.

Effect of Multilayer Fisher Network

To demonstrate the effectiveness of feature hierarchy with multilayer architecture design,

the FFSP recognition is performed on different spatial stacking methods. Fig 7 shows the recog-

nition results with and without feature hierarchy by multilayer network architecture. It is

found that deep FV by feature hierarchy improves both accuracy and mAP results. These re-

sults validate the theoretical assertion and generalization ability of spatial pyramid model [25].

Fig 8 shows the effect of selected spatial stacking layout. It is revealed that the dense RootSIFT

Fig 7. Effect of with and without multiple layer using bag of visual word(BoVW), vector of locally aggreaged descriptor (VLAD) and Fisher vector
(FV) encoding method with liner, hell (Hel.) and chi2 kernel algorithm.

doi:10.1371/journal.pone.0121838.g007

Fig 8. Effect of different kinds of spatial layout for multilayer network of Fisher vector (FV).

doi:10.1371/journal.pone.0121838.g008
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feature and spatial stacking could be integrated to improve the recognition performance as

well. However, it can be seen that the accuracy and mAP do not infinitely increase with the in-

crease of partitioning regions in the image. This is due to the fact that overlapping and unrelat-

ed information increases as more regions are generated by spatial stacking and such

information does not increase the recognition performance.

Effect of Normalization

It is reported in [19] that normalization methods can be integrated with different homogeneous

kernels to further improve recognition accuracy. In this sub-section, experiments are con-

ducted to validate the effects of several normalization methods. As shown in Fig 9, higher rec-

ognition accuracy and mAP are obtained with normalization methods, which is in agreement

with the findings of normalization method reported in [19]. It can be seen that the proposed

normalization method substantially improves recognition result. In fact, normalization method

is found to be a highly effective approach to improve FFSP recognition accuracy when many

variations are found in each class. There are three key reasons for this improvement. First, nor-

malization method is effective as it removes the background information. Second, power nor-

malization reduces the bursty effect. Third, histogram stretching or normalization expands the

dynamic range of the code words and improves the recognition effectiveness.

Effect of Different Portion of Training Images

The effect of the number of the training images is tested as one of the performance indices

since availability of training images is usually limited in most situation. In our experiment, a

certain portion of images are randomly selected as training images and the remaining images

are used as testing images. The learnt parameters from the training images are then used on the

testing images. This process is repeated several times with new samples randomly selected

from the training images. Fig 10 shows accuracy and mAP for different percentage of training

images, where percentage 1 means that only one image is used for testing and the remaining

images are adopted for training in each class (leave one out method). As seen from Fig 11, with

the increase of training images, the performance is increased monotonically. The accuracy and

Fig 9. Effect of with and without normalization methods with bag of visual word (BoVW), vector of locally aggreaged descriptor (VLAD) and Fisher
vector (FV) using liner, hell (Hel.) and chi2 kernel algorithm.

doi:10.1371/journal.pone.0121838.g009
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mAP are 0.9327 and 0.9919 using 90% percent of image for training, respectively, which dem-

onstrates 90% images for training is suitable for FFSP.

Recognition Results

As discussed in [19], better recognition results are obtained by calculating an explicit feature

map that approximates a non-linear kernel (without feature map) as a linear one. In other

words, this approach produces feature vectors by non-linear mapping. Feature mapping is de-

rived from the popular kernel trick method and can be applied to any approaches based on the

distance metric (i.e., nearest neighbors). For this mapping, the Chi2 kernel achieves the best re-

sults among the other kernel methods.

Fig 12 shows the recognition results for the four classes in terms of accuracy, FPR, FNR, and

mAP results. It can be seen that mAP is generally higher than accuracy among the four classes.

Fig 10. Accuracy andmean average precision (mAP) results of different portion of training samples.

doi:10.1371/journal.pone.0121838.g010

Fig 11. Accuracy andmean average precision (mAP) results of linear, hell (Hel.) and chi2 kernel
methods with bag of visual word (BoVW), vector of locally aggregated descriptor (VLAD) and Fisher
vector (FV).

doi:10.1371/journal.pone.0121838.g011
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It is also evident that FPR and FNR results are quite low except for non-FFSP class. From Fig

12, it can be observed that FV algorithm significantly outperforms VLAD and BoVW in terms

of FPR and FNR. The preliminary explanation of superior performance from FV algortihm

over VLAD and BoVW is that FV has soft assignment and high order statistics to enhance the

discriminabity of different classes. Apart from the above observations, sagittal and coronal

planes are generally easier to discriminate than the axial plane since better recognition is

achieved in both sagittal and coronal planes than the axial plane. Moreover, it is noteworthy

that the FPR result in the non-FFSP class is quite high, which is probably caused by high corre-

lation between images of FFSPs and the non-standard plane extracted from the video sequence.

In each video sequence, all images are highly correlated with each other when they are from

neighboring frames. Overall, both FPR and FNR results in the standard planes are very low,

which validate the effectiveness of the proposed FFSP recognition system.

The comprehensive comparison results indicate that high recognition results are obtained

in each class using FV encoding method. Generally, aggregating vectors methods (VLAD and

FV) outperform the traditional BoVWmethod. In addition, spatial layout model is able to im-

prove the recognition performance by making use of the spatial structure information. In addi-

tion, FV algorithm obtains the best recognition performance among all algorithms. High

accuracy is an important indicator for practical application in clinical practice, and hence FV is

quite suitable for the FFSP recognition.

The confusion matrix of the FFSP recognition is shown in Fig 13. The rows and columns

represent the actual FFSP labels and predicted labels, respectively. The diagonal elements rep-

resent the mean recognition accuracy for each class. As seen from the confusion matrix, the

overall recognition accuracy for each class is very high and the mis-recognition ratio is very

Fig 12. Accuracy, false positive rate (FPR), false negative rate (FNR) andmean average precision
(mAP) results of bag visual word (BoVW), vector of locally aggregated descriptor (VLAD), Fisher
vector (FV) using linear, hell (Hel.), and chi2 method of (a) axial class (b) coronal class (c) non-fetal
facial stand plane (non-FFSP) class (d) sagittal class.

doi:10.1371/journal.pone.0121838.g012

Fig 13. Confusion matrix for fetal facial standard plane (FFSP) recognition.

doi:10.1371/journal.pone.0121838.g013
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low. Fig 14 shows the ROC curves for FFSP recognition, which further confirms the proposed

method is effective to recognize axial, coronal, and sagittal view of the ultrasound images.

To validate the effectiveness of the feature representation for the FFSP recognition, we ex-

amine the features of similar ultrasound images (see Fig 15) of axial, coronal and sagittal clas-

ses. The top left image is the input FFSP plane image for the similarity test, and the rest are the

ranked images (from left to right, top down) based on the similarity score of the first image.

The visual similarity of the axial, coronal, and sagittal classes clearly validates the extracted fea-

ture is highly discriminative. Overall, the visual similarity based on the ranked scores confirms

the proposed method is capable of recognizing the axial, coronal, and sagittal views of the

ultrasound images.

Discussions

An automatic solution for recognition of FFSP in US images based on RootSIFT, FV with mul-

tilayer design, and SDCA is presented in this paper. The experimental results show that the

proposed method successfully recognizes the important FFSPs with high performance. More-

over, the methodologies utilized in this work can be extended to other fields to classify and de-

tect standard planes in other organs (i.e., abdomen, breast, prostate, lung and liver), as well as

to prediction and recognition of cancerous cells. Other advanced techniques can be used to fur-

ther improve the recognition performance of the proposed algorithm in our future work. For

example, hierarchical fusion of the dense and sparse features would be very beneficial for the

FFSP recognition. Apart from US image information, more modality information such as MRI

and CT can be adopted. Furthermore, fusion of classifiers should be interesting for FFSP recog-

nition. For instance, unsupervised neural network based on deep learning can be integrated

with supervised SVM classifier to further improve its performance. Last but not least, segmen-

tation and prediction algorithms can also be explored.

Fig 14. Receiver operation characteristics (ROC) curves of fetal facial standard plane (FFSP)
recognition.

doi:10.1371/journal.pone.0121838.g014
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