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Abstract—The automatic recognition of multiple affective
states can be enhanced if the underpinning computational models
explicitly consider the interactions between the states. This
work proposes a computational model that incorporates the
dependencies between four states (tiredness, anxiety, pain, and
engagement) known to appear in virtual rehabilitation sessions of
post-stroke patients, to improve the automatic recognition of the
patients’ states. A dataset of five stroke patients which includes
their fingers pressure (PRE), hand movements (MOV) and facial
expressions (FAE) during ten sessions of virtual rehabilitation was
used. Our computational proposal uses the Semi-Naive Bayesian
classifier (SNBC) as base classifier in a multiresolution approach
to create a multimodal model with the three sensors (PRE, MOV,
and FAE) with late fusion using SNBC (FSNB classifier). There is
a FSNB classifier for each state, and they are linked in a circular
classifier chain (CCC) to exploit the dependency relationships
between the states. Results of CCC are over 90% of ROC AUC
for the four states. Relationships of mutual exclusion between
engagement and all the other states and some co-occurrences
between pain and anxiety for the five patients were detected.
Virtual rehabilitation platforms that incorporate the automatic
recognition of multiple patient’s states could leverage intelligent
and empathic interactions to promote adherence to rehabilitation
exercises.

Index Terms—automatic affective states recognition, virtual
rehabilitation, multi-label classification, classifier chains, stroke
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I. INTRODUCTION

Virtual rehabilitation platforms provide opportunities to

incorporate technologies for monitoring patients’ performance

and for controlling virtual scenarios that can leverage intelli-

gent and empathic interactions with the patients, to promote

adherence to the rehabilitation exercises [1]–[4]. When the

platform is able to detect the affective, physical and/or psy-

chological states of the patients, there are more opportunities

for creating empathic and motivating interactions. The problem

is that it is not easy to detect the affective states of interest

with precision.

Some affective states are more likely to co-exist, while oth-

ers do not; indeed others are mutually exclusive. For example,

a piece of music can elicit mixed emotions of relaxed-calm-

sad, but it is improbable that it elicits the emotions of surprise

and quietness, or relaxed and angry at the same time [5]. In the

context of chronic pain rehabilitation, patients co-experience

anxiety, and fear often expressed in the form of protective

behaviour [6].

Given the existence of such co-occurrence and mutually

exclusive relationships between affective states, they could be

exploited to improve the discrimination between these states

[7], [8]. Indeed, a fundamental factor that could contribute

to the robustness of the automatic recognition of affective

states is when computational models consider interactions of

the affective states of interest.

Consequently, this work aims to propose a computational

model that takes advantage of the dependency relationships

between the affective, physical and/or psychological states in-

volved in the rehabilitation of patients after stroke, to leverage

the automatic recognition of the patients’ states in a virtual



rehabilitation platform. For this purpose, a dataset of 5 stroke

patients was used. This dataset includes finger pressure (from

PRE sensor), hand movements (from MOV sensor), and facial

expressions (from FAE sensor) of the patients during ten

rehabilitation sessions using a virtual rehabilitation platform

called Gesture Therapy [1], [2]. The patients’ states considered

in this study were tiredness, anxiety, pain, and engagement.

Our proposal uses as base classifier a derivation from

Naive Bayes classifier, named Semi-Naive Bayesian classifier

(SNBC) [9], for its efficiency, simplicity and because it

tackles dependent features [10]. SNBC is used to build the

Multiresolution SNBC (MSNB) [11] and then to create the

late Fusion of the three sensors (PRE, MOV, and FAE) using

SNBC (FSNB). Finally, the states dependency relationships are

exploited by a multi-label classifier named circular classifier

chains (CCC) [12]. Particularly, the fusion of PRE, MOV, and

FAE using FSNB classifier was studied in a previous work

[13] whose main purpose was to investigate the contribution of

each modality to the automatic recognition. The FAE modality

achieved the highest recognition rates (over 90% in area under

the curve (AUC) for all the states), and it seems that the

psychiatrists labelling had much influence on these results

because they paid special attention to the patients’ face. For

PRE and MOV, FSNB achieved over 82% in AUC, except for

pain were the recognition rates were around 70% in AUC. Our

Bayesian approach of MSNB classifier was compared against

SVM and random forest [11], and the results were promising.

An advantage of the Bayesian approaches is that their models

are interpretable.

An experiment was carried out using the dataset of post-

stroke patients mentioned above. In this experiment, CCC

performance was compared against the performance of the

multi-label classifiers: Binary Relevance (BR) and Classifier

Chains (CC). The three classifiers used FSNB as the base

classifier. The conditional probability tables (CPTs) created

automatically by CCC using FSNB classifier were analyzed for

trying to determine which dependency relationships between

the states were captured.

II. RELATED WORK

Some relationships of co-occurrence and mutual exclusion

between emotions were exposed in studies to elicit emotions

by watching video clips [14], [15]. The emotions of anger and

disgust were difficult to induce independently [14]. Evidence

suggested that one emotion could trigger another; for example,

anger may induce anxiety [14]. Other videos clips that induce

contentment, amusement, also elicit happiness, but it did

not happen that the videos that induce anger could induce

levels of happiness at the same time [15]. When music is

used to generate emotions, some music pieces can induce

mixed emotions of relaxed-calm-sad, but it is improbable that

they elicit the emotions of surprise and quietness, or relaxed

and angry at the same time [5]. In the health field, chronic

pain patients exhibit protective behaviour during exercise in

response to their anxiety, fear towards, and low confidence

in such movements [16]. In addition, the work reported in

[6] shows how the relationship between pain and protective

behaviour is mediated by anxiety.

Very few works consider dependence relationships between

emotions and multidimensional classification [8]. The works

of [17] and [8] exploit these characteristics. In [17], a Bayesian

network is used to learn the relations of co-occurrence and mu-

tual exclusion between pairs of emotions; but this is somewhat

limiting because it does not include dependency relationships

between more than two emotions simultaneously. In [8], a

three-layer Boltzmann restrictive machine is used to identify

the relations of dependence between more than one pair of

emotions; but the problem is the computational cost involved

in training and making inferences in a Boltzmann machine. In

our proposal, we consider dependency relationships of two or

more affective states by using circular classifier chains [12]

where the predicted classes of the previous affective states in

the chain are incorporated as additional feature inputs to the

succeeding classifiers. Our core classifier is the SNBC which

maintains the efficiency and simplicity of the Naive Bayesian

classifiers [10].

III. A VIRTUAL REHABILITATION PLATFORM: GESTURE

THERAPY

Gesture Therapy (GT) [1], [2] is an upper limb virtual

reality based rehabilitation platform for post-stroke patients.

The platform is portable, thus patients can perform arm

movements exercises at home or at the rehabilitation centre

(Fig. 1).

GT integrates five interacting modules [2]: (a) Physical

System (the hardware elements), composed of a personal

computer, a webcam, and a hand grip (gripper) which is

held by the patient’s affected hand; (b) Tracking System, for

tracking the gripper’s colour ball and for detecting the finger

pressure exerted on the pressure sensor (PRE sensor) in the

gripper; (c) Simulated Environment, to display the serious

games, and to control the interaction with the patient; (d)

Trunk Compensation Detector, to indicate whether the patient

makes compensation; and (e) Adaptation System, for adjusting

the games’ difficulty levels dynamically to obtain real-time

customizability and adaptability to patient requirements and

progress; here is where the recognition of affective states

will be useful. GT also includes capabilities for recording

performance using a video capture through the webcam. These

recordings are helpful for extracting the facial expressions

of the patient (FAcial Expression: FAE sensor). The tracker

system estimates the 3D coordinates of hand movements

(MOV sensor) and the finger pressure (PRE sensor) value

at each frame, and sends this information to the simulated

environment so that the patient interacts with the games and

observes the actions in the computer screen.

IV. DATASET

A dataset of post-stroke patients [11] was used to assess

the performance of the proposed computational models which

exploits the dependency relationships between the patient’s

affective states. This dataset contains the performance records



Fig. 1. A person using the Gesture Therapy platform. The person is holding
the gripper with her right hand. The gripper has a frontal sensor for registering
finger pressure. The webcam follows the gripper’s colour ball to control an
avatar (in this case is the hand with the kitchen palette on the screen) in the
game (virtual environment).

of 5 post-stroke patients while using the GT system during

ten sessions over a period of about one month (each session

was taken in a different day, maximum 3 sessions per week).

Patients played 5 games, each one with at most 3 minutes

(therapist decided how much of that time should be employed

by each patient on each game). Data collected consisted of

frontal videos of patients (where spontaneous facial expres-

sions, postures of the upper torso, and hand movements could

be observed), a finger pressure value, and 3D hand position

at each video frame. Data were labelled frame by frame by

psychiatrists using four patients’ states (affective, physical

or psychological) representing tiredness, anxiety, pain, and

engagement.

Feature vectors were created with a sliding window (of a

predefined size) over consecutive frames of the respective data

(see subsection V-B). There lead to a feature vector for each

step forward of the sliding window. The feature vector for

finger pressure (from PRE sensor) has 3 features (averages

of the data contained in the sliding window): pressure (Pres),

pressure speed (PresSpe) and pressure acceleration (PresAce).

For hand movements, the feature vector (from MOV sensor)

has 5 features (averages of the data contained in the sliding

window): speed (Spe), acceleration (Ace) and differential

location by the axes: x (DifLx), y (DifLy), z (DifLz). Finally,

for the facial expressions, 20 features from each frame of the

patients’ frontal video were extracted [18]. These features by

frame represent distances or angles of geometrical figures over

the eyebrows, the eyes and the mouth [19] (Fig. 2). Then, the

feature vector (from FAE sensor) contains 20 averaged features

(averages of the data contained in the sliding window) for F1
(avF1), F2 (avF2), ..., F20 (avF20). All the feature vectors

have four binary tags (from the set {−1, 1}), one for each

state (tiredness, anxiety, pain, and engagement), indicating

the presence (1) or the absence (−1) of the state. Since the

data were labelled frame by frame, the corresponding tag

was generated as the majority label in the sliding window.

Therefore, data of the three sensors and the classes tags were

Fig. 2. Facial Expressions Features: Fi, i∈{1, 2, · · · , 20}. These features
are distances or angles of geometrical figures over the eyebrows, the eyes,
and the mouth at a video frame.

synchronized through the associated frames.

V. COMPUTATIONAL MODELS: SNBC, MSNB2, FSNB,

AND CCC

The following computational models were assembled to

obtain the final model which includes the affective states’

relationships to improve automatic recognition. The basic

model was the SNBC which was the fundamental model to

build all the other models. Then, for processing each sensor,

i.e., each modality for affective states recognition, we used the

Multiresolution Semi-Naive Bayesian (MSNB) classifier (with

a modification, and we call the new model, MSNB2). The

MSNB2 for each sensor estimated the presence or the absence

of the same affective state and a late Fusion using SNBC

(FSNB) was implemented finally to recognize the occurrence

of the affective state. There were as many FSNB classifiers as

affective states, each one for recognizing one affective state.

These FSNB classifiers were linked in a circular classifier

chain (CCC) which integrated the interactions of the affective

states to enhance the final recognition.

A. Semi-Naive Bayesian classifier (SNBC)

Semi-Naive Bayesian classifier (SNBC) is based on

Naive Bayes classifier (NBC) [9], [20]. Given a sample

sa = (a1, a2, · · · , an), and given the ith feature Ai, the

decision rule of NBC for a two class problem (the class

variable C takes values in {-1, 1}), is expressed as:

class(sa) = argmax
c∈{−1,1}

(Prob(C = c)

n∏

i=1

Prob(Ai = ai|C = c))

(1)

The multiplication in (1) is supported by the naive assump-

tion that all features Ai are independent given the class C

[9]. To address a more generic and realistic situation, the

SNBC executes a structural improvement [9], [21], [22] to

remove and/or to join features (to eliminate redundant or



irrelevant features and/or join dependent features). The struc-

tural improvement (Fig. 3) employs mutual information and

conditional mutual information calculations [23] between the

features and the class to make the improvements. After each

operation of elimination or join of features, the new structure

is tested to determine whether classification performance is

improved. The process is repeated until all features have been

analyzed.

Fig. 3. Example of the process of structural improvement to obtain a Semi-
Naive Bayesian (SNB) model: (a) An original Naive Bayes model with 4
features (all of them are assumed independent), (b) Feature A2 is eliminated
because the mutual information value between A2 and the class C is close
to zero, (c) Features A3 and A4 are joined into one, as they are considered
dependent base upon the conditional mutual information value between A3

and A4 given the class C.

B. Multiresolution Semi-Naive Bayesian (MSNB2) classifier

Multiresolution Semi-Naive Bayesian classifier (MSNB) is

a binary classifier to explore the occurrence of an affective

state of interest in the trace over time [24]. The classifier

operationalizes several odd-size windows (starting from 3)

concentric to a current frame. These windows are shifted

simultaneously over the trace, to calculate several features in

the environment of the current frame (neighbourhood). There

is a SNBC associated with each window to discriminate the

presence or not of the affective state in the corresponding

window. (Fig. 4). The name multiresolution is used because the

windows represent several concurrent resolutions at the current

frame of the trace. Therefore, the associated SNBCs constitute

simultaneous sliding estimators at different resolutions. MSNB

represents an ensemble of SNBCs with a late (decision level)

fusion process by majority vote. Each SNBC receives the

features coming from a different window size and infers the

presence or not of the affective state of interest. Finally, in

the fusion stage, the presence or not is decided, by means of

the majority vote of the SNBCs. Since the input features are

numeric values, we employed a discretization process called

Proportional k-interval discretization (PKID) [25].

A modification was made to MSNB classifier replacing the

majority voting with a SNBC in the late fusion module, and

the resulting classifier was called MSNB2. In part a) of Fig. 5

the architecture of MSNB2 is shown.

Fig. 4. Multiresolution process using several odd-size windows (3, 5, 7, 9,
and 11) concentric to a current frame fi. Windows are shifted simultaneously
over the trace. Exemplification corresponds to the trace of finger pressure at
each video frame during a segment of a rehabilitation session. A SNBC is
trained for each window size to infer the presence (1) or absence (-1) of the
affective state into consideration. Then, each of the 5 SNB models (a model
for each one of the 5 windows) returns its prediction for the class tag in each
sample fi of the series, and the MSNB2 makes a late fusion using a SNBC
to assign the final class tag (1 or -1) to fi.

C. Late Fusion using SNBC (FSNB)

There is a separate MSNB2 classifier for each sensor (PRE,

MOV, and FAE) to predict the occurrence of an affective

state. Then, the predicted classes of the three MSNB2 are

fused using a SNBC (FSNB) [13]. Therefore, FSNB is a

binary classifier which represents a multimodal affective states

recognizer (Fig. 5, part b)).

D. Circular Classifier Chains (CCC)

There are as many FSNB classifiers as affective states, each

one for recognizing one state. These FSNBs classifiers are

linked in a circular architecture, so they participate as the base

classifiers in a multi-label classification process called Circular

Classifier Chains (CCC), where the interactions of the affective

states were considered.

CCC [12] is an extension to Classifier Chains (CC) [26]

for addressing the problem of defining the class variables’

ordering in the chain. CC is related to Binary Relevance (BR),

an approach which consists of q base binary classifiers for

classifying q class variables, where each one is independently

trained to predict the occurrence of a class variable. CC

incorporates class interactions to the BR approach through

a strategy of creating a chain where each classifier includes

as additional features the predicted classes of the previous

classifiers in the chain (except for the first classifier) [26]. A

drawback to CC is that the class variables’ ordering is decided

at random and this has effects on the classification rates [26],

[27].

CCC consists of q base binary classifiers (in our case the

FSNB) linked circularly in a chain, creating a ring architecture

(see Fig. 6). As in CC, each classifier at succeeding positions

2, 3, . . . , q aggregates as inputs the predicted classes of its

previous classifiers. The circular configuration is generated



Fig. 5. Multiresolution Semi-Naive Bayesian (MSNB2) classifier and Late Fusion using SNBC (FSNB). a) MSNB2 is a binary classifier which combines
a set of parallel windows W of different odd sizes, |W | = 3,5,7,9,11; all concurrently centred around the same frame of the respective sensor. PKID is a
discretization method called Proportional k-interval discretization [25] to handle the numeric features. b) FSNB is a binary classifier which contains a MSNB2
classifier for each sensor (PRE, MOV, and FAE) and makes a late fusion using SNBC. FSNB is the multimodal affective states recognizer for an affective
state. Acronyms meanings: C, Cck, Csj = class of the respective classifier for the same affective state, e.g. anxiety; Pres = pressure, PresSpe = pressure

speed and PresAce = pressure acceleration.

after the first “cycle” or iteration when the predicted classes

of the classifiers at positions 2, . . . , q are entered as additional

features to the first one in the chain. The propagation of

the predicted classes continues to the succeeding classifiers

(2, 3, . . . , q), and this mechanism is repeated for N iterations

or until convergence.

Fig. 6. Circular Classifier Chains (CCC). At the first iteration, the predicted

classes C ′

j , j ∈ {1, 2, . . . , q−1} are propagated as classifier chains (CC).
−→
A

is the feature vector (in our case, the feature vector of PRE, MOV, and FAE).
Then, for the second iteration, the classifier at position 1 receives the predicted
classes from the last classifier (the one at position q) and the other classifiers
(positions 2, 3, ..., q−1). After that, the propagation process continues to the
succeeding classifiers in the chain. The process is repeated until convergence
or until CCC reached a maximum number of iterations.

VI. EXPERIMENTS AND RESULTS

CCC models were independently trained for each patient

to predict the occurrence of the four states (tiredness, anxiety,

pain, and engagement) in the multi-label classification scheme.

Therefore, we had 5 CCC models, one for each patient. Each

CCC involved the development of 4 FSNB classifiers, one for

each state of the corresponding patient. Similarly, BR and CC

models were independently developed for each patient, so we

had 5 BR and 5 CC models, with the corresponding 4 FSNB

classifiers for each one. Therefore, the three classifiers BR, CC

and CCC, were implemented using FSNB as the base classifier

for all of them.

The performance of CCC was evaluated against BR and

CC (used as baselines), using several metrics for multi-label

classification [28]: Global accuracy (GAcc), Mean accuracy

(MAcc), Multi-label accuracy (MLAcc) and F -measure.

Internal validity of the BR, CC, and CCC models was estab-

lished using the stratified ten-fold cross replication mechanism

across all the rehabilitation sessions.

The class variables’ ordering for CC, and initially for CCC,

was defined considering the BR results of the area under

the curve (AUC) of the class variables. They were sorted in

decreasing order according to these AUC results, interpreting

that the class variables with worse outcomes should be at the

last positions so they could receive more information from the

class variables of the preceding positions.

A. Experiment: Performance comparison of BR, CC and CCC

Table I summarizes the classification results, mean ±
std. deviation (across the 5 patients and across the 10 folds of

the cross-validation), of BR, CC and CCC. CCC was run with

8 iterations, and the system converged at the third iteration

for all the patients. The experiments were done with a laptop

Intel Core i7-8750H CPU, 8th Gen. 2.20 GHz, 16 GB RAM

with an operating system Windows 64 bits. CCC using FSNB

during training (with 10 fold cross validation) had an execution

time of (mean ± std. deviation) 124.09 ± 30.46 sec. which

corresponds to 2.07± 0.51 min. The number of data samples

was (mean ± std. deviation) 5625.00 ± 2237.93 across the

five patients. The best results for each metric are highlighted

in bold type. Results reveal that CCC outperformed BR and

CC for all the metrics. Significant differences (Friedman test,

p < 0.05, with post hoc analysis with Wilcoxon signed-rank

tests with Bonferroni correction, p < 0.017) were obtained for

CCC.

Table II shows average AUC results for each state across

the five patients and across the ten folds. Average AUC results

of CCC were significantly higher than the ones of BR and



TABLE I
PERFORMANCE COMPARISONS BETWEEN BR, CC AND CCC

(mean± std. deviation) (ACROSS THE 5 PATIENTS AND ACROSS THE 10
FOLDS OF THE CROSS-VALIDATION). CCC WAS RUN WITH 8 ITERATIONS,
AND THE CONVERGENCE WAS ACHIEVED AT ITERATION 3 FOR ALL THE

PATIENTS. THE BEST RESULTS FOR EACH METRIC ARE HIGHLIGHTED IN

BOLD TYPE.

Classifier GAcc MAcc MLAcc F -measure

BR 0.878± 0.121 0.963± 0.037 0.908± 0.092 0.918± 0.084
CC 0.910± 0.092 0.970± 0.031 0.930± 0.072 0.937± 0.067
CCC 0.941 ± 0.059 ‡ 0.977 ± 0.023 ‡ 0.954 ± 0.046 ‡ 0.958 ± 0.043 ‡

‡ means significant differences between CCC and CC, and between CCC and BR (Friedman test,

p < 0.05, post hoc analysis with Wilcoxon signed-rank tests with Bonferroni correction,

p < 0.017).

CC (Friedman test, p < 0.05, with post hoc analysis with

Wilcoxon signed-rank tests with Bonferroni correction, p <

0.017). The states average results of CCC in decreasing order

are tiredness, anxiety, pain, and engagement.

TABLE II
PERFORMANCE COMPARISONS BETWEEN BR, CC AND CCC

(mean± std. deviation) (ACROSS THE 5 PATIENTS AND ACROSS THE 10
FOLDS OF THE CROSS-VALIDATION) USING AUC FOR EACH STATE. CCC
WAS RUN WITH 8 ITERATIONS. THE BEST RESULTS FOR EACH STATE ARE

HIGHLIGHTED IN BOLD TYPE.

Classifier Tiredness Anxiety Pain Engagement

BR 0.957± 0.050 0.952± 0.053 0.943± 0.067 0.932± 0.076
CC 0.964± 0.042 0.965± 0.039 0.949± 0.052 0.943± 0.066
CCC 0.975 ± 0.032 ‡ 0.972 ± 0.034 ‡ 0.965 ± 0.046 ‡ 0.956 ± 0.052 ‡

‡ means significant differences between CCC and CC, and between CCC and BR (Friedman test,

p < 0.05, post hoc analysis with Wilcoxon signed-rank tests with Bonferroni correction,

p < 0.017).

B. Dependency relationships between the states

Since late fusion in FSNB for predicting the classes of

a certain state, S, creates a SNB model which receives the

predicted classes for the other states, in addition to the features

of PRE, MOV, and FAE of S, it is possible to analyze the

conditional probability tables (CPTs) of the other states given

state S. These CPTs were generated after the eight iterations of

CCC. CPTs can provide us information about the relationships

of the states that SNBC considers to assess the presence or

the absence of the state under consideration. In Fig. 7, the

CPTs of each state are depicted. The information is organized

in blocks a), b), c), and d) corresponding to the CPTs of

tiredness, anxiety, pain, and engagement, respectively. Each

table entry represents mean ± std. deviation across the five

patients. From the analysis of the tables, we can detect the

following relationships of the states for the five patients:

1) Tiredness: When tiredness is present, engagement is not,

nor anxiety or pain.

2) Anxiety: When there is anxiety, there is no engagement,

and there is no tiredness either. But when anxiety is not

present, pain is not present either.

3) Pain: When there is pain, there is anxiety too; but there

is neither engagement nor tiredness.

4) Engagement: When engagement is present, none of the

other states (tiredness, anxiety, and pain) is present.

This evidence seems to establish that there is a mutual

exclusion between engagement and all the other states and

some co-occurrences between pain and anxiety for the five

patients during their rehabilitation sessions.

We also created the CPTs of the states directly from the tags

assigned by the psychiatrists, and the obtained table entries

(mean ± std. deviation) were almost the same as the ones

generated by CCC using FSNB.

Fig. 7. Conditional Probability Tables (CPTs) generated by SNB models at
the late fusion of FSNB, after the eight iterations of CCC. Each CPT entry
represents mean±std. deviation across the five patients. The highest value
for each CPT is highlighted in bold type. Part a) corresponds to tiredness
CPTs, b) to anxiety CPTs, c) to pain CPTs, and d) to engagement CPTs.

VII. DISCUSSION

As a consequence of the proposed computational model,

CCC using FSNB as its base classifier, we have obtained a

late fusion process in FSNB (for predicting the classes of

an affective state) that not only considers the information

from each modality (PRE, MOV, and FAE), but that also

includes the correlation information with the other affective

states into consideration. In this way, the fusion treats more

that only the modalities involved in the problem. An additional

contribution of CCC using FSNB as its base classifier, is

that we can extract information about the mutual exclusion

relationships and co-occurrences relationships between the

states. This classification scheme has been beneficial for the



prediction of the states in the dataset we used since all the

patients’ states were recognized with results over 94%. So the

proposed computational model is promising for affective states

recognition. This model also has the advantage of simplicity,

efficiency, and the consideration of dependency relationships

between the states. A drawback is that the model does not

consider the problem of a missing sensor.

VIII. CONCLUSIONS AND FUTURE WORKS

The relationships between tiredness, anxiety, pain, and

engagement in the rehabilitation of some people after stroke

have been studied using a multimodal computational model

(FSNB) combined with the circular classifier chains (CCC).

The computational model detected the relationships of mutual

exclusion between engagement and all the other states and

co-occurrences between pain and anxiety for the five patients

during their rehabilitation sessions. Our proposal of CCC

using FSNB as its base classifier outperformed CC and BR

significantly (both CC and BR using FSNB as the base

classifier too), with classification rates over 94%. Additionally,

the model converged after only 3 iterations for all the patients.

Consequently, the proposed computational model is promising

for its results, for its simplicity and because it maintains the

CC efficiency.

As future work, the late fusion using SNBC can be replaced

using other Bayesian classifiers. Additionally, the problem of a

missing sensor will be addressed too. A larger trial is necessary

to confirm whether this apparent trend can be generalized to

the population considered.

REFERENCES

[1] L. E. Sucar, R. Leder, J. Hernández, I. Sánchez, and G. Azcárate,
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[23] C. Chow and C. Liu, “Approximating discrete probability distributions
with dependence trees,” IEEE Transactions on Information Theory,
vol. 14, no. 3, pp. 462–467, 1968.

[24] J. J. Rivas, “Clasificador Semi-Naı̈ve Bayes con multiresolución para la
estimación de estados afectivos: Aplicación en rehabilitación virtual,”
Master’s thesis, Instituto Nacional de Astrofı́sica, Óptica y Electrónica
(INAOE), Puebla, México., 2015.
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