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Abstract. This paper deals with an Optical Character Recognition (OCR) system
for printedOriyascript. The development of OCR for this script is difficult because
a large number of character shapes in the script have to be recognized. In the
proposed system, the document image is first captured using a flat-bed scanner
and then passed through different preprocessing modules like skew correction, line
segmentation, zone detection, word and character segmentation etc. These modules
have been developed by combining some conventional techniques with some newly
proposed ones. Next, individual characters are recognized using a combination
of stroke and run-number based features, along with features obtained from the
concept of water overflow from a reservoir. The feature detection methods are
simple and robust, and do not require preprocessing steps like thinning and pruning.
A prototype of the system has been tested on a variety of printed Oriya material,
and currently achieves 96.3% character level accuracy on average.
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1. Introduction

The subject of character recognition has been receiving considerable attention in recent
years due to the advancement of the automation process. Automatic character recognition
improves the interaction between man and machine in many applications like office automa-
tion, cheque verification, mail sorting, and a large variety of banking, business and data entry
applications.

Several methods for recognizing Latin, Chinese, and Arabic script have been proposed
in the recent past (Mantas 1986; Bozinovic & Srihari 1989; Wang 1991; Moriet al 1992)
and commercial OCR systems for these scripts are available in the market. Some pioneering
work has been done on Bengali (Bangla) (Dutta & Chaudhuri 1993; Chaudhuri & Pal 1997,
1998) and Devnagari (Sinha 1985; Pal & Chaudhuri 1997) and OCR systems for these scripts
are ready for commercialization. Some studies have been reported on Tamil, Telugu and
Gurmukhi scripts (Govindan & Shivaprasad 1990; Lehal & Singh 2000; Siromonyet al1978).
However, to the best of our knowledge, no work has been done on the Oriya script. In this
paper, we are concerned with the recognition of printed Oriya script. In Oriya, the number
of characters is large, and two or more characters may combine to form complex shaped
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characters calledcompoundorclustered characters. As a result, the total number of characters
to be recognized is more than 200. Thus, OCR development for Oriya is more difficult than
that for any European language script where a relatively small number of characters have to
be recognized.

In the proposed recognition system, the document image is first captured using a flatbed
scanner. The image is then passed through different preprocessing modules like skew cor-
rection, line segmentation, zone detection, word and character segmentation etc. These mod-
ules have been developed by combining conventional and newly proposed techniques. Next,
individual characters are recognized using a combination of stroke and run-number based
features, along with features obtained from the concept ofwater overflow from a reservoir.

The organization of this paper is as follows. In § 2, some properties of Oriya script are pre-
sented. Text digitization and skew correction techniques are described in § 3. Section 4 deals
with line, word and character segmentation. Feature selection and detection are elaborated
in § 5. Section 6 describes the character recognition procedure. Results are discussed in § 7,
while § 8 concludes the paper.

2. Properties of Oriya script

We describe here some properties of the Oriya script that are useful for building the recognition
system.

Figure 1. Basic characters of the Oriya alphabet.
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(a)

(b)

Figure 2. (a) Modified vowels attached to the first consonant of figure 1.(b) Some commonly
occurring compound characters.

• The Oriya script is derived from the ancient Brahmi script through various transforma-
tions. Other Indian scripts also have the same origin, making some of them similar in
appearance to Oriya.

• There are 12 vowels and 39 consonants in the modern Oriya alphabet. These are called
basic characters. The basic characters of Oriya Script are shown in figure 1. Their
names are identical to the names for corresponding characters in other scripts like
Bengali and Devnagari. As in other Indian scripts, the concept of upper/lower case is
absent here.

• Some characters have a signature extending above the mean line, which is also useful
for character classification.

• The first vowel following a consonant character is not printed in a word. Thus, this vowel
can occur only at the beginning of a word.

• Vowels (other than the first one) following a consonant take some modified shapes.
Depending on the vowel, these modified shapes are placed to the left, right (or on both
sides), top or bottom of the consonant. These are called modified characters orallographs.
See figure 2a, where vowel modifiers are shown. From the figure it can be seen that some
modified shapes of vowel may have two parts – one appears to the left and the other to
the right of a consonant (or compound character). More precisely, modifiers are those
symbols that do not disturb the shape of the basic characters (in the middle zone) to
which they are attached. If the shape in the middle zone is altered, we term the resultant
shape as a compound character. Some of the compound character shapes are shown in
figure 2b.

• In some cases, a consonant preceding or following another consonant is represented by
a modifier called consonant modifier.

• A word in Oriya script may be partitioned into three zones: upper zone, middle zone and
lower zone. The upper zone denotes the portion above the mean line, the middle zone
covers the region below the mean line, and the lower zone is the portion where some
of the modifiers can reside. The imaginary line separating the middle and lower zone is
called the base line. A typical example of zoning is shown in figure 3.

Figure 3. Zones in an Oriya text line.
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3. Text digitization and skew correction

3.1 Text digitization and noise cleaning

Text digitization is done using a flatbed scanner (Model: HP Scanjet 660 C) at a resolution
varying from 200 to 300 dots per inch (dpi). The digitized images are in gray tone and we
have used a histogram-based thresholding approach to convert them into two-tone images.
For a clear document, the histogram shows two reasonably prominent peaks corresponding
to white and black regions. The threshold value is chosen as the midpoint between the two
histogram peaks. The two-tone image is converted into 0–1 labels where 1 and 0 represent
object and background respectively. The digitized image shows protrusions and dents in the
characters, as well as isolated black pixels over the background, which are cleaned by a logical
smoothing approach (Chaudhuri & Pal (1998)).

3.2 Skew detection and correction

When a document is fed to the scanner either mechanically or by a human operator, a few
degrees of skew (tilt) is unavoidable. Theskew angleis the angle that the text lines in the
digital image make with the horizontal direction. Skew detection and correction are important
preprocessing steps of document layout analysis and OCR approaches. Skew correction can
be achieved in two steps, namely (i) estimation of skew angle, and (ii) rotation of the image
by the skew angle in the opposite direction.

There exist many techniques for skew estimation. One skew estimation technique is based
on the projection profile (Akiyama & Hagita 1990; Pavlidis & Zhou 1992) of the document.
The horizontal/vertical projection profile is a histogram of the number of black pixels along
horizontal/vertical scan-lines. For a script with horizontal text lines, the horizontal projection
profile will have peaks at text line positions and troughs at positions in between successive
text lines. To determine the skew angle of a document, the projection profile is computed
at a number of angles, and for each angle, the difference between peak and trough heights
is measured. The maximum difference corresponds to the best alignment with the text line
direction. This in turn determines the skew angle.

Another class of approaches is based on nearest neighbour clustering of connected com-
ponents. O’Gorman (1993) proposed one nearest neighbour clustering method, called ‘doc-
strum’, for skew detection. He detected all the connected components in the document and
for each component computed the direction of its nearest neighbour. A histogram of the direc-
tion angle is computed, the peak of which indicates the document skew angle. Chaudhuri &
Pal (1997) proposed a generalized clustering approach for skew detection of Indian script
documents. They used the mean line of the script for skew estimation.

Techniques based on the Hough transform and Fourier transform are also employed for
skew estimation (Hindset al 1990; Leet al 1994). In our work, we used a Hough transform
based technique for estimating the skew angle of Oriya documents. We note that the uppermost
and lowermost points of most of the characters in an Oriya text line lie on the mean line
and base line respectively. The lowermost and uppermost points of characters in a skewed
Oriya text are shown in figure 4. To reduce the amount of data to be processed by the Hough
transform, we consider only the uppermost and lowermost pixels of each component. First,
the connected components in a given image are identified. For each component, its bounding
box (minimum upright rectangle containing the component) is defined. The mean width of
the bounding boxesbm is also computed. Next, components having bounding box width
greater than or equal tobm are retained. By thresholding atbm, small components like dots,
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Figure 4. Uppermost and lowermost points of
components in a skewed text line.

punctuation marks, small modified characters etc. are mostly filtered out. Because of this
filtering process, the irrelevant components cannot create errors in skew estimation. Now,
the usual Hough transform technique is used on these points to get the skew angle of the
document. The image is then rotated according to the detected skew angle. Font style and
size variation do not affect the proposed skew estimation method. Also, the approach is not
limited to any range of skew angles.

4. Line, word and character segmentation

For convenience of recognition, the OCR system should automatically detect individual text
lines, segment the words from the line, and then segment the characters in each word accu-
rately. Since Oriya text lines can be partitioned into three zones (see figure 3), it is convenient
to distinguish these zones. Character recognition becomes easier if the zones are distinguished
because the lower zone contains only modifiers and thehalantmarker, while the upper zone
contains modifiers and portions of some basic characters.

4.1 Text line detection and zone separation

The lines of a text block are segmented by finding the valleys of the projection profile computed
by counting the number of black pixels in each row. The trough between two consecutive
peaks in this profile denotes the boundary between two text lines. A text line can be found
between two consecutive boundary lines, for example, see figure 5. We have assumed that
the text block contains only a single column of text.

After line segmentation, the zones in each line are detected. From figure 3 it can be seen
that the upper zone is separated from the middle zone of a text line by the mean line, and

Figure 5. Projection profile of rows in Oriya text
line (dotted lines show line boundaries).
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that the middle zone is separated from the lower zone by the base line. We use the upper-
most and lowermost points of the connected components in a text line to detect the mean
line and base line respectively. We consider a set of horizontal lines passing through the
uppermost and lowermost points of the components. The horizontal line that passes through
the maximum number of uppermost points (lower most points) is the mean line (base line).
Note that the uppermost and lowermost points of the components are previously detected
during skew detection (see § 3), so these points do not have to be recalculated during
zone detection.

4.2 Word and character segmentation

After a text line is segmented, it is scanned vertically, column by column. If a column contains
two or fewer black pixels, the scan is denoted by 0, else it is denoted by the number of black
pixels in that column. In this way, a vertical projection profile is constructed. Now, if in the
profile there exists a run of at leastk1 consecutive 0s, the midpoint of that run is considered
the boundary between two words. The value ofk1 is taken as two-thirds of the text line height
(text line height is the normal distance between the mean line and the base line).

To segment each word into individual characters, we consider only the middle zone of
the word. To find the boundary between characters, we scan the image of the word in the
vertical direction starting from the mean line. If during a scan, we reach the base line without
encountering any black pixel, this scan marks the boundary between two characters. However,
the gray-tone to two-tone conversion of the image gives rise to some characters that touch
one another, and which cannot be segmented using this method. To segment these touching
characters, we have used the principle of water overflow from a reservoir, which is as follows. If
we pour water on top of the character, the positions where water will accumulate are considered
the reservoirs. Figure 6 shows the location of reservoirs in a single character as well as in a
pair of touching characters. We note the height of the water level in the reservoir, the direction
of water overflow from the reservoir, position of the reservoir with respect to the character
bounding box etc. A reservoir whose height is small and which lies in the upper part of the
middle zone of a line is considered a candidate reservoir for touching character segmentation.
The cusp (lowermost point) of the candidate reservoir is considered the separation point of
the touching characters. In figure 6, this position is marked by a vertical line. Because of the
round shape of most of the Oriya characters, we observe that such a reservoir is formed in
most of the cases when two characters touch each other. Sometimes, two or more reservoirs
may be formed. In such cases, we select the reservoir close to the middle of the bounding box
for segmentation.

5. Feature selection and detection

We consider topological features, stroke-based features as well as features obtained from the
concept of water overflow for character recognition. We term these the principal features.
The features are chosen with the following considerations: (a) Robustness, accuracy and
simplicity of detection, (b) speed of computation, (c) independence of size and fonts, and (d)
tree classifier design need.

Figure 6. Water reservoirs in a single and touching Oriya characters.
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We considered a few stroke-based and topological features for the initial classification of
characters. These features are used to design a tree classifier where the decision at each node
of the tree is taken on the basis of the presence/absence of a particular feature. Stroke-based
features include the number and position of vertical lines. The topological features used
include existence of holes and their number, position of holes with respect to the character
bounding box, ratio of hole height to character height etc. In addition, the concept of water
overflow from a reservoir is also used. The reservoirs in a character are identified (see § 4), and
the position of the reservoirs with respect to the character bounding box, the height of each
reservoir, the direction of water overflow etc. are used as features in the recognition scheme.

The stroke features considered here are simple, linear in structure, and hence quick and
easy to detect. They are fairly robust to noise and quite stable with respect to font variation.
The methods for detecting the stroke features are described below. To handle characters
of different fonts and sizes, the stroke lengths are normalized with respect to the character
middle-zone height.

To detect vertical strokes, we assume that the length of the stroke must be at leastl1(l1 =

75% of the middle-zone height). Now, the character middle zone is scanned vertically. If a
scan contains a continuous sequence of at leastl1 black pixels, a vertical stroke is assumed
to be present in that character. For the detection of holes, a component labelling technique
is used. The background and foreground values in the character image are interchanged, and
connected components are identified in this modified image. Each hole then constitutes a
separate connected component. The width and height of such topological features are also
measured with respect to the height of a text line.

6. Character recognition

The recognition stage has two parts. In the first part, modified characters are recognized
and, in the second part, the remaining characters are recognized. Modified characters are
distinguished from the other characters by making use of the width and the position of the
characters. If the width of a character is very small, or if the position of the character is
only in the upper zone or only in the lower zone, the character is considered a modified
character.

Our recognition scheme for modifiers is based on stroke-based features and a run-number
based feature. Any isolated signature in the upper zone that does not touch a vertical line in
the middle zone denotes the modifier for the upper zone. To detect lower zone modifiers, the
lower zone is inspected. If there is any signature in the lower zone that is not a part of a basic
or compound character in the middle zone, it is assumed to be a lower zone modifier. Three
such modifiers and the halant sign may be encountered in this region. To check if a signature
in the lower zone is actually the tail of a basic character, a curvature-smoothing test is used
(Chaudhuri & Pal 1998). If the signature curvature is continuous and smooth, it is accepted
as the tail of a basic character.

Recognition of the basic and compound characters is done in two stages. In the first stage, the
characters are grouped into small subsets by a feature based tree classifier. In the second stage,
characters in each group are recognized using a sophisticated run-number based matching
approach. We adopted this hybrid approach instead of using only a tree classifier because it
is nearly impossible to find a set of stroke features that are simple to compute, robust and
reliable to detect, and are sufficient to classify a large number of basic and complex shaped
compound characters.
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Figure 7. Portion of the tree classifier for Oriya characters.

The design of a tree classifier has three components: (1) a tree skeleton or hierarchical
ordering of the class labels, (2) choice of features at each non- terminal node, and (3) the deci-
sion rule at each non-terminal node. Our tree is a binary tree where the number of descendants
from a non-terminal node is two. While traversing the tree, only one feature is tested at each
non-terminal node. To choose the feature at a particular non-terminal node, we have consid-
ered the occurrence statistics of the characters. If the set of patterns at a non-terminal node
can be sub-divided into two sub-groups by examining a feature so that the sum of occurrence
probabilities of one group is roughly equal to that of the other group, the resulting binary
tree is optimum in time complexity, assuming that the time required to test a feature is con-
stant. However, we may not always get a set of features to design such an optimal tree. A
semi-optimal tree is generated out of the available features. For a given non-terminal node,
we select a feature that best separates the group of patterns in the above sense.
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A part of the tree classifier used for the recognition of basic and compound characters is
shown in figure 7. The features used in the tree classifier are vertical strokes, holes, features
based on the concept of water overflow from reservoirs etc. The use of some of these features
can be noted from the classification tree. Figure 7 does not contain the entire tree, however.
For example, in a portion of the tree not shown in the figure, we check whether the height of
a hole is equal to the line height, and separate nine characters of a node into two sub-nodes,
one of which contains four characters and the other contains five. Similarly, by checking
whether a hole (reservoir) touches the mean line of the character or not, we can separate five
characters of a node into two sub-nodes containing three and two characters.

Most leaf nodes of the classification tree contain two or more characters. At the leaf nodes,
we use a run-number based feature matching technique (Garain & Chaudhuri 1998) in order
to distinguish between characters. The run-number based feature is obtained as follows. We
compute the number of black runs (a run is a contiguous sequence of black pixels) in each
row of the character. If there aren rows, this yields a sequence ofn numbers,c1, · · · , cn.
This sequence is then run-length encoded to obtain the sequence〈c1, n1〉, · · · 〈ck, nk〉, where
the firstn1 rows containc1 runs, the nextn2 rows containc2 runs, and so on. Note that
n1+n2+· · ·+nk = n. The number of rows corresponding to each run count is then normalized
using the total number of rows to obtain the final row-feature vector for the character:

〈c1, r1〉, · · · 〈ck, rk〉 whereri = ni/n. (1)

A column-feature vector is similarly computed using the number of black runs in each column
of the character image.

The distance between two feature vectors is calculated using the following method. Given
two vectorsA = 〈a1, u1〉, · · · 〈ak, uk〉 andB = 〈b1, v1〉, · · · 〈bl, vl〉, we define

A′ = 〈a1, u
′
1〉, · · · , 〈ak, u

′
k〉 whereu′

i =
∑

uj (j = 1 to i),

B ′ = 〈b1, v
′
1〉, · · · , 〈bl, v

′
l〉 wherev′

i =
∑

vj (j = 1 to i), (2)

We then sort the union of{u′
1, · · · , u′

k} and {v′
1, · · · , v′

l} together in increasing order. Let
the sorted sequence be{w1, · · · , wm} (wherewm = 1). Then the intervalwi−1 to wi is a
(possibly proper) sub-interval of some intervalu′

j−1 to u′
j . Note that this interval corresponds

to a sequence ofnj rows (whereuj = nj/n) for which the run-count isaj . Thus, the interval
wi to wi−1 can be associated with this run countaj . A distance measure between the vectors
can now be defined as

Dist (A, B) =
∑

(wi − wi−1)|ai − bi |, i = 1 tom, (takew0 = 0), (3)

(see Garain & Chaudhuri 1998) for a proof that this distance measure satisfies the properties
of a metric distance). Finally, the dissimilarity between two characters is given by the sum of
the distances between the row and column feature vectors for these characters.

7. Results and discussion

The proposed OCR system was tested on a variety of printed Oriya documents. Some of
the documents contain good-quality printing on clean paper (e.g. pages from a novel); some
others are of inferior printing and paper quality (e.g. a cheap alphabet book for children) etc.
In this section, we summarize the results of our experiments.
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Line segmentation:Our system identifies individual text lines with an accuracy of 97.5%.
Occasionally, when two adjacent text lines are close to each other, the lower zone of the upper
line has some overlap with the upper zone of the lower line. In such situations, there is no
clear valley between the two lines in the projection profile, and our system fails to detect the
boundary between the two lines. All such errors were confined to inferior-quality documents
however; on good-quality documents, the system correctly identifies all text lines. We intend
to try a connected component based approach for line segmentation in future.
Word segmentation:The overall word segmentation accuracy of the system is 97.7%. The error
rate for the inferior documents is 4.2%, whereas for good-quality documents, it is only 1.2%
(these figures were calculated based on correctly segmented text lines only). The threshold
value chosen for the inter-word gap (k1 = 2/3 of the text line height; see § 4) works well
in most cases. However, because of non-uniform printing, some words are printed closer
together and are not correctly separated by our system.
Character segmentation:The character segmentation accuracy of the system is 97.2%. The
proposed method for separating touching characters based on the water reservoir concept is
generally successful. Most of the segmentation errors were caused by the modified form of
the fourth vowel (long I). As seen in figure 2a, this allograph has a small slanting projection
at the top that often touches the adjacent character. Since no proper reservoir is obtained in
this case, our method fails to correctly separate such touching characters.
Character recognition:On average, the system recognizes characters with an accuracy of
about 96.3%, i.e. the overall error rate is 3.7%. The recognition errors can be grouped into
three major classes.

(1) Errors due to segmentation. Incorrectly segmented characters can obviously not be recog-
nized correctly. These errors contribute 0.4% to the total error rate. (The set of images for
which recognition accuracy was computed is a subset of the images used to calculate the
accuracy of character segmentation. There is thus a small difference between the figures
in this and the preceding paragraph.)

(2) Placing a character in the wrong leaf of the classification tree. Though the features used
in the classification tree are robust, a character is occasionally classified into the wrong
leaf node, giving rise to recognition errors. The contribution of these errors to the overall
error rate is only 0.4% however.

(3) Errors during feature matching. Though the run-number based feature is powerful and
insensitive to font size and style variations, it may not always correctly distinguish two
similar shaped characters. Thus, a character may sometimes be mis-recognized as another
character contained in the same leaf node of the classification tree. Some examples of
characters that have very similar appearances are shown in figure 8. This class of errors
contributes 2.7% to the overall error rate. (Other errors contribute the remaining 0.2% to
the total error rate.)

To recognize such characters properly, we propose to use border-pixel tracing. For example,
for the top left pair shown in figure 8, we can start from the topmost pixel of the character
and trace the border pixels in the clockwise direction until we reach the lowermost point of
the character. During border tracing, we calculate the distance of each traced pixel from the
right edge of the character’s bounding box. The sequence of these distances can be used to
distinguish the characters. For example, for the first character, this distance sequence has 4
transition points, while for the second character, we get 2 transition points. By a transition
point, we mean a point where the sequence of distances changes from increasing order to
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Figure 8. Some similar shaped Oriya characters.

decreasing order or vice-versa. This technique can be used for the recognition of some of the
other similar characters also.

8. Conclusion

In this paper, we have described a system for OCR of printed Oriya script material. The
recognition accuracy of the prototype implementation is promising, but more work needs to
be done. In particular, no fine-tuning of the system has been done so far. Our character seg-
mentation method also needs to be improved so that it can handle a larger variety of touching
characters, which occur fairly often in images obtained from inferior-quality printed mate-
rial. We also need to test the proposed boundary-tracing method for distinguishing between
characters that have very similar shapes. Finally, we plan to implement an OCR error detector
and corrector module for Oriya. In general, the system needs to be tested on a wider variety
of images containing characters in diverse fonts and sizes. This will enable us to identify the
major weaknesses in the system and implement remedies for them.

As a native speaker of Oriya, Anil Chand gave us useful advice about the script. P. Sashank
helped with the implementation and testing of some of the algorithms proposed in this paper.
The authors would also like to thank Vidya Dutt, Shamita Ghosh, and Prasenjit Majumdar
for their help in preparing this manuscript.
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