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A vision–based 3–D scene analysis system is described that is capable to model complex real–world scenes like
streets and buildings automatically from stereoscopic image pairs. Input to the system is a sequence of stereoscop-
ic images taken with two standard CCD Cameras and TV lenses. The relative orientation of both cameras to each
other is known by calibration. The camera pair is then moved throughout the scene and a long sequence of closely
spaced views is recorded. Each of the stereoscopic image pairs is rectified and a dense map of 3–D surface points
is obtained by area correlation, object segmentation, interpolation, and triangulation. 3–D camera motion
relative to the scene coordinate system is tracked directly from the image sequence which allows to fuse 3–D
surface measurements from different viewpoints into a consistent 3–D model scene. The surface geometry of each
scene object is approximated by a triangular surface mesh which stores the surface texture in a texture map. From
the textured 3–D models, realistic looking image sequences from arbitrary view points can be synthesized using
computer graphics.
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1 Introduction
The rapid progress in the development of powerful computer graphics hardware and software enables users in a
wide range of applications to gain a better insight into processes by visual simulation. Suppliers of flight and
driving simulators as well as landscape and city planners are interested to simulate photo–realistic views of the
environment. Architects and city planners for example construct new buildings with CAD systems and are
interested to visualize their impact onto the existing environment beforehand. Complete realism, however, is
possible only if the buildings to be constructed are placed inside a 3–D reconstruction of of the real environment.
It is therefore necessary to reconstruct the existing environment as a 3–D model of the real scene with as little effort
as possible [1]. One possible approach is to obtain a complete 3–D scene description by evaluating images of the
scene.

Modeling of 3–D scenes from 2D image sequences has been a research topic for a long time as Aggarwal and
Nandhakumar [2] showed in their overview of this field. The goal of such modeling is to extract a compact
description of the scene for purposes of reconstruction [3], recognition [4], or data compression [5], [6]. When
analyzing complex scenes with multiple moving flexible objects a complete description of all properties of the
scene is necessary. In previous works the different properties 3–D object shape, 3–D object motion, and object
surface texture were treated separately. Great effort went into developing algorithms that estimate 3–D object
shape from various sources, termed shape from motion, stereo, texture, and others. [7]–[9]. On the other hand
research was conducted to find solutions to the problem of rigid object motion [10], [11]. Only recently the
problem of dynamic nonrigid bodies and nonrigid motion was addressed [12], [13].

Researchers are often just interested in some part of the 3–D scene information. Very precise geometric measure-
ments of buildings like houses and bridges are performed in close range photogrammetry. Goal is the survey of



dynamic deformations in the structure of buildings or the recording of historical buildings where no drawings
exists. The tool to obtain such precise 3–D measurement is usually a bundle block adjustment, where many
photographs of the object are taken from different view points and selected image features together with some
prior measured 3–D object coordinates are evaluated. For this procedure a high degree of manual interaction is
still needed [14].

A qualitative geometric scene description is sufficient when constructing path planners for autonomous vehicles
and robots. For that purpose obstacle maps are needed to avoid collisions and the precise geometry is of no interest.
More important in this task is the fast and precise position estimation of the robot in the environment. For this
approach usually image features like edges are selected automatically and tracked throughout the sequence.
Monocular as well as stereoscopic sensors are used in this task [15].

An important scene property needed for visualization is the photometric surface description. People in the field
of image communication, multi media, flight and driving simulation, and virtual reality demand the construction
of complete realistic environments. Sometimes it is even more important to have a good surface texture descrip-
tion than to obtain a refined 3–D geometry. Texture maps that store real views of the object appearance can be used
for that purpose [16].

The simultaneous estimation of object geometry and camera position is usually ill–posed because for the estima-
tion of object geometry from different camera view points the camera position need to be known and vice versa.
An interesting approach to overcome this difficulty was published by Tomasi and Kanade [17], who separate
object geometry and camera motion information from a monocular image sequence. However, they assume an
orthographic projection which requires the objects to be far away from the camera with a small viewing angle.

Automatic evaluation of all scene properties, camera position and 3–D object geometry as well as photometric
surface mapping, for the purpose to reconstruct 3–D scene models for visualization, are discussed in this contribu-
tion. To overcome the problem of simultaneous estimation of object geometry and camera position, a calibrated
stereoscopic image sequence is recorded. From each image pair the geometry is measured and from the sequence
information relative camera motion can be extracted. All measurements obtained from the image sequence need
then to be integrated into a consistent 3–D scene model that contains not only the scene geometry but also texture
maps of the object surface. Visual simulations of the scene from this complete scene model can be performed with
computer graphics.

The paper is organized as follows. Chapter 2 discusses the concept of the scene analysis system. Chapter 3 treats
the measurement of object geometry from a single image pair whereas in Chapter 4 motion estimation and
sequence accumulation is discussed. Chapter 5 concludes with some results of scene reconstruction.

2 Concept of 3–D Scene Analysis System
 The structure of the scene analysis process is shown in Fig. 1. Four main modules (image analysis pipeline, control
interface, motion compensated prediction, and 3–D model storage) can be identified. In the center there is the
image analysis pipeline that computes a model scene Mk from a stereoscopic image pair Lk, Rk at time instant k
and from the accumulated sequence information contained in the model storage Mk–1. Sequence information is
included into the analysis pipeline by motion compensated prediction at all stages. The scene model Mk–1 is
transformed from frame k–1 into the current camera position at frame k by compensation of the camera motion.
From the transformed model the predictions of disparity, segmentation, and object geometry are computed and
merged with the new measurements to yield a depth map of the new scene model Mk.

In order to obtain an efficient 3–D surface description and to treat hidden surfaces properly, the depth map is
converted into a triangular surface mesh. In addition, the surface texture for each triangular surface patch, which
represents the photometric information, is stored in Mk. From the geometric and photometric information realistic
looking image sequences I*

k can be synthesized.

The analysis pipeline is controlled by a user interface, which takes commands from the operator and supplies the
analysis procedures with the proper parameters. This interface allows to insert prior scene knowledge into the
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analysis process. It is planned that this control interface will be replaced by a knowledge based system that
automatically adapts the analysis parameters based on high level scene knowledge.

In the following sections the procedures for the image analysis pipeline and the 3–D motion compensated
prediction are explained in more detail.

3 The Image Analysis Pipeline
The analysis of a stereoscopic image pair is split into correspondence analysis and object generation. Correspon-
dence analysis tries to locally estimate image plane correspondences while during object generation areas in the
image that belong to physically connected regions are merged by similarity measures. Each region is interpolated
to yield a dense depth map and the measurements are triangulated and transformed into object space.

3.1 Correspondence analysis
The input to the system at time instant k is a stereo pair Lk, Rk.  In a preprocessing step the stereoscopic camera
is calibrated and each image pair is rectified to obtain an image pair where the camera axes are parallel and both
cameras are displaced along horizontal image plane coordinates only. The calibration estimates radial lens
distortion and the external orientation parameters of both cameras from a calibration pattern using a bundle block
adjustment [18]. A projective transformation can be computed from the calibration parameters that warps the
images to standard geometry. This image rectification greatly simplifies correspondence analysis and the search
space is reduced to parallel horizontal epipolar lines E.  

From the rectified images a disparity map Dk is obtained by correlation matching techniques. The quality of the
match and therefore the quality of each displacement value is recorded in a confidence map Ck.The correspon-
dence analysis is split into three parts. First a candidate for a corresponding point is identified in one image, then
the corresponding candidate in the other image is searched for along the epipolar lines E and third the most
probable candidate match between both images is selected based on a quality criteria. This search is repeated for
each candidate, that is for each pixel. To select candidates the image grey level gradient g is evaluated. The image
gradient is a vector field pointing into the direction of changing image texture like grey level edges. Only areas
exceeding a minimum image gradient value |g| > gmin can be candidates for correspondence. The quality of the
candidate can be estimated when comparing the gradient direction with the search direction. Edges perpendicular



Fig. 2: Stereoscopic disparity analysis of image pair  ”street”.

a) left original image

c)  disparity map ( dark = far from camera,
  light =  near to camera, black = undefinded regions)

d) confidence map of disparity measurement 
(dark = low confidence, light = high confidence)

b) right original image

to the search direction can be located best while edges parallel to the search direction cannot be located at all. This
quality measure C1 can be calculated in Eq. (1). Candidates with C1 = 0 can not be estimated while candidates
with C1 = 1 have highest confidence in estimation.

The estimation of C1 is carried out for each image pixel. Each pixel with a gradient quality measure of C1 > 0 will
be selected as candidate. For each candidate a small measurement window (typically 7*7 pixel) around the
candidate position in one grey level image is chosen and the corresponding grey level distribution is searched for
in the other image. The search space is reduced to a one–dimensional search along the epipolar line between
minimum and maximum disparity values derived from the known minimum and maximum scene distance. The
search space may be extended to +/– 1 horizontal lines to account for calibration inaccuracies. The normalized
cross correlation (NCC) is calculated between the candidates to select the most probable corresponding candidate
along the search line. The most probable candidate pair is the pair with maximum cross correlation.

In complex scenes there may be multiple maxima or false maxima in the search space due to occlusions, repeated
structures or image noise. This ambiguity can be reduced when uniqueness and ordering constraints are exploited.
These constraints are based on the fact that there can be no more than one match between left and right image points
and that matches are in order for physical surfaces [19]. These constraints are employed in an optimum search
procedure using dynamic programming that matches all correspondences between left and right image that lie on



the same epipolar line. The dynamic programming algorithm was adapted from the work of Cox et al. [20]. The
disparity value obtained for each candidate is recorded in a disparity map.

The NCC is additionally used to define the correspondence quality. Selected corresponding pairs with low NCC
are corresponding points with low confidence. Therefore a second quality measure C2 in Eq. (1) can be defined
that reflects the correspondence measurement confidence. Experiments have shown that candidates below a
minimum threshold NCCmin (NCCmin being approximately 0.5) are most often false matches that should be
discarded. The confidence quality is therefore defined to be zero below NCCmin and NCC elsewhere.
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Both quality measures can be merged to one measure  Cc = C1 . C2 with {0 � Cc � 1} that contains the combined
quality measure for each candidate. The confidence measure Cc is recorded for each candidate pixel in a confi-
dence map. Fig. 2 demonstrates the correspondence analysis for the image pair ”street”. Disparity values between
10 and 50 pixel were measured. Fig. 2a and b show the left and right input image and Fig. 2c the measured disparity
map with corresponding confidence map in Fig. 2d. Light grey levels in Fig. 2c show large disparities (fore-
ground) and dark grey levels indicate small disparities (background). Light values in the confidence image
indicate high, dark values low measurement confidence. Black regions are regions where the confidence measure
is zero and where no measurement was possible.

3.2 Scene segmentation, Interpolation and Triangulation
The correspondence analysis yields a disparity map based on local depth measurement only. These measurements
are corrupted by noise and must be merged to regions that describe physical object surfaces. Based on similarity
measures the segmentation divides the viewed scene into object surfaces. As similarity measure the estimated
disparities as well as grey level statistics are used to group pixels into object regions. The region boundaries are
then corrected from the grey level image with a contour approximation by assuming that physical object bound-
aries most often create grey level edges in the image. The object segmentation for the image pair ”street” is shown
in Fig. 3a with each object having a distinct label marked as grey level in the map. The segmentation areas
correspond to the background (label 1,2), the two houses (label 3,4), the car (5) and a foreground area (6).

The image segmentation is no trivial task and we are still working to improve it. One extension will be to consider
regions of similar surface orientation, rather than just similar depth, as object surfaces. Another issue is the
detection of surface creases at object corners in addition to depth continuities. For this task we are employing
specific prior scene knowledge of object geometry.

Disparity Interpolation
The disparity measurements are noisy and there exist gaps in the surface that need to be filled. Once the disparity
map is segmented into object regions all measurements of one region are interpolated by a thin plate surface model
that calculates the best quadratic surface approximation of the disparity map based on the uncertain depth
measures. Each disparity measurement has an uncertainty attributed to it which serves as a weight of the measure-
ment. A multi grid surface reconstruction algorithm described by Terzopoulos [21] was chosen to calculate the
interpolation with a finite element approximation. It is assumed that each segmented area contains a smooth
coherent surface that can be modeled as a thin plate with a certain stiffness and that inside such a region the
disparity measurements are corrupted by noise. The physical model of a thin plate can be formulated as a
variational functional of the Euler–Lagrange equation �2d(x,y) = 0 with additional constraints at the boundaries.
The interpolation solves the problem of minimizing the potential energy function of the thin plate that is deformed
by the disparity measurements.

The solution to the energy minimization is obtained as a finite element approximation (FEM) as defined by
Terzopoulos. As the basic element a quadratic patch with the size of the image pixel grid is used. A free boundary
is defined at the edges of the segmentation area. Computation is simplified by the definition of ’computational



Fig. 3: Segmentation and interpolation of image pair  ”street”.

a) object segmentation map, each grey level 
     labels one object surface

b) Thin plate interpolation of disparity map 
(dark = far from camera, light = near to camera)
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molecules’ that define the local energy for each grid point. Inside of the thin plate, each grid point is affected by
at most 12 neighboring grid points. At the plate boundary, only existing grid points contribute to the local energy
function of that point. The local energy function for each grid point is accumulated and the energy functional for
each segmented area is solved by Gauss–Seidel–Iteration.  

The number of grid points equal the total number of pixel in the image. Solving of such a big equation system (with
up to 720x576 equations for CCIR images) directly is prohibitive. To speed up computation, a multi grid technique
with a 5 level image pyramid was implemented. The interpolation starts at the lowest level which in turn is used
as starting value for the next higher level. With this approach, a CCIR size image is interpolated in about 5 –10
minutes on a SUN SPARCStation 10. The result of the disparity interpolation is shown in Fig. 3b for the scene
”street”. From the discrete and noisy disparity measurements in Fig. 2c together with the associated confidence
values in Fig. 2d and the object segmentation from Fig. 3a, a continuous and dense disparity interpolation for each
segmented region was performed that filled the gaps and smoothed the disparity estimates. Disparity discontinui-
ties are preserved at the segmentation boundaries.

Triangulation
The interpolated depth map contains the visible scene geometry measured from a single camera view point.
Whenever the scene contains occluded surfaces then the camera must be moved around the objects and the
measurements from multiple view points must be included. For that purpose the 2D depth map is first converted
into a 3–D surface description that can be modified to include hidden surfaces. The transformation is very simple
because the images are rectified and relative 3–D–coordinates are obtained relative to the left camera center. The
camera centers are displaced by the basis b in x–direction and both cameras have the same focal length f. In this
case the relative object coordinate P(x,y) for each pixel (x, y) in the left image with corresponding disparity value
d(x, y) is recorded in a depth map Pk.

��	�
� � ��	��
����
� � �

��	�
�

� �	� 
� ��
�

(2)

The depth map can be converted into a piecewise continuous, parametric 3–D surface description by spanning a
wireframe in space for each segmented object surface. For each object region the depth map is approximated by
triangular, planar surface patches. The triangular mesh was chosen because it is capable to approximate arbitrary
surface geometries without singularities. On the surface of each triangular patch the object surface texture is stored
in a texture map from which a naturally looking view of the original objects can be synthesized with texture
mapping. In Fig. 4a the generation of the wireframe for the dominant objects in the scene ”street” are shown. For
each triangular patch the corresponding image texture is stored and used to synthesize computer generated views



a)  Triangular surface mesh of the main scene 
     objects, superimposed onto the left image

b) synthesis of the main scene objects     
   from the 3–D surface model

Fig. 4: Triangulation and model buildung.

which is shown in Fig. 4b. The surface geometry was calculated from the interpolated disparity map while the
surface texture was taken from the left original image. 

4 3–D motion compensated prediction
The tasks performed so far were straight forward stereoscopic image analysis. From a stereoscopic image pair a
3–D surface approximation was extracted from a single camera view point together with  a quality measure of the
estimated surface position. When complex scenes with occluding objects are analyzed then measurements from
multiple view points have to be integrated into the 3–D surface model. Therefore it is necessary to estimate the
3–D motion of the camera and possible object motions in the scene from the image sequence and to fuse the
multiple depth measurements into a consistent 3–D scene model.

4.1 3–D motion estimation using analysis by synthesis
In this section an algorithm to directly estimate 3–D scene motion from a monocular or stereoscopic image
sequence is described shortly. A complete discussion of the algorithm can be found in [22]–[24].

An object is defined as a rigid 3–D–surface in space that is spanned by a set of N control points. A set of six motion
parameters is associated with each object. Object motion is defined as rotation of the object control points around
the object center followed by a translation of the object center, measured between two successive image frames
k–1 and k. The object center G is the mean position vector of all N object control points. Each object control point
Pi(k–1) at frame k–1 is transformed to its new position Pi(k) in frame k according to the general motion Eq. (3)
between frame k–1 and k.
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Object rotation can be expressed by a rotation vector R = (Rx, Ry, Rz)T that describes the successive rotation of
the object around the three axes (x, y, z)T parallel to the scene coordinate system centered at G. From this vector
the rotation matrix [RG] is derived when the identical matrix [I ] is rotated around the coordinate axes with Rx first,
Ry second and Rz last. Because [RG] is derived from the rotation vector R, the six parameters of T and R suffice
to describe the 3–D object motion.



The only information available to the analysis system is the surface texture projected onto the camera target
throughout the image sequence. From this sequence the motion parameters have to be derived. Assume a scene
with an arbitrarily shaped, moving textured object observed by a camera during frames k–1 and k. The object
moves between frame k–1 and k according to the general motion Eq. (3) with motion parameters R and T. A point
on the object surface, called observation point P(k–1), holds the surface intensity I1, which is projected onto p1 in
the image plane at frame k–1. At frame k P(k–1) is moved to P(k), still holding I1 that is now projected onto p2.
In image frame k the surface intensity I1 will now be projected at image position p2, whereas the image intensity
at point p1 has changed to I2.

The image displacement vector d = p2 – p1 is called optical flow vector and describes the projection of the
observation point displacement P(k) – P(k–1) onto the image plane. When assuming a linear dependency of the
surface texture between I1 and I2 and a brightness constancy constraint between frame k–1 and k it is possible to
predict I2 from I1 and its corresponding image intensity gradients and hence to estimate d from the measurable
difference  I2 – I1. I2 is measured at position of p1 at frame k, where I1 is taken from image position p1 at frame
k–1. When approximating the spatial derivatives as finite differences the optical flow vector d  = (dx, dy)T can be
predicted from the image gradients g = (gx, gy)T and the temporal image intensity difference ∆Ip1 = I2 – I1 between
frame k and k–1 at p1 in Eq. (4):
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In Eq. (4) d is related to intensity differences. Substituting the perspective projection of P(k–1) and P(k) for p1 and
p2 in Eq. (4) yields a direct geometric to photometric transform that relates the spatial movement of P between
frame k–1 and k to temporal intensity changes in the image sequence at p1.

         �Ip1 � f �gx��P(k)x

P(k)z
�P(k�1)x

P(k�1)z
�� f �gy��P(k)y

P(k)z
�

P(k�1)y

P(k�1)z
� (5)

With this approach, rigid 3–D object motion can be estimated directly from the image sequence when the object
shape P(k–1) is known. Assuming that rotation between successive images is small, [RG] can be linearized and
P(k) is substituted in Eq. (5) as a function of the unknown parameter R and T as derived in Eq. (3) :

∆Ip1 .Pz
2   =   f . gx . Pz  . Tx +  f . gy . Pz  . Ty –  [ ∆Ip1

.Pz  + f.Pxgx  +  f.Pygy ] . Tz  

–   [ ∆Ip1
.Pz

. (Py – Gy)  + f.Px
.gx

. (Py – Gy) + f.Py
.gy . (Py – Gy) + f.Pz

.gy
. (Pz – Gz) ] . Rx   

+   [ ∆Ip1
.Pz

. (Px – Gx)  + f.Px
.gx

. (Px – Gx) + f.Py
.gy . (Px – Gx) + f.Pz

.gx
. (Pz – Gz) ] . Ry  

+   [  f.Px
.gy

. (Px – Gx)  – f.Pz
.gx . (Py – Gy)] . Rz

with  (Px, Py, Pz)T = P(k–1).                            (6)

For 3–D motion estimation the object shape is assumed to be known. An initial estimate of the scene shape was
generated from stereoscopic image analysis. When the initial estimate fails this dependency may affect the
analysis and will sometimes lead to estimation errors. As long as the initial shape approximation is reliable,
however, this dependency can be neglected. When a stereoscopic image sequence is available, then both images
of the pair can be used to further improve the motion estimation. The left image coordinate system is used as
reference system and measurements are taken from the left camera as before in Eq. (6). Measurements taken from
the right camera will be transformed according to Eq. (7), where an observation point PR(k) is expressed relative
to the left camera coordinate system.

PR(k) � [RLR] � PL(k) � TLR

� [RLR] � �[RG] � (PL(k�1) �GL(k�1))� T �GL(k�1)
� � TLR

� [RLR] � [RG] � �PL(k�1) �GL(k�1)
� � [RLR] � �T �GL(k�1)

� � TLR (7)

with:  [RLR], TLR �  Transformation from left to right  camera coordinate system



The Transformation ([RLR], TLR ) is known from calibration and is particularly easy for rectified images. The
motion Eq. (7) for the right image can be inserted in Eq. (5) as before and the measurement equation for the right
image is derived which doubles the number of independent measurements for motion estimation.

Conditions for robust motion estimation
At least six distinctive observation points that lead to six linear independent equations are needed to solve for the
six motion parameters R and T. In real imaging situations the measurements of the spatial and temporal derivatives
are noisy and some of the observation points selected may be linear dependent of each other. To cope with those
conditions more than six observations are evaluated and a linear regression is carried out using least squares fit.
As observation points all surface points with a gradient exceeding a noise threshold can be used. To avoid linear
dependencies of the measurement equations, the observation points should be evenly distributed across the object
surface. Based on that rule, typically 100 to 1000 surface points are selected as observation points. All observation
points of one object are evaluated. It is important to note that we do not measure optical flow locally and then try
to combine the flow field. Instead all observation points of a rigid surface are used to solve for R and T. To account
for the linearizing of [RG] and nonlinear grey level distribution, the estimation is iterated. The position P of each
observation point is initially determined by object shape and position. An estimate of the parameters R and T is
calculated and the observation point is moved according to those parameters. The estimation is repeated with the
new starting position of P until the parameter changes of T and R  converge to zero.

4.2 Accumulation of multiple depth maps into a common 3–D scene model
For each image pair of the sequence a depth map Dk was calculated by stereoscopic analysis together with its
associated confidence map Ck. 3–D camera motion between successive frames was estimated which allows to
register the image pairs relative to another. The goal of sequence accumulation is to fuse the depth measurements
from the image sequence into a consistent 3–D scene model to improve estimation quality. Consistency is achieved
by compensating the camera motion from frame k–1 to k. The scene model is transformed into frame k with the
estimated motion parameters. From the model geometry in this position a prediction of the disparity map d*

k  can
be computed and compared with the measured disparity map dk to detect geometric errors. 

Two types of geometric errors can be identified: Gross errors where the disparity estimation failed due to
occlusions, repeated structures, or noise; and quantization errors due to the limited resolution of the disparity d.
Gross errors can be detected and excluded from the analysis by comparing the predicted disparity map d*

k with
the measured disparity map at frame k. In areas of large disparity difference only the measurement with higher
confidence Cc should be chosen. The quantization of d leads to a quantization in depth estimation according to
Eq. (2) which can be severe for a small base line b between the cameras and coarse resolution of d. The quantization
of d is determined by the stereoscopic analysis process itself and cannot be improved. Moving the camera,
however, is equivalent to increasing the base line b and hence increasing depth resolution.

In this approach the depth measurements are improved by weighted depth accumulation from the motion compen-
sated sequence of depth maps. For each observation point P of the surface there exist a confidence value Cc from
Eq. (1) that expresses the measurement accuracy. The confidence value Cc is converted into the weight S according
to Eq. (8) that can easily be accumulated throughout the sequence. Each observation point holds not only its
position Pk–1 in space but also its corresponding confidence weight Sk–1 = S*

k. Pk–1 is transformed to P*
k

according to Eq. (3) and its projection (x,y) in the image is computed. The disparity dk, measured in frame k at
image position (x,y) with corresponding weight Sk, is converted to a depth measurement Pk and fused with P*

k
in a weighted accumulation to compute the improved depth estimate Pknew and weight Sknew:
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The information fusing process described above can only be applied to an existing surface. When new objects and
prior unseen object surfaces appear, the surface mesh must be extended from the new measurement. Once the
surface is built, the fusing process can continue.



Fig. 5: Disparity accumulation for the sequence ”house”.

a) left original image of sequence ”house” b) disparity map estimated from single image pair 
with 1 pixel resolution

c) accumulated disparity map estimated from 9
adjacent image pairs, gaining sub pixel resolution

d) smooth disparity map interpolated from
the accumulated disparity map in Fig. 5c

The results of the depth fusing process are shown in Fig. 5 for the sequence ”house”. A toy house was rotated on
a turn table and 90 stereoscopic views of the house from all directions, each view displaced by 4 degree of rotation,
were taken. In Fig. 5a the left original view of the house is shown. For each image pair a disparity map (Fig. 5b)
was computed, a 3–D surface object was generated and the relative 3–D motion and rotation of the house was
estimated successfully. To demonstrate the accumulation process, the disparity maps from 9 adjacent frames
(center frame and 4 frames to each side) were fused into a combined depth map in Fig. 5c. Each disparity map
was estimated with a disparity resolution of 1 pixel. The quantization effects are clearly visible in Fig. 5b. About
10 different depth values can be measured. In comparison to the single map an increase of resolution to sub pixel
accuracy can be seen in Fig. 5c. This disparity map is further enhanced by interpolation to create the smooth
disparity map as shown in Fig. 5d.

5 Conclusion and Results
A system for automatic 3–D scene analysis was discussed. The system is capable to analyze a complex real scene
with multiple overlapping objects from an arbitrary moving stereoscopic video camera system. It segments the
scene into smooth surfaces and stores the true 3–D geometry of the scene in a 3–D scene model, including surface
texture. Camera motion is tracked throughout the sequence and measurements from different view points are
integrated into the model data base.



Fig. 6: Synthesized view of the combined scene of 3–D models ”street” and ”house”.

The system implementation is not jet finished. With the current implementation, we are not able to add new scene
contents (e.g. from moving around a corner of a house) automatically into the model to include truly occluded
surfaces. We are further investigating the impact of erroneous model shape on the camera tracking algorithm and
we are working to improve shape accumulation further through Kalman filtering. Some of the analysis parameters
for disparity estimation, image segmentation, and surface mesh generation were chosen prior to the analysis
process. An important additional step towards fully automated scene analysis will be the extension of the control
interface with knowledge based scene interpretation, a project we are currently investigating.

Despite these problems the system is already capable to solve some important tasks. It was used for model–based
data compression in stereoscopic television scenes, where it serves to generate a compact description of the 3–D
scene viewed by a stereoscopic camera system. The 3–D model is transmitted once and from that on only camera
motion and changing image content is updated. The receiver recovers the original image sequence by synthesizing
the stereoscopic image sequence from the model scene [24].

Another application of the system is the visual reconstruction and modification of a real environment as motivated
by architects and city planners. They are interested to change the existing environment and to place new buildings
inside of an existing real scene. This application was simulated in Fig. 6, where the house and the street scene
modeled before are merged into one scene. With the 3–D models of the scenes ”street” and ”house” available, new
realistic views of  a combined scene can be formed. Because the 3–D geometry of the objects is modeled, the house
can be placed inside the street scene with proper 3–D depth scaling. The car which is in the foreground occludes
the toy house while the toy house occludes the big house in the background.
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