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Abstract—Continuous-media (CM) servers have been around for some years. Apart from server capacity, another important issue in

the deployment of CM servers is reliability. This study investigates rebuild algorithms for automatically rebuilding data stored in a failed

disk into a spare disk. Specifically, a block-based rebuild algorithm is studied with the rebuild time and buffer requirement modeled. A

buffer-sharing scheme is then proposed to eliminate the additional buffers needed by the rebuild process. To further improve rebuild

performance, a track-based rebuild algorithm that rebuilds lost data in tracks is proposed and analyzed. Results show that track-based

rebuild, while it substantially outperforms block-based rebuild, requires significantly more buffers (17-135 percent more) even with

buffer sharing. To tackle this problem, a novel pipelined rebuild algorithm is proposed to take advantage of the sequential property of

track retrievals to pipeline the reading and writing processes. This pipelined rebuild algorithm achieves the same rebuild performance

as track-based rebuild, but reduces the extra buffer requirement to insignificant levels (0.7-1.9 percent). Numerical results computed

using models of five commercial disk drives demonstrate that automatic rebuild of a failed disk can be done in a reasonable amount of

time, even at relatively high server utilization (e.g., less than 1.5 hours at 90 percent utilization).

Index Terms—Continuous media, server, disk, rebuild, fault tolerance, reliability, scheduler, block-based, track-based, performance

analysis.
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1 INTRODUCTION

SINCE the introduction of continuous-media (CM) servers,
a large number of researchers have investigated ways to

improve server capacity to cope with the bandwidth
requirement in delivering high-quality audio-visual contents
to a large number of users. Apart from the challenge of
capacity, another challenge—reliability—readily comes into
the picture when companies deploy paid services.

Specifically, a CM server usually employs multiple disks

in the form of a disk array for media data storage and

retrieval. Media data are then distributed evenly across all

the disks in small units such that data retrieval for a media

stream will be spread across all disks to improve load

balancing. However, one downside of this disk-array-based

storage is reliability. In particular, failure of any one of the

disks in the array will render the server inoperable due to

data loss. Worse still, the reliability will further decrease

when one adds more disks to scale up the system, thereby

limiting the system’s scalability.
This reliability problem has been investigated by many

researchers in the last decade [1], [2], [3], [4], [5], [6], [7], [8]

and a number of solutions have been proposed and studied.

While the exact method varies, the basic principle is similar,

i.e., adding redundant data to the disks so that data lost in a

failed disk can be reconstructed in real-time for delivery to

the client. A CM server is said to operate under normal
mode when there is no disk failure and under degraded
mode once a disk fails.

While existing solutions can sustain disk failure without
service interruption, operating under degraded mode is still
a temporary measure because an additional disk failure will
result in total system failure and permanent data loss.
Therefore, the server needs to initiate a rebuild mode to
reconstruct data lost in the failed disk and store them to a
spare disk to restore the server back to normal mode of
operation. Once the rebuild process is completed, the server
can sustain another disk failure without total system failure
or permanent data loss. This gives the system operator more
time to repair or replace the failed disk with a new spare
disk.

It is worth noting that today’s hard disk generally has fairly
long mean-time-between-failure (MTBF) ratings, ranging
from 300,000 hours to nearly 1,000,000 hours, depending on
the particular disk model. Consider a CM server with 16 disks
(including one parity disk) plus a spare disk. The MTBF for
the disk array computed using a formula derived by Chen et
al. [9] is over 42,000 years if the rebuild time is one hour and
4,200 years if the rebuild time is 10 hours. While an MTBF of
4,200 years may appear to be sufficient, Chen et al. [9] also
pointed out that the computed MTBF should be taken
conservatively because disk failures, in practice, are not
necessarily independent. Hence, likelihood of a second disk
failure could be much higher after the first disk failure. As
the disk array MTBF is inversely proportional to the rebuild
time, it is, therefore, important to quickly rebuild the failed
disk to prevent total system failure.

To the best of the authors’ knowledge, none of the
existing work has investigated disk rebuild in a CM server.
This paper addresses this problem by presenting efficient
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rebuild algorithms to rebuild the failed disk automatically
and transparently in a CM server serving constant-bit-rate
(CBR) video streams. Automatic refers to the fact that the
rebuild process does not require human intervention such
as locating and loading a backup tape to restore data.
Transparent refers to the fact that the rebuild process itself
can operate without any adverse effect on existing users.

The rest of this paper is organized as follows: Section 2
reviews some previous works and compares them with this
study. Section 3 presents and formulates the system model
studied in this paper. Section 4 presents and analyzes a
block-based rebuild algorithm. Section 5 presents and
analyzes a track-based rebuild algorithm. Section 6 presents
a pipelined rebuild algorithm to reduce buffer requirement
in track-based rebuild. Section 7 compares the presented
algorithms quantitatively using numerical results. And,
Section 8 concludes the paper and discusses some future
works.

2 BACKGROUND RELATED WORKS

In this section, we review existing work on disk fault
tolerance and summarize the contributions of this study.

2.1 Related Works

The problem of supporting degraded mode of operation in
CM servers has been investigated by a number of
researchers [1], [2], [3], [4], [5], [6], [7], [8]. One approach
makes use of data replications such as mirroring to sustain
disk failure. The idea is to place two or more replicas in
different disks so that at least one copy is available after a
disk failure. Examples include the rotational mirrored
declustering scheme proposed by Chen et al. [4], the doubly
striped mirroring scheme proposed by Mourad [6], and the
random duplicated assignment proposed by Korst [8].

Another approach makes use of parity encoding for data
redundancy. A parity block, together with a number of data
blocks, forms a parity group. The entire parity group can be
reconstructed even if one of the blocks in the parity group is
lost in a disk failure. Compared to replication, parity
encoding generally requires less redundancy overhead, but
higher buffer requirement for data reconstruction. This
approach has been investigated by Tobagi et al. [1] in their
Streaming RAID architecture, by Cohen et al. [3] in their
pipelined disk array, by Berson et al. [2] in their non-
clustered scheme, and by Özden et al. [5] in their
declustered parity scheme and prefetch scheme.

In another work by Cohen and Burkhard [7], a
segmented information dispersal (SID) scheme was pro-
posed to allow fine grain tradeoff between the two extremes
of mirroring and RAID-5 parity encoding. Reconstruction
reads under SID are contiguous, leading to better disk
efficiency. The authors showed that the SID schemes match
the performance of RAID-5 and schemes based on balanced
incomplete block designs under normal mode and outper-
forms them under degraded mode of operation.

The previous studies all focus on the normal mode and
degraded mode of operation. The problem of rebuilding
data in a failed disk to a spare disk in a CM server has yet to
be studied. While there are many existing studies on disk
rebuild, they all focus on data applications, such as online

transaction processing (OLTP) servers. Some examples are
the work by Menon and Mattson [10], [11], Hou and Patt
[12], Hou et al. [13], Thomasian [14], [15], Thomasian and
Menon [16], Mogi and Kitsuregawa [17], etc.

Disk rebuild in CM server applications differs from that
of OLTP applications in two major ways. First, OLTP
applications generally do not have the stringent perfor-
mance requirement of a CM server. In particular, perfor-
mance of OLTP applications is commonly measured using
response time. While shorter response time is desirable, it is
not a condition for correct operation. Therefore, in disk
rebuild, the focus is to balance service response time with
rebuild time. For example, one can use priority scheduling
in OLTP applications to give higher priority to normal
requests to minimize their response time and serve rebuild
requests with the unused disk time.

By contrast, a CM server has to guarantee the retrieval of

media data according to a fixed schedule. Even a small

delay beyond the schedule will result in service disruption.

Consequently, the rebuild process can take place only if

normal media data retrievals can still be completed on time.

This requires detailed disk modeling and using the use of

worst-case analysis to determine exactly how much disk

time can be spent on the rebuild process. Unlike rebuild

algorithms for OLTP applications, the amount of disk time

to spend on rebuild is determined a priori given the disk

parameters. Moreover, retrievals for playback data and

rebuild data are scheduled to minimize disk-seek time

instead of according to priority as in the OLTP case.
Second, OLTP applications commonly employ the RAID-5

striping scheme to maximize I/O concurrency [9]. On the
other hand, CM server applications commonly employs the
RAID-3 striping scheme for reasons to be discussed in
Section 3.1. This fundamental difference in the striping
scheme, together with the inherently round-based disk
scheduling algorithm employed in CM servers, requires
different designs for the rebuild algorithm.

2.2 Contributions

This study incorporates CM server’s stringent performance

requirement and present rebuild algorithms that can

maintain performance guarantee to all existing users while

rebuilding the failed disk in the background. We first

present a block-based rebuild algorithm and analyze the

rebuild time and buffer requirement. Next, we propose a

buffer-sharing scheme to eliminate the additional buffers

required for rebuild. To further improve rebuild perfor-

mance, we present and analyze a track-based rebuild

algorithm that rebuilds lost data in tracks rather than in

blocks. Track-based rebuild takes advantage of the read-on-

arrival feature in modern disks to eliminate rotational

latency, leading to significantly improved rebuild perfor-

mance. However, track-based rebuild unfortunately re-

quires significantly more buffers, even with buffer sharing

(17-135 percent more). To tackle this problem, we present

a novel pipelined rebuild algorithm to take advantage of

the sequential property of track retrievals to pipeline the

reading and writing processes. This pipelined rebuild

algorithm achieves the same rebuild performance as track-
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based rebuild but reduces the extra buffer requirement to

insignificant levels (0.7-1.9 percent). Our results demon-

strate that automatic rebuild of a failed disk can be done in

a reasonable amount of time, even at relatively high server

utilization (e.g., less than 1.5 hours at 90 percent utilization).

3 SYSTEM MODEL

In this section, we present the system model used in this

study. In particular, we discuss the rationale for adopting

the RAID-3 striping scheme instead of the RAID-5

striping scheme; present a storage allocation policy and

I/O scheduling algorithm based on the RAID-3 striping

scheme; present a detailed disk model; and explain a

capacity dimensioning procedure.

3.1 Disk Redundancy

In the pioneering study by Patterson et al. [18], a number of

striping schemes are proposed for supporting disk-level

fault tolerance. Among them, RAID-5 is the most widely

used in general data and OLTP applications. RAID-5 is

designed to maximize I/O concurrency by allowing

individual disks in a disk array to serve different requests

simultaneously. This design choice is particularly suitable

for OLTP applications, as request size is generally small and

performing I/Os in parallel can reduce response time.

For CM server applications however, RAID-5 is less

popular for two reasons. First, CM server generally uses

large request size to maximize disk throughput. Moreover,

minimizing response time is less important, as most CM

disk scheduler operates in fixed-duration cycles. As long as

a block can be retrieved within the cycle, the exact response

time is irrelevant.
Second, when a RAID-5 disk array operates in

degraded mode with a failed disk, significant overheads

(up to 100 percent depending on the placement policy)

will be incurred in the remaining disks because recon-

structing an unavailable block requires reading corre-

sponding blocks from the same parity group from all the

remaining disks. While increases in response time due to

this overhead is not critical in OLTP applications, the

same overhead will destroy the performance guarantee

required in a CM server.1

For the previous two reasons, it is more common to

employ the RAID-3 striping scheme for use in CM server

applications. Unlike RAID-5, where each disk can serve a

different I/O request, all the disks in RAID-3 participate in

serving an I/O request, thereby maximizing disk through-

put. More importantly, no additional overhead will be

incurred by the remaining disks during degraded mode.

This is because each I/O always retrieves the entire parity

group from all the remaining disks and, hence, reconstruc-

tion can take place immediately. We will focus on this

RAID-3 striping scheme in the rest of the paper.

3.2 Storage Allocation and I/O Scheduling

Table 1a and Table 1b summarize the notations used in this

paper. Let ND be the number of disks in the server where

(ND � 1) of them store data while the remaining one stores

parity. The storage is divided into blocks of Q bytes, as

shown in Fig. 1. Assuming the disks are homogeneous, then

a parity group comprises one block at the same location

from each one of the ND disks. The parity block is computed

from the (ND � 1) data blocks using exclusive-or computa-

tion. The storage is then allocated in whole parity groups

instead of individual blocks to ensure that data blocks within

a parity group always store data from the same CM stream.

This RAID-3 striping scheme enables the system to mask the

failure of any one of the ND disks to continue operation

through erasure correction processing (Fig. 2).

Retrievals and transmissions are organized into rounds,

as shown in Fig. 3. We assume that all media streams are

encoded with constant-bit-rate encoding at the same bitrate.

Short-term bitrate variations (e.g., due to I, P, B frame

differences in MPEG) are assumed to be absorbed by client

buffers and, hence, the disk can simply retrieve exactly one

media block from each of the ND disks for each active

media stream in each round. Note that this can also be

extended to support other bitrates which are multiples of a

base rate. These higher-rate streams can be treated as

multiple base-rate streams and, hence, we will ignore this

minor complication in the rest of the paper.
With the previous disk scheduler, a complete parity

group, including the (ND � 1) media blocks and the
associated parity block are all retrieved for each stream in
a service round. This enables the server to sustain nonstop
service, even when one of the disks fails, by computing the
unavailable media block using erasure-correction computa-
tion over the remaining blocks in the parity group. Let Rv be
the media bitrate. Then, the retrieved (ND � 1) media blocks
will be transmitted in the next service round and the service
round length is thus given by

Tr ¼
ðND � 1ÞQ

Rv
: ð1Þ

Under this scheduling algorithm, the total number of
buffers required is given by

Bp ¼ KNDQþKðND � 1ÞQ; ð2Þ

where the first term is the buffer requirement for retrieval,

the second term is the buffer requirement for transmission,

and K is the maximum number of requests that can be

served in a service round (see Section 3.4). Transmission

requires fewer buffers because the retrieved parity block is

not transmitted and hence the buffer can be reused.

For a server with a large number of disks, the single

parity disk may not provide sufficient redundancy to

maintain acceptable reliability. This problem can be solved

by dividing the disks into clusters where each cluster has its

own parity disk (e.g., Streaming RAID [1]). Multiple disk

failures can be sustained as long as no more than one disk
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fails in a cluster. Results in this study can be directly

extended to these clustered schemes and, hence, we will

focus on single-cluster disk arrays in the rest of the paper.

3.3 Disk Performance Model

We consider a general model for a multizone disk. Let Ntrk

be the number of tracks per recording surface (or
number of cylinders), Nsuf be the number of recording

surfaces, W be the disk rotation speed in rounds per
second, S be the sector size in bytes, and Nzone be the
number of zones, Yiði ¼ 1; 2; . . . ; NzoneÞ be the number of
sectors per track in zone i. Note the disk transfer rate,
denoted by Xiði ¼ 1; 2; . . . ; NzoneÞ, is also zone-dependent
and is given by

Xi ¼ SYiW: ð3Þ
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To simplify notations in later sections, we define

Xmin ¼ min Xiji ¼ 1; 2; . . . ; Nzonef g ð4Þ

Ymin ¼ min Yiji ¼ 1; 2; . . . ; Nzonef g ð5Þ

Ymax ¼ max Yiji ¼ 1; 2; . . . ; Nzonef g ð6Þ

and we shall leave out the subscript i in Xi and Yi when
representing random variables (i.e., X, Y) instead of system
parameters.

To model disk performance, we consider the time it takes
to serve a request. Specifically, disk time for retrieving a
single request can be broken down into four components,
namely, fixed overhead (e.g., head-switching time, settling
time, etc.) denoted by�, seek time, denoted by tseek, rotational
latency, denoted by trot, and transfer time, denoted by txfr:

treq ¼ �þ tseek þ trot þ txfr: ð7Þ

Seek time depends on the seek distance and it can be

modeled by a seek function fseekðnÞ, where n is the number

of tracks to seek. For rotational latency, the random variable

trot will be uniformly distributed between 0 and W�1.

Finally, the transfer time txfr comprises three components:

txfr ¼
Q

X
þ thsw þ ttrack; ð8Þ

where the first term is the time it takes to read the media

block of Q bytes from the disk surface, the second term is

the total head-switching time incurred in case the media

block spans more than one track in the cylinder, and the last

term is the total track-to-track seek time incurred in case the

media block spans more than one consecutive cylinders.
Take the Quantum Atlas-10K disk model as an example.

The transfer time for retrieving a 64KB media block ranges

from 4.59 ms to 6.69 ms depending on the zone, the head-

switching time is 0.176 ms, and the track-to-track seek

time is 1.25 ms. Therefore, unless one sacrifices some

storage (7-10 percent depending on zone) to prevent a

media block spanning two tracks, the effect of track-

crossing should not be ignored.
We note that the previous disk model is only an

approximation and is chosen for sake of simplicity. The

results can be extended to more detailed and complex

models for more accurate performance predictions.

3.4 Capacity Dimensioning

The goal of capacity dimensioning is to determine the

maximum number of concurrent media streams that can be

sustained with deterministic performance guarantee. Based

on the previous disk model, we first obtain an upper bound

for the length of a service round. Rewriting (7) by replacing

txfr with the transfer time formula in (8), we have

treq ¼ �þ tseek þ thsw þ ttrack þ trot þ
Q

X
: ð9Þ

Assuming the use of CSCAN serving k requests per round

and the seek time function is concave, then the seek time
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TABLE 1b
Summary of Notations (continued)

Fig. 1. Storage organization under RAID-3 striping scheme.



overhead is maximized when the requests are evenly

spaced along the disk surface, i.e.,

tmax
seek ¼ max tseekf g ¼ fseekðNtrk=ðkþ 1ÞÞ: ð10Þ

Note the use of ðkþ 1Þ instead of k to account for effect of the

head-repositioning delay in CSCAN [19], [20].
To determine an upper bound for thsw and ttrack, we note

that a media block of size Q bytes can span at most

nhsw ¼ Q=ðSYminÞd e ð11Þ

recording surfaces. Therefore, the worst-case total head-

switching time can be computed from

max theadf g ¼ Q

SYmin

� �
thsw: ð12Þ

Similarly, the same request can span at most

ncyl ¼
Q

SYminNsuf

� �
ð13Þ

cylinders. Hence, the worst-case total track-to-track seek

time can be computed from

max ttrackf g ¼ Q

SYminNsuf

� �
fseekð1Þ: ð14Þ

Lastly, the maximum rotational latency is simply given by

W�1 while the maximum reading time can be obtained from

max
Q

X

� �
¼ Q

Xmin
: ð15Þ

While summing the previous upper bounds will also

bound the request service time, we note that most, if not all,

modern disk drives support a read-on-arrival feature [3] (all

five disk drive models studied in Section 7 supports read-

on-arrival). Specifically, the service time model assumes

that if the disk head arrives to the track to find it passing

through the middle of the media block, it will wait until the

first sector of the media block rotates back to the head

position before commencing reading. The read-on-arrival

feature removes this restriction and allows the disk to start

reading data immediately, even in the middle of the

requested media block. This avoids the worst-case scenario

of waiting one complete rotation before reading.
Therefore, for a service round of k requests, the round

length will be bounded from above by

trðkÞ ¼ k

�þ tmax
seek þ

�
Q

SYmin

�
thsw

þ
�

Q

SYminNsuf

�
fseekð1Þ þ

�
Q

SYmin

�
W�1

0
BBB@

1
CCCAþ tmax

seek;

ð16Þ

where the first term represents the worst-case time to read k
requests using CSCAN and the second term is the head-
repositioning time.

Reconsider the scheduling algorithm in Section 3.2, the
server needs to ensure that a complete parity group must
be retrieved within time Tr to maintain continuous
transmission:

trðkÞ � Tr: ð17Þ

This timing constraint, also known as the continuity
condition, determines the maximum number of concurrent
media streams, denoted by K, that can be supported by the
server:

K ¼ max k j trðkÞ �
ðND � 1ÞQ

Rv
; k ¼ 1; 2; . . .

� �
: ð18Þ

4 AUTOMATIC DATA REBUILD

A system is said to operate under normal mode when there
is no failure. The system switches to degraded-mode of
operation once a disk failure occurs. Under this degraded-
mode of operation, unavailable data are recomputed in real-
time from the remaining disks to sustain service. Although
it is still operational, the system must return to normal-
mode of operation as soon as possible because any more
disk failure will cripple the entire system. The goal of data
rebuild is to bring the system back to normal-mode of
operation by reconstructing data lost in the failed disk into
spare storage hardware.

A number of modern disks and disk controllers not only
can detect a disk failure, but can also predict a disk failure
in advance. This early-warning signal can be used to initiate
data rebuild even before the actual failure occurs. However,
there are also complications that must be handled properly.
First, if the data disks are updated (i.e., being written to)
during the rebuild process, then the spare disk will have to
be updated accordingly as well. This is less of a problem in
a CM server as the disks primary serve read requests. One
can also disallow updating until the rebuild process
completes. Second, if the actual failure occurs in a disk
other than the predicted one, then the rebuild process will
have to be aborted and then restarted to rebuild the disk
that failed. Nevertheless, this is equivalent to the case
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without failure prediction and, hence, will not degrade
rebuild performance. For simplicity, we will not make use
of this failure prediction feature in the rest of the paper.

4.1 Sparing Scheme

To support automatic data rebuild, a dedicated spare disk is

reserved to store data reconstructed in the rebuild process.

The spare disk is connected to the server at all times, but is

not utilized during normal-mode and degraded-mode of

operation. For this sparing scheme, the recomputed data

will be stored to the spare disk, which will replace the failed

disk once the rebuild process is completed. Note that

human intervention is still required to replace the failed

disk with another spare disk to cater for another disk

failure, but this is less time critical.

4.2 Rebuild Algorithm

The challenge of automatic rebuild is to proceed with the

rebuild process without interrupting user services. Specifi-

cally, all retrievals in a disk service round must finish

within Tr seconds and the addition of rebuild requests must

not violate this limit. Clearly, we can only utilize unused

disk capacity for serving rebuild requests. Once rebuild

blocks from the surviving disks are retrieved into memory,

the server can then perform erasure-correction computation

to reconstruct the lost media blocks and store them into the

spare disk. This process repeats until all media blocks lost

in the failed disk are reconstructed into the spare disk,

which then simply replaces the failed disk to bring the

system back into normal-mode of operation. The failed disk

will later be replaced or repaired manually and a new spare

disk will be reinserted into the system to prepare for the

next rebuild cycle.

4.3 Analysis of Rebuild Time

A key performance metric in evaluating automatic data

rebuild algorithms is rebuild time, defined as the time

required to completely rebuild data in the failed disk to the

spare disk. For a server with ND disks (one of which has

failed) and one spare disk, the rebuild process consists of

reading ðND � 1Þ blocks for each parity group from the

surviving ðND � 1Þ disks and reconstructing the lost media

block for storage in the spare disk. Note that this is true

even if the failed disk happens to be the parity disk because

all ðND � 1Þ data blocks in a parity group are required to

recompute the parity block for storage in the spare disk.
Let u, 0 � u � K, be the number of active streams in the

server. We define a server utilization &, 0 � & � 1, as
follows:

& ¼ u

K
: ð19Þ

Now, the number of rebuild blocks retrieved by a
working disk in a service round, denoted by nb, will be
given by

nb ¼ K � u; ð20Þ

which is the same for all disks. Given that there are
ðND � 1Þ working disks, the rate at which rebuild data
are retrieved, denoted by Rrb, is then given by

Rrb ¼
ðND � 1ÞnbQ

Tr
¼ ðND � 1ÞnbQ

ðND � 1ÞðQ=RvÞ
¼ nbRv;

ð21Þ

where the numerator is the total amount of rebuild data

retrieved in a service round and the denominator is the

length of a service round. Note that Rrb is only the rate at

which rebuild data is retrieved, the reconstruction process

will consume ðND � 1Þ rebuild blocks to reconstruct each

lost media block. Therefore, the rebuild rate Rrebuild, defined

as the rate at which lost data are reconstructed, can be

computed from Rrb:

Rrebuild ¼
Rrb

ðND � 1Þ ¼
nbRv

ðND � 1Þ : ð22Þ

Using (19) and (20), we can simplify (22) into

Rrebuild ¼
ðK � uÞRv

ðND � 1Þ

¼ ð1� &Þ
ðND � 1ÞKRv:

ð23Þ

Equation (23) computes the achievable rebuild rate under a

given server utilization. Let G be a disk’s storage capacity.

Assuming storage in the entire disk array is fully utilized,

we can then calculate the rebuild time from

Trebuild ¼
G

Rrebuild
¼ GðND � 1Þ

KRv 1� &ð Þ : ð24Þ

4.4 Buffer Requirement

Two types of buffers are required for a CM server

supporting automatic rebuild. First, the server needs buffers

for the normal retrieval and transmission of media blocks

for playback (henceforth called playback buffers). Second, the

server also needs buffers to support the rebuild process

(henceforth called rebuild buffers).

The playback buffer requirement is given by (2) in

Section 3. To determine the requirement for rebuild buffers,

we consider the rebuild process depicted in Fig. 4. Note that

write operations on the spare disk is scheduled using the

same periodic scheduler as read operations on the data

disks. Rebuild blocks retrieved in a round are used to

reconstruct the lost media blocks for writing to the spare

disk in the next round. This algorithm simplifies the server

implementation as the same scheduler can be used for both

read and write operations.
For every unavailable media blocks reconstructed,

ðND � 1Þ blocks must be retrieved for erasure-correction
computation. Therefore, the buffer requirement for
rebuild is given by

Br ¼ KðND � 1ÞQþKQ; ð25Þ
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where the first term is the buffer requirement for retrieval

and the second term is the buffer requirement for storing

the reconstructed media blocks to the spare disk. The

multiplication factor K represents the maximum number of

blocks that can be retrieved in a round for rebuild. The total

buffer requirement can then be computed from the sum of

(2) and (25):

Bsum ¼ Bp þBr

¼ Kð3ND � 1ÞQ:
ð26Þ

It may occur to the reader that, while simple in

implementation, this periodic write scheduler is inefficient

in buffer usage because reconstructed blocks are buffered

for up to one cycle before writing to the spare disk.

However, we discover that a simple buffer-sharing scheme

will completely eliminate the additional buffer requirement.

Specifically, we notice that the server would need fewer

buffers for playback and more buffers for rebuild when the

utilization is low and vice versa. This motivates us to

investigate buffer-sharing between the retrieval process and

the rebuild process. Specifically, the server can allocate a

pool of say Nshare buffers (each Q bytes) during initializa-

tion and then allocate the buffers to the retrieval process

and the rebuild process in an on-demand manner.
Now, consider the retrieval process. Given u active

streams, the number of playback buffers required is given by

Bpð&Þ ¼ uð2ND � 1ÞQ: ð27Þ

For the rebuild process, the buffer requirement when there

are u active streams is given by

Br ¼ ðK � uÞNDQ: ð28Þ

Hence, the combined buffer requirement with buffer

sharing is then given by

Bshare ¼ uð2ND � 1ÞQþ ðK � uÞNDQ

¼ ðND � 1ÞuþKNDð ÞQ
� ð2ND � 1ÞKQ 8u;

ð29Þ

which surprisingly equals to the buffer requirement for the
retrieval process. Therefore, with the proposed buffer-
sharing scheme, one can use the same round-based disk
scheduler for both reading and writing without any
additional buffer.

5 TRACK-BASED REBUILD

Most, if not all, modern disk drives employ zoning to
increase disk storage capacity. A side-effect of zoning is the
variation in track size. In particular, inner tracks have less
storage capacity than outer tracks. Due to this uneven track-
size problem, disk scheduler in most continuous-media
server designs retrieves media units in fixed-size blocks
instead of tracks. While reading the entire track can
eliminate the rotational latency, the amount of buffer
required to maintain a balanced disk schedule is often
prohibitively large [6].

Unlike the retrieval process, the rebuild process is a non-
realtime process that does not require data retrieval at a
constant rate. Consequently, we can employ track-based
retrieval for the rebuild process to improve rebuild
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performance while keep using block-based retrieval for the
streaming process to maintain low buffer requirement.

5.1 Rebuild Algorithm

Fig. 5 depicts the track-based rebuild algorithm. In reading
data from the data disks, playback data are still retrieved in
fixed-size blocks but rebuild data are retrieved in tracks.
This allows the elimination of rotational latency during
rebuild data retrieval.

Specifically, in block-based retrieval, the disk head must
wait for the required disk sector to rotate to beneath the
disk head before data transfer can begin. In the worst case,
where the required sector has just passed over the disk head
after seeking is completed, the disk will have to wait for one
complete round of rotation before beginning data transfer.

By contrast, under track-based retrieval, the disk head
can start data transfer as soon as seeking is completed
because the entire track is to be retrieved. Clearly, the
reading time is simply the time for one disk rotation, i.e.,
W�1. After reading the corresponding tracks from all
ðND � 1Þ disks, the server can then reconstruct the lost
track and write it to the spare disk.

Additionally, the rebuild process rebuilds tracks sequen-
tially starting from one end of the disk surface with all track
retrievals performed back-to-back in one go. For example,
let yi, i ¼ 0; 1; . . . ; ðu� 1Þ and yi � yj for i < j be the track
numbers for the u data blocks to be retrieved for playout in
a round. Suppose that the next track to rebuild is track
number x and a total of v tracks are to be rebuilt. Then, the
order of retrievals will be y0; y1; . . . ; yi; x; yj; . . . ; yu�1, where
yi � x � yj. In other words, all v tracks are retrieved in one
go between the retrievals of block i and j. Consequently, the
seek time between track retrievals is reduced to tseekð1Þ. The
rebuild process will retrieve as many tracks as possible in a

round for rebuild as long as retrieval performance for
normal data blocks can still be guaranteed.

5.2 Analysis of Rebuild Time

To model the rebuild process, let uðu � KÞ be the number of
media blocks to retrieve for playback and v be the number
of tracks to retrieve for rebuild in a service round. Using the
disk model in Section 3.3, the modified service round length
is bounded from above by

trðu; vÞ ¼ u

�þ fseekðNtrk=ðuþ 2ÞÞ þ Q

SYmin

� �
thsw

þ Q

SYminNsuf

� �
fseekð1Þ þ

Q

SYmin

� �
W�1

0
BBB@

1
CCCA

þ fseekðNtrk=ðuþ 2ÞÞ þ v �þ thsw þW�1
� �

þ v� 1

Ns

� �
tseekð1Þ

þ fseekðNtrk=ðuþ 2ÞÞ:
ð30Þ

The first term is the service time for reading u media blocks.
The second term is the additional seek time due to rebuild.
The third term is the time for reading v tracks. The fourth
term is the track-to-track seek time for reading rebuild
tracks and the last term is the head-repositioning delay.

Now, invoking the continuity condition in (17), we can
determine the maximum number of tracks that can be
retrieved for rebuild given there are already u data requests
in a round, denoted by V ðuÞ, from

V ðuÞ ¼ max vjtrðu; vÞ
ðND � 1ÞQ

Rv
; v ¼ 0; 1; . . .

� �
: ð31Þ
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Given a disk with Nsuf recording surfaces and Ntrk tracks

per surface, the rebuild time can then be computed from

Trebuild ¼
NtrkNsuf

V ðuÞ  ðND � 1ÞQ
Rv

: ð32Þ

5.3 Buffer Requirement

Under track-based rebuild, tracks retrieved in a service

round will be consumed by the reconstruction process to

compute the lost tracks for writing to the spare disk in the

next service round. With a sector size of S bytes and up to

Ymax sectors per track, the maximum buffer requirement for

rebuild can be obtained from

Br ¼ V ð0ÞðND � 1ÞSYmax þ V ð0ÞSYmax; ð33Þ

where the first term is the buffer for reading from the

ðND � 1Þ working disks and the second term is the buffer

for writing to the spare disk. Without buffer sharing, the

total buffer requirement would be the sum of (2) and (33):

Bsum ¼ Bp þBr

¼ Kð2ND � 1ÞQþ V ð0ÞNDSYmax:
ð34Þ

Using the buffer-sharing technique, we can compute the

combined buffer requirement at a given server utiliza-

tion from

BshareðuÞ ¼ uð2ND � 1ÞQþ V ðuÞNDSYmax ð35Þ

and the maximum buffer requirement can be computed from

Bshare ¼ max BshareðuÞju ¼ 0; 1; . . . ; Kf g: ð36Þ

Intuitively, the larger the track size (i.e., SYmax), compared

to the block size (i.e., Q), the more likely that the buffer

requirement will be dominated by the rebuild process and

vice versa. In the next section, we present a novel pipelined

rebuild algorithm to reduce this buffer requirement.

6 PIPELINED REBUILD

The possibility of track-based rebuild in multizone disks
stems from the fact that rebuild requests are nonrealtime
and, hence, can be served at variable rates. Another
observation is that tracks are always retrieved sequentially
to avoid seek overhead. This sequential property differs
from normal data requests where the order of retrieval can
change from round to round due to the CSCAN algorithm.
We present in this section a pipelined rebuild algorithm to
take advantage of this sequential property to reduce the
buffer requirement to insignificant levels.

6.1 Buffer Requirement

Fig. 6 depicts the pipelined rebuild algorithm. The
scheduling algorithm for retrieving data from the data
disks are the same as track-based rebuild. The difference is
in scheduling the write operations to the spare disk.
Specifically, tracks reconstructed from track-based rebuild
are buffered until all track retrievals are completed
before writing to the spare disk. By contrast, in
pipelined rebuild as soon as a track is retrieved from
each of the ðND � 1Þ surviving disks, the server will
reconstruct the lost track and store it to the spare server
immediately. In this way, the track reading and writing
processes operate simultaneously in a pipelined manner.

Under this pipelined rebuild algorithm, the rebuild
buffer requirement is reduced to

Br ¼ ðND � 1ÞSYmax þ SYmax; ð37Þ

where the first term is the buffer required for reading and
the second term is the buffer required for writing.

However, the scenario in Fig. 6 is idealized with the
assumption that track retrievals for all surviving disks
complete at the same instant. In practice, this is unlikely to
be the case due to variations in disk rotational latencies
incurred in reading media blocks prior to reading the

508 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 13, NO. 5, MAY 2002

Fig. 6. Pipelined rebuild under ideal scenario of synchronized disks.



rebuild tracks. To account for this disk asynchrony, we

introduce a deviation bound Dasyn defined as the maximum

difference between the time the first track retrieval

completes and the time the last track retrieval completes.
Mathematically, let ti;j be the retrieval completion time

for reading rebuild track i, i ¼ 0; 1; . . . ; Ntrk, by disk j,

j ¼ 0; 1; . . . ; ðND � 1Þ, as shown in Fig. 7. We define a

track group as the set of corresponding tracks from all

ðND � 1Þ surviving disks that forms a parity group. For

example, track group i comprises track i from each of the

ðND � 1Þ disks.
Let ei and li be the earliest completion time and latest

completion time, respectively, for track group i:

ei ¼ min ti;jj8j
 �

and li ¼ max ti;jj8j
 �

: ð38Þ

Then, Dasyn can be computed from

Dasyn ¼ max li � eij8if g: ð39Þ

Let br be the number of buffers (each SYmax bytes)

allocated for the rebuild process. Then, at time t ¼ li, all

ðND � 1Þ tracks for track group i are completely retrieved.

Due to disk asynchrony, some of the disks may have

completed retrieving track i earlier than li and have started

reading subsequent tracks. In particular, the earliest time

for a disk to start reading tracks iþ 1 will simply be equal to

ei. Let � be the minimum time for retrieving a track:

� ¼ �þ thsw þW�1; ð40Þ

then a disk can retrieve up to track

iþ li � ei
�

� �
ð41Þ

by time t ¼ li. In the worst case, all but the last disk have

performed early retrievals and the buffer requirement (in

number of tracks) will be given by

br ¼ ðND � 1Þ þ li � ei
�

� �
ðND � 2Þ þ 1; ð42Þ

where the first term is the buffers for reading track group i,

the second term is the buffers for early retrievals, and the

last term is the buffer for writing to the spare disk.
Finally, the maximum buffer requirement can be

obtained from

Br ¼ max ðND � 1Þ þ li � ei
�

� �
ðND � 2Þ þ 1

����8i
� �

SYmax

¼ ðND � 1Þ þ Dasyn

�

� �
ðND � 2Þ þ 1

� �
SYmax

ð43Þ

of which (37) becomes a special case of (43) with Dasyn ¼ 0.

6.2 Active Disk Synchronization

In deriving the buffer requirement in (43), we assumed that

disks that have completed reading a track earlier than

others will continue reading the subsequent tracks. While

this appears to be making efficient use of disk time, it is in

fact counter-productive. Unlike transaction processing

(OLTP) applications, residual disk time in a continuous-

media server will not be used for retrieving additional

media blocks due to the periodicity of the disk schedule.

Therefore, even if there is residual disk time after reading

all media blocks and rebuild tracks, the disk will just sit idle

until the next service round.

This observation motivates us to propose an active disk

synchronization (ADS) scheme to further reduce the buffer

requirement in (43). Specifically, track retrievals for the

surviving disks under ADS are actively synchronized

according to the slowest disk. For example, in reading

track group i, all disks will start their retrieval for track i at

time t ¼ li�1 instead of ti�1;j for disk j, as shown in Fig. 8.

Note that the added delay will not affect the normal

retrieval process nor the rebuild process as they are

dimensioned according to the worst-case scenario.
Theoretically, with ADS, the deviation bound Dasyn will

become zero. In practice, small deviations might still exist

because the server is likely to send disk commands serially
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to each of the surviving disks. Assuming this deviation is

small compared to �, then

Dasyn

�

� �
¼ 1 for Dasyn � � ð44Þ

and the buffer requirement is reduced to

Br ¼ 2ND � 2ð ÞSYmax: ð45Þ

7 PERFORMANCE EVALUATION

Using the performance models derived in the previous
sections, we present in this section numerical results
computed for five disk drive models to quantitatively
compare the studied algorithms. The disks’ parameters are
extracted from the disk specifications in Ganger et al. [21]
and summarized in Table 2. Unless stated otherwise, the
results are computed using a disk array configuration of
four data disks, one parity disk, and one spare disk.

7.1 Comparison of Rebuild Time

Figs. 9 and 10 show the rebuild time versus server utilization
for block-based rebuild and track-based rebuild, respectively.
We observe that the rebuild time increases modestly until
around a utilization of 0.8, after which, it increases rapidly
due to limited capacity available for rebuild. For example,

rebuild time for the Quantum Atlas-10K disk increases
from 44.4 minutes at & ¼ 0:5 to 221.9 minutes at & ¼ 0:9
for block-based rebuild. Comparing Fig. 9 with Fig. 10, it
is clear that track-based rebuild significantly outperforms
block-based rebuild. With the same disk model, the rebuild
time for track-based rebuild is only 12.8 minutes at & ¼ 0:5
and 87.7 minutes at & ¼ 0:9.

This result is encouraging, as rebuilding a failed disk
requires less than 1.5 hours even at a server utilization of
0.9. Given that a service provider is likely to dimension a
system to operate well below such a high utilization to
minimize blocking, the rebuild time in practice is likely to
be even shorter.

7.2 Sensitivity to Server Utilization

Fig. 11 plots the reduction in rebuild time by track-based
rebuild versus server utilization. We observe that track-
based rebuild consistently achieves significant rebuild-time
reductions over a wide range of server utilization. This
result demonstrates that performance gain of the proposed
track-based rebuild is stable with respect to server utilization.

7.3 Sensitivity to Media Block Size

In Fig. 12, we plot the rebuild time versus the media block
size at three server utilizations of 0, 0.25, and 0.5,
respectively. We observe that rebuild time for block-based
rebuild decreases with increases in media block size as
larger block size increases the overall disk efficiency. By
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Fig. 8. A snapshot of track retrievals at time t ¼ li with Active Disk Synchronization.

TABLE 2
Parameters of Five Disk Models (from Ganger et al. [21])



contrast, rebuild time for track-based rebuild is relatively
insensitive to the media block size used as retrievals are
done in whole tracks instead of blocks.

Fig. 13 plots the reduction in rebuild time versus the
media block size. As expected the reduction decreases for
increases in media block size as rebuild performance for
block-based rebuild improves. However, even at a very

large block size of 640KB, track-based rebuild still outper-

forms block-based rebuild by about 30 percent.

7.4 Buffer Requirement

We plot the buffer requirement for the studied algorithms
versus number of disks in Fig. 14 for the Quantum Atlas-10K
disk model. We observe that track-based rebuild, without

LEE AND LUI: AUTOMATIC RECOVERY FROM DISK FAILURE IN CONTINUOUS-MEDIA SERVERS 511

Fig. 10. Rebuild time versus server utilization for track-based rebuild (Q ¼ 64KB, ND ¼ 5).

Fig. 9. Rebuild time versus server utilization for block-based rebuild (Q ¼ 64KB, ND ¼ 5).



buffer sharing, has the largest buffer requirement as

expected. However, even with buffer sharing, track-based

rebuild still requires more buffers than block-based rebuild.

This is due to the fact that the block size (64KB) used is

smaller then the track size (varies from 114.5KB to 167KB)

and, hence, the rebuild buffers dominate the buffer
requirement.

By contrast, the proposed pipelined rebuild algorithm
has only slightly larger buffer requirement than the best
scheme—block-based rebuild with buffer sharing. For a
five-disk server, pipelined rebuild requires only 0.7MB to
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Fig. 12. Rebuild time versus media block size (Quantum Atlas-10K).

Fig. 11. Comparison of rebuild time reduction by track-based rebuild (Q ¼ 64KB, ND ¼ 5).



1.5MB more buffers than block-based rebuild with buffer
sharing (see Table 3). Note that block-based rebuild with
buffer sharing is already optimal because the same server
will require just as much buffer without the rebuild option.
Therefore, with pipelined rebuild, we can achieve signifi-
cant gain in rebuild performance through track rebuild and
at the same time avoid the large buffer requirement.

8 CONCLUSIONS AND DISCUSSIONS

In this paper, we investigate two algorithms for rebuilding

data lost in a failed disk to a spare disk automatically and

transparently. We first present a block-based rebuild

algorithm derived from the conventional CSCAN disk

scheduler and analyze its performance. A buffer-sharing
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Fig. 14. Buffer requirement versus number of disks (Q ¼ 64KB, Quantum Atlas-10K).

Fig. 13. Reduction in rebuild time versus media block size (ND ¼ 5, & ¼ 0:5).



scheme is then proposed to eliminate the additional buffer

requirement during rebuild. Next, we propose a track-

based rebuild algorithm that can reduce the rebuild time by

70-80 percent. The large buffer requirement incurred in

track-based rebuild is then reduced to insignificant levels

by a novel pipelined rebuild algorithm. Numerical results

show that it is feasible to completely rebuild a failed disk

using the proposed algorithms in a practical amount of

time without causing any performance degradation to the

CM server.

While this study has been focused on CM servers serving

CBR video streams, the proposed rebuild algorithms can

also be extended to CM servers serving variable-bit-rate

(VBR) video streams. One possible approach is to replace

fixed-size block retrievals with variable-size block retrie-

vals, with the block size corresponding to the instantaneous

video bitrate. As long as the sizes of the blocks to be

retrieved in a disk round is known, we can use the same

worst-case analysis as in Section 5 to determine how much

disk time to allocate for rebuild. The rest of the rebuild

process will be the same.
In addition to the rebuild algorithms studied in this

work, there are also other techniques that may further

improve rebuild performance. In particular, when serving

active media streams in rebuild mode, the system has to

recover lost data blocks for playback purposes. By storing

these already reconstructed data blocks to the spare disk,

one may be able to further shorten the rebuild time.

However, storing individual data blocks to the spare

disk might also adversely affect disk efficiency in track-

based rebuild. First, compared to track-based rebuild, more

time is spent seeking rather than data transfer in block-

based rebuild. Hence, the reduction in reading from the

data disks is offset by the lost in disk efficiency in the spare

disk. Second, depending on the placement policy, rebuild-

ing individual blocks may also require changes to the track-

based rebuild algorithm as some tracks will have some of

the blocks already reconstructed. Therefore, the perfor-

mance impact is not obvious and more work is required to

determine the applicability of such techniques.

ACKNOWLEDGMENTS

The authors would like to thank the anonymous reviewers

for their insightful comments and suggestions in improving

this paper. This work is partially funded by the Research

Grants Council Earmarked Grant # CUHK4209/01E and a

grant from the Area-of-Excellence in Information Technol-

ogy established by the University Grants Council of the

Hong Kong SAR Government.

REFERENCES

[1] F.A. Tobagi, J. Pang, R. Baird, and M. Gang, “Streaming
RAIDTM—A Disk Array Management System for Video Files,”
Proc. ACM Conf. Multimedia ‘93, pp. 393-400, Aug. 1993.

[2] S. Berson, L. Golubchik, and R.R. Muntz, “Fault Tolerant Design
of Multimedia Servers,” Proc. ACM SIGMOD Int’l Conf. Manage-
ment of Data, pp. 364-375, May 1995.

[3] A. Cohen, W.A. Burkhard, and P.V. Rangan, “Pipelined Disk
Arrays for Digital Movie Retrieval,” Proc. IEEE Int’l Conf.
Multimedia Computing and Systems, pp. 312-317, 1995.

[4] M.S. Chen, H.I. Hsiao, C.S. Li, and P.S. Yu, “Using Rotational
Mirrored Declustering for Replica Placement in a Disk-Array-
Based Video Server,” Proc. ACM Multimedia ’95, Nov. 1995.
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