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ABSTRACT

This paper presents a method for removing electroocu-
lar (EOG) artifacts in the electroencephalogram (EEG).
The procedure is based on blind source separation (BSS)
and, in contrast to methods already available in the lit-
erature, it is completely automated and does not require
the availability of peri-ocular EOG electrodes. The pro-
posed approach removed most EOG artifacts in 6 long-
term EEG recordings containing epilectic seizures with-
out distorting the recorded ictal activity.

1. INTRODUCTION

Eye movements and blinks produce electrical potentials
that propagate over the scalp creating significant elec-
trooculographic (EOG) artifacts in the recorded elec-
troencephalogram (EEG).These artifacts often compli-
cate the interpretation of the EEG. EOG artifacts ob-
scuring the EEG at the time of seizure onset may be
problematic in the setting of a preoperative evaluation of
patients with refractory epilepsy, since the ictal record-
ings are crucial for the localization of the epileptogenic
zone. Furthermore, EOG artifacts are a source of false
positives in automatic seizure detection systems. Some
epileptic seizures appear very infrequently and very long
EEG recordings are necessary to capture them. There-
fore, manual analysis of such huge amount of data is very
time consuming and fully-automated processing methods
are highly desirable.

Traditionally, EOG artifacts have been corrected us-
ing regression-based methods which assume that signals
recorded from electrodes placed near the eye collect clean
EOG free of EEG contamination. The corrected EEG is
obtained by regressing out these reference EOG signals
from the signals recorded at the scalp electrodes [1–3].
However, in an Epilepsy Monitoring Unit (EMU) the
EOG is not always recorded simultaneously with the

EEG since the EOG electrodes are cumbersome for the
patient who is monitored for typically one week. As
a consequence, processing methods should not rely on
EOG recording.

Other group of methods are based on decomposing
the recorded EEG signals into spatial components that
isolate the artifacts and the cerebral activity. Classical
approaches for performing such spatial decompositions
are Principal Component Analysis (PCA) [4] and Sin-
gular Value Decomposition (SVD) [5]. More recently,
Blind Source Separation (BSS) techniques and specially
Independent Component Analysis (ICA) have become
very popular for separating the EEG and EOG com-
ponents [6, 7]. Apart from an accurate spatial decom-
position, fully-automated component-based methods re-
quire of robust criteria for identifying EOG-related com-
ponents. Several criteria have been proposed in the lit-
erature that require the availability of one or more EOG
channels (e.g. [2, 8]). In [9], a criteria based on Singu-
lar Value Fraction (SVF) that did not require an EOG
reference was used to select interesting components for
epileptic seizure detection. However, the latter approach
requires the user to manually select an SVF threshold
which critically determines the accuracy of the selection.
Furthermore, the authors of [9] recognize the difficulties
of finding a robust threshold. In contrast, our method is
truly automatic since the user is not required to select
any critical analysis parameter.

2. METHODS

2.1. The EEG inverse problem

Typically, EEG observations are obtained at the output
of an array of scalp electrodes, where each sensor receives
a different combination of source signals of ocular (the
”EOG” sources) and neural origin (the ”EEG” sources).
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Let s(t) = [s1(t), ..., sn(t)]
T

be the n original unob-

served sources, and let x(t) = [x1(t), ..., xm(t)]
T

be the
m mixtures observed at the electrodes. Here, as in the
following, T denotes transposition and t denotes the sam-
ple index t = 1, ..., L. Let us call ΓEEG the set of indexes
such that si(t) ∀i ∈ ΓEEG are the source potentials of
neural origin. Similarly, let ΓEOG be the set of indexes
such that si(t) ∀i ∈ ΓEOG are the sources of ocular ori-
gin. Most EOG correction methods assume that the sig-
nal recorded at the jth electrode can be modeled as the
following instantaneous mixture:

xj(t) = xj,EEG(t) + xj,EOG(t)
=

∑

i∈ΓEEG
ajisi(t)+

+
∑

i∈ΓEOG
ajisi(t)

(1)

where aji is the transfer coefficient from the ith source
to the jth scalp electrode. This model can be compactly
expressed using matrix notation as:

x(t) = xEEG(t) + xEOG(t) = A(t)s(t)
= AEEG(t)sEEG(t) + AEOG(t)sEOG(t)

(2)

Using Eq. (2) we can formally express the EEG inverse
problem as the problem of estimating xEEG(t) from x(t).

2.2. EOG correction through spatial filtering

Spatial filtering methods address the EOG inverse prob-
lem in three steps:

1. Estimate the mixing matrix A using a finite set of
observed data x(t), t = 1, ..., L.

2. Identify the columns of A corresponding to artifac-
tual and neural EEG components, i.e. identify the
sub-matrices AEEG and AEOG from Eq. (2).

3. Recover the clean neural EEG activity by means of
the following spatial filter:

x̂EEG(t) = AEEGA
#
EEGx(t) (3)

where # denotes the Moore-Penrose pseudoinverse.

Provided that the time courses of the ocular and neu-
ral electrical activity are mutually independent, matrix
A can be estimated using spatial ICA, which is a BSS ap-
proach that considers the source signals as mutually inde-
pendent random variables. An alternative BSS method
is Second Order Blind Identification (SOBI) [10], which
assumes that the source signals are temporally uncorre-
lated to each other but they have non-zero time-delayed
auto-correlations. Under these assumptions, SOBI com-
putes the mixing matrix as the matrix that jointly di-
agonalizes a set of p cross-correlation matrices R(τi) =
E

[

x(t)x(t − τi)
T
]

, where i = 1, ..., p, and E[ ] is the

expectation operator. In this paper we use p = ⌊L/3⌋
where L is the number of EEG data samples.

In general, BSS makes very weak assumptions about
the mixing matrix, namely that it is of full column-rank.
By contrary, PCA requires the columns of A to be mu-
tually orthogonal which is very restrictive since the scalp
activity maps of EOG and frontal EEG sources are likely
to be non-orthogonal to each other. A major disadvan-
tage of ICA-based methods is that they require the esti-
mation of complex statistical measures of independence
which makes them rather sensible to model inaccuracies.
By contrary, SOBI is based on simple second-order sta-
tistical quantities which are much easier to estimate and
more robust to modeling errors. Furthermore, several
neuroscientific studies support the use of SOBI for sep-
arating EEG and EOG components [7, 8]. Because of
this, the first step of our EOG correction approach con-
sists on performing a SOBI decomposition of correlative
EEG frames (or data windows). By using this moving
window analysis scheme we aim to partially cope with
the non-stationary nature of EEG signals. The length
of the frames should be enough for allowing an accurate
estimation of the mixing matrix coefficients but other-
wise does not critically determine the accuracy of the
correction. As a simple rule of thumb, we recommend
using as frame length at least 0.25 × m2 seconds, where
m is the number of scalp electrodes. In the correction
results shown below we analyzed the data in correlative
non-overlapping frames of 200 seconds.

2.3. Identifying ocular components

The spectrum of ocular electrical activity is typically
characterized by few predominant low-frequency com-
ponents. Such type of signals can be easily identified
by a low fractal dimension (FD) which is a measure of
signal complexity. By contrary, neural EEG traces are
typically characterized by a flatter and more spread spec-
trum which accounts for higher FDs [11]. The FD can
be calculated using several methods. We decided to use
Sevcik’s algorithm [12] because it allows a fast computa-
tion and is quite robust to the presence of noise.

If a waveform has coordinates (xi, yi), Sevcik’s algo-
rithm first maps it into a unit square by x∗

i = xi

xmax
,

y∗
i = (yi−ymax)

(ymax−ymin) , where xmax is the maximum xi, and

ymax and ymin are the maximum and minimum yi. Then,

the FD is computed as FD = 1 + ln(l)
ln(2(n−1)) , where l is

the total length of the waveform and n is the number of
points of the waveform.

In order to obtain a more robust estimate from non-
stationary and noisy signals like the EEG we propose to
compute the FD of an EEG signal as the mean value of
the FDs obtained in correlative frames of length equal
to 10% of the total length of the signal. We will refer to
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this estimated FD as mean FD (mFD). After analyzing
various real EEG datasets we have confirmed that the
mFDs of EOG-like waveforms are consistently lower than
those of EEG-like waveforms. However, the actual values
of the mFDs depend on experimental factors such as the
sampling rate and pre-processing filter used to acquire
the EEG data. Therefore, it is not possible to select a
universal mFD threshold below which a component is to
be considered of EOG nature. To overcome this problem
we propose the following approach for selecting the EOG-
components among the components estimated by SOBI
in each analyzed EEG frame:

1. Sort the components according to increasing val-
ues of their corresponding mFD. Let us denote the
sorted components by s(1)(t), ..., s(N)(t) and their
corresponding mFDs by φ(1), ..., φ(N). Note that
the number of components estimated by SOBI is
N = min(n,m) being m the number of data chan-
nels and n the number of hidden sources. Note also
that for A to be of full column-rank it is necessary
that m ≥ n.

2. Identify as EOG components s(1)(t), s(2)(t), ..., s(k)(t)
where k is the smallest integer in the range ⌊N/2⌋ ≥
k > 1 such that

(

φ(k+1) − φ(k)
)

<
(

φ(k) − φ(k−1)
)

.
If there is not any k in the specified range satisfying
the required condition then k = 1.

3. RESULTS

Six long-term EEG recordings, recorded at an EMU,
were used in this study. The data was collected from
21 scalp electrodes placed according to the international
10-20 System with additional electrodes T1 and T2 on
the temporal region. The sampling frequency was 250 Hz
and an average reference montage was used. The EEG
recordings contain ictal activity from patients with Mesial
Temporal Lobe Epilepsy (MTLE). Fig. 1 (a) shows a
10 seconds EEG epoch of one of the recordings used in
this study. This EEG epoch contains the activity of the
seizure onset and this epileptic theta activity is mainly
present on the T2, F8 and T4 electrodes. The seizure
EEG is contaminated with EOG and muscle artifacts.
Fig. 1 (b) shows the same ictal EEG recording after
EOG artifact correction by the proposed method. Notice
that the EOG artifact was removed, while preserving the
sharp quality ictal theta activity on the T2, F8 and T4
electrodes. A detailed analysis of the corrected record-
ings showed that virtually all blinking artifacts and most
slow eye movements were removed. Fig. 2 shows another
correction example from one of the analyzed files. More
snapshots from every corrected recording as well as the
Matlab code used to perform the correction are available
in the internet [13].
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Fig. 1. (a) Original 10 seconds EEG epoch; (b) EEG
recording after EOG artifact correction. Notice that the
EOG artifact was removed completely, while preserving
the sharp quality ictal theta activity in the right tempo-
ral lobe (T2 , F8, and lesser degree T4 ).

4. CONCLUSIONS

The proposed automatic EOG correction technique was
applied on 6 long-term EEG recordings containing ictal
activity. In all cases, most EOG artifacts were removed
without altering the recorded ictal activity. Therefore,
the presented approach is expected to be highly bene-
ficial for increasing the accuracy of seizure zone local-
ization and for reducing the false positive rates in auto-
matic epileptic seizure detection systems. Although the
method does not require any EOG reference channel, we
have observed that the accuracy of the separation pro-
duced by SOBI, and therefore of the final correction, is
clearly improved when EOG channels are included in the
estimation of the hidden source signals. Thus, a topic
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Fig. 2. (a) Original 10 s EEG epoch; (b) corrected EEG
epoch.

for further research is to compare the performance of the
proposed approach with classical automatic correction
techniques on a dataset with peri-ocular EOG channels.
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