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Automatic Road Environment Classification
Isabelle Tang and Toby P. Breckon

Abstract—The ongoing development autonomous vehicles and
adaptive vehicle dynamics present in many modern vehicles has
generated a need for road environment classification—i.e., the
ability to determine the nature of the current road or terrain
environment from an onboard vehicle sensor. In this paper, we
investigate the use of a low-cost camera vision solution capable
of urban, rural, or off-road classification based on the analysis of
color and texture features extracted from a driver’s perspective
camera view. A feature set based on color and texture distributions
is extracted from multiple regions of interest in this forward-
facing camera view and combined with a trained classifier ap-
proach to resolve two road-type classification problems of varying
difficulty—{off-road, on-road} environment determination and
the additional multiclass road environment problem of {off-road,
urban, major/trunk road and multilane motorway/carriageway}.
Two illustrative classification approaches are investigated, and the
results are reported over a series of real environment data. An op-
timal performance of ∼90% correct classification is achieved for
the {off-road, on-road} problem at a near real-time classification
rate of 1 Hz.

Index Terms—Color classification, machine learning classifier,
road-type classification, texture classification.

I. INTRODUCTION

A RANGE of vision-based vehicle systems have been
developed to offer both autonomous guidance and human

driver assistance [1]. These vary from on-road sign recogni-
tion [2] to off-road terrain classification [3], general obstacle
detection [4], and highway lane detection [26], [31]. The use
of radar obstacle detection is also being widely considered [5]
for on-vehicle use. In all cases, the requirements to augment
the driver’s situational awareness, reduce driver workload, and
automate all/part of the driving process are the keys.

In this paper, we specifically investigate the vision-based
classification of differing road environments. Modern vehi-
cle subsystems often include a capability to adapt traction,
braking, and engine dynamics to the current type of terrain
being traversed or the driving environment (e.g., urban/city or
rural/highway). Work on visually detecting these terrain or road
environment changes, possibly as part of a wider vehicle sensor
suite, is limited [3], [6], [7].

Prior work in this area has investigated the use of color dis-
tributions as a method to classify differing off-road terrains into
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approximate classes [3], whereas other work in the field, which
is targeted at road recognition, concentrates on the estimation
of the geometric structure of the lane boundaries of a road [6].
Lane segmentation algorithms are now commonplace for road
and traffic lanes analysis [5]. The watershed approach detailed
in [6] for morphological segmentation is typical with the use
of the contrast criterion for subsequent region combinations.
A dynamic time filter of morphological opening and closing
is then used on successive images of a sequence to identify
separation between the traffic lanes [6]. This is essentially a
color-driven approach. Alternative algorithms follow a texture-
driven approach to this problem [7] via the classification of
each individual image pixel based on texture analysis of their
local pixel neighborhood. This facilitates the derivation of two
texture clusters within the image (road and off-road) via neural
network classification.

The recent work of Ess et al. [27] has also investigated
the area of feature-based road scene understanding. This work
concentrates on the understanding of the urban road environ-
ment in terms of road marking presence, on-road and road-side
object occurrence, and road-type classification in terms of the
occurrence of {left, right, cross-road} junctions, roundabouts,
and road turns {left, right}. This work is driven by scene seg-
mentation and limited to the understanding of the scene layout
complexities of the urban road-way environment. This work
is in itself related to the wider topic of scene classification in
computer vision that addresses generalized scene categorization
[28]–[30] of which road scenes generally appear as a single
class.

By contrast, here, we investigate not the explicit segmen-
tation or understanding of the road scene [4], [7] but instead
look at advance work in terrain classification [3] to deter-
mining differing road driving environments. While primarily
aimed at a driver assistance application, as a conduit to the
automation of vehicle economy/performance dynamics, such
a capability may also be of use in wider autonomous vehicle
applications [1]. We specifically identify two classification
problems of varying difficulty–our four- and two-class road
environment classification problems. In the former, we consider
four general environments (off-road, urban, major/trunk road,
and multilane motorway/carriageway), whereas in the latter,
recognizing the potential feature overlap in the previous on-
road environments (in the four-class problem), we ground our
investigation with a comparison to the more restricted two-
class (off-road and on-road) problem. For clarification, we
consider an urban environment to be a built-up city or town-
type locale, a major or trunk road to be an single lane (per
direction of travel) road interconnecting disjoint urban areas,
and a motorway or multilane carriageway to be a multilane
(per direction of travel) highway/expressway commonly found
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Fig. 1. Subregions of interest selected for feature extraction for the four road
environments under consideration.

connecting major metropolitan areas (with vehicles operating
up to the highest legal speed limit). An off-road environment
is determined as being “off the recognized public highway”
(U.K.) on an unpaved/nontarmac roadway. Examples of each
environment class are shown in Fig. 1.

Specifically, we make use of four discrete subregions of the
forward-facing camera view from the vehicle (see Fig. 1) em-
pirically chosen for the varying environmental context informa-
tion they contain. These are analyzed, following the combined
concepts of [3] and [7], to produce a combined texture and color
distribution-based feature representation of a given driving en-
vironment. Feature classification using three classifier variants
is then investigated with regard to the identified two- and four-
class road-type classification problems. A k-nearest neighbor
(k-NN) and an artificial neural network (ANN) approach are

investigated, with optimal performance achieved using the
ANN approach (see Tables II and III). The use of k-NN is aimed
at demonstrating the underlying data discrimination properties
of these two multiclass problems. Overall, we achieve near real-
time performance (1 Hz) based on an input from a video input
from a forward-facing dashboard/windshield camera suitable
for integration into a vehicle management system.

In the remainder of this paper, we outline the chosen image
subregions (see Section II) and the color and texture feature de-
scriptors used as classifier inputs (see Section III), and we give
a brief overview of the classification approaches investigated
(see Section IV). Results over defined test sequences are pre-
sented with subsequent analysis (see Section V) and conclu-
sions (see Section VI).

II. ROAD IMAGE SUBREGIONS

A set of three subregions of interest is selected from the
forward-facing road image: 1) road; 2) road edge; and 3) road
side (see Fig. 1).

As shown in Fig. 1, these subregions have been selected
to capture differing properties of the driving environment.
The road region captures properties of the road surface itself,
whereas the road-side region captures the nature of the general
driving environment off of the road surface itself. The remain-
ing road-edge region captures the unique properties of the road
surface to road-side transition including the specifics of any
road side markings.

These subregions are fixed within the forward view image
using a fixed-position windscreen-mounted camera. The posi-
tion of this camera is calibrated at installation time.

III. FEATURE EXTRACTION AND REPRESENTATION

Within the process itself, each image frame (from the con-
tinuous real-time video input) is represented by a feature vector
made up of color and texture features extracted from the sub-
regions of interest. This vector forms the input to the latter stage
of classification.

A. Color Features

A choice of color space representation is made to provide
both a spread of color distribution features and robustness to
variations in illumination [8]–[10] that support prior work in
the related field of obstacle identification/avoidance [11] and
traversable pathway determination [12].

A unique combination of original RGB, HSV [10], and
YCrCb [8], [9] is selected for each of the identified subregions
of interest with reference to both established practice within
this area [8]–[10], prior successful classification work within
the road domain [11], [12], and related work on other domains
where color variance isolation is of primary importance [13].

With reference to these works [8], [10] and from empiri-
cal preliminary statistical investigations [12] on sample road
imagery, a unique combination of color channel inputs was
chosen for each of the subregions of interest, as shown in
Fig. 1. This selection is detailed in Table I with a summary
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TABLE I
COLOR CHANNEL SELECTION FOR EACH SUBREGION OF INTEREST

supporting statement for each. For definitions of the RGB, HSV,
and YCrCb color spaces, see [14].

In general, a set of color features is derived from each
selected color channel for each of the three subregions of
interest (see Table I). Here, we represent each such channel
of each subregion as the normalized histogram distribution
(probability distribution) for value occurrence together with the
mean, standard deviation, and entropy of color values present.
Within this context entropy, E [14], giving an effective measure
of the information conveyed within a given color channel of a
given region is defined as follows:

E = −
L∑

k=1

pk log2 pk (1)

where a given color value (indexed k = 1, . . . , L) occurs with
probability pk.

Each color channel is summarized as a color feature vector
of combining the histogram (quantized to 10 “bins”) and three
summary features computed on the pixel values (mean, stan-
dard deviation, and entropy). The concatenation of this 13-value
feature vector over all color channels for all three subregions of
interest results in a 91-D color descriptor for each image frame.

B. Texture Features

In addition to the color feature descriptor, we additionally
devise a corresponding texture descriptor based on the use of
two established texture measures, i.e., grey-level cooccurrence
matrix (GLCM) statistics [15] and Gabor filters [16], with
modern relevance and interpretation [17], [18].

Essentially, the GLCM measures the relative cooccurrence of
image values by recording how often different combinations of
gray (or, in general, any color representation value; see Table I)
adjacently occur within the image given a localized orientation
[15]. Traditionally, this localized orientation is defined with
reference compass directions as {N,S,E,W,NW,NE, SW,
SE}. The GLCM itself is not a texture feature descriptor in
its own right but is more correctly a 2-D statistical record

of cooccurring value variation within the image [15]. In the
original work of Haralick et al. [15], texture features were in
turn calculated from the normalized cooccurrence matrix as a
set of 14 summary statistics. The work of Arvis et al. [17]
(in line with the subsequent review of [18]) down-selected a
subset of five summary statistics based on the realization of
the intercorrelation within the original set of 14. This sub-
set of five measures (entropy, energy, contrast, correlation,
localhomogeneity) [17] is used in this paper as a workable
representative texture feature descriptor derived from the origi-
nal GLCM formulation [15]. Each is described as follows:

Entropy = −
cols∑

i=1

rows∑

j=1

M(i, j)log2 (M(i, j)) (2)

Energy =
cols∑

i=1

rows∑

j=1

M(i, j)2 (3)

Contrast =
1

number of grey levels − 1

×
cols∑

i=1

rows∑

j=1

(i − j)2M(i, j) (4)

Correlation =
1

σIσJ

cols∑

i=1

rows∑

j=1

(i − μI)(j − μJ)M(i, j) (5)

Localhomogeneity

=
cols∑

i=1

rows∑

j=1

M(i, j)
1

1 + (i − j)2
(6)

where M(i, j) is the (i, j)th entry in GLCM M with dimension
(colsxrows), horizontal standard deviation and mean (σI , μI),
and vertical standard deviation and mean (σJ , μJ ).

Entropy essentially measures the randomness (or information
variation) within the GLCM [(2), cf., (1)]. The energy (3)
measure represents a scalar quantity invariant with respect
to rotations of space and measures textural uniformity (i.e.,
occurrence of pixel pairs). In contrast, (4) measures the local
variations within the image, whereas correlation (5) describes
the strength and direction of the linear relationship between
the rows and columns of the GLCM. Local homogeneity (6)
essentially measures differences in value pairs over the matrix.
For further details, see [17] and [18].

In addition to GLCM, we also employ a subset of the Gabor
filter texture measures devised in [16]. Gabor filters allow the
study of the localized spatial distribution of the texture via a
method of image convolution [14] with a given Gabor filter
represented as a 2-D convolution kernel with a specified spatial
frequency and orientation [19], [20]. As a result, the magnitude
of the Gabor filter response identifies varying local texture
frequencies and orientations in the image. This is useful for
the extraction of more gradual (low-frequency) textures [19]
and more generally for use in creating discriminative texture
descriptors (e.g., [21]). In this paper, we combine the subset
of five GLCM features from [17] computed in two of the four
principle horizontal and vertical orientations (i.e., {N,E}) with
a 60◦ orientated Gabor filter empirically matched in scale to the
primary road edge within the image. Both GLCM and Gabor
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descriptors are computed upon the gray-scale conversion of
the original (RGB color) image frame [14]. The use of only
the (N,E) GLCM directions is driven from the symmetrical
nature of the (N,S) and (W,E) pairings within this visual
discriminatory context [17], [18]. The resulting magnitude re-
sponse image of the Gabor filter in use is itself summarized as a
quantized histogram (10 “bins”), mean, standard deviation, and
entropy (1) as per the color descriptor of Section III-A. Overall,
this results in a 23-value feature vector for each of the three
subregions of interest (see Fig. 1), resulting in a 69-D texture
feature descriptor for each image frame.

C. Edge-Derived Features

In addition to the general color and texture feature descriptors
(i.e., feature vectors) derived for general use over all of the
subregions of interest, we additionally define specific edge-
based features relating to contour presence in the road-edge
subregion (see Fig. 1). In this specific sub-region edge in-
formation such as edge presence, cohesiveness, consistency
and orientation are specific intuitive indicators of off-road and
onroad environments [26].

An established approach to the detection of such features
is followed using a combination of Hough-transform-driven
straight line fitting [22] and contour tracking [23] both oper-
ating on Canny edge detector output [24]. The set of edges
[24], connected contours [23], and straight line detected [22]
is then summarized by the entropy of the resulting Canny edge
image, together with the number of contour and straight line
instances detected (i.e., three additional edge-derived features
specific to the road-edge subregion). The parameters for [22]
and [24] are empirically chosen in relation to the dimensions
of the road-edge subregion within the overall image frame
(calibration/setup specific).

IV. FEATURE CLASSIFICATION

The combination of the texture, color, and edge-derived
features from Section III gives rise to a 163-D combined feature
vector per image frame. This is extracted from the identified
subregions of interest within the image (see Fig. 1).

The problem of feature classification over these fea-
ture descriptor vectors is then formulated as a supervised
machine learning problem [25] with labeled classes for the
two- and four-class classification problems. Two classifica-
tion approaches are utilized to illustrate both the fundamental
discriminative properties of the derived feature representation
(k-NN) and the potential performance of an optimized noise
tolerant classification approach (ANN) [25].

The k-NN approach is one of the simplest available classifier
approaches based on classifying given instances (feature vec-
tors) according to the majority vote of the nearest k instances
within the N -dimensional feature space (here 163-D space).
By contrast, an ANN is a multilayer network of intercon-
nected perceptrons trained to discriminate between specified
output classes via a training methodology derived from gradient
descent (i.e., backpropagation [25]). As these are established
techniques, see [25] for further details.

The set of (manually) labeled examples used for training both
of the classification approaches is made up of 800 image frames
(200 per class, for four classes). In general, we pose two specific
classification problems:

1) four-class problem: classes = {off − road, urban,
major/trunkroad,multilanemotorway/carriageway};

2) two-class problem: classes = {off − road, on − road};
where in the latter case the set of training examples for {on −
road} = {{urban} ∩ {major/trunk road} ∩ {multilane
motorway/carriageway}} (i.e., the set union of all non-
off-road examples from the total set of 800). Although this
introduces an inherent bias into the two-class problem toward
on-road classification, we empirically show that this appears
to successfully counter any affect of in-class variance present
within this larger “on-road” class.

V. EXPERIMENTAL RESULTS

Initial experimental testing was performed over specifically
constructed test video sequences of concatenated 10-s video
segments corresponding to different classes. Video sequence 1
(40-s duration) consists (in total) of 10-s segments of
each of {off-road, urban, major/trunk road, multilane
motorway/carriageway}, whereas video sequence 2 (50-s du-
ration) consists of 10-s segments of {urban, major/trunk road,
multilane motorway/carriageway} and 20-s segments of {off-
road}. Considering a 30-fps video, this results in approximately
600 test image frames for each of the three {urban, major/trunk
road, multilane motorway/carriageway} classes (20 s at 25 fps
per class) and 900 test image frame for the {off-road} class
(30 s at 25 fps). Each of the 10-s segments contains multiple
varying instances of the specific class in the form of varying
road environments (locations). They are designed to test not
only per class classification but class transition and the stability
of classification within a given road environment as well. Fur-
ther testing was also carried out over extended sequences based
on the optimal parameters identified using these test sequences.

All of the road environments are geographically located
within Bedfordshire/Hertfordshire, U.K., and the vehicle
speeds are within (or at) the national legal speed limit for the
class of road being considered (e.g., speed ≤ 70 mi/h on U.K.
motorways for motorway class). Off-road speeds are within a
(safety) 10- to 20-mi/h range.

The classification results for both k-NN and ANN classifica-
tion approaches are first reported over both of these independent
test sequences.

A. k-NN Classification

The results of k-NN classification are shown in Figs. 2
(for video sequence 1) and 3 (for video sequence 2). In both
Figs. 2 and 3, we see the percentage of correct classifications
(i.e., true positive) plotted against varying the k-NN query
parameter k [25].

From the results, we can see that as k increases the perfor-
mance of the classification improves for the two-class problem,
achieving in general a peak successful classification of around
70% over both sequences (see Figs. 2 and 3). In addition,
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Fig. 2. Video sequence 1. Classification results using k-NN varying parameter k.

Fig. 3. Video sequence 2. Classification results using k-NN varying parameter k.

classification subproblems posed as A ({off-road} v {{major}
∩ {motorway}}), B ({off-road} v {urban}}, and C ({urban} v
{{major} ∩ {motorway}}) are also examined for comparison.

In general, we can see that the performance on the specified
two-class and individual subproblems A–C (of the four-class
problem), which examine the class separation of off-road (see
Figs. 2 and 3, A and B) and urban (see Figs. 2 and 3, C) envi-
ronment from other classes, outperform the four-class problem.
In general, the performance of urban class isolation in Figs. 2
and 3 (subproblems B and C) is medium to acceptable with
isolation against other on-road classes (i.e., major/motorway)
performing the best (up to 85% success). The subproblem of
combined major roads and motorways against off-road classifi-
cation performs mildly worse (subproblem A).

Overall, the k-NN results illustrate that 1) class separation
is possible within this feature space (e.g., two-class problem
results; see Figs. 2 and 3), but in general, 2) the class separation
is poor and possibly nonlinear in the dimension of the feature
space in use. Classification is generally effected by noise, as ex-
pected (causing poor classification), although a subset of train-
ing examples (corresponding to certain values of k in k-NN)
appears to offer satisfactory results. Linear class separation for
the four-class problem appears to be significantly difficult.

B. ANN Classification

To this end, we further investigate with the use of a classifier
that is both robust to noise and capable of nonlinear class

separation—i.e., an ANN. We employ a classical two-layer
network topology with H hidden nodes, one input node per
feature vector entry (i.e., 163 inputs), and one output node per
class (i.e., 2 or 4) [25]. The ANN is trained using I iterations of
the backpropagation algorithm [25].

Considering the general range of parameter H =
{10, . . . , 60} and I = {150, . . . , 700}, we present a subset of
the ANN results over these parameter ranges (for the two- and
four-class problems) in Tables II and III based on testing the two
multiclass video sequences previously discussed. These tabular
results (see Tables II and III) are intended to summarize the
general trend observed within the training cycle over varying
hidden node H and backpropagation training iterations I .

Considering first the four-class problem results presented in
Tables I and II, we can observe a general trend of improved
classification performance as the number of hidden nodes (H)
in the ANN topology and the number of training iterations
(I) increase until a peak (or peaks) of performance is reached
(see the entries highlighted in bold in Tables I and II), after
which, a fall in classification performance is experienced. This
behavior is typical of an ANN classifier [25] and attributable
to the increased representational capability (H) and increased
learning cycles (I) over the training set prior to the on-set of
overfitting (as the number of both hidden nodes and/or training
cycles reaches a given level) [25]. The results presented are
curtailed prior to the further reduction in performance due
to overfitting, and the peak value obtained is presented as
the overall representative classification result for each of the
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TABLE II
ANN CLASSIFICATION PERFORMANCE ON VIDEO SEQUENCE 1

TABLE III
ANN CLASSIFICATION PERFORMANCE ON VIDEO SEQUENCE 2

sequences. A consistent peak of 86%/80% is obtained for
the two test sequences in use for the four-class problem
(see Tables II and III).

For the (semantically simpler) two-class problem, we see
a similar behavior of the ANN classifier over varying hidden
node topologies (H) and training cycles (I), resulting in several
peaks in classification performance at 90%/93% for the two test
sequences (see Tables II and III).

Notably, the set of classification results obtained is similarly
bounded for over both sequences. In general, taking into ac-
count the general performance under different ANN conditions
and potential feature bias in one or both of the data sets, we can
conservatively conclude an approximate an 80% classification
performance rate on the four-class problem and, similarly, an

approximate 90% rate for the two-class problem (see Tables II
and III). The ANN outperforms the classification of the earlier
k-NN approach on both four- and two-class problems (con-
cretely) and by extrapolation of the four-class problem result,
similarly on subproblems A–C.

Further testing over randomly selected video sequences taken
from approximately 4–6 h of multiterrain and road environment
footage captured as part of the project confirmed a general
ANN performance level of ∼80%/90% for the two-/four-class
problems over an extended test set. This extended testing was
based on the same training set of image frames, as previously
outlined for the Table II and III results.

A range of correct road environment examples is shown in
Figs. 4 and 5. Here, we see a range of typical road environments
and their successful classification using an ANN classifier.

C. Extended Sequence Results

In addition to these initial test sequences, further extended
testing was performed over the full set of extended full video se-
quences (representing the complete set of viable data gathered
over several hours in varying environments). This testing was
performed using the ANN classification approach based a sub-
set of parameters identified from the analysis on Sequences 1
and 2 (see Tables I and II). These results are presented in
Table IV, where we see results consistent with the earlier
sequence analysis of Tables II and III. A consistent peak of
∼86% is achieved for the four-class problem and ∼97% for
the two-class problem. The mild difference in performance
between this and the earlier short sequences is attributable to
statistical differences in the duration/size of the test set.

D. Misclassification

As can be seen from the results shown in Tables II–IV
misclassifications are also incurred by the illustrated approach,
although these are limited. As implied by the earlier analysis
using a k-NN classifier on the feature descriptor vectors, a
number of feature overlaps occur between the classes in both
four- and two-class problem spaces. Here, we examine some
of these issues with reference to specific illustrative examples
(see Figs. 6–9).

In the four-class problem, we see a misclassification as off-
road in Fig. 6 due to the possible dominance of the road-side
subregion of interest in this example. Similarly, in Fig. 7, a
misclassification of an ambiguous case (in terms of the sub-
region of interest definitions in Fig. 1) appears to contradict the
(ground truth) urban locale of this scene. This example suitably
illustrates some of the inherent ambiguities on per-image frame
classification within this problem domain.

Within the two-class problem, similar problems also exist
with misclassification, and two examples are shown in Figs. 8
and 9. Here, it is notable that both have a significant presence
of off-road type color/texture within the road-side and road-
edge subregions of interest. The equal contribution of all of the
subregions in the image frame feature vector and the inherent
in-class variation (highlighted by our k-NN results) both con-
tribute to these issues.
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Fig. 4. Examples of successful ANN classification for four road environments (ANN configuration: H = 15 Nodes; I = 200).

Fig. 5. Examples of successful ANN classification for two road environments (ANN configuration: H = 15 Nodes; I = 200).

TABLE IV
ANN CLASSIFICATION PERFORMANCE ON EXTENDED FULL SEQUENCES

E. Discussion

From the results shown in Tables II–IV (supported by
examples Figs. 4–9), it clear that the automatic classification
of varying road environments is achievable within a given
bound of misclassification accuracy using an ANN-based clas-
sification technique. The inherent in-class variance within road
environments is illustrated by the prior analysis with k-NN.
From the results, better performance is achieved on the two-
class {on-road, off-road} problem, which is potentially at-
tributable to both the general feature space separation of these
classes within the chosen feature space (or a subset of it)
and, more specifically, to the inclusion of specific on-road/off-
road edge-derived features (see Section III-C). Consideration
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Fig. 6. Misclassification as “off-road” instead of “major/trunk road.”

Fig. 7. Misclassification as “major/trunk road” instead of “urban.”

Fig. 8. Misclassification as “off-road” instead of “on-road.”

of subproblems to the four-class problem (see Figs. 2 and
3) further supports the lesser result achieved on this problem
with the ANN. From the misclassification examples presented
in Figs. 6–9, it is also clear that this issue of potential per-
frame environment ambiguity contributed by one or more of the
(equally weighted) subregions of interest may also contribute
substantially to the misclassifications suffered. The considera-

Fig. 9. Misclassification as “off-road” instead of “on-road.”

tion of alternative classification approaches, optimization of the
selected subregions of interest, and selection of additional more
discriminative features is an area for future work.

As presented, the approach detailed operates in near real time
at approximately 1 Hz on an AMD Turion-64 laptop computer
(software running as 32-bit on a single CPU). This computa-
tional limitation is attributable to the calculation of the texture
feature descriptor elements of the overall feature vector used for
classification. Input video frames are 640 × 480 resolution and
subsampled (at 1 Hz) from a 30-fps video feed from a standard
digital video camera (Sony Cybershot W-210) mounted onto
the windscreen/shield. A rubber suction mount, in addition to
the standard anti-vibration mounting of the windscreen itself,
eliminates the majority of high-frequency vibration within the
resulting video input. The approach has been demonstrated
operating at 1 Hz (i.e., one frame classification per second) from
video taken using an on-vehicle forward-facing camera.

VI. CONCLUSION

A methodology for the near real-time classification of the
road environment has been presented based on the use of a
combined color and texture feature vector extracted from mul-
tiple subregions of a forward-facing on-vehicle camera view.
An ANN classifier gives ∼90%–97% successful classification
for the two-class on-road and off-road determination problem,
whereas a lesser ∼80%–85% result for the more complex {off-
road, urban, major road, motorway} four-class determination
problem. Prior analysis using a k-NN classifier implies the
inherent feature overlap within the current feature space and
the resulting difficulty of the classification problem itself—not
in the least due to ground truth ambiguity for any given frame
outside of the temporal context of the sequence (e.g., Fig. 7).

Future work will further investigate the use of temporal
analysis over multiple frames and the effect of varying
weather and lighting conditions on performance. In addition,
principle-component-analysis-based feature optimization, alter-
native computationally efficient texture measures, and sub-
region optimization will all be considered as a conduit to
full real-time performance. Further evaluation over a wider
variation of international on-road and off-road environments
can also be investigated.
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