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Abstract 

Accurate segmentation of medical images is pivotal in medical image 

analysis as it favors the detection and quantification of abnormalities 

present in human anatomical structures. Since medical images are 

complex and sometimes noisy, effective extraction of the regions of 

abnormalities is a tedious process. Many semi-automatic segmentation 

algorithms with appreciable segmentation accuracy do exist in 

literature. However, these techniques are iterative, computationally 

expensive, involve human intervention demanding initial parameter 

settings and moreover, each one of them is specific to a particular 

modality. In addition, presence of noise further degrades the quality of 

the processed image. There is no general algorithm to extract the key 

regions from all types of noisy medical images. This paper proposes an 

automatic Region of Interest (ROI) extraction algorithm to detect the 

important regions in noisy medical images of different modalities using 

statistical moments. The proposed approach estimates an optimal 

threshold value automatically using statistical moments through 

histogram decomposition technique. Initially, the medical image 

database is preprocessed followed by ROI extraction and the 

performance of the proposed approach is compared with other 

techniques to verify its robustness. 
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1. INTRODUCTION 

There is no universal algorithm for segmentation of every 
medical image. It is very difficult to devise a ROI method which 
adapts to medical images of different modalities. Each imaging 
system has its own specific limitations. However, accurate 
segmentation of medical images is a key step in medical image 
analysis for proper diagnosis by a medical expert. Automatic ROI 
detection in medical images is a difficult task as medical images 
are complex in nature. Further, the success rate of a detection 
algorithm is affected due to: presence of noise, artifacts caused 
due to insufficient illumination and overlapping pixel intensities 
of anatomical structures. Literature records several algorithms in 
the field of medical image segmentation [1,2]. Among them, 
threshold based segmentation procedure is found to be very 
simple, robust, accurate and has less computational time 
complexity [3]. However, determining the best threshold 
automatically for accurate segmentation is a tedious procedure 
for complex and noisy medical image database. Techniques for 
automatic determination of threshold value can be classified as: 
determination of global threshold value or general threshold 
value and determination of local threshold value [4]. Global 
thresholding computes the threshold value automatically based 
on statistical information of the image. Very popular global 
thresholding technique is Otsu’s approach [5]. Other global 
thresholding techniques in use are: Kapur, Kittler and Triangle 
methods. The main drawbacks of these methods are: 

computational complexity, consume more time and efficiency 
varies with the quality of the image. These methods are efficient 
and suitable only for medical images of high resolution and good 
contrast and they do not perform well for segmentation of images 
with multiple objects each having distinct gray level value 
varying over a band of values [6]. Whereas, local thresholding or 
adaptive thresholding approach determines the threshold value 
based on local statistics and threshold value found is locally 
optimal for small areas [7]. But these techniques are iterative 
based and time complexity is high. Hence, there is a scope for 
detection of a best optimal threshold value for automatic 
extraction of ROIs from inconsistent medical images. In such 
cases, a more appropriate method to choose a threshold value is 
histogram based approach. Histogram of an image may be 
unimodal, bimodal and multimodal. In such cases, the valley 
point between the two modes is the threshold value as shown in 
Fig.1(b).  

Histogram-based thresholding is one of the common methods 
used in image thresholding and segmentation [8] It is simple 
because it is easier to visualize and accurate enough to 
differentiate the target from the background. Thus, many 
methods used this ability to calculate the optimal threshold value 
[9]. However, most of the medical image histograms are more 
complex, with many peaks and not clear valleys, and the 
histogram distribution is always not distinct as shown in Fig.1(c) 
and it is not always easy to find the optimal threshold value [10]. 
To address this problem, automatic multi-thresholding 
techniques [11,12] are employed to achieve the segmentation 
accuracy. In [13], multi-thresholding technique using 
regularization approach is proposed. Initially, histogram is 
smoothed and later peaks and valley points are extracted using 
predefined score function. In another approach proposed by [14] 
obtains multi-scale information of the histogram by convolving 
it with second order derivative of the Gaussian filter to obtain the 
best possible threshold values. However, major problem in multi-
thresholding techniques is finding the optimal threshold value 
due to the fact that number of objects are always unknown due to 
the presence of overlapping tissues, noise and other artifacts. 
Hence, accurate selection of a threshold value from such images 
is very crucial [15]. 

In addition, presence of noise in medical images degrades 
visual quality of an image and spoils important information 
required for accurate diagnosis. Removal of these noise 
components from the image without destroying the useful 
information is highly challenging. Hence, noise removal is often 
necessary and the first step in the medical image analysis process. 
The image acquisition system used to generate medical images 
usually produce some noise depending on the type of imaging 
modality. To achieve the finest possible details required for an 
accurate diagnosis of diseases it is necessary that medical images 
to be sharp, clear and free of noise and artifacts. In this paper, the 
medical images of different modalities prone to various types of 
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noise components along with approximation and reduction is 
addressed in preprocessing stage. Once these images are 
preprocessed, their histograms must be smoothed to get clear 
valley and peak points to obtain precise threshold value for 
accurate segmentation. According to the assumption in [16], 
smoothed grey-level histogram is similar to mixture of Gaussian 
distributions. That is, each region in an image is Gaussian-like 
distribution possessing different statistical moments such as 
mean, variance and probabilities. In general, many of these 
thresholding methods produced good segmentation results. 
However, some of the approaches demand a high processing 
time, which make these methods impractical when the number of 
thresholds used exceed three for multi-class segmentation [17]. 
Other approaches are not fully automatic, sensitive to the 
uniformity of the histogram and demand a prior knowledge about 
the number of classes in the histogram. To overcome these 
difficulties, an automatic thresholding approach which 
determines the optimal threshold value without using the prior 
knowledge of number of objects is proposed. The proposed 
method involves preprocessing of medical images in the first 
level to achieve histogram smoothing through denoising and 
contrast enhancement to get local minimum points as initial 
thresholds. Rest of the paper is organized as follows. 

 In Section 2, the mathematical background of threshold 
calculation by histogram decomposition method is briefly 
described. Section 3 lists various performance metrics used for 
evaluation. Section 4 gives the complete flowchart of the 
proposed methodology. Experimental results are given in section 
5. Section 6 concludes the paper. 

2. MATHEMATICAL BACKGROUND: 

DENOISING AND HISTOGRAM ANALYSIS 

As medical images are of varying grey level complexities and 
sometimes noisy, it is difficult to devise a single ROI algorithm 
using a simple histogram thresholding. It is very tough to find the 
exact threshold value as image histograms of many medical 
images do not possess clear valley points. However, it would be 
possible get clear valley points in image histograms through 
preprocessing methods such as: image denoising and image 
enhancement. Hence, the proposed method combines 
preprocessing methods with histogram decomposition to achieve 
accurate ROI extraction of abnormalities. This section describes 
the mathematical basis of histogram analysis procedure employed 
on preprocessed medical images. 

2.1 MEDICAL IMAGE DENOISING AND ITS 

APPROXIMATION 

Presence of noise degrades the quality of medical images and 
lead to improper disease diagnosis. Many researchers have 
proposed denoising techniques to reduce noise in medical images 
[18]. The image acquisition system used to generate the medical 
images usually produce some noise depending on the type of 
imaging modality. Usually, MRI images are corrupted by Rician 
noise, X-ray images suffer from Poisson noise, CT images are 
associated with Poisson- Gaussian noise and Ultrasound images 
are more prone to speckle noise. Choice of denoising filter is 
based on the type of medical image selected for analysis. 

2.1.1 MRI Image Denoising:  

Noise in MR images obeys a Rician distribution [19]. Many 
denoising filters for Rician noise removal have been reported in 
the literature. Probability density function (PDF) of Rician noise 
[20] is given by Eq.(1). 
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where, t is the true signal (pixel) intensity, q is the observed image 
pixel intensity, σ is the standard deviation of the Gaussian noise 
in the real and the imaginary images, and I0 is the zero-order 
modified Bessel function of the first kind. The Eq.(2) represents 
the magnitude image equation for MRI images. A special case of 
the Rician distribution is in image regions where only noise is 
present and SNR = q/σ = 0 (e.g. in the dark background areas of 
an MRI where no signal is present).This special case of the Rician 
distribution, where q = 0 and I0 = 1 is also known as the Rayleigh 
distribution: 
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In the image regions where the signal is present and SNR ≥ 3, 
the noise distribution approximates a Gaussian distribution. Thus, 
the problem of Rician noise in the brain MRI is often simplified 
in practice by assuming the Gaussian distribution for the noise, 
[21]. 
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With reference to Eq.(3), the proposed method initially uses 
Gauss filter and later, edge preserving anisotropic diffusion filter 
to reduce Rician noise in MRI images. 

2.1.2 X-ray Image Denoising:  

Noise in X-ray images is dominated by additive Poisson-
distributed quantum noise [22]. Individual photon detections can 
be treated as independent events that follow a random temporal 
distribution. According to central limit theorem, which says that 
the sum of large number of independent quantities tends to have 
a Gaussian form independent of the individual measurements. As 
a result, photon counting is a classic Poisson process, and the 
number of photons N measured by a given sensor element over a 
time interval t is described by the discrete probability distribution, 
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where, λ is the expected number of photons per unit time interval, 
which is proportional to the incident scene irradiance. This is a 
standard Poisson distribution with a rate λt parameter that 
corresponds to the expected incident photon count. The 
uncertainty described by this distribution is known as photon 
noise. For a sufficiently large number of quanta contributing per 
pixel, the Poisson distribution can be approximated by a Gaussian 
distribution. Hence, the proposed method uses a combination of 
Gauss filter and diffusion filter for noise reduction in X-Ray 
images. 
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2.1.3 CT Image Denoising:  

Poisson noise is generated due to random pattern of photons 
emitted by X-rays in the detector and found to be Poisson 
distributed as in X-rays. However, it cannot be approximated to 
Gaussian noise as noise in CT images is caused by low dose X-
rays. According to Flourian Luiser [23], transform domain 
approach reduces the Poisson- Gaussian noise effectively. The 
proposed algorithm uses multispinning method in transform 
domain [24] for noise reduction which makes use of seven images 
in multiple versions to acquire the boundary information in 
transform domain. Later, noisy images are subjected to 
multispinning algorithm and wavelet transform is applied to all 
the cyclic shifted images and there by denoised images are 
obtained. Inverse transform reconstructs the denoised images. 
Further, denoised images are unshifted and averaged. This 
process can be depicted by the Eq.(5). 
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where, d is the multispinning denoised image, dn is noisy image, 
Spn is multispin shift, Supn is multispin-unshift, WTm is the wavelet 
transform, N is the number of images in the denoising process,

1
mWT
 is the inverse transform. This process avoids the Gibb’s 

problem [25] through averaging and the quality of the 
reconstructed image improves due to the information captured in 
different image versions. 

2.1.4 Ultrasound (US) Image Denoising:  

Speckle noise in US images is multiplicative which displays a 
granular pattern due to the dispersion of the electromagnetic 
waves caused by the transducer. This noise degrades the fine 
details and limits the contrast resolution by making it difficult to 
detect small and low contrast lesions in Ultrasound images. The 
multiplicative noise model, where the noise signal gets multiplied 
to the original signal is given by, 

      , , ,
n

f x y f x y x y   (6) 

where, fn(x,y) is the speckle noise affected image, f(x,y) is the 
original noise-free image and η(x,y) is the noise component. 
Homomorphic filtering technique is more effective in Ultrasound 
image denoising [26]. In the proposed algorithm, Homomorphic 
filtering is employed which involves transformation of 
multiplicative noise into additive noise by applying logarithm 
function. Filter transfer function of Homomorphic process uses 
3rd order Butterworth low-pass filter. Various stages of 
Butterworth- Homomorphic filter are given by: 

Step 1: Applying natural log on both sides of Eq.(6), 
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Step 3: Fourier transform of the above equation yields frequency 
domain representation, 
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Step 4: Now multiplying Zn(u,v) with filter transfer function 
H(u,v), 
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where, H(u,v) is the transfer function of Butterworth low-pass 
filter. Preprocessed image s(x,y) is obtained using inverse Fourier 
transform. The transfer function of the Butterworth low-pass filter 
of order n and with cut-off frequency locus at a distance D0 from 
the origin is defined by the relation: 
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2.2 GRAY-LEVEL HISTOGRAM ANALYSIS 

Let I be a m×n gray-scale medical image with L gray levels 
and G be the gray value of pixel I(x,y) with x = 1,2,…,p and y = 
1,2,…,q. Then, the gray-level histogram H of image I is of the 
form H = {H(j), j∈[1,G]}. Generally, there exists a number of 
peaks (distributions) in the histogram, based on the complexity of 
gray level distribution in an image. Each distribution in the 
histogram will map to an object in the image. For any gray-level 
histogram with n distributions, the histogram-thresholding 
technique is to automatically determine the optimal threshold 
value. For a complex medical image, it is assumed that the 
observation comes from a mixture of n+1 Gaussian distributions, 

f, having respective means and variances    2 2
1 1 1 1, ,..., ,n nm m    

with respective proportions, P1,…Pn+1. Therefore, the mixture of 
distributions reflected in the histogram will be of the form,  
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The main objective is to find the parameters, i.e., means, 
variances and proportions to satisfy the minimization, min(|f-H|). 
Later, by using these parameters, the optimal threshold value can 
be determined to make suitable segmentation. If the clusters in the 
histogram are over-lapping, it is difficult to find the precise valley 
point and hence the threshold value. To overcome this, gray level 
histogram is decomposed into several non-overlapping 
distributions first and later other parameters are estimated [27]. 
However, as some medical images are complex, the histogram 
distribution is always not distinct as shown in Fig.1(c). Hence, a 
histogram smoothing process, Fig.1(b) and Fig.1(d) is necessary 
before performing the decomposition process.  

Then, the genuine local minimums are extracted and used as 
initial threshold values for further parameter estimation. For every 
cluster in the histogram, there exists only one optimal interval 
near the cluster center with the smallest absolute skewness value, 
for parameter estimation. The skewness is a measure of the 
asymmetry of the probability distribution of a real valued random 
variable. By using this optimal estimation interval, statistical 
moments such as: mean, variance, probabilities and skewness 
corresponding to each cluster can be predicted without iterative 
parameter refinement. This reduces the algorithmic time 
complexity. Later, based on maximum- likelihood decision 
theory, optimal threshold values are estimated.  

In the proposed approach, histogram smoothing is carried-out 
through an image enhancement technique - Contrast Limited 
Adaptive Histogram Equalization (CLAHE) [28] which operates 
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on small regions in the image called tiles, rather than the entire 
image. Each tile's contrast is enhanced using cumulative 
distribution function (CDF), so that the histogram of the output 
region approximately matches the histogram specified by the 
distribution parameter. The neighboring tiles are then combined 
using bilinear interpolation to eliminate artificially induced 
boundaries. The contrast, especially in homogeneous areas, can 
be limited to avoid amplifying any noise that might be present in 
the image. Let I be a given image of size mn matrix with pixel 
intensities ranging from 0 to L-1. Here, L is the number of possible 
intensity values, often 256. Let, h denote the normalized 
histogram of I with a bin for each possible intensity.  

Original Histogram  Histogram after smoothing 

  

(a) 

(b)  
Histogram with two distinct 

peaks and one valley. 
Threshold value is 50 

  

(c)  
Histogram with non-distinct 

peaks and valley points 

(d)  
Smoothed histogram. 

Threshold values are: 80, 
130 and 170 

Fig.1. Example showing the image histograms of two images 
before and after smoothing 

The probability of an occurrence of a pixel of level i in the 
image is,  
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where, n = 0,1,...,L-1. 

Cumulative distribution function for hx is given by,  
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The histogram equalized image He will be defined by, 
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where, floor() rounds down to the nearest integer. This is 
equivalent to transforming the pixel intensities, n, of I by the 
function, 
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2.2.1 Threshold Calculation:  

Suppose there exists n distinct Gaussian clusters Ci, i = 
1,…,n,Ĥ must have n peaks, denoted by P(1),…,P(n), and n-1 
valleys, denoted as V(1),…,V(n-1). Then, the interval of Ci in the 
smoothed histogram Ĥ will be [V(i-1),V(i)-1], with V(0)=1 and 
V(n) = G+1. The optimal estimation interval within each cluster 
is defined to find the parameters which represent the distribution 
of cluster. Initial cluster mean value is determined by using a 
suitable interval whose length is given by li = (1/2)(V(i) - V(i-1)-
1). This length li, possesses the properties of li ≫ σi and li α σi. The 
length of interval satisfies Tchebycheff inequality and can be used 
as the length of optimal parameter estimation interval. 

Let w be the searching window with length li to search the 
location of optimal estimation interval of cluster Ci. The searching 
window w which starts by placing the leftmost point at V(i-1) 
slides toward the end of cluster V(i)-1 by moving one bin at a time. 
The searching process stops if the rightmost point reaches the end 
of cluster V(i)-1. There will be V(i)-V(i-1)-1-li searching windows. 
Meanwhile, the skewness S is calculated for each searching 
window wj, j = 1,2,…,V(i)-V(i-1)-1-li, denoted by S(wj). The 
skewness is a measure of the asymmetry of the probability 
distribution of a real valued random variable. Skewness of each 
searching window for the bimodal histogram can be calculated as, 
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where,
jw

m is the center of the searching window and μn(wj) is the 

mean value of the windows between the clusters. S(wj) is the 
skewness of the searching window. The optimal interval wo to 
estimate the mean and variance of each cluster is found using 
minimum absolute skewness value, given by, 

wo = min |S1 (wj)| 

The mean, variance and proportion of the cluster can then be 
determined by the following equations: The mean of a data set, 
and in particular of an image histogram, is the arithmetic average 
of the values in the set, obtained by summing all values and 
dividing by the number of them. The mean is, thus, a measure of 
the center of the distribution.  
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Fig.2. Flow diagram of proposed Algorithm 
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The mean is a weighted average where the weight factors are 
the relative frequencies. The variance of a dataset is the arithmetic 
average of the squared differences between the values and the 
mean. The standard deviation is the squared root of the variance. 
The variance and the standard deviation are both measures of the 
spread of the distribution around the mean.  
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mi is the mean value of the cluster, σi
2 is the cluster variance 

and pi is the cluster proportion. For the ith observation H(i), it is 
more likely generated by cluster Ck if, 
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For 1 ≤ j ≤ n,1 ≤ k ≤ n and j ≠ k. 

If there are n clusters, we will obtain n-1 threshold values Ti,i 
= 1,2,…,n-1. Therefore, the ith threshold Ti can be determined as 
follows: 

Ti = max{k ∶ H(k) is generated by the ith Gaussian cluster} 

Finally, for each cluster Ci,i = 1,2…,n, the range becomes [T(i-
1),T(i)-1] with T(0) = 1 and T(n)=g. 

3. PERFORMANCE MEASURES 

In the proposed approach, quality of the denoised images is 
measured using PSNR and the contrast of the enhanced image is 
estimated using CNR. Further, accuracy of segmented region is 
evaluated using sensitivity and specificity measures. 
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where, Ir is the input reference image and Ie is the enhanced image. 
MN is the size of the image and α is the dynamic range of image 
pixel values. For 8-bit image, α = 256. Contrast to Noise Ratio, 
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where, μr is the mean of the reference image, μe  is the mean value 
of the enhanced image, μn is the mean value of noisy image and 
σn is the standard deviation of the noisy image. 

Sensitivity or true positive rate is defined as the total number 
of pixels correctly detected as abnormal cells. It means test is 
positive. 

 
TP

TP TN

N
Sensitivity

N N



 (15) 

Specificity or true negative rate is the percentage of pixels 
identified as normal region even though it is abnormal region. 
Specificity is a true negative measure that refers to the proportion 
of image containing a defective mass that has been incorrectly 
classified. 

 
TN

TN FN

N
Specificity

N N



 (16) 

NFN is the number of pixels incorrectly classified as normal 
(non-tumor) region. NTP is the portion of the image correctly 
classified as defective mass. NTN is the portion of the image 
correctly classified as normal region. 

4. FLOW CHART OF THE PROPOSED 

METHODOLOGY 

The main goal of the proposed approach is to automatically 
find the optimal threshold value from the image histogram and to 
use this threshold value for accurate extraction of regions of 
interest from different modality medical images. Histogram 
decomposition is used to achieve precise threshold calculation. 
The Fig.2 shows the complete flow-diagram of the proposed 
approach. 

5. EXPERIMENTAL RESULTS 

The results are validated on an Intel(R) Core i5 CPU running 
at 2.40GHz with 8.00GB of RAM. Software used for validation 
of the proposed approach is MATLAB R2012a on MS Windows 
7, 64-bit operating environment. Experimental work is carried out 
on five types of medical image database, such as: MRI, CT, X-
Ray, Ultrasound and Retinal imaging modalities. Each type 
consists of 10 images along with manually marked ground truth 
images. Each image is of size 256256 with a lossless PNG file 
format.  

In the proposed approach, an attempt is made to determine the 
optimal threshold value automatically using the information from 
image histograms. To avoid fake valley points and to obtain the 
smooth histogram, selected image is preprocessed initially. An 
image to be analyzed is chosen from the medical image database 
of different modalities. Type of noise varies from one modality to 
other. Hence based on the type of image selected (MRI, CT, US, 
X-Ray and Eye), the algorithm switches to a particular 
preprocessing stage as indicated in the flow diagram Fig.2. In the 
preprocessing stage, the noise level is estimated for each input 
image using PSNR metric. Based on the type of noise, a suitable 
filter is used for noise reduction and the image quality 
improvement is again assessed. In addition, the contrast of the 
image is fine-tuned using CLAHE approach and its performance 
is evaluated using CNR metric. The parameters: PSNR and CNR 
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are assessed for all the 10 images in each modality using the 
Eq.(15) and Eq.(16). However, denoised results are shown only 
for US fetus images, (Fig.3). Visual interpretations in Fig.3(a)-
Fig.3(d) reveal the qualitative improvement with respect to noise 
removal (Fig.3(c)) and contrast enhancement (Fig.3(d)). The 
quantitative assessment of the preprocessing stage given in 
Table.1. PSNR and CNR values for only two images in each 
category are indicated in the table. Readings in Table.1 indicate 
the improvement in the quality of the pre-processed images. 
However, it can be seen from Table.1, there is an improvement in 
PSNR value for the denoised CT (54.72dB to 58.72dB) and X-
Ray (48.72dB to 51.22dB) images. But, PSNR values of (MRI: 
34.72dB to 34.72dB, US: 29.56dB to 28.95dB and Eye images: 
28.02dB to 25.21dB) are comparatively less. Further it can be 
noticed that after subjecting these images to enhancement process, 
improvement in PSNR values demonstrates the need for CLAHE 
for poor contrast medical images such as MRI, US and Eye 
images. It can be noticed that the CNR values for all the enhanced 
medical images is more compared to denoised images. This 
contrast improvement is necessary for accurate ROI extraction. 
Once the images are preprocessed, their histograms are obtained 
and smoothed to find the threshold values using the statistical 
moments of the image histograms. The Table.3 shows the sample 
histograms of five preprocessed images considering one image in 
each modality along with manually labeled images and segmented 
output by the proposed approach. The estimated parameters 
(mean, variance and proportions) and the corresponding threshold 
value for only one medical image i,e. Ultrasound image whose 
histogram has two clusters are tabulated in Table.2 and the 
parameters calculated for rest of the medical images are not 
shown. Using these statistical parameters, skewness is 
determined. Suppose if the histogram has two equal peaks, then 
the valley with highest skewness gives the optimal threshold 
value. Image histogram with one cluster has a single threshold 
value and histograms with three clusters have two threshold 
values which can be seen in Table.2. In general n clustered 
histogram has n-1 threshold values. Finally, optimal threshold 
value is determined and the same is used to segment the image.  

Table.1. Experimental results of preprocessing stage 

Metric Image 

type 

Input 

image 

Denoised 

image 

Enhanced image 

using CLAHE 

PSNR  

(Db.) 

MRI1 34.72 34.72 37.48 

MRI2 35.212 35.223 35.848 

CT1 54.72 58.72 59.48 

CT2 48.72 51.22 52.48 

X-Ray1 48.72 51.22 52.48 

X- Ray2 42.18 44.12 49.56 

US1 25.12 24.52 32.51 

US2 29.56 28.95 36.02 

Eye1 28.02 25.21 30.18 

Eye2 35.12 34.52 38.45 

CNR 

MRI1 24.03 24.06 47.92 

MRI2 24.06 24.06 30.18 

CT1 24.03 24.06 47.92 

CT2 25.03 24.66 37.93 

X-Ray1 25.03 24.06 37.93 

X- Ray2 25.13 24.66 35.29 

US1 16.53 18.26 26.81 

US2 19.15 20.06 40.29 

Eye1 25.03 24.06 32.12 

Eye2 26.03 28.06 36.48 

Table.2. Statistical parameters for threshold estimation 

Images Statistical Parameters 

Ultrasound image 
Two clusters 

Mean1 87 

Variance1 324 

Proportion1 0.27 

Mean2 133 

Variance2 142 

Proportion2 0.32 

Threshold 52 

In the proposed approach, ten images in each type are used for 
segmentation process. However, Fig.3 demonstrates the 
segmentation results for only one image to draw the visual 
inference. The accuracy of the segmentation results of the 
proposed approach is compared with other existing techniques 
such as: Otsu’s thresholding, Region growing, image matting 
techniques: Alpha matting, Bayesian matting and Poisson 
matting. The quantitative analysis of the segmentation is 
demonstrated in Table.4.  

Table.3. Table showing five sample images with their 
histograms, ground truth and segmented output 

Image 

type 

Input 

image 
Histogram 

Ground 

truth 

image 

Output 

segmented 

image 

MRI brain 
tumor 
image 

    

X-Ray 
dental 
image 

    

Lung CT 
image 

    

Ultrasound 
image 

    

Retinal 
image 

    

The Fig.3 shows denoising and segmentation results of US 
fetus image. The Fig.3(a)-Fig.3(d) are preprocessed images. The 
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Fig.3(e) is manually labeled image. Preprocessed image is 
segmented using Otsu’s thresholding, region growing, image 
matting techniques and the proposed approach. Otsu’s technique 
is simple to design and execution time is less (13µS for US image) 
compared to other techniques as indicated in Table.4. However, it 
can be noticed in Fig.3(f), Otsu’s technique has produced poor 
segmentation results (only 77% accuracy) and the image is 
distorted, whereas region growing technique, (Fig.3(g)) produces 
good segmentation accuracy of 98.5% and algorithmic time 
complexity is also moderate. But this method needs an initial 
parameter selection, such as the seed point. Improper seed point 
selection leads to poor segmentation results. On the other hand, 
three image matting techniques also result in appreciable 
accuracy. Among three techniques, Bayesian matting, (Fig.3(j)) 
and Poisson matting, (Fig.3(k)) techniques show the improvement 
in accuracy (98.66% and 98.39%) and less execution time (35.10 
and 54.35 µS) compared to alpha matting (99.80µS), (Fig.3(i)). 
However, the main drawback of matting techniques is that they 
need ‘trimap’ as in Fig.3(h) which is to be specified by the user 
before segmentation process. This means all these methods 
demand human intervention in one way or the other and thereby 
prone to human errors and affect the segmentation accuracy. 
Whereas in the proposed approach, the parameters are 
automatically found using the statistical information of image 
histograms. It is evident from the results that the segmentation 
accuracy of the proposed method is relatively better (98.71% for 
US image) compared to other techniques as recorded in Table.4 

  
(a) Original input image (b) Noisy image 

  
(c) Denoised image (d) Enhanced image 

  
(e) Ground truth image (f) Otsu’s 

  
(g) Region Growing (h) Trimap 

  
(i) Alpha matting (j) Bayesian matting 

  
(k) Poisson matting (l) histogram 

Fig.3. Qualitative Analysis of Denoising and ROI Extraction 
Process for US image 

Table.4. Quantitative Analysis of ROI Extraction 

Image type 
Image segmentation  

method 

Sensitivity 

TP
S = %

TP + FN
 

Specificity 

TN
G = %

TN + FP
  

Accuracy 

S + G
= %

2
  

Execution  

time (µS) 

MRI 
 

Otsu’s threshold 80.00 83.33 81.66 10.05 

Region growing 98.00 98.80 98.40 40.40 

Alpha matte 96.33 97.00 96.66 100.80 

Bayesian matte 99.00 98.33 98.665 36.10 
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Poisson matte 98.80 98.33 98.565 50.35 

Histogram threshold 99.00 98.33 98.66 33.55 

X-Ray 
 

Otsu’s threshold 83.00 84.00 83.50 11.05 

Region growing 98.00 98.33 98.15 42.40 

Alpha matte 97.23 96.33 96.78 99.80 

Bayesian matte 99.00 98.23 98.61 35.10 

Poisson matte 99.00 98.00 98.50 54.35 

Histogram threshold 99.00 99.30 99.15 30.55 

Retinal 

Otsu’s threshold 83.33 85.00 84.165 11.05 

Region growing 98.00 98.50 98.25 8.40 

Alpha matte 98.10 98.23 98.16 99.80 

Bayesian matte 98.99 98.56 98.77 67.10 

Poisson matte 99.12 98.45 98.78 54.35 

Histogram threshold 99.15 98.00 98.57 30.55 

CT 
 

Otsu’s threshold 80.00 83.33 81.66 11.05 

Region growing 99.00 99.13 99.06 34.40 

Alpha matte 98.33 97.00 97.66 106.80 

Bayesian matte 98.76 96.33 97.54 67.10 

Poisson matte 98.54 98.33 98.43 50.35 

Histogram threshold 99.00 98.78 98.89 30.55 

US 

Otsu’s threshold 78.00 77.42 77.71 13.05 

Region growing 99.00 98.00 98.5 32.40 

Alpha matte 96.00 96.78 96.39 116.80 

Bayesian matte 98.00 99.33 98.66 67.10 

Poisson matte 98.78 98.00 98.39 50.35 

Histogram threshold 99.00 98.43 98.71 23.55 

6. CONCLUSION 

In this paper, an automatic region detection technique has been 
proposed for extracting desired regions from noisy medical 
images of all modalities. The proposed method attempted to find 
an optimal threshold value automatically using the parameters 
such as: mean, variance and skewness by decomposing the 
histogram into non-overlapping distributions employing 
histogram smoothing. The predefined moments estimated for 
each distribution in the histogram reduces the computational 
complexity compared to other conventional methods which 
usually suffer from iterative initial parameter refinement. 
Performance of the proposed algorithm is tested on user defined 
medical image database of all modalities and compared with other 
techniques. Experimental results demonstrate relative 
improvement in segmentation accuracy compared to other 
techniques. The proposed approach works well for the user 
defined dataset. For medical images from unknown database, the 
algorithm finds it difficult to identify the image type and to model 
denoising filter by itself. 
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