
Automatic Scalable Atomicity via Semantic Locking

Guy Golan-Gueta
Yahoo Labs, Israel

ggolan@yahoo-inc.com

G. Ramalingam
Microsoft Research, India
grama@microsoft.com

Mooly Sagiv
Tel Aviv University, Israel

msagiv@tau.ac.il

Eran Yahav
Technion, Israel

yahave@cs.technion.ac.il

Abstract
In this paper, we consider concurrent programs in which the shared
state consists of instances of linearizable ADTs (abstract data
types). We present an automated approach to concurrency con-
trol that addresses a common need: the need to atomically execute
a code fragment, which may contain multiple ADT operations on
multiple ADT instances.

We present a synthesis algorithm that automatically enforces
atomicity of given code fragments (in a client program) by in-
serting pessimistic synchronization that guarantees atomicity and
deadlock-freedom (without using any rollback mechanism). Our al-
gorithm takes a commutativity specification as an extra input. This
specification indicates for every pair of ADT operations the condi-
tions under which the operations commute. Our algorithm enables
greater parallelism by permitting commuting operations to execute
concurrently.

We have implemented the synthesis algorithm in a Java com-
piler, and applied it to several Java programs. Our results show that
our approach produces efficient and scalable synchronization.

Categories and Subject Descriptors D.1.3 [Programming Tech-
niques]: Concurrent Programming; D.3.3 [Programming Lan-
guages]: Language Constructs and Features

Keywords Automatic synchronization, Transactions, Semantics

1. Introduction
A key challenge in writing concurrent programs is concurrency
control: ensuring that concurrent accesses and modifications to
shared mutable state do not interfere with each other in undesirable
ways. Solutions used in practice are predominantly handcrafted and
based on locks. However, this is a tedious and error-prone process
which may result in safety violations and deadlocks (e.g., see [22]).

Atomic sections [11] are a language construct that allows a
programmer to declaratively specify that a given code fragment
must (appear to) execute atomically, leaving it to a compiler and

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
PPoPP’15, February 7–11, 2015, San Francisco, CA, USA.
Copyright c© 2015 ACM 978-1-4503-3205-7/15/02. . . $15.00.
http://dx.doi.org/10.1145/2688500.2688511

1 atomic {
2 set=map.get(id);
3 if(set==null) {
4 set=new Set(); map.put(id, set);
5 }
6 set.add(x); set.add(y);
7 if(flag) {
8 queue.enqueue(set);
9 map.remove(id);

10 }
11 }

Figure 1. An atomic section that manipulates several linearizable
ADTs — a Map, a Set, and a Queue. This example is inspired by
the code of Intruder [7], further discussed in Section 6.

1 atomic { map.lock({get(id),put(id,*),remove(id)});
2 set=map.get(id);
3 if(set==null) {
4 set=new Set(); map.put(id, set);
5 }
6 set.lock({add(*)}); set.add(x); set.add(y);
7 if(flag) { queue.lock({enqueue(set)});
8 queue.enqueue(set); queue.unlockAll();
9 map.remove(id);

10 }
11 map.unlockAll(); set.unlockAll();
12 }

Figure 2. The atomic section of Fig. 1 with semantic locking
operations automatically inserted by our compiler.

runtime to implement the necessary concurrency control. However,
existing approaches to implementing atomic sections have not been
widely adopted due to various concerns, including high runtime
overhead, and limited applicability (e.g., see [8]). We address these
concerns by presenting a novel approach for realizing a restricted
form of atomic sections in which the shared mutable state consists
of several linearizable [15] abstract data types (ADTs).
Example The example in Fig. 1, inspired by the code of In-
truder [7], illustrates the problem we address in this paper. The
shared (global) state of this code fragment consists of three ADTs:
(i) a Map ADT (pointed by the variable map); (ii) a Set ADT
(pointed by the variable set); (iii) and a Queue ADT (pointed
by the variable queue). (All program variables, such as flag,
are thread-local.) Each of these ADTs is linearizable [15], and thus
each individual ADT operation appears to execute atomically (even

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from Permissions@acm.org.

PPoPP’15, February 7–11, 2015, San Francisco, CA, USA
Copyright 2015 ACM 978-1-4503-3205-7/15/02...$15.00
http://dx.doi.org/10.1145/2688500.2688511

31



in the presence of concurrent operations). However, in this case, we
wish the entire code fragment to execute atomically: the individual
ADTs cannot provide this guarantee.
The Problem We consider a Java multi-threaded program (also
referred to as a client), which makes use of several linearizable
ADTs. We assume that the only mutable state shared by multiple
threads is instances of ADTs. We permit atomic sections as a
language construct: a block of code may be marked as an atomic
section (as shown in Fig. 1). An execution of an atomic section is
called a transaction. Our goal is to ensure that transactions appear
to execute atomically and make progress (avoiding deadlocks),
while exploiting the semantic properties of the ADT operations to
achieve greater parallelism. We also wish to avoid the use of any
rollbacks (i.e., speculation is not permitted).
Our Approach Our approach is based on locking which utilizes se-
mantic properties of the shared ADTs. In this approach, the transac-
tions acquire locks on ADT operations (rather than acquiring locks
on memory locations or data): a transaction is permitted to invoke
an operation, only when it holds a lock on that operation. The mean-
ing of the locks is based on the semantics of the operations, that is,
two transactions are allowed to simultaneously hold locks on oper-
ations op1 and op2, respectively, only if op1 and op2 are commuta-
tive operations.
Automatic Atomicity We present a compiler for atomic sections.
Given a client program with atomic sections, the compiler guar-
antees atomicity and deadlock-freedom of these atomic sections
by inserting code that acquires locks on operations of the shared
ADTs. In order to implement the locks, for each ADT, our compiler
takes a commutativity specification as an extra input. This speci-
fication indicates for every pair of ADT operations the conditions
under which the operations commute. For example, Fig. 3(b) shows
a commutativity specification for a Set ADT. Commutativity spec-
ifications are discussed in Section 5.

Fig. 2 shows the locks inferred for the atomic section of Fig. 1:
in the shown code, operations of the shared ADTs are locked by
using two special methods: lock and unlockAll. The meaning
and the implementation of these methods are described later.
Key Features and Advantages Our approach offers the following
key features and advantages:
• Greater parallelism via semantic conflict detection. This ap-

proach permits transactions to concurrently execute commuting
operations, even though the underlying operation implementa-
tion may access and modify the same locations. E.g., two con-
current executions of the code fragment in Fig. 1 can execute
the add operation on the same Set concurrently, because add
operations on a Set commute.
• No rollback. This approach does not use any rollback mech-

anism [11], and enables the use of irrevocable operations (as
demonstrated in Section 6.2).
• Modularity and compositionality. This approach is decoupled

from the implementation of the shared ADTs. In particular, it
allows the different ADT implementations to use their own con-
currency control solutions internally. In a sense, our approach
can be seen as a simple way to compose several unrelated lin-
earizable ADTs.

Fine-Grained Synchronization Our compiler aims to produce fine-
grained synchronization (for the sake of better potential paral-
lelism) by trying to handle each shared Java object as an indepen-
dent ADT with a dedicated synchronization mechanism. We show
that this is not always possible for programs with dynamic pointer
updates — for such programs, our compiler handles several Java
objects as a single global ADT (Section 3.4).

2. Semantic Locking
In this section we introduce some terminology, describe our
methodology for realizing atomic sections using semantic locking,
and formalize the problem addressed in the subsequent sections.

2.1 Basics

Clients A client is a concurrent program that satisfies the following
restrictions. All state shared by multiple threads is encapsulated
as a collection of ADT instances. (The notion of an ADT is for-
malized later.) The shared mutable state is accessed only via ADT
operations. The language provides support for atomic sections: an
atomic section is simply a block of sequential code prefixed by the
keyword atomic. Shared state can be accessed or modified only
within an atomic section. We will use the term transaction to refer
to the execution of an atomic section within an execution.

In the simpler setting, a client is a whole program (excluding the
ADT libraries). More generally, a client can be a module (library)
or simply a set of atomic sections. However, we assume that all
atomic sections accessing the shared state are available.
ADTs An abstract data type (ADT) encapsulates state accessed and
modified via a set of methods. Statically, it consists of an interface
(also referred to as its API) and a class that implements the inter-
face. The implementation is assumed to be linearizable [15] with
respect to the sequential specification of the ADT. We also assume
that its object constructor is a pure-method [23].

We will use the term ADT instance to refer to a runtime Java
object that is an instance of the ADT class. We will abbreviate
“ADT instance” to just ADT if no confusion is likely. Two different
ADT instances can have no shared state. Every ADT instance is
assumed to have an unique identifier (such as its memory address).
Global ADTs In some cases, our compiler cannot treat each shared
object as an independent ADT: in those cases, we treat several run-
time objects as a single global ADT (such an ADT has a single in-
stance). The discussion about global ADTs appears in Section 3.4.
Operations We use the term operation to denote a tuple consisting
of an ADT method namem and runtime values v1, · · · , vn form’s
arguments (not including the ADT instance on which the operation
is performed), written as m(v1, . . . , vn) . An operation represents
an invocation of a method on an ADT instance (at runtime). For
example, we write add(7) to denote the operation that represents
an invocation of the method add with the argument 7.
Methodology Our goal is to realize an implementation of the
atomic sections in clients, using locking (pessimistic concurrency
control). Our approach is realized by the compiler in two steps:
1. In the first step (Sections 3 and 4), we assume that each ADT

provides synchronization API that enables locking and unlock-
ing its operations (for example, in Fig. 2 at line 6, the add op-
erations of the Set are locked by using this API). Using this
assumption, our compiler enforces atomicity by inserting calls
to this synchronization API.

2. In the second step (Section 5), the compiler implements the
calls to the synchronization API by utilizing semantic proper-
ties of the ADT operations. This is realized by using commuta-
tivity specifications that are given to the compiler.

2.2 ADTs with Semantic Locking
An ADT with semantic locking is an ADT that provides a synchro-
nization API, in addition to its standard API, that allows a transac-
tion to lock (and unlock) operations (on ADT instances). We start
by assuming that all shared ADTs already provide a synchroniza-
tion API, in Section 5 we show how this API is implemented by
our compiler.

32



void add(int i);
void remove(int i);
boolean contains(int i);
int size();
void clear();

add(v′) remove(v′) contains(v′) size() clear()
add(v) true v 6= v′ v 6= v′ false false

remove((v) true v 6= v′ false false
contains(v) true true false

size() true false
clear() true

(a) (b)

Figure 3. API of a Set ADT and its commutativity specification. The Set’s methods are described in (a). Its commutativity specification is
shown in (b): for every pair of operations, the specification indicates a condition under which the operations commute (e.g., in the shown
specification the operations add(v) and remove(v′) are commutative when v 6= v′).

2.2.1 Synchronization API

The synchronization API of an ADT contains two methods lock
and unlockAll: we refer to invocations of these methods as lock-
ing operations. We refer to invocations of the other methods as
standard operations (since they belong to the ADT’s standard API).

The method lock An invocation of the method lock is meant
to be used (by a client transaction) to acquire (permission to in-
voke) certain standard operations. We think of such invocation as
corresponding to a lock on a set of standard operations (on the cor-
responding ADT instance).

Statically, a call to a lock method is expressed using symbolic
operations and symbolic sets [9]. Let Var be a set of the program’s
variables, and ∗ be a symbol such that ∗ 6∈ Var. A symbolic
operation (over Var) is denoted by p(a1, · · · , an), where p is a
method name, and each ai ∈ Var ∪ {∗}. A symbolic set is a set of
symbolic operations. The method lock receives a symbolic set as
a parameter.

EXAMPLE 2.1. In Fig. 2, line 1 contains a call to the Map’s lock
method where the parameter is the symbolic set
{get(id), put(id , ∗), remove(id)}. Line 6 contains a call to
the Set’s lock method where the parameter is the symbolic set
{add(∗)}.

The meaning of a call to lock is defined using the runtime
values of the programs variables. Let Value be the set of possible
values (of the variables in Var). Given a function σ : Var 7→ Value
and a symbolic set SY , we define the set of operations [[SY]](σ) to
be ⋃

p(a1,...,an)∈SY
{p(v1, . . . , vn) | ∀i.(ai 6= ∗)⇒ (vi = σ(ai))}.

Notice that, the ∗ symbol is used to refer to all possible values.
Let "lock(SY)" be a call to lock where SY is a symbolic set. A

runtime invocation of "lock(SY)" locks all operations in [[SY]](σ)
where σ maps each variable to its runtime value.

EXAMPLE 2.2. Consider the invocations of lock in Fig. 2. When
id = 7 , the call lock({get(id), put(id , ∗), remove(id)}) , at line
1, locks the operations in the set {get(7 ), put(7 , v), remove(7 ) |
v ∈ Value} (i.e., all invocations of get, remove and put for
which the first parameter is 7). The call lock({add(∗)}), at line
6, locks all the operations in the set {add(v) | v ∈ Value} (i.e.,
all invocations of add). As will be explained below, in both cases,
each of these lock invocations acquires permission to invoke the
corresponding operations.

The method unlockAll The method unlockAll is simpler, its
invocation unlocks all the ADT operations that are held by the
current transaction. For example, in Fig. 2 at line 11, the code
unlocks all the Map and Set operations that have been locked in
the preceding lines.

2.2.2 Semantic Guarantees of the Synchronization API
We now describe the semantic guarantees of the synchronization
API. We first formalize the notion of commutativity of operations.
Two operations are said to be commutative if applying them to the
same ADT instance in either order leads to the same final ADT
state (and returns the same response).

EXAMPLE 2.3. Consider a Set ADT with the API described in
Fig. 3(a) (the Set has a standard meaning). For this ADT, the oper-
ations add(7) and remove(7) are not commutative. In contrast,
the operations add(7) and remove(10) are commutative.

The synchronization API is required to satisfy the following
guarantee: no two transactions are allowed to concurrently hold
locks on non-commuting operations (on the same ADT instance).
Specifically, if a transaction t holds locks on the operations in the
set Ot for an ADT instance A and, at the same time, a different
transaction t′ holds locks on the operations in the set Ot′ for the
same ADT instance A, then every operation in Ot must commute
with every operation in Ot′ .

This means that the implementation (of the ADT’s synchroniza-
tion API) must block, whenever necessary, to ensure the above re-
quirement. That is, if a transaction t holds locks on the operations
in Ot, and a transaction t′ tries to lock the operations in Ot′ where
some operation in Ot does not commute with some operation in
O′
t, then t′ waits (blocked) until it is legal (for t′) to hold locks on

all operations in Ot′ .

EXAMPLE 2.4. Consider a Set ADT with the API described in
Fig. 3(a) (the Set has a standard meaning). For this ADT, a transac-
tion should not be allowed hold a lock on the set {size(), clear()}
while another transaction holds a lock on {add(v) | v ∈ Value},
because (for example) size() does not commute with the add op-
erations. However, it is legal to permit two different transactions
to simultaneously hold locks on the set {add(v) | v ∈ Value},
because add operations commute with each other.

2.3 Synchronization Protocol
We now describe the synchronization protocol used by our com-
piler.
The S2PL Protocol Our synchronization is based on a semantics-
aware two-phase locking protocol (S2PL) [6]. We say that an exe-
cution π follows S2PL, if the following conditions are satisfied by
each transaction t in π:
• t invokes a standard operation p of an ADT instance A, only if
t currently holds a lock on operation p of A.
• t locks operations only if t has never unlocked operations.

An execution that satisfies S2PL is a serializable execution [6].
Such execution is equivalent to an execution in which no two
transactions are interleaved. Therefore, a serializable execution in
which all transactions are completed can be seen as an execution in
which all transactions are executed atomically.

33



void f(Set x, Set y) {
x.lock({size()});
int i = x.size();
y.lock({add(i)}); x.unlockAll();
y.add(i);
y.unlockAll();

}

Figure 4. Code that follows the S2PL protocol.

EXAMPLE 2.5. Consider a transaction t that executes "f(s1, s2)"
where f is the function shown in Fig. 4, and s1, s2 are two different
Sets. This transaction follows the S2PL rules.

The S2PL protocol enables substantial parallelism. Consider
two transactions t and t′ that execute "f(s1, s2)". In this case,
all operations locked by t commute with all operations locked by
t′ (even though they work on the same ADT instances). Hence,
it is possible for the two transactions to run in parallel, while
guaranteeing serializability.

The OS2PL Protocol The S2PL protocol does not guarantee
deadlock-freedom — in order to avoid deadlocks we use the Or-
dered S2PL Protocol (OS2PL). We say that an execution follows
the OS2PL protocol if the execution follows S2PL and satisfies the
following additional condition:
• There exists an irreflexive and transitive relation @ on ADT

instances such that if a transaction t locks operations of ADT
instance A after it locks operations of ADT instance A′, then
A′ @ A.

The rule requires that ADT operations be locked according to a
consistent order on the ADT instances. Notice that A and A′ may
represent the same ADT instance in the above rule. Hence, the
rule implies that a transaction should not invoke multiple locking
operations on the same ADT instance. Following this rule ensures
that an execution cannot reach a deadlock.

3. Automatic Atomicity Enforcement
In this section, we present the basic version of our algorithm. The
presented algorithm inserts semantic locking operations into the
atomic section to ensure that every transaction follows Ordered
S2PL.

In this section, when the algorithm infers a call "lock(SY)"
of an ADT A, the symbolic set SY contains all A’s operations
(i.e., for any given σ, the set [[SY]](σ) contains all A’s oper-
ations). Such symbolic set is created by using a set with all
A’s methods, where all the method arguments are ∗ — e.g.,
for the Set ADT, mentioned in Fig. 3(a), this symbolic set is
"{add(∗), remove(∗), contains(∗), size(), clear()}". For brevity,
in this section, we denote such a call by writing "lock(+)". Fig. 17
shows the code produced by the algorithm for the atomic section
presented in Fig. 1. In essence, this algorithm uses a locking gran-
ularity at the ADT instance level: two transactions cannot concur-
rently invoke operations on the same ADT.

In Section 4, we show a way to permit more fine-grained con-
currency by refining the symbolic sets that are passed to the lock
methods. In Section 5 we show how these symbolic sets are trans-
lated to synchronization code.

In this section, we say that an ADT instance A is locked by
transaction t if the operations of A are locked by t.

3.1 Enforcing S2PL
Ensuring that all transactions follow S2PL is relatively straightfor-
ward. For every statement x.f(...) in the atomic section that in-
vokes an ADT method, we insert code, just before the statement, to
lock the ADT instance that x points to, unless it has already been

1 LV(x) {
2 if(x!=null && !LOCAL_SET.contains(x)) {
3 x.lock(+);
4 LOCAL_SET.add(x);
5 }}

Figure 5. Code macro with the locking code.

void f(Set x, Set y) { atomic {
LOCAL_SET.init(); // prologue
LV(x); int i = x.size();
LV(y); y.add(i);
foreach(t : LOCAL_SET) t.unlockAll(); // epilogue

}}

Figure 6. Atomic section that follows the S2PL protocol.

locked by the current transaction. At the end of the atomic section,
we insert code to unlock all ADT instances that have been locked
by the transaction. We achieve this as follows.
Locked ADTs Each transaction uses a thread-local set, denoted
LOCAL_SET, to keep track of all ADT instances that it has currently
locked. This set is used to avoid locking the same ADT multiple
times and to make sure that all ADTs are eventually unlocked.
Prologue and Epilogue At the beginning of each atomic section,
we add code that initializes LOCAL_SET to be empty. At the end of
each atomic section, we add code that iterates over all ADTs in the
LOCAL_SET, and invokes their unlockAll operations.
Locking Code We utilize the macro LV(x) shown in Fig. 5 to lock
the ADT instance pointed to by a variable x. The macro locks the
ADT pointed by x and adds it to LOCAL_SET. It has no impact when
x is null or points to an ADT that has already been locked by the
current transaction.

Fig. 6 shows an example for an atomic section with inserted
locking code that ensures the S2PL protocol.

3.2 Lock Ordering Constraints
The basic idea sketched above does not ensure that all transactions
lock ADTs in a consistent order. Hence, it is possible for the trans-
actions to deadlock. We now describe an extension of the algorithm
that statically identifies a suitable ordering on ADT instances and
then inserts locking code to ensure that ADT instances are locked
in this order.

We first describe the restrictions-graph, a data-structure that
captures constraints on the order in which ADT instances can be
locked. We utilize this graph to determine the order in which the
locking operations are invoked.
A Static Finite Abstraction At runtime, an execution of the client
program can create an unbounded number of ADT instances. Our
algorithm is parameterized by a static finite abstraction of the set
of ADT instances that the client program can create at runtime. Let
PVar denotes the set of pointer variables that appear in the atomic
code sections. The abstraction consists of an equivalence relation
on PVar. For any x ∈ PVar, let [x] denote the equivalence class that
x belongs to. The semantic guarantees provided by the abstraction
are as follows. Any ADT instance created by any execution corre-
sponds to exactly one of the equivalence classes. Furthermore, at
any point during an execution, any variable x ∈ PVar is guaranteed
to be either null or point to an ADT represented by the equivalence
class [x].

Note that the abstraction required above can be computed using
any pointer analysis (e.g., see [18]) or simply using the static
types of pointer variables. In our compiler, we utilize the points-to

34



1 void g(Map m, int key1, int key2, Queue q) {
2 atomic {
3 Set s1 = m.get(key1);
4 Set s2 = m.get(key2);
5 if(s1!=null && s2!=null) {
6 s1.add(1);
7 s2.add(2);
8 q.enqueue(s1);
9 }

10 }}

Figure 7. Atomic section that manipulates a Map, a Queue, and
two Sets.

analysis of [5] to compute this information. Note that even though
various pointer analyses give more precise information than that
captured by the above abstraction, our implementation requires
only this information.

EXAMPLE 3.1. The atomic section in Fig. 7 has 4 pointer vari-
ables (m, q, s1 and s2). The equivalence relation consisting of the
three equivalence classes {m}, {q} and {s1, s2} is a correct ab-
straction for this atomic section. This abstraction can be produced
using static type information, without the need for a whole program
analysis.

The Restrictions-Graph Each node of the restrictions-graph repre-
sents an equivalence class in PVar (and, hence, is a static represen-
tation of a set of ADT instances that may be created at runtime).
An edge u → v in the restrictions-graph conservatively indicates
the possibility of an execution path along which an ADT instance
belonging to umust be locked before an ADT instance belonging to
v (within the same transaction). We identify these constraint edges
as follows.

We write l: x.f(...) to denote a call to a method f via the
variable x ∈ PVar at the program location l. Consider an atomic
section with two calls l: x.f(...) and l’: x’.f’(...) such
that location l’ is reachable from location l (in the CFG of the
atomic section). Obviously, we need to lock the ADT pointed by
x before location l and to lock the ADT pointed by x’ before
location l’. Clearly, we can lock the ADT pointed to by x before
we lock the ADT pointed to by x’. However, when can we lock
these two ADTs the other way around? If the value of x’ is never
changed along the path between l and l’, then the ADT pointed
by x’ can be locked before l. However, if x’ is assigned a value
along the path between l and l’, then, in general, we may not
be able to lock the ADT pointed to by x’ (at location l’) before
the ADT pointed to by x, as we may not know the identity of the
ADT to be locked. In such a case, we conservatively add an edge
[x]→ [x’] to the restrictions-graph.

EXAMPLE 3.2. In Fig. 7, the ADT pointed by m should be locked
before the ADT pointed by s1, because the call s1.add(1) can
only be executed after the call m.get(key1), and the value of s1
is changed between these calls.

EXAMPLE 3.3. Fig. 8 shows a restrictions-graph for the atomic
section in Fig. 7. According to this graph the ADTs pointed by m
should be locked before ADTs pointed by s1 or s2. This is the only
restriction in the graph. For example, the graph does not restrict
the order between the ADTs pointed by m and the ADTs pointed by
q. Moreover, it does not restrict the order between ADTs pointed by
s1 and the ADTs pointed by s2 (even though they are represented
by the same node).

The calls in l and l’ can be the same call (i.e., l = l’).
This is demonstrated in the atomic section of Fig. 9: the call
set.size() is reachable from itself (because of the loop), and

{s1,s2}{m}

{q}

{s1,s2}{m}

{q}

Figure 8. Restrictions-graph for the atomic section in Fig. 7.

1 atomic {
2 sum=0;
3 for(int i=0;i<n;i++) {
4 set = map.get(i);
5 if(set!=null) sum += set.size();
6 }}

Figure 9. Atomic section for which the restrictions-graph has a
cycle.

{set}{map}

Figure 10. Restrictions-graph for the atomic section in Fig. 9.

{s1,s2,set}

{m}

{q,queue}

{map}

{s1,s2,set}

{m}

{q,queue}

{map}

Figure 11. Restrictions-graph for two atomic sections: the section
in Fig. 1 and the section in Fig. 7.

set can be changed between two invocations of this call. A possi-
ble restrictions-graph is shown in Fig. 10.

The restrictions-graph is computed for all the atomic sections
in the program. Fig. 11 shows a restrictions-graph for the atomic
sections from Fig. 1 and Fig. 7.

3.3 Enforcing OS2PL on Acyclic Graphs
We now describe an algorithm to insert locking code into a the
atomic sections to ensure that all transactions follow the OS2PL
protocol. This technique is applicable as long as the restrictions-
graph is acyclic. In Section 3.4, we show a technique to handle
restrictions-graphs with cycles.

We sort the nodes in the restrictions-graph using a topological
sort. This determines a total-order ≤ts on the equivalence classes.
We define the relations< and≤ on the variables in PVar as follows.
We say that x < y iff [x] <ts [y] and that x ≤ y iff [x] ≤ts [y].
Note that ≤ is only a preorder on PVar and not a total order.
Variables belonging to different equivalence classes are always
ordered by<, whereas variables belonging to the same equivalence
class are never ordered by <.

The relation< is used to statically determine the order in which
ADT instances belonging to different equivalent classes are to
be locked. However, we cannot do the same for ADT instances
belonging to the same equivalence class. Instead, we dynamically
determine the order in which ADT instances belonging to the same
equivalence class are locked, as described below.
Locking Code Insertion Consider any statement l: x.f(...) in
an atomic section that invokes an ADT method. We define the set
LS(l) to be the set of variables y such that
1. y ≤ x, and
2. There exists a (feasible) path, within the same atomic section,

from l to some statement of the form l’: y.g(...), i.e., a
statement that invokes an ADT method using y.

35



1 LV2(x,y) {
2 if(unique(x)<unique(y)) {
3 LV(x); LV(y) ;
4 } else {
5 LV(y); LV(x) ;
6 }}

Figure 12. Locking two equivalent variables in a unique order .

1 void g(Map m, int key1, int key2, Queue q) {
2 atomic {
3 LOCAL_SET.init(); // prologue
4 LV(m); Set s1 = m.get(key1);
5 LV(m); Set s2 = m.get(key2);
6 if(s1!=null && s2!=null) {
7 LV2(s1,s2); s1.add(1);
8 LV(s2); s2.add(2);
9 LV(q); q.enqueue(s1);

10 }
11 foreach(t : LOCAL_SET) t.unlockAll(); // epilogue
12 }}

Figure 13. The atomic section from Fig. 7 with the non-optimized
locking code . The locking was created by using the order: m <
s1,s2 < q.

1 atomic {
2 LOCAL_SET.init(); // prologue
3 LV(map); set=map.get(id);
4 if(set==null) {
5 set=new Set(); LV(map); map.put(id, set);
6 }
7 LV(map);LV(set);set.add(x); LV(map);LV(set);set.add(y);
8 if(flag) {
9 LV(map); LV(queue); queue.enqueue(set);

10 LV(map); map.remove(id);
11 }
12 foreach(t : LOCAL_SET) t.unlockAll(); // epilogue
13 }

Figure 14. . The atomic section from Fig. 1 with the non-
optimized locking code . The locking was created by using the or-
der: map < set < queue.

The set LS(l) identifies the variables that we wish to lock before
statement l. We insert locking code for all variables in this set as
follows:
• If y < y′, then the locking code for y is inserted before the

locking code for y′.
• If y and y′ are in the same equivalence class, the locking order

is determined dynamically (since, we do not calculate a static
order for such variables). This is done by using unique ADT
identifiers (e.g., their memory addresses). Let unique(y) de-
note the unique identifier of the ADT pointed by y. These iden-
tifiers are used by the inserted code to (dynamically) determine
the order in which the variables are handled. Fig. 12 demon-
strates the case of two variables; in the general case ADTs are
sorted to obtain the proper order. (For simplicity, we have omit-
ted the handling of null pointers, which are straight-forward
to handle.)

Fig. 13 shows the atomic section of Fig. 7 with the inserted code,
and Fig. 14 shows the atomic section of Fig. 1 with the inserted
code. For both atomic sections, we used the graph in Fig. 11.

1 class GlobalWrapper1 {
2 int size(Set s) {return s.size();}
3 ...
4 }
5 GlobalWrapper1 p1 = new GlobalWrapper1();
6 atomic { LOCAL_SET.init(); // prologue
7 sum=0;
8 for(int i=0;i<n;i++) {
9 LV(map); set = map.get(i);

10 if(set!=null) { LV(map); LV(p1); sum += p1.size(set); }
11 } foreach(t : LOCAL_SET) t.unlockAll(); // epilogue
12 }

Figure 15. The atomic section from Fig. 9 with the non-optimized
locking code. Here, the objects pointed by set are represented by
an instance of class GlobalWrapper1 (pointed by a global pointer
p1). The class GlobalWrapper1 is a simple class that wraps Set
objects.

e c 

a b 

d 

Figure 16. A graph with two cyclic components. One cyclic com-
ponent is composed of nodes b and c, and another is composed of
node e.

3.4 Handling Cycles
In Section 3.3, each Java object is treated as an individual ADT,
and the acyclic restrictions graph is used to ensure that all ADTs are
locked in a consistent order. In order to enforce the OS2PL protocol
when the computed restrictions graph has cycles, we treat several
Java objects as a single global ADT. For example, the OS2PL
protocol can be enforced for the code in Fig. 9 (its graph appears
in Fig. 10), by treating all objects pointed by the pointer set as
a single global ADT. Fig. 15 shows the code section from Fig. 9
with locking code that follows OS2PL: in this code, the pointer p1
points to a global ADT that wraps the relevant instances of Set.

Given a restrictions graph with cycles, we first find all its
strongly connected components that contain cycles — such com-
ponent is called a cyclic component. Fig. 16 shows an example for
a graph and its cyclic components.

For each cyclic component C, we treat all the objects pointed
by the variables in C as a single ADT that is pointed by the pointer
pC . This is realized by creating (for each cyclic component C)
a global pointer pC that points to an ADT that wraps the Java
objects pointed by C’s pointers (as demonstrated in Fig. 15). We
now repeat the algorithm presented in Section 3.3 — in this case,
the restrictions graph will be acyclic because each pC replaces all
pointers in C, and pC always points to the same ADT (hence, no
pointer has to be locked before pC ).

3.5 Optimizations
The algorithm described above is simplistic in some respects. In
Appendix A, we present a sequence of code transformations whose
goal is to reduce the overhead of the synthesized code and to
increase the parallelism permitted by the concurrency control. In
particular, we present transformations that remove inserted code
that can be shown to be redundant, and transformations that move
calls to unlockAll so as to release locks on ADTs as early as
possible (as determined by a static analysis). Fig. 17 shows the
optimized version of Fig. 14.

36



1 atomic { map.lock(+);
2 set=map.get(id);
3 if(set==null) {
4 set=new Set(); map.put(id, set);
5 }
6 set.lock(+); set.add(x); set.add(y);
7 if(flag) { queue.lock(+);
8 queue.enqueue(set); queue.unlockAll();
9 map.remove(id);

10 }
11 map.unlockAll(); set.unlockAll();
12 }

Figure 17. The optimized version of Fig. 14. Note that a large
portion of the locking code is removed, and the set LOCAL_SET
is not explicitly used. Also, the ADT pointed by queue is unlocked
before the end of the section.

1 atomic { //{get(id),put(id,*),remove(id)}
2 set=map.get(id); //{put(id,*),remove(id)}
3 if(set==null) { //{put(id,*),remove(id)}
4 set=new Set(); map.put(id, set); //{remove(id)}
5 } //{remove(id)}
6 set.add(x); //{remove(id)}
7 set.add(y); //{remove(id)}
8 if(flag) { //{remove(id)}
9 queue.enqueue(set); //{remove(id)}

10 map.remove(id); //{}
11 } //{}
12 }

Figure 18. The code section from Fig. 1 annotated with the in-
ferred symbolic sets for the variable map.

4. Inferring Refined Symbolic Sets
Our compiler refines the generic symbolic sets used in Section 3 by
considering the actual operations used in the atomic sections. The
compiler analyzes the atomic sections, to infer for every pointer
variable x and code location l, a symbolic set SYx,l that conserva-
tively describes the set of future ADT operations that may be in-
voked on the ADT instance that x points to. We use a simple back-
ward analysis [20] to compute this information. As in Section 3, we
do not distinguish between pointer variables belonging to the same
equivalence class (i.e., the information computed is the same for all
variables in the same equivalence class).

This analysis is equivalent to the static algorithm used in [9].
But, in contrast to [9] in which all shared memory is treated as a
single ADT, we separately repeat these steps for each equivalence
class.

Fig. 18 illustrates the inferred symbolic sets for the code section
from Fig. 1 for the equivalence class consisting of variable map.

Recall that the algorithm presented in Section 3 identifies a set
of pairs (x, l) such that we insert a locking operation on variable x
at program location l. We use the same algorithm now, except that
we use the symbolic set SYx,l instead of using the generic symbolic
set from Section 3.

Fig. 2 shows the code from Fig. 17 after refining its symbolic
set (each generic symbolic set "+" is replaced with a symbolic set
that represents operations which are actually used in this section).

5. Realizing Semantic Locking
5.1 Locking Modes
The compiler implements the semantic locking of an ADT A by
generating a finite number of locking modes for A where each

mode represents a set of A’s runtime operations (this can be seen
as a generalization of the read-mode and the write-mode which are
used for standard read-write-locks). The generated locking modes
are based on the symbolic sets that have been inferred in Section 4:
for each ADT A the compiler creates locking modes according to
the symbolic sets that may be used to lock A’s operations. In the
following paragraphs we describe our approach to compute and use
locking modes for ADT A.

We distinguish between two types of symbolic sets: constant
symbolic sets and variable symbolic sets. A constant symbolic set is
a symbolic set with no variables (each one of its arguments is either
a specific value or a ∗ symbol) — e.g., {add(5 )} and {add(∗)}
are constant symbolic sets. A variable symbolic set is a symbolic
set that has variables (at least one) — e.g., {add(i), remove(j )}
is a variable symbolic set. Notice that, a constant symbolic set
represents a constant set of runtime operations, whereas the set of
runtime operations represented by a variable symbolic set depends
on the actual runtime values of its variables.

For each constant symbolic set SYc, we create a locking mode l
that represents the same runtime operations; and replace each call
lock(SYc) with lock(l).

In order to handle variable symbolic sets, we use a hash func-
tion φ : Value→ {α1, . . . , αn} that maps runtime values to n ab-
stract values (φ is a parameter of our algorithm). An abstract value
αi is used to represent a disjoint set of runtime values which may
be used by the program (in particular, αi represents the values in
{v ∈ Value | φ(v) = αi}). For any variable symbolic set SYv with
variables a1, . . . , ak, we create a locking mode for each assignment
of the abstract values to SYv’s variables — this will guarantee that
each runtime instance of SYv is represented by one of the locking
modes. For example, if n = 2 then for the variable symbolic set
{add(i), remove(j )} we create 4 locking modes which are repre-
sented by: {add(α1 ), remove(α1 )}, {add(α1 ), remove(α2 )},
{add(α2 ), remove(α1 )} and {add(α2 ), remove(α2 )}.

We then replace each call lock(SYv) where SYv is a variable
symbolic set with code that dynamically finds the relevant locking
mode l (by using φ) and passes l to the lock method. For example
x.lock({add(i), remove(j )}) is replaced by the code:

1 t1 = φ(i)

2 t2 = φ(j)

3 l = the locking mode that represents {add(t1), remove(t2)}
4 x.lock(l)

In this code, lines 1, 2 find abstract values that represent the runtime
values of i and j; lines 3, 4 pass the relevant locking mode to lock.

5.2 Realizing a Locking Mechanism
Commutativity Specification In order to utilize semantic proper-
ties of the shared ADTs, the user of our compiler has to provide
a commutativity specification for each Java class that represents a
shared ADT. For any two operations o, o′ (which are implemented
by the class) the specification contains a condition Io,o′ such that if
Io,o′ is satisfied then o and o′ commute. An example for a commu-
tativity specification appears in Fig. 3: in this example, operations
add(v) and contains(v′) are commutative when their values are
different (because of the condition v 6= v′); operations add(v) and
add(v′) are always commutative (their condition is true); and oper-
ations add(v) and size() are never commutative (their condition
is false).

Commutativity Function. For any ADT A, we use the inferred
locking modes and the given commutativity specifications to com-
pute a commutativity function Fc that maps every two inferred
locking modes l, l′ to either true or false. This function satisfies
Fc(l, l

′) = true, if all operations represented by l are commutative
with all operations represented by l′.

37



1 object internalLock = new Object();
2 void lock(mode l) { start:
3 for each mode l′

4 if (Cl′>0 and not Fc(l, l
′)) goto start;

5 synchronized(internalLock) { // standard Java lock
6 for each mode l′

7 if (Cl′>0 and not Fc(l, l
′)) goto start;

8 Cl.Increment() ;
9 }

10 }
11 void unlock(mode l) { Cl.Decrement(); }

Figure 20. Pseudo code of locking mechanism for an ADT A.
Fc is the commutativity function, and each locking mode l is
represented by an atomic counter Cl . The atomic counter Cl holds
the number of transactions that hold a lock on the ADT in mode l.

Fig. 19 shows an example for a commutativity function which
is computed using the commutativity specification in Fig. 3(b). In
this example we use a hash function φ : Value → {α1, α2} that
satisfies φ(5) = α1.

Locking Mechanism. We implement the locking mechanism of
each ADT A (its lock and unlock methods) by utilizing the in-
ferred locking modes and their computed commutativity function.
Fig. 20 shows the pseudo code of the implementation used by our
compiler. In the shown code, Fc is the commutativity function, and
each locking mode l is represented by an atomic counter Cl . The
counter Cl contains the number of transactions that hold a lock on
the ADT in mode l (it is initialized to zero). At lines 3-4 the code
tries to avoid using the internal lock at line 5 (when the lock cannot
be acquired by the transaction). The main logic of lock is imple-
mented at lines 5-9.

Lock Partitioning. The single internal lock in the above mech-
anism can become a synchronization bottleneck. We try to avoid
such bottlenecks by trying to partition the above mechanism.

If MA is the set of A’s modes, we try to find k disjoint sets
of modes M1, . . . ,Mk such that for every i 6= i′ , all operations
represented by the modes in Mi commute with all operations rep-
resented by the modes in Mi′ . (i.e., ∀l ∈ Mi, l

′ ∈ Mi′ : i 6= i′ →
Fc(l, l

′) = true). Hence, if l ∈ Mi and l′ ∈ Mi′ then it is cor-
rect to simultaneously hold locks on mode l and mode l′. If we find
k ≥ 2 sets, we create a separate locking mechanism for each one
of the sets.

For example, given a Set with 3 locking modes l1, l2, l3 that, re-
spectively, represent {get(7 )}, {get(∗)}, and {add(1 )}. We cre-
ate a locking mechanism ∆ that handles mode l1, and another
mechanism ∆′ that handles modes l2 and l3. (Becuase the oper-
ations represented by l1 commute by the operations represented by
l2 and l3.) When l1 is locked/unlocked we use ∆, and when l2 or
l3 is locked/unlocked we use ∆′.

5.3 Optimizations
We use the following optimizations:
1. Two locking modes l1, l2 are indistinguishable if ∀l : Fc(l1, l) =
Fc(l2, l). Each set of indistinguishable locking modes is imple-
mented as a single locking mode.

2. The same ADT type may be used differently in various parts of
the program. Hence, in order to create more specialized locking,
we repeat the above approach (Sections 5.1 and 5.2) for each
equivalence class of the pointers. In other words, we implement
locking for every ADT and a node of the restrictions-graph.

3. In order to bound the number of inferred nodes, the compiler
uses a numeric parameter N which represents the maximum
number of locking modes (of each ADT instance). If we infer

more than N modes, then we merge them until we have N
modes.

The above optimizations enable using a large number of abstract
values (e.g., in Section 6 we use a hash function that maps runtime
values to 64 abstract values).

6. Performance Evaluation
In this section we present an experimental evaluation of our ap-
proach. The presented evaluation shows that our approach produces
efficient and scalable synchronization. Furthermore, it shows that
utilizing the semantic properties of ADTs is beneficial, and that the
produced synchronization is comparable to hand-crafted synchro-
nization.

Our evaluation is based on 5 different benchmarks. In 3 bench-
marks we evaluate the performance of composite modules (Com-
puteIfAbsent, Graph, and Cache). In 2 benchmarks we evaluate the
performance of Java applications (Intruder and GossipRouter). In
most benchmarks (Graph, Cache, Intruder and GossipRouter) the
shared state is composed from several (at least two) ADT instances.

We compare the performance of our approach to: (i) a single
global lock (denoted by Global); (ii) an implementation of the
standard two-phase locking protocol where each ADT instance is
protected by a standard lock (denoted by 2PL); and (iii) a hand-
crafted synchronization (denoted by Manual).

The 2PL synchronization was implemented by using the output
of Section 3 — instead of locking operations of ADT instance A,
we acquire a Java lock that protects A. For Graph, Cache and
GossipRouter, Manual was implemented by manually optimizing
the synchronization produced by [9]; for ComputeIfAbsent and
Intruder, Manual was implemented by using variants of the lock
striping technique (see below).

We use a machine with four Intel(R) Xeon(R) E5-4650 CPUs,
eight cores each (i.e., 32 physical cores overall). The machine’s
hyperthreading is disabled.

6.1 Composite Modules
We evaluate the performance of 3 composite modules which are
implemented using several general-purpose ADTs. Each (public)
procedure of the modules is marked as an atomic section.

We use the evaluation methodology of [13] and consider several
different workloads (as in other works, e.g., [12]). Every pass of
the test program consists of each thread performing ten million
randomly chosen procedure invocations on a shared module. To
ensure consistent and accurate results, each experiment consists of
five passes; the first pass warms up the VM and the four other
passes are timed. Each experiment was run four times and the
arithmetic average of the throughput is reported as the final result.

ComputeIfAbsent The ComputeIfAbsent benchmark [9] is a sim-
ulation of a pattern that is widely used in Java applications. Many
bugs in Java programs are caused by non-atomic realizations of this
simple pattern [22]. It can be described with the following pseudo-
code:

if(!map.containsKey(key)) {
value = ... // pure computation
map.put(key, value);

}

The idea is to compute a value and store it in a Map, if and only
if, the given key is not already present in the Map. In our experi-
ments the computation was emulated by allocating 128 bytes.

Here, Manual was implemented by using a lock striping tech-
nique with 64 locks (similar to [12]) where each key is protected
by one of the locks. This benchmark was also compared to a hand-

38



{add(∗)} {add(5)} {add(α1 ) ,
remove(α1 )}

{add(α1 ) ,
remove(α2 )}

{add(α2 ) ,
remove(α1 )}

{add(α2 ) ,
remove(α2 )}

{add(∗)} true true false false false false
{add(5)} true false true false true

{add(α1 ), remove(α1 )} false false false true
{add(α1 ), remove(α2 )} true false false
{add(α2 ), remove(α1 )} true false
{add(α2 ), remove(α2 )} false

Figure 19. A commutativity function for the Set ADT described in Fig. 3. For every pair of locking modes l, l′ (described as constant
symbolic sets) the function returns true, IFF, l and l′ commute. The shown function has been computed for the symbolic sets {add(∗)},
{add(5 )} and {add(i), remove(j )}. We assume that φ maps runtime values to the abstract values α1 and α2; and φ(5) = α1.

0 

5000 

10000 

15000 

1 2 4 8 16 32 

o
p

er
at

io
n

s/
m

lli
se

co
n

d
 

Threads 

Ours Global 2PL Manual V8 

Figure 21. ComputeIfAbsent throughput as a function of the num-
ber of threads.

0 

1000 

2000 

3000 

4000 

5000 

6000 

1 2 4 8 16 32 

o
p

er
at

io
n

s/
m

lli
se

co
n

d
 

Threads 

Ours Global 2PL Manual 

Figure 22. Graph throughput as a function of the number of
threads. 35% find successors, 35% find predecessors, 20% insert
edge and 10% remove edge.

crafted implementation of the ComputeIfAbsent pattern from [1]
(denoted by V8). The results are shown in Fig. 21.

Graph This benchmark uses a Java implementation of the Graph
from [12]. The Graph consists of four procedures: find successors,
find predecessors, insert edge, and remove edge. The graph is
implemented by using two Multimap [4] instances. Results for one
workload, from [12], are shown in Fig. 22 (these results are similar
to the other workloads in [12]).

Cache This benchmark uses the Tomcat’s cache [2]. This cache
is implemented by using a Map and a WeakMap [4]. The cache
consists of two procedures Put and Get which manipulate the
maps. In this cache, the Get is not a read-only procedure (in some
cases, it copies an element from one map to another). The cache
gets a parameter (size) which is used by its algorithm. Results for
one workload, from [9], are shown in Fig. 23 (these results are
similar to the other workload in [9]).

6.2 Java Applications

Intruder The Intruder benchmark [7] is a multi-threaded applica-
tion that emulates an algorithm for signature-based network intru-
sion detection. For our study we use its Java implementation from
[16] in which atomic sections are already annotated. We use the

0 

500 

1000 

1500 

2000 

1 2 4 8 16 32 

o
p

er
at

io
n

s/
m

lli
se

co
n

d
 

Threads 

Ours Global 2PL Manual 

Figure 23. Cache throughput as a function of the number of
threads. 90% Get, 10% Put and size=5000K.

0 

100 

200 

300 

400 

500 

600 

1 2 4 8 16 32 

Sp
ee

d
u

p
(%

) 

Threads 

Ours Global 2PL Manual 

Figure 24. Intruder. Speedup over a single-threaded execution.

workload which is represented by the configuration "-a 10 -l 256 -n
16384 -s 1" (see [7]).

For this benchmark, Manual is an ad-hoc synchronization in
which we combine lock striping and efficient linearizable imple-
mentations of a Map and a Queue. The results are shown in Fig. 24
as the speedup over a single-threaded execution.
GossipRouter The GossipRouter is a Java multi-threaded routing
server from [3]. Its main state is a routing table which consists of
an unbounded number of Map ADTs. We use the version from [9]
(in this version the atomic sections are already annotated). We used
a performance tester from [3] (called MPerf ) to simulate 16 clients
where each client sends 5000 messages. In this experiment the
number of threads cannot be controlled from the outside (because
the threads are autonomously managed by the router). Therefore,
instead of changing the number of threads, we changed the number
of active cores. The results are shown in Fig. 25 as the speedup over
a single-core execution.

An interesting aspect of this benchmark is that the atomic sec-
tions contain I/O operations (logging operations, and operations
that send network messages). We treat the I/O operations as thread-
local operations, which is safe for this benchmark as the I/O opera-
tions are never used to communicate between threads. This kind of
extension is possible because our approach does not use rollbacks.

39



0 

100 

200 

300 

400 

500 

600 

700 

1 2 4 8 16 32 

Sp
ee

d
u

p
(%

) 

Cores 

Ours Global 2PL Manual 

Figure 25. GossipRouter. Speedup over a single-core execution.

7. Related Work
Concurrent Libraries of Abstract Data Types The solution used
in practice, to simplify concurrency control, is libraries that pro-
vide sophisticated concurrent ADTs such as sets and maps (e.g., see
[14]). These ADTs ensure atomicity of their basic operations, while
hiding the complexity of synchronization inside their libraries. Un-
fortunately, this approach does not address a common need: the
need to execute a code fragment atomically, where the code frag-
ment performs multiple ADT operations. The client programmers
must devise their own concurrency control solution in this scenario.
As shown in [22], this leads to many bugs in practice.
Atomic Sections Atomic sections (or software transactions) have
been proposed as a language construct that simplifies a program-
mer’s job and leaves it to a compiler and runtime to realize the
necessary concurrency control. A number of implementation ap-
proaches have been proposed for realizing atomic sections [11].
The classical approaches to implementing atomic sections have the
following distinguishing characteristics.
1. They rely on optimistic concurrency control, which detects

conflicts after the fact, and requires the use of rollbacks to
resolve conflicts.

2. They use a data-based approach to conflict detection: a depen-
dence is inferred between two transactions if they both access
the same location, and at least one of the accesses is a write.

3. They require all code in an atomic section (including library
methods called from the atomic section) to use the same trans-
actional runtime. In particular, this means that all code in an
atomic section must use the same concurrency control solution.

Each of these aspects has associated disadvantages, some of which
have been addressed by previous work as explained below.
Semantic Conflict Detection A data-based approach to detect-
ing conflicts/dependence between transactions is imprecise and
can lead to spurious conflicts/dependences. A semantics-based
approach (e.g., one that identifies two high-level operations as
commuting even though they access and modify the same data)
to identifying dependences/conflicts between transactions can en-
able greater parallelism. This idea is quite old and was proposed
early on for database transaction implementations (e.g., [6, 21]).

Similar ideas have also motivated the development of various
implementation techniques and variants of software transactions
(e.g., see [17]). Most of these approaches require the use of a
rollback mechanism. In contrast, our approach exploits semantic
dependence detection without using a rollback mechanism. This
may be an advantage in some cases: for example, when a rollback
mechanism has a high runtime and memory overhead [8], and when
I/O operations are involved.
Automatic Locking Several algorithms have been proposed to re-
alize atomic sections using pessimistic concurrency control, i.e.,
locking. These algorithms synthesize the necessary locking code
using static analysis (e.g., [10, 19]). Our algorithm is inspired by

these algorithms, with the key difference that the locks in our ap-
proach are associated with ADT operations while in previous work
locks are associated with memory locations or data. Hence, in con-
trast to existing locking approaches, our algorithm can exploit se-
mantic dependence detection and enable more parallelism.

The approach in [9] can be seen as a semi-automatic lock in-
ference algorithm that is able to exploit semantic properties of the
shared state. In contrast to this paper, in [9] the shared state has
to be represented as a single ADT (a shared library), and this sin-
gle ADT is required to support special synchronization operations
(which are implemented manually). Moreover, in contrast to this
paper which utilizes a semantic-aware variant of the two-phase
locking protocol, the synchronization in [9] is implemented as a
semantic-aware variant of the tree locking protocol.

References
[1] gee.cs.oswego.edu/dl/jsr166/dist/jsr166edocs/

jsr166e/ConcurrentHashMapV8.html.

[2] www.devdaily.com/java/jwarehouse/apache-tomcat-
6.0.16/java/org/apache/el/util/ConcurrentCache.java.shtml.

[3] http://www.jgroups.org.

[4] guava-libraries. code.google.com/p/guava-libraries/.

[5] Wala. http://wala.sourceforge.net.

[6] BERNSTEIN, P. A., HADZILACOS, V., AND GOODMAN, N. Concur-
rency Control and Recovery in Database Systems. Addison-Wesley,
1987.

[7] CAO MINH, C., CHUNG, J., KOZYRAKIS, C., AND OLUKOTUN, K.
STAMP: Stanford transactional applications for multi-processing. In
IISWC (2008).

[8] CASCAVAL, C., BLUNDELL, C., MICHAEL, M., CAIN, H. W., WU,
P., CHIRAS, S., AND CHATTERJEE, S. Software transactional mem-
ory: Why is it only a research toy? Queue 6, 5 (Sept. 2008), 46–58.

[9] GOLAN-GUETA, G., RAMALINGAM, G., SAGIV, M., AND YAHAV,
E. Concurrent libraries with foresight. In PLDI (2013).

[10] GUDKA, K., HARRIS, T., AND EISENBACH, S. Lock inference in the
presence of large libraries. In ECOOP. 2012.

[11] HARRIS, T., LARUS, J., AND RAJWAR, R. Transactional memory,
2nd edition. Synthesis Lectures on Computer Architecture 5, 1 (2010).

[12] HAWKINS, P., AIKEN, A., FISHER, K., RINARD, M., AND SAGIV,
M. Concurrent data representation synthesis. In PLDI (2012).

[13] HERLIHY, M., LEV, Y., LUCHANGCO, V., AND SHAVIT, N. A
provably correct scalable concurrent skip list. In OPODIS (2006).

[14] HERLIHY, M., AND SHAVIT, N. The Art of Multiprocessor Program-
ming. Morgan Kauffman, Feb. 2008.

[15] HERLIHY, M. P., AND WING, J. M. Linearizability: A correctness
condition for concurrent objects. TOPLAS 12 (1990).

[16] KORLAND, G., SHAVIT, N., AND FELBER, P. Noninvasive concur-
rency with java stm. In MULTIPROG (2010).

[17] KOSKINEN, E., PARKINSON, M., AND HERLIHY, M. Coarse-grained
transactions. In POPL (2010), pp. 19–30.

[18] LHOTÁK, O., AND HENDREN, L. Scaling java points-to analysis
using spark. In Proceedings of the 12th international conference on
Compiler construction (2003), CC’03.

[19] MCCLOSKEY, B., ZHOU, F., GAY, D., AND BREWER, E. Au-
tolocker: synchronization inference for atomic sections. In POPL
(2006).

[20] NIELSON, F., NIELSON, H. R., AND HANKIN, C. Principles of
Program Analysis. Springer-Verlag New York, Inc., 1999.

[21] SCHWARZ, P. M., AND SPECTOR, A. Z. Synchronizing shared
abstract types. ACM Trans. Comput. Syst. 2, 3 (Aug. 1984), 223–250.

[22] SHACHAM, O., BRONSON, N., AIKEN, A., SAGIV, M., VECHEV,
M., AND YAHAV, E. Testing atomicity of composed concurrent
operations. In OOPSLA (2011).

40



1 atomic {
2 LOCAL_SET.init(); // prologue
3 LV(map); set=map.get(id);
4 if(set==null) {
5 set=new Set(); map.put(id, set);
6 }
7 LV(set); set.add(x); set.add(y);
8 if(flag) {
9 LV(queue); queue.enqueue(set);

10 map.remove(id);
11 }
12 foreach(t : LOCAL_SET) t.unlockAll(); // epilogue
13 }

Figure 26. The code from Fig. 14 after removing redundant in-
stances of LV(x).

[23] SĂLCIANU, A., AND RINARD, M. Purity and side effect analysis for
Java programs. In VMCAI (2005), pp. 199–215.

A. Optimizations
In this appendix we describe optimizations for the algorithm in Sec-
tion 3. We present a set of simple semantics-preserving transfor-
mations, with the goal of reducing the overhead of the synthesized
code and increasing the parallelism permitted by the concurrency
control.

In the sequel, we use the term “path” to denote feasible execu-
tion paths within a single atomic section.
Removing Redundant LV(x) In some cases, the code LV(x) in-
serted at a location l is redundant. Our compiler removes redundant
instances of LV(x) by repeatedly using the following rules:
• If the object pointed to by x at l is locked along all (feasible)

paths from the beginning of the atomic section to l, then the
code LV(x) has no effect at l and can be removed. For example,
in Fig. 14, LV(map) can be removed from line 9 because the
Map has already been locked.
• If the object pointed to by x at l is never used along any feasible

path from l to the end of the atomic section, then the code
LV(x) is not required at l and can be removed.
Fig. 26 shows the code from Fig. 14 after removing redundant

instances of LV(x).
Removing Redundant LOCAL_SET Usage Our algorithm uses
LOCAL_SET to avoid locking the same object multiple times and
to ensure that all objects are unlocked before the end of the
atomic section. Often, we can achieve these goals without using
LOCAL_SET. LOCAL_SET is not needed for a pointer variable x if
the following conditions hold:
(1) No path contains an occurrence of LV(x) and another occur-

rence of LV(y) where x and y may point to the same object.
(2) The value of x is never modified along any path from an occur-

rence of LV(x) to the end of the atomic section.
(3) The value of x is null at the end of any path to the end of the

atomic section that contains no occurrence of LV(x).
Because of (1) we know that re-locking is not possible; and

because of (2) and (3) we know that we can release all the objects
used via x by calling to “if(x!=null) x.unlockAll()” at the
end of the atomic section.

If the conditions are satisfied for x, we replace all instances of
LV(x) with “if(x!=null) x.lock(+)” ; and at the end of the
section we insert the code “if(x!=null) x.unlockAll()”.

If, after all applications of the above transformation, the set
LOCAL_SET is not used for any variable in an atomic section, we re-
move the set, and the corresponding prologue and epilogue. Fig. 27
shows the code from Fig. 26 after applying this optimization.

1 atomic { if(map!=null) map.lock(+);
2 set=map.get(id);
3 if(set==null) {
4 set=new Set(); map.put(id, set);
5 }
6 if(set!=null) set.lock(+); set.add(x); set.add(y);
7 if(flag) { if(queue!=null) queue.lock(+);
8 queue.enqueue(set);
9 map.remove(id);

10 }
11 if(map!=null) map.unlockAll();
12 if(set!=null) set.unlockAll();
13 if(queue!=null) queue.unlockAll();
14 }

Figure 27. The code from Fig. 26 after removing the code that uses
LOCAL_SET.

1 atomic { if(map!=null) map.lock(+);
2 set=map.get(id);
3 if(set==null) {
4 set=new Set(); map.put(id, set);
5 }
6 if(set!=null) set.lock(+); set.add(x); set.add(y);
7 if(flag) { if(queue!=null) queue.lock(+);
8 queue.enqueue(set);
9 if(queue!=null) queue.unlockAll(); //this line was moved

10 map.remove(id);
11 }
12 if(map!=null) map.unlockAll();
13 if(set!=null) set.unlockAll();
14 }

Figure 28. The code from Fig. 27 after moving an unlockAll
operation.

Early Lock Release Our basic algorithm unlocks all objects at the
end of the atomic section. In some cases, it is possible to unlock
some objects at an earlier point (before the end of the atomic
section) without violating the locking protocol. We now describe
the conditions under which we perform such an early lock release.

It is safe to move “if(x!=null) x.unlockAll()” occurring
at the end of the atomic section to a program point l if the following
conditions are satisfied:
(1) The object pointed to by x is not used between l and the end of

the atomic section.
(2) No object is locked between l and the end of the atomic section.
(3) Every path to the end of the atomic section passes through l or

ends with a null value for x.
The compiler tries to find the earliest program point l (as measured
by the length of the shortest path from the beginning of the atomic
section to l) that satisfies these conditions. If such a point l is
found, we move the code “if(x!=null) x.unlockAll()” to
location l. Because of (1) and (2), we know that the protocol rules
are not violated. Because of (3), we know that the relevant object
will eventually be unlocked. Fig. 28 shows the code from Fig. 27
after applying this optimization. Note that, the unlocking code of
“queue” has been moved to line 9 of Fig. 28.
Removing Redundant If-Statements In some cases, the inserted if-
condition “if(x!=null)” is not needed. For any location l and
variable x for which we can prove that x is never null at l, we
remove the condition “if(x!=null)” from l. Fig. 17 shows the
code from Fig. 28 after applying this optimization.

41


