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Pavement cracking is a signi
cant symptom of pavement deterioration and de
ciency. Conventional manual inspections of
road condition are gradually replaced by novel automated inspection systems. As a result, a great amount of pavement surface
information is digitized by these systems with a high resolution. With pavement surface data, pavement cracks can be detected
using crack detection algorithms. In this paper, a fully automated algorithm for segmenting and enhancing pavement crack is
proposed, which consists of four major procedures. First, a preprocessing procedure is employed to remove spurious noise and
rectify the original 3D pavement data. Second, crack saliency maps are segmented from 3D pavement data using steerable matched

lter bank.	ird, 2D tensor voting is applied to crack saliencymaps to achieve better curve continuity of crack structure and higher
accuracy. Finally, postprocessing procedures are used to remove redundant noises. 	e proposed procedures were evaluated over
200 asphalt pavement images with diverse cracks.	e experimental results demonstrated that the proposed method showed a high
performance and could achieve average precision of 88.38%, recall of 93.15%, and F-measure of 90.68%, respectively. Accordingly,
the proposed approach can be helpful in automated pavement condition assessment.

1. Introduction

Eective and e�cient pavement condition assessment is
crucial for determining pavement maintenance schedules,
evaluating performance, planning rehabilitation, etc. Because
pavement cracking is an important indicator of pavement
deterioration and de
ciency, it is widely considered as an
integral part of regional pavement distress surveys [1]. Many
studies show that timely and accurately inspected pavement
cracks can help transportation agencies reduce road mainte-
nance cost and extend pavement service life [2, 3].

In some developing countries, pavements are mainly
investigated by human inspectors [4]. 	e traditional man-
ual pavement inspection is unsafe, time-consuming, expen-
sive, and subjective. Hence, the automation in pavement
inspection and evaluation has become increasingly popular
and dominant [5]. 	ere are two types of imaging tech-
niques extensively adopted in automated pavement data
collection: two-dimensional (2D) imaging technologies and

three-dimension (3D) imaging technologies. 	e early 2D
imaging based pavement detection systems [6, 7] were devel-
oped by integrating hardware such as line-scan cameras, laser
illumination systems and other auxiliary equipment. With
the emergence of advanced technologies such as high-speed
and high-resolution 3D industry cameras, the pavement
inspection methods based on 3D scanning have attracted
more and more interests for the following reasons:

(1) 	e surface information in 3D images collected by
advanced data acquisition systems is more accurate than
those in 2D images. Figure 1 shows a comparison between
2D and 3D pavement images. 	e 2D images collected in
gray-scale formats have limited data range, while the 3D
images are able to represent the actual depths of pavement
surfaces.

(2) 3D pavement images have higher quality than 2D
pavement images. Due to their dierent imaging principles,
3D pavement images are less prone to noise related to oil
stains, dark shadows, tire marks, etc. [8, 9].
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Figure 1: 	e 2D pavement image (le�) and 3D pavement image (right): the up green line is the transverse pro
le of a patch of pavement
surface.

Figure 2: PaveVision3D Ultra System (le�) and representative 3D pavement data (right).

(3) 	e depth information collected by 3D techniques is
more helpful in analyzing cracks, textures, rutting, etc. [10–
12].

Due to recent developments and innovations in hardware
devices, laser line-scanning based techniques tend to become
mature enough for high-resolution 3D pavement data collec-
tion. Laurent et al. [13] developed a Laser CrackMeasurement
System (LCMS) composed of two laser pro
lers to acquire
high-resolution 3D road surface data. Moreno et al. [14]
proposed an electric vehicle equipped with a laser scanner
to achieve high density of surveyed points. Furthermore,
the PaveVision3D System mounted on Digital Highway Data
Vehicle (DHDV) (Figure 2) is able to obtain full-lane-scale
3Ddata in 1-mmresolution at a highway speed up to 100 km/h
no matter during night- or day-time [15, 16].

Although automation in pavement data collection has
achieved remarkable progress, automated distress detection
still faces great challenge due to the complexity and diversity
of pavement surfaces [17, 18]. As a major task of distress
survey, automated crack detection has been studied for a long
time. Intensity-thresholding methods have been proposed
to transform the pavement images into a binary domain
such that the pavement distresses are easier to be recognized
[19, 20]. However, those methods fail to handle images
with unevenly distributed illuminance. Edge detection based
methods, such as morphological 
lters [21] and BEMD
[22], are also introduced for pavement crack detection.
Nevertheless, those methods tend to generate discontinuous
or nonintegral cracks. Wavelet-based approaches [23] have
been utilized to decompose the original data into dierent

frequency subbands. Unfortunately, those approaches have
limitations in detecting discontinuous or high-curvature
cracks. Currently, there are some successful applications
of machine learning techniques, such as Arti
cial Neural
Network (ANN) and Support Vector Machine (SVM), in
classifying cracks on pavement surface [24].

In rest of this paper, 
rstly, the proposed method is
explained in detail. Secondly, an image library of 200 pave-
ment 3D data veri
es the accuracy and eectiveness of the
proposed method. Lastly, discussion and conclusions are
given, respectively.

2. Methodology

In this paper, all the testing and validation data are 3D
pavement images collected by PaveVision3D System. Each 3D
image in size of 2048 × 4096 is able to cover roughly 2 ×
4m2 surface area with 1mm resolution. As shown in Figure 3,
the proposed method represents the following procedures:
(1) Preprocessing techniques are utilized to remove noises
and to rectify pavement data. (2) Steerable Matched Filter
Bank (SMFB) is applied on 3D pavement data for segmenting
crack saliency maps. (3) 2D Tensor Voting is used to enhance
the crack continuity based on the crack saliency maps. (4)
Postprocessing is conducted to remove false-positive errors.

2.1. Spurious Noise Removal and 3D Pavement Data Recti�ca-
tion. 3D pavement data may have noises caused by invalid
laser points and vehicle vibration or movement. 	erefore,
spurious noises removal and pavement 3D data recti
cation
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Figure 3: Flowchart of the proposed method.

are needed at the 
rst stage. A typical 2D Gaussian 
lter with
standard deviation � is used for noise removal. Equation (1)
gives each value of the 2D Gaussian 
lter at position �0 =
(�, �).

� (p0; �) =
1

√2
��
−(x2+�2)/2�2

(1)

In this case, the size of the 
lter is 3 × 3, and � is
equal to 2. In order to determine the presence of a spurious
noise at each point (�, �), the following criterion is conduct-
ed:

����� (�, �) = {
{
{

����� (�, �) �� �� [���� (�, �) − ����� (�, �)] > �ℎ���
���� (�, �) ��ℎ������

(2)

where ����(�, �) is the original pixel value at the point
(�, �), �����(�, �) is the 
ltered pixel value at the point
(�, �), and thres is a given threshold.

A�er obtaining �����(�, �), another big-size 2D Gaus-
sian 
lter is applied to smooth the entire image. In this
case, the 
lter size is 101 × 101, and � is equal to 80. Let
������(�, �) be the convolved images based on�����(�, �);
then the recti
ed image will be

������ (�, �) = ������ (�, �) − ����� (�, �) (3)

where ������ is the recti
ed pixel value at the point
(x, y); ������ is the convolved pixel value at the point
(x, y).

Figure 4 shows sample pro
les in both transverse and
longitudinal directions. 	e top images (a) and (b) show the
original pavement pro
le. 	e bottom images (c) and (d)
illustrate recti
ed pro
les based on (3).	e red lines are their
smoothed pro
le.

2.2. Steerable Matched Filter Bank (SMFB). 	e steerable

lter introduced by Freeman and Adelson [25] is a linear
combination of a few basic 
lters. Particularly, steerable

lter is popular in crack and ridge detection due to high
e�ciency [26–28]. In this study, the SMFB method uses
second-derivativeGaussians as basic 
lters. Equation (1) gives
the 2D Gaussian with variance �, and (4) gives its second
derivatives. Equation (5) shows the formulation of the 
lter

�(�,  ), where  ∈ [−
/2, 
/2] is the orientation of the

lter:

��� (�, �) =
(�2 − �2) �−(�2+�2)/2�2

√2
�5

��� (�, �) =
(�2 − �2) �−(�2+�2)/2�2

√2
�5

��� (�, �) = ��� (�, �) =
���−(�2+�2)/2�2

√2
�5

(4)

� (�,  ) = ���cos2 + 2��� cos  sin  + ���sin2 (5)

A 
lter bank is generated by using Steerable Matched
Filter, namely SMFB. Table 1 lists 52 components of SMFB
with dierent parameters, 
lter size, �, and  . Four dierent
� are assigned to consider the varying widths of cracks. 	e
orientations are incremented with a 
x angle interval 15∘ to
capture crack segments in varying orientations. In order to
yield nearly zero responses within noncrack area, the 
lters
are shi�ed to have a zero mean. All 
lters in SMFB are
illustrated in Figure 5.

Each preprocessed 3D pavement image is convolved with
all 52 
lters in SMFB. At each pixel, only the maximum
convolutional response is preserved as a result of SMFB
operation. Mathematically, (6)∼(8) give the speci
c calcula-
tion procedures.

�� (�; �,  ) = %� (�,  ) ⊗ � (�) (6)
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Figure 4: Examples of pavement 3D data recti
cation: (a) and (b) the original transverse pro
le and longitudinal pro
le; (c) and (d) the
corresponding transverse pro
le and longitudinal pro
le.

Table 1: Composition of the SMFB.

Filter No. Filter size �  
1-13 21×21 3 -90∘,-75∘,-60∘,. . ., 90∘
14-26 21×21 5 -90∘,-75∘,-60∘,. . ., 90∘
27-39 31×31 7 -90∘,-75∘,-60∘,. . ., 90∘
40-52 31×31 9 -90∘,-75∘,-60∘,. . ., 90∘

�∗ (�) = max �� (�; �,  ) (7)

�∗ (�) = {
{
{

1 �� �∗ (�) > �ℎ���
0 ��ℎ������

(8)

where p denotes a pixel located at (�, �); �(�) denotes
the preprocessed 3D pavement data; %�(�,  ) denotes the

�th steerable 
lter in SMFB with parameters �,  ; ��(�; �,  )
denotes the response based on convolutional output over %�
and �(�). �∗(�) denotes the maximum response; and �∗(�)
denotes the binary crack map by thresholding implement.

As illustrated in Figure 6, crack saliency maps are gen-
erated a�er implementing SMFB. Due to pavement texture,
some noncrack pixels have high responses, resulting in false-
positive errors. In addition, some crack pixels have low or
even zero response, resulting in crack discontinuity and false-
negative errors. 	us, additional procedure is needed to
improve the detection accuracy.

2.3. Tensor Voting. Tensor voting (TV) is a perceptual group-
ing method proposed by Guy andMedioni [29]. In computer
vision, TV is widely utilized to infer curvilinear structures
[30], locally link the corrupted data [31], and extract the
lines and curves from noisy images [32]. It is highly possible
that some cracks have weak responses to the SMFB due to
various reasons. Consequently, some cracks may be detected

as discontinued fragments. In the paper, TV is adopted to
enhance connections between crack fragments.

A second-order symmetric positive semide
nite tensor'
is associated with each pixel in the crack saliency maps. T is
mapped to a matrix (�	)2×2, whose eigenvalues are *1 ≥ *2 ≥
0, and corresponding eigenvectors are 3⇀� 1 and 3⇀� 2. 	ereby
the tensor can be deposed as follows:

' = *13⇀� 13⇀� 1

 + *23⇀� 23⇀� 2




= (*1 − *2) 3⇀� 13⇀� 1

 + *2 (3⇀� 13⇀� 1


 + 3⇀� 23⇀� 2

)

(9)

	e 
rst term (*1 − *2)3⇀� 13⇀� 1


in (9) represents a stick

tensor as an elongated ellipsoid and the second is called
“ball tensor” as a circular disk. First, a ball voting is used
to estimate the crack-curve orientation at each crack pixel
from the crack saliency maps, that is, each detected crack
pixel is initialized as a ball tensor ( 1 00 1 ), and noncrack pixels
do not participate in voting. 	e ball voting is conducted
by adding the 
elds generated by the stick tokens spanning
360∘ at regular intervals. In this way, the principal direction
at each crack pixel is found, which is set as the orientation
of the stick token. 	en a stick voting is applied by means of
casting the votes from each stick token to all the pixels (crack
pixels and noncrack pixels). For stick voting, assuming that
7 is the origin location and 8 is the voting location as shown
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Figure 6: Examples of generated crack saliency maps.

in Figure 7, the voting 
eld can be de
ned by using a decay
function:

9� (�, %, �) = �−((�2+�2)/�2) (10)

where s is the arc length from this token to a target point in the
voting 
eld, k is the curvature, � is the scale of voting, and :
is a parameter controlling the degree of decay with curvature
de
ned in (11) as

: = −16 (� − 1) log (0.1)

2 (11)

As TV is used to enhance connections between crack
fragments in this paper, a�er the stick voting stage, the dense
tensor map is extracted as tensor voting result, which is
dierent from the original tensor votingmethod presented in

l

P

O
s



Figure 7: Votes cast by a stick tensor at the origin O.

[33]. Lastly, the OR operation is executed on the dense tensor
map and the crack saliencymap. An overall illustration of our
method is shown in Figure 8.
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A�er TV operation, missing parts of the detected cracks
could be retrieved, resulting in enhanced continuity of cracks.
Figure 9 provides typical examples of connecting discontin-
ued parts using TV. In Figure 9, small fragments close to each
other are linked together as awhole part, as highlighted by the
dashed circles..

2.4. Postprocessing. A�er the TVoperation, somenoise pixels
may still exist. 	e remaining noises can seriously aect the
precision of crack detection. Hence, postprocessing is needed
to further remove noises and re
ne the 
nal detection output.
In this paper, all connected components less than 1000 pixels
are removed.

3. Experimental Results and Comparison

In this paper, precision, recall, and F-measure are used to
evaluate the performance of the proposed method. Precision
measures the exactness or 
delity of detection and segmenta-
tion, while recall describes the completeness of detection and
segmentation. F-measure is the harmonic mean of precision
and recall, where an F-measure reaches its best value at 1 and
worst at 0.	e de
nitions of precision, recall, and F-measure
are shown in

8��:����? = '8
'8 + �8 (12)

��:�� = '8
'8 + �@ (13)

�-A����� = 2 × 8��:����? × ��:��
8��:����? + ��:�� (14)

Figure 9: Examples of TV approach: the size of each patch is 700 ×
300 pixel2.	e patches in the le� column are cropped from the crack
saliency maps; the patches in the right column are cropped from the
results of TV operation.

In (12) and (13), TP denotes true positives; that is, pixels
labeled as crack pixels in the ground truth are correctly
recognized as crack pixels; FP denotes false positives; that
is, pixels labeled as noncrack pixels in the ground truth are
incorrectly recognized as crack pixels; FN represents false
negatives; that is, pixels labeled as crack pixels in the ground
truth are incorrectly detected as noncrack pixels. 	e ground
truths of cracks were obtained by two steps: at the 
rst step,
crackmapswere generated automatically by applyingmethod
proposed by Zhang [34]; at the second step, manual labeling
was used to re
ne the crack maps provided by the 
rst
step. A pixel-to-pixel comparison is conducted during the
evaluation.

A test data set consisting of two hundred 3D pavement
images is selected to evaluate the proposed method. 	is
test set covers images from dierent road sections, various
lighting conditions (i.e., daylight and nightlight), and diverse
severities of cracks (i.e., low-level or no crack, medium-
level crack, and high-level crack). 	e computer hardware
used for experiments is summarized as follows: Intel Core
i7-6700T, 3.00GHz CPU, and 32GB RAM. All algorithms
are implemented in MATLAB platform. Figure 10 presents
some typical detection results using the testing images. As
shown in Figure 10, the proposed method can detect cracks
with varying widths, severity levels and contexts. In addition,
typical false-positive and false-negative errors are shown
within the dashed rectangles in Figure 10(b) and within the
dashed circles in Figure 10(d), respectively.

Accordingly, the precisions and recalls for all the selected
images are illustrated in Figure 11. 	e precision �uctuates
between 84.00% and 97.00%, and the average precision is
88.38%, while the recalls range from 85.00% to 99.00%, and
the average recall is 93.15%. In addition, the F-measure is
between 85.00% and 97.00%, and the average F-measure is
90.68%.
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Figure 10: Experimentation results.

Table 2: Performance comparison of dierent methods.

Authors Method Precision Recall F-measure

Ouma and Hahn [3] A triple-Transform 91.25% 80.42% 85.49%

Zou and Cao [18] CrackTree 79% 92% 85%

Shuai and Yang [35] Steerable Matched Filter 92.6% 85.1% 88.7%

- Proposed method 88.38% 93.15% 90.68%
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Figure 11: Precisions and recalls for 200 selected 3D images.

Many research works reported the performance of their
methods for crack segmentation, as listed in Table 2, which
demonstrates that the proposed method in this paper has
a higher performance than those using other methods. It
is acknowledged that the same set of images/data should
be used to compare all methods, judge their performance,
and estimate their potential. 	at requires direct access to
both dataset and programs/codes/algorithms. Further eorts
taken by dierent related research agencies are needed to
create a benchmark dataset and form a comparison protocol.

4. Conclusions and Future Work

Automated pavement crack survey has drawnmore andmore
attentions fromboth researchers and transportation agencies.

	is article proposed a novel method for segmenting crack
maps based on 3D pavement images. 	e proposed method
implements the SMFB operation, Tensor Voting, and pre-
processing as well as postprocessing procedures in a speci
c
order to detect cracks from 3D pavement images.

	e experiment using 200 testing images demonstrated
that the proposed method can achieve a high level of
detection e�ciency, quanti
ed as average precision 88.38%,
average recall 93.15%, and average F-measure 90.68%. 	e
average precision was slightly lower than the average recall,
implying that some noncrack pixels were incorrectly detected
as crack pixels. A possible reason is that the edges of some
pavement markings present height dierences similar to
those occurred at cracking area. 	e proposed method used
the same set of 
xed parameters to yield similar detection
accuracies for all 200 testing images, implying that the
proposed method has achieved an e�cient generalization
over varying cracks on 3D pavement surfaces.

Although the proposed method is e�cient in detecting
pavement cracks, it still needs to consume roughly 10.3s per
image due to expensive computations primarily introduced
by TV. In the future, parallel computing techniques may be
considered to optimize the processing speed.
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