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Abstract 

Background: The stomata of plants mainly regulate gas exchange and water dispersion between the interior and 

external environments of plants and play a major role in the plants’ health. The existing methods of stomata seg-

mentation and measurement are mostly for specialized plants. The purpose of this research is to develop a generic 

method for the fully automated segmentation and measurement of the living stomata of different plants. The pro-

posed method utilizes level set theory and image processing technology and can outperform the existing stomata 

segmentation and measurement methods based on threshold and skeleton in terms of its versatility.

Results: The single stomata images of different plants were the input of the method and a level set based on the 

Chan-Vese model was used for stomatal segmentation. This allowed the morphological features of the stomata to be 

measured. Contrary to existing methods, the proposed segmentation method does not need any prior information 

about the stomata and is independent of the plant types. The segmentation results of 692 living stomata of black 

poplars show that the average measurement accuracies of the major and minor axes, area, eccentricity and opening 

degree are 95.68%, 95.53%, 93.04%, 99.46% and 94.32%, respectively. A segmentation test on dayflower (Commelina 

benghalensis) stomata data available in the literature was completed. The results show that the proposed method can 

effectively segment the stomata images (181 stomata) of dayflowers using bright-field microscopy. The fitted slope of 

the manually and automatically measured aperture is 0.993, and the  R2 value is 0.9828, which slightly outperforms the 

segmentation results that are given in the literature.

Conclusions: The proposed automated segmentation and measurement method for living stomata is superior to 

the existing methods based on the threshold and skeletonization in terms of versatility. The method does not need 

any prior information about the stomata. It is an unconstrained segmentation method, which can accurately segment 

and measure the stomata for different types of plants (woody or herbs). The method can automatically discriminate 

whether the pore region is independent or not and perform pore region extraction. In addition, the segmentation 

accuracy of the method is positively correlated with the stomata’s opening degree.
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Background
Stomata are structures that are found in the above-

ground parts of all terrestrial plants and account for 

approximately 95% of gas exchange [1]. The stomata are 

composed of pores formed by a pair of guard cells. Sto-

mata regulate the exchange of water vapour and  CO2 

between the plant and the atmosphere through changes 

in the aperture of the pores. They play a pivotal role in 

controlling the balance between the water loss and car-

bon gain [2–6]. Therefore, research on stomatal behav-

iour has been a hot topic in the field of botany. To study 

the behaviour of stomata, one must be able to calculate 

the morphology of the pores and quantitatively describe 

the behaviour of the pores.

There are many methods to measure the morphology of 

the pores. Omasa and Onoe [7] first conducted stomata 

measurement studies on sunflowers (Helianthus annuus 

L cv. Russian Mammoth) using Fourier transform filter-

ing to remove the scanning lines and an unsharp masking 

and thresholding method for the pore region extraction. 

The parameters of the pores (major and minor axes and 

area) are obtained by translating and rotating the prin-

cipal components of the extraction region. This method 

performs the transformation in the frequency domain of 

the image, and the calculation costs are large. In addition, 

the threshold adjustment needs to be performed manu-

ally according to the different stomata images, and it is 

not an automatic segmentation method. Sanyal et al. [8] 

used the watershed method to perform the stomatal seg-

mentation of SEM images, and used their morphology 

to remove noise and the Sobel operator to extract the 

stomatal edges. This is an edge-based method that per-

forms poorly when the edges of the pores are discontinu-

ous or there is more noise. Laga et al. [9] used template 

matching technology to identify wheat stomata, but the 

calculation of the stomatal morphological parameters is 

complex, and the template parameters are only valid for 

wheat stomata. New templates need to be constructed 

when handling the stomata of other species. Therefore, 

the algorithm is less versatile. Liu [10] uses the MSERs 

(maximal stable external regions) to detect ellipses in 

grape stomatal images and identify stomata, but this 

method requires manual interaction when selecting the 

ellipses, which is a semi-automatic method that assumes 

that the stomata shape is elliptical. Jayakody [11] pro-

posed a method for automatic pore detection and meas-

urement for grapevines. It combined the threshold with 

the morphological skeleton to extract the stomatal edges 

and calculate the parameters for ellipse fitting such as 

the major and minor axis of the pores and the eccentric-

ity. The algorithm assumes that the stomata are close to 

the centre of the region of interest (ROI) and that the 

length of the skeleton remnant needs to be specified. If 

the pore size (different species) changes, the algorithm 

will fail to identify the pores. Therefore, the algorithm 

is only applicable to grape species. Toda et al. [12] used 

facial recognition technology to perform automatic pore 

measurement of the stomata for dayflowers (Commelina 

benghalensis). This method uses adaptive threshold tech-

nology to calculate the pore parameters. However, the 

algorithm needs to manually define the ranges of the 

parameters (such as the area, solidity, major axis length, 

and centroid coordinates). When the sizes or shapes of 

the stomata change, the algorithm will fail to identify the 

pores. Therefore, the above methods are only applica-

ble to a specific plant, such as sunflowers, grapes, wheat 

or dayflowers, and the data collection process requires 

picking the leaves and tearing off the epidermis to make 

a micro-slide and acquire the images using bright-field 

microscopy. Once the pore size and the type or the con-

ditions of image acquisition are substantially changed, 

the method mentioned above will not successfully iden-

tify the pores.

In this paper, we aim to develop a general method for 

the automatic segmentation and measurement of plant 

stomata, which is a level set method based on the Chan-

Vese (CV) model [13]. Pore region extraction is accom-

plished by evolving the energy function, and the pores’ 

morphological parameters are obtained using the ellipse 

fitting technique. The method does not rely on image 

gradient information and can overcome the edge leakage 

and poor anti-noise ability based on the edge information 

model. It is suitable for segmentation and measurement 

of any plant stomata and does not require prior informa-

tion about the stomata. In addition, this is the first time 

that research has been conducted on the behaviour of liv-

ing stomata of plants in situ.

The remainder of this paper is organized as follows. In 

the “Methods” section, detailed steps and examples of 

stomata segmentation and pore measurement are given. 

The experimental results of the study and comparisons 

with existing methods are presented in the “Results” sec-

tion. The discussion and conclusion are given in the last 

section.

Methods
The purpose of this study was to develop a general 

automatic stomata segmentation and pore measure-

ment method. It requires the input of a single stomata 

image (manual or automatic detection) and outputs 

the morphology parameters of the pores. The method 

comprises 5 steps: (1) detect and crop a single sto-

mata image as the input, (2) convert the image to grey-

scale, (3) conduct level set segmentation based on the 

CV model (with the ROI image centre as the initial 
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position), (4) conduct region shape analysis, and (5) 

conduct post-processing and ellipse fitting.

The overall flow of the method is shown in Fig.  1. 

Each 1000× microscope image contains approximately 

10–20 stomata, and each 500× magnification image 

contains approximately 30–40 stomata. First, the sto-

mata are detected using the Faster-RCNN [14], and 

then the detected stomata are cropped to generate a 

single stomata image. Second, the single stomata image 

is used as an input for the stomata segmentation algo-

rithm, and the level set segmentation based on the CV 

model is implemented (the ROI centre is taken as the 

initial position).The output is the stomata pore region. 

Next, shape analysis is performed on the binary image 

of the pore region to determine whether the segmenta-

tion result is an isolated region or not. If it is not an 

isolated region, morphological post-processing will 

be executed in order to disconnect the non-isolated 

regions and obtain an isolated pore region. Conversely, 

if it is an isolated region, then one can proceed directly 

to the next step: ellipse fitting. Finally, boundary extrac-

tion (red line) and ellipse fitting (yellow line) are per-

formed on the isolated stomata pore region, and the 

morphological parameters (the major and minor axes, 

area, opening degree, etc.) of the pore are output. The 

integral algorithm is automatically operated in series 

without the prior information assumption for the 

stomata, and it is independent of the stomata pore 

dimensions, the opening degree and the data collec-

tion conditions. It is a general segmentation method. 

The details of each step are described below. It should 

be noted that the acquisition of the clear image of the 

full field of view is a key preparation step, and the depth 

composition technique is used in this paper. The image 

acquisition experiment parameters are detailed in the 

image acquisition section.

Stomata detection
Architecture of the detection model

The living stomata were detected using the Faster region-

based convolutional neural networks (Faster-RCNN), 

which is a deep learning method for the detection of 

objects in natural images [15, 16]. The network architec-

ture is shown in Fig. 2 [14].

The Faster R-CNN network consists of the following 

four modules. (1) Feature extraction. The Faster R-CNN 

uses VGG16 to extract feature maps of the input images, 

and these feature maps will be used for the subsequent 

region proposal network (RPN) layers and fully con-

nected layers. (2) RPN. The RPN network is used to 

generate the region proposals. First, several of anchor 

boxes are generated. Then, softmax is used to determine 

whether these anchors belong to the foreground or back-

ground (whether it is the object or not) after they are 

cropped and filtered. In addition, another branch named 

the bounding box regression is used to correct the anchor 

boxes and form more precise proposals. (3) ROI pooling. 

The proposals that are generated by the RPN and the fea-

ture map that are obtained in the last layer of the VGG16 

are combined in order to generate a fixed size proposal 

feature map, and are prepared for the next step, which 

is the fully connected operation of target recognition 

and location. (4) Classification and regression. The fully 

connected operation of a fixed-size feature map is per-

formed, and then the object classification is completed 

using softmax. Furthermore, the smooth  L1 loss is used 

to complete the bounding box regression operation and 

get the exact location of the object.

Stomata

segmen

-tation

based

CV

morphology

parameter

calculation

Ellipse

fitting
Single

stomata

image

2a

Stomata segmentationStomata detection

Post-processing

Independent

pores region

shape

analysis

Non-

independent

pore region

Pores measurment

Input microscopy

image
Stomata detection

Based Faster R-cnn

2b

Fig. 1 Flow chart of stomata segmentation and measurement. The red contour line is the segmentation contour from the proposed method, and 

the yellow contour line is the fitted ellipse
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The open source codes [17] of Faster R-CNN detection 

algorithm is implemented under the TensorFlow frame-

work. The data set consists of 1000 stomata images with 

500 images for each of two magnifications (500× and 

1000×). The resolution of the images is resized to 

800 × 600 in order to train the Faster R-CNN. The ratio 

of the number of images in the training set, verification 

set and test set is set to 400/400/200 prior to the model’s 

training, and the training was performed with the follow-

ing parameters: the learning rate that was used in the first 

50,000 iterations was 0.001, the rate in the last 20,000 

iterations was 0.0001, there were 200 epochs, and the 

batch size was 64. The loss function is

where Lcls is the Softmax Loss, Lreg is Smooth L1 Loss, 

� = 10 , and the details of other parameters can be 

obtained from literature [14].

Validation of the detection model

1000 images of stomata were used in the datasets, 

Which include Chinese Necklace Poplar and Black pop-

lar. We use 400 images as the training set, and another 

400 images as the verification set and the remained 200 

images as the test set.

The loss curve for training the model is shown in Fig. 3. 

We detected 1290 stomata from 1316 (Ground truth of 

the 200 images) stomata using this model successfully, 

and the recall is 98.02%. The precision is 100%. There is 

no false detection for the test set.

L({pi}, {ti}) =
1

Ncls

∑

i

Lcls(pi, p
∗
i ) + �

1

Nreg

∑

i

p∗
i Lreg

(

ti, t
∗
i

)

smoothL1(x) =

{

0.5x2 if |x| < 1

|x| − 0.5 otherwise

In order to evaluate the performance of the Faster-

RCNN for different data, the data of dayflower provided 

in the literature [12] was tested using the model. The r-p 

curve of the model are shown in Fig.  4. The visualiza-

tion results of the dayflower by the detection model are 

given in Fig. 5. The recall and the precision is 86.31% and 

83.59%, respectively.

Stomata segmentation

The Chan-Vese model is a geometric active contour seg-

mentation model based on the level set method, which 

is an improved method of the classical level set [13, 18]. 

The model uses the average value of the greyscale inside 

and outside the region as the energy function in order to 

13 conv layers, 13 relu layers, 4 pooling layers

Feature Map

Reshape Softmax Reshape Proposal ROIPooling
bbox_pred

Softmax

cls_prob

M×N

P×Q

Region proposal network
Classification and regression

Feature extraction

regression

1×1

1×1

36

18

Is object or not

im_info

3×3

conv pooling relu full connection

Fig. 2 Architecture of the faster R-CNN network

Fig. 3 Loss curve of the detection model
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segment the object region by energy function optimiza-

tion. Because it has strong adaptability to changes in the 

topology of the object, it is widely used. It does not rely 

on image gradient information, can better overcome 

defects such as edge leakage and poor anti-noise ability 

based on edge information model, and has global attrib-

utes. Perfect segmentation results can also be obtained 

when the image boundary is discrete or blurred.

The internal and external energy functions of the CV 

model are defined as follows:

where C1 = average (I(x, y)), outside(C); and C2 = average 

(I(x, y)), inside (C).

ECV (C ,C1,C2) = µ · Length(C) + ν · Area(inside(C))

+ �1 ·

∫

outside(C)

∣

∣I
(

x, y
)

− C1

∣

∣dxdy

+ �2 ·

∫

inside(C)

∣

∣I
(

x, y
)

− C2

∣

∣dxdy

The length (C) is the length of the closed contour C. 

The area (C) is the inner area of C. λ1 and λ2 are the 

weight coefficients of the respective energy terms. The 

first two, μ and ν, are called “smooth terms”, and they 

control that the curve maintains a certain smoothness 

during the evolutionary process. The latter two are 

called “fitting terms”, and they mainly move the seg-

mentation curve to the edge of the image in order to 

minimize the fitting error. The position of the final seg-

mentation contour C and the unknown constants C1 

and C2 are obtained by minimizing the energy function.

The steps of the CV model algorithm are as follows.

(1) Initialize the level set.

(2) Calculate the average grey value of the foreground 

 C1 and background  C2.

(3) Each point of the level set is adjusted (evolved), and 

if the grey value of the current point is close to the 

foreground estimate, the value of the point level set 

increases, and vice versa.

(4) Once the solution stabilizes, the algorithm stops.

The stomata segmentation algorithm that is proposed 

assumes that the stomata pores are close to the centre 

of the ROI, and the centre of the single stoma image is 

used as the initial point of the evolution of the energy 

function in the CV model. The whole segmentation 

process does not need to manually specify the initial 

position, and does not require prior information about 

the stomata, which is a fully automatic method for sto-

mata segmentation. The flow chart of the segmentation 

algorithm is shown in Fig. 2.

A visual representation of the level set segmentation 

algorithm for living stomata is shown in Fig. 3.

Our aim is to find the stomata pore regions. After 

segmentation by the CV model, the stomata pore 

region is obtained and the algorithm outputs the binary 

image of the stomata pore. Next, the geometric param-

eters of the pores are calculated.

Fig. 4 Detection performance of the model for the data of dayflower

Fig. 5 Detection results of the dayflower by the detection model
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Stomata pore measurement

The stomata pore regions that are segmented by the 

CV model maybe non-independent regions, which have 

branches or connections to other regions(see Fig.  5b). 

Therefore, a morphology post-processing technique is 

used to disconnect the non-independent regions before 

the pore measurement, and the algorithm must automat-

ically determine whether the segmented region is inde-

pendent or non-independent.

The stomata pore measurement algorithm is composed 

of region shape analysis, morphological post-processing, 

region filling, boundary extraction, ellipse fitting, and 

parameter calculations. The outputs are the length of the 

major and minor axes, the opening degree and the pore 

area. The flow chart is shown in Fig. 4.

The region shape analysis is a key step for this algo-

rithm. It can determine whether the segmented region is 

independent or not. If it is a non-independent region, a 

post-processing step is added to disconnect the connec-

tion. In this paper, morphology erosion and dilation are 

used to disconnect the non-isolated regions. The Solidity 

attribute is used to automatically determine whether the 

segmented region is an independent region or not. (For 

a non-independent region, Solidity < 0.85, which repre-

sents the concavity and convexity of the region.) A visual 

representation of this algorithm is shown in Fig. 5.

The Solidity is calculated as follows:

where Area is the area of region, and Convex Area is the 

area of the smallest convex polygon.

It indicates the degree of Solidity (concavity and con-

vexity) of the region.

For most stomata images in our data, the stomata 

regions that are segmented by the CV model are inde-

pendent and do not need the post-processing step, as 

shown in Fig.  6. In this situation, the Solidity of the 

region is greater than 0.85, and the ellipse fitting and 

parameter calculations can be directly accomplished for 

the segmented stomata pore region.

Results
Data acquisition

In the experiment, a large depth-of-field microscope 

observation system, a VHX-2000 [19], from the Key-

ence Corporation, was used to capture the fully focused 

images of the living stomata of poplar leaves. The spe-

cies are one-year-old black poplars (Populus simonii × P. 

nigra) and Chinese white poplars (Populus lasiocarpa 

Oliv). Using the depth composition technology of the 

VHX-2000 system, the images of stomata in the full field 

of view are taken. The depth composition parameters 

are set as follows. The depth-of-field interval is 2–4 μm 

Solidity = Area/ConvexArea

and the number of images included is 20–25 frames, 

which depend on the flatness of the leaves. The resolu-

tion of the captured images is 1600 × 1200 pixels, and 

we have 4.8 pixels/μm(1000×). A total of 51 microscope 

images were collected at two magnifications (1000× and 

500×), and the total number of stomata is 708. The stoma 

image acquisition is shown in Fig. 7. Figure 7b is the fully 

focused microscope images for the living stomata using 

dark-field microscopy. In addition, a leaf clamp must be 

used to fix the plant leaves.

Pores measurement

To evaluate the segmentation performance of the 

method, the stomata pores were manually segmented by 

ImageJ under the supervision of botany experts, and the 

ellipse fitting and corresponding parameters of the pores 

were measured by ImageJ as the Ground-Truth. The 

results of this annotation were compared with the seg-

mentation and measurement results of our method.

Ten of the 708 stomata failed to be identified in the test, 

and thus, the experimental results show that our method 

can be used to segment and measure the stomata pores at 

1000× and 500× magnifications with high accuracy. The 

segmentation results of our method are shown in Fig. 8.

According to the geometric knowledge, the semi-major 

axis and semi-minor axis of a and b for the fitted ellip-

ses are first obtained, and then other parameters are 

deduced using these two parameters. The calculation 

formulas are as follows: Area: A = πab . Eccentricity: 

e =

√

1 − (b/a)2 . Pore opening degree: Od = b/a.

The measurement errors of the major and minor axes 

of the stomata pores, the area, and the opening degree 

are obtained. The results are listed in Table 1.

In addition, this paper analyses the relationship 

between the major and minor axes measurement errors 

and the pore opening degree, as shown in Table  2. The 

total error is equal to the square root of the major and 

minor axes errors.

It can be seen from Table  2 that the segmentation 

accuracy of the method is positively correlated with the 

stomata’s opening degree. The greater the stomata open-

ing degree is, the higher the accuracy of the method for 

measuring the lengths of the major and minor axes. The 

Input
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stomata

image

Convert
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grayscale

image

Initializa-

tion of

level set

Segment

using the

CV model

Stomata

pore

region

Fig. 6 Flowchart of the pore region segmentation for living stomata
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opening dimension of the stomata has some influence 

on the algorithm’s performance. The larger the opening 

degree is, the higher the measurement accuracy of the 

method.

We also give the experimental results that character-

ize the consistency of the algorithm. The relationship 

between the minor axis length’s measurement accuracy 

of our method and that of the manual measurement 

method is shown in Fig. 9 (for 698 stomata). The regres-

sion line’s slope is 1.015 and the  R2 is 0.9848; therefore, 

the algorithm has very good consistency.

Algorithm comparison

We refer to the stomata as the foreground and the non-

stomatal area as the background of the images. The 

microscope images of the living stomata are feature-rich 

and include the epidermis, veins, trichomes, stains, etc. 

Fig. 7 Examples of stomata pore regions that are segmented by the CV model. a, e Original images (1000× and 500× , respectively). b, f Initial 

contour locations. c, g Segmented stomata pore regions. d, h Overlays of the segmented pores on the original image

Stomata

Region

segmented

by CV

Region

filling

Boundary

extraction

Ellipse

fitting

Parameter

calculation

Region

shape

analysis

Independent

pore region

Non-

independent

pore region

Morphology

Post-

processing

Fig. 8 Flow chart of the stomata pore measurement algorithm

Table 1 Morphology parameter calculation results for stomata 

pores

Number 

of stomata

Avg. 

major 

axis 

length 

accuracy

Avg.

minor 

axis 

length 

accuracy

Avg. area 

accuracy

Avg. 

eccentricity 

accuracy

Avg. open 

degree 

accuracy

698 95.68% 95.53% 93.04% 99.46% 94.32%

Table 2 Relationship between  stomata opening degree 

and measurement error

Opening degree (%) > 40 (30,40] (20,30] (10,20]

Number of stomata 51 287 282 72

Major axis error (%) 3.44 4.32 5.01 6.45

Minor axis error (%) 2.87 3.37 3.91 5.86

Total error (%) 4.83 6.01 6.91 9.51
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Therefore, the stomata that are segmented by the thresh-

old method are not often independent regions and are 

connected with other areas. In severe cases, even with 

post-processing techniques such as skeleton extrac-

tion and morphological techniques, it is difficult to iso-

late the stomata regions. The adaptive threshold method 

in the literature [12] and skeleton extraction combined 

with ellipse fitting [11] cannot segment the living sto-

mata in the complex image background, especially for 

low contrast images (such as the living stomata data 

in this paper), as shown in b and c of Fig. 10. Although 

the threshold method is simple, it requires good-quality 

images with clear backgrounds. Often, a complicated 

post-processing step is required in order to extract the 

pore regions, and the prior information of the stomata is 

needed (such as the area range and the stomata perime-

ter range). Our method based on the CV model proposed 

in this paper can successfully segment the stomata pores 

in the complex background, as shown in d of Fig. 10.

The proposed method can also achieve good segmen-

tation accuracy of the stomata with clear backgrounds 

(data publicly available in literature [12]). In this paper, 

the stomata microscope image data that are disclosed in 

the literature [12] are tested using our method. Due to 

the significant non-uniform illumination in the bright 

field environment, the stomata segmentation error is 

large if the original image is directly segmented using 

the level set method. Therefore, non-uniform illumina-

tion correction is necessary before the segmentation step. 

Since a reflection region in an image is an area with a 

higher pixel value, the areas with larger pixel values are 

replaced with some smaller values to remove the reflec-

tions. In this paper, the average grey value of the image 

is used to replace the pixel value of the reflective area in 

order to eliminate the reflection, which is followed by 

the CV model segmentation, and then the stomata pore 

region can be obtained. The segmentation results with 

the reflection removal algorithm are shown in Fig. 11.

In Fig.  11, c is the segmentation result by the CV 

model without non-uniform illumination correction. It 

can be seen from c that there is a notch in the segmen-

tation results and that the segmentation error is large. 

Therefore, it is necessary to remove the non-uniform 

illumination before the pores segmentation step. d is 

the greyscale image of the stomata after the reflection is 

removed. When the CV model is run on the images in 

d, the stomata pore regions that are segmented are rela-

tively intact, as shown in e. The last row f compares the 

Fig. 9 Identification and disconnection of the non-independent stomata pore regions. a Original stomata images. b Non-independent stomata 

pore regions that are segmented by CV model. c Independent Stomata pore regions

Fig. 10 Examples of stomata boundary ellipse fitting. a Original stomata images. b Stomata regions segmented using CV model. c Pore boundary 

ellipses (yellow lines)
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results of the stomata segmentation by our method and 

the manual method. The red lines are the results of our 

method’s segmentation, and the yellow lines are the man-

ual segmentation results.

To verify the algorithm’s segmentation performance, 

our method was tested using 188 stomata of dayflower 

from 16 microscope images from the literature [12]. 

Among these stomata, 7 stomata failed to be segmented, 

and 181 stomata were successfully segmented by our 

method. The fitting relationship between the aperture 

value (minor axis length) and the manual measurement 

results of the 181 stomata apertures is shown in Fig. 12.

It can be seen from Fig. 11 that the fitting slope of our 

method and the manual segmentation is 0.993, and the 

 R2 value is 0.9828, which slightly outperforms the seg-

mentation results of literature [12] (slope = 1.0485 and 

 R2 = 0.98215). More importantly, the CV-based segmen-

tation method that is proposed in this paper does not 

require a priori information about the stomata, such as 

the ranges of the stomata pore area, the major axis length 

and the pore perimeter. It is an unconstrained, fully auto-

matic stomata segmentation and measurement method. 

The method has good versatility and is not limited to a 

specific plant. It is able to segment the stomata of any 

plant, including non-elliptical shaped stomata.

Discussion
It can be seen from the experimental results that our 

method can obtain high segmentation accuracy for most 

of the stomata images.

Non-uniform illumination correction is not needed for 

the living stomata in the dark-field microscope images 

collected in this paper. However, it is necessary for the 

bright-field images. The reason may be that reflections 

often result from the stomata pores in the bright-field 

images, but there are fewer reflections that are generated 

from the pores in the dark-field images.

Fig. 11 Collection of the living stomata microscope images for black poplars. a Image acquisition experiment. b Fully-focused images generated 

by using the depth composition technique

Fig. 12 The segmentation results of our method. a Original images. b Stomata pores that are segmented using proposed method. c The contour of 

b overlays on the original images. (The red line represents the segmentation using our method, and yellow line represents manual segmentation)
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The stomata that are discarded in our method are 

shown in Fig. 13. These include blurred stomata, stomata 

with too small of opening degrees, and obscured stomata.

Figure 13a shows the stomata images collected under 

bright and dark fields. The guard cells are also regarded 

as stomata pore regions, which causes the stomata to be 

over-segmented. The main reason for the stomata over-

segmentation is that the stomata opening degree is too 

small, and the initial position of the CV does not fall on 

the pore. Therefore, segmentation results in a stomata 

apparatus together with the guard cells. b is the three 

obscured stomata in the dark lighting field. The stomata 

regions obtained by our method are discontinuous. 

Post-processing is required to obtain the complete pore 

region. c is the blurred stomata case. The algorithm will 

fail to segment these images (Figs. 14, 15, 16, 17).

In addition, the method in this paper only assumes that 

the pores are located near the centre of the ROI. This 

assumption is normally true for a detection algorithm. 

However, for pores with a very small opening (minor axis 

length < 0.83  μm and approximately 4 pixels for our liv-

ing stomata images), the initial position of the evolution 

of the CV model (the centre of the image) usually falls 

outside the pores, and the segmentation result is over-

segmented. Therefore, the stomata with small degrees of 

opening and deviations from the centre of the ROI can-

not be effectively segmented by our method. Fortunately, 

when the stomata pore opening is too small, the  CO2 gas 

exchange is negligible for the stomata, and the stomata 

can be considered closed.

The proposed method is a region-based level set 

method, which finds the boundary of the segmenta-

tion by calculating the maximum difference between 

the average grey values inside and outside the region. 

It does not depend on the gradient information of 

the image, overcomes the edge leakage of the gradi-

ent method and is susceptible to noise. It is a perfect 

region-based level set segmentation method. How-

ever, since the CV-based segmentation method is an 

Fig. 13 Scatter plot of the automatically quantified stomatal 

apertures versus the manually quantified apertures (698 living 

stomata)

Fig. 14 Comparison of adaptive threshold + skeleton extraction and our method. a Original stomata images. b Segmented results by the threshold 

method. c Segmented results using the skeleton method. d Segmented results using the CV model
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iterative optimization algorithm, the algorithm has a 

long running time, and the average time cost for each 

stomata segmentation and measurement is approxi-

mately 1.18  s (Windows7 environment, Matlab2018a, 

3.0 GHz CPU, 4.0 GB of RAM, and 300 iterations).

Conclusions
In this paper, a general method for the automatic seg-

mentation and measurement of plants’ living stomata 

based on the CV model is proposed. The method con-

sists of five parts: reflective removal pre-processing(if 

necessary), CV model-based segmentation, non-inde-

pendent pore region discrimination, morphological 

post-processing and ellipse fitting. In this paper, the 

measurement accuracy of the major-axis length, minor-

axis length, area, eccentricity and opening degree of the 

living stomata were 95.68%, 95.53%, 93.04%, 99.46%, 

and 94.32%, respectively, after segmenting and measur-

ing the 698 stomata of poplar leaves. The versatility of 

the algorithm is better than those of existing methods 

of stomata segmentation. In addition, the algorithm’s 

consistency is very good for both the bright-field and 

dark-field stomata images of different datasets, and the 

 R2 is greater than 0.98.

This research will be extended to test living stomata 

of other plant species in the future.

Fig. 15 Influence of non-uniform illumination on the results of stomata pore segmentation. a Original stomata images.b Greyscale images. c 

Segmented results by the CV model without reflection removal. d Reflection removal images. e Segmented results after reflection removal. f 

Overlays on the original images

Fig. 16 Comparison of the segmentation results using the CV model 

and manual segmentation (181 stomata Data from literature [12])
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