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One of the leading causes of overfishing is the catch of unwanted fish and marine life in commercial fishing gears. Echosounders are nowadays

routinely used to detect fish schools and make qualitative estimates of the amount of fish and species present. However, the problem of esti-

mating sizes using acoustic systems is still largely unsolved, with only a few attempts at real-time operation and only at demonstration level.

This paper proposes a novel image-based method for individual fish detection, targeted at drastically reducing catches of undersized fish in

commercial trawling. The proposal is based on the processing of stereo images acquired by the Deep Vision imaging system, directly placed in

the trawl. The images are pre-processed to correct for nonlinearities of the camera response. Then, a Mask R-CNN architecture is used to lo-

calize and segment each individual fish in the images. This segmentation is subsequently refined using local gradients to obtain an accurate es-

timate of the boundary of every fish. Testing was conducted with two representative datasets, containing in excess of 2600 manually

annotated individual fish, and acquired using distinct artificial illumination setups. A distinctive advantage of this proposal is the ability to

successfully deal with cluttered images containing overlapping fish.

Keywords: deep learning, fish sizing, trawl camera system

Introduction
According to the UN Food and Agriculture Organization, 33% of

commercially important marine fish stocks worldwide are overf-

ished (FAO, 2018). One of the causes of overfishing is that, in ad-

dition to targeted species, the fishing gears often catch other

unwanted fish and marine life. Globally, nearly 11% of total

catches are discarded because they are not the proper species or

sizes (Pérez Roda et al., 2019). In some cases, the quantity of this

by-catch can exceed that of the targeted species. Excessive by-

catch is an immediate problem for fishers as it slows their catch

sorting operations considerably, increases fuel consumption and

wear on their fishing gear. Under management systems utilizing

by-catch caps or closures to protect juveniles, fishing opportuni-

ties may be curtailed. In the long term, high levels of by-catch can

contribute to overfishing jeopardize the long-term sustainability

of the fishery.

Some countries and regions have enacted prohibitions on dis-

carding unwanted catches. The most recent revision to the EU
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Common Fisheries Policy (EU regulation 1380/2013) institutes a

landing obligation requiring all catches of regulated commercial

species to be landed and counted against quota. This includes

catches of undersized individuals, which can be utilized to avoid

waste, but not for direct human consumption or at a profit which

could result in the establishment of markets.

Most fishermen use echosounders to detect fish schools and

make qualitative estimates of the amount of fish and species pre-

sent. Advanced “split beam” echosounders can give an indication

of fish size, and characteristics such as frequency-response and

school geometry can be used to differentiate between some spe-

cies (Korneliussen et al., 2009). However, systems to provide

quantitative real-time species identification and measurement

during fishing are largely in the demonstration phase (Pobitzer

et al., 2015; Berges et al., 2018). As a result of this uncertainty,

vessels relying on acoustics to target-specific species may catch

undersized individuals or other species.

This paper proposes a novel fish sizing method when capturing

fish using a trawl. The proposal is based on the use of the existing

Deep Vision system (Rosen and Holst, 2013), directly placed in

the trawl, to acquire stereo image pairs at a fixed frequency of five

or ten images per second. The images are saved in a solid-state

unit capable of storing �1 million image pairs, equivalent to 60 h

of data collection. In this paper, the images have been processed

offline, but we aim at processing them onboard the Deep Vision

system in the near future which will make real-time active sorting

possible. This will enable more sustainable fishing activities by re-

ducing catches of undersized individuals and unwanted species.

Material and methods
Data acquisition

Data were obtained on two testing cruises in the North Atlantic,

the first in the North Sea onboard the Norwegian R/V “Dr

Fridtjof Nansen” during March of 2017 (hereafter dataset 1), and

the second in the Norwegian Sea with the chartered fishing vessel

M/S “Vendla” during May of 2017 (hereafter dataset 2). Both ves-

sels used an 832-m circumference pelagic trawl designed for sur-

veys of small pelagic species in the Northeast Atlantic. Dataset 1

included images of saithe (Pollachius virens), blue whiting

(Micromesistius poutassou), redfish (Sebastes spp.), Atlantic mack-

erel (Scomber scombrus), velvet belly lanternshark (Etmopterus spi-

nax), and Norway pout (Trisopterus esmarkii), while dataset 2

included images of Atlantic mackerel, blue whiting, and Atlantic

herring (Clupea harengus).

Acquisition of stereo image pairs of fish in the trawl was done

using the Deep Vision system which is currently used to provide

fisheries survey operations with information about depth and po-

sition of fish entering the sampling trawl. Using Deep Vision, it is

also possible to conduct surveys which retain images rather than

the actual fish. This lessens the environmental impact of the sam-

pling and the workload of handling and measuring the catch. At

the same time it provides images and metadata that can be used

for length measurements and species classification. Combined

with acoustic measurements this information provides higher

confidence data used as input for stock assessment.

The Deep Vision system is divided into a subsea system and a

topside system. The subsea system has a stereo camera, strobe

lights, battery, and an enclosing studio frame designed for opti-

mal image quality and consistency. The studio frame is integrated

into the trawl to ensure smooth flow of catch through the system,

and protects the electronic components from the rigours of trawl

handling and operations (see Figure 1).

The topside system provides a graphical user interface for size

measurement and species classification, through a combination

of manual and more automated processes. The output from the

analysis software is combined with the data from the subsea sys-

tem into an annotated dataset that can be used to produce statis-

tical data.

During both surveys, the stereo image pairs were recorded at 5

fps, in JPG format, with an image resolution of 1392 � 1040 pix-

els. Lighting was provided by two synchronized strobes producing

�18 000 lumen each at a colour of 4100 K. Although the lights

were pointed to the ceiling and floor of the studio frame to pro-

vide diffused lighting, their angle varied slightly between cruises

resulting in slight differences in reflection and illuminance inside

the volume where objects pass through the Deep Vision canal

(Figure 4). In addition, the user was allowed to make changes to

camera exposure time, gain and gamma correction, introducing

an additional source of inconsistency in image appearance. The

impact of this uneven appearance on further image analysis

prompted a full mechanical redesign of the lights to a production

model with both higher total light output and fixed angle

(Figure 1).

All the acquired images are analysed using the processing pipe-

line illustrated in Figure 2. First, images are pre-processed to cor-

rect nonlinearities and non-uniform lighting effects. Next, we use

a Mask R-CNN architecture to localize and segment every indi-

vidual fish in the image. The obtained segmentation is then re-

fined in the next step using the local gradient to estimate the

boundary of every fish. Finally, the length of the fish is computed

exploiting stereo information. The different processing phases are

detailed below.

Image pre-processing

Image pre-processing aims at correcting non-uniform lighting to

produce images with a similar contrast between the fish and the

background regardless of the location of the fish in the image. To

carry out this correction, we should first linearize the image

(Prados et al., 2017).

Linearization is a desirable pre-processing step since cameras

provide RGB values that are non-proportional with the incoming

light energy. This is so because the human visual system has a

nonlinear response (Burton, 1973). If an image encodes light in a

[0,255] interval, a value of 128 is perceived as half the lightness by

the human eye, but in reality that point is reflecting (�) 25% of

the light. That is, the camera response functions for all the colour

channels are adapted to the human eye, and therefore they are

nonlinear, especially if images have been stored using the JPG for-

mat, as it is often the case to minimize disc space to store large

datasets. Therefore, since most processing algorithms assume that

the value of a pixel is proportional to the amount of light col-

lected by that specific pixel, linearizing the image would provide a

better-conditioned set of pixel values for further processing.

Moreover, using linearized images ensures providing the process-

ing algorithms with a more accurate representation of the mea-

sured spectra, and consequently its behaviour and outputs

become more consistent. In our case, images are linearized using

the camera linearization method described in Debevec and Malik

(1997). After this process, the RGB values become proportional

with the irradiance on the sensor pixels, and the image is ready to
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undergo further linear operations, such as the correction of the

non-uniform lightning. All subsequent operations are performed

in linear RGB values.

Although the Deep Vision system provides images with a good

overall illumination, the amount of light on the central area of

the images is higher than that at the corners of the image.

Therefore, once the images are linearized, we also correct the

images for non-uniform lighting. To do this, we first convert the

images from RGB to HSV (Hue, Saturation, Value), where V cor-

responds to the image luminance (Schwarz et al., 1987). The lu-

minance channel is the only component that will be used to

correct the illumination effect. The illumination correction is per-

formed by modelling the background, i.e. we compute the

median of a sufficiently large set of images of the scene (typically

300). The high power of the lighting system makes any external

lighting contribution negligible, and consequently the illumina-

tion can be assumed as constant during the whole trawl. Ideally

the images are selected at the beginning of the trawl haul before

fish begin entering the field of view, although the only require-

ment is that, for the volume of 300 images, every pixel coordinate

should not contain fish in slightly more than half the images

(>150). The median value for each image pixel will be later on

computed. If a given coordinate show no fish most of the time,

the appropriate background value will be kept for this pixel loca-

tion by the median measure. Once the median image has been

computed from the V component of the set of images, we obtain

a background luminance image that allows us to infer the illumi-

nation of the scene. The estimated background image is then

inverted and applied as a non-uniform illumination compensa-

tion pattern to correct the luminance (V) of every image of the

sequence. The RGB values of the final images are recovered from

the HSV representation, ensuring that the correlation between

the RGB channels is preserved, i.e. the original colours are kept.

It should be noted that working directly on the RGB colour

space using channel-wise processing, as is commonly done in sev-

eral image processing algorithms, may lead to a loss of the corre-

lation between the values of the RGB triplets, thus shifting the

original colours acquired by the camera.

Compensating the non-uniform illumination on all the images

has proved to better condition the data to perform the subse-

quent fish segmentation (Prados et al., 2014).

Figure 1. Deep Vision subsea system. The system is placed inside a
trawl net (a) and contains a stereovision camera set and indirect
lighting source. The arrows in the middle figure (b) define the
“studio” section, corresponding to the area where the catch flows,
and which can be seen in detail in the bottom schematic (c). Fish
cross through a trapezoidal plexiglass section which ensures they
maintain at least 20 cm distance from the cameras and lights and
are within the field of view of the cameras.

Figure 2. Automatic fish measurement pipeline. The process starts
with the pre-processing of the image, and then a CNN localizes
every individual fish. The CNN also provides a segmentation mask
for the fish. Next, these masks are refined using local contrast
information to delineate the boundary of every fish, and finally the
length of the specimen is measured based on stereo cues.
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Single fish detection

Our aim is to be able to segment individual fish in the images,

so that measuring the fish once it has been segmented becomes

a trivial task. Figure 3 illustrates the problem we want to solve.

Figure 3a shows a situation in which fish segmentation is quite

easy since the background of the Deep Vision system can be

modelled, and everything that is not background could be as-

sumed to be a fish. However, Figure 3b shows a more challeng-

ing situation in which the fish to be measured are overlapping,

making it difficult to determine their outline. In these situations

in which we are not able to formalize an algorithm to recognize

an object (e.g. a fish), using of machine learning methods

has shown to be the best alternative. Among machine learning,

deep convolutional neural networks (CNNs) have proved to be

capable of achieving the best results on challenging datasets us-

ing supervised learning (Krizhevsky et al., 2017). CNNs have

also demonstrated good accuracy in automatic classification of

species using simulated Deep Vision images (Allken et al.,

2019).

One of the state-of-the-art CNN-based deep learning object

detection approaches is Region-CNN (or R-CNN). R-CNN pro-

vides a solution to the fast detection of regions of interest (RoI)

within an image. Based on this approach, more complex architec-

tures have recently appeared such as Faster R-CNN (Girshick,

2015) for faster speed object detection, as well as Mask R-CNN

(He et al., 2017) for object segmentation. In this paper, we use a

Mask R-CNN architecture for fish detection and segmentation.

Mask R-CNN combines Faster R-CNN for object detection in

which the number of objects may vary from image to image, and

fully convolutional networks (FCNs) for segmentation to estab-

lish what pixels in the image belong to what object. This step of

detecting and delineating the boundaries of every individual ob-

ject in an image is called “semantic segmentation,” and allows us

to differentiate individual fish when two or more instances of a

fish overlap in the image, as illustrated in Figure 3b.

Faster R-CNN performs individual fish detection in two stages.

First, it determines the bounding boxes (i.e. RoIs) using the re-

gion proposal network (RPN) standard. The RPN is basically a

lightweight neural network that scans the image in a sliding-

window fashion to find regions that contain objects. Second, for

each RoI it determines the class label of the object through RoI

pooling. Therefore, Mask R-CNN incorporates these two stages,

but it performs RoI pooling in such a way that there is no loss in

stride quantization due to rounding when pooling is performed,

as opposed to the rounding performed by Faster R-CNN (Ren

et al., 2015). Moreover, the sliding window is handled by the con-

volutional nature of the RPN, which allows it to scan all regions

in parallel exploiting the GPU architecture.

FCNs are used to predict the mask for every RoI.

Convolutional layers retain spatial orientation and this informa-

tion is crucial for location-specific tasks such as creating a mask

for every individual fish (He et al., 2017). This is a clear advantage

with respect to fully connected layers, in which the spatial orien-

tation of pixels with respect to each other is lost as they are

squeezed together to form a feature vector (Long et al., 2015).

Our Mask R-CNN architecture was initially pre-trained for the

COCO dataset (Lin et al., 2014). Then, the last layer was modified

to classify between fish and background and we re-trained the last

layers using our fish training data for 20 iterations. This fine-

tuning strategy allows us to reduce the training time and the

needed amount of data compared to training from scratch. Next,

the full network was trained with our trawling data. In all cases,

during training we tried to reduce overfitting on image data by

artificially enlarging the dataset using data augmentation, which

included image translations, horizontal and vertical reflections,

rotations, and shear transformations.

Segmentation refinement

The mask computed by Mask R-CNN has been obtained using a

low-resolution image. Thus, the mask that segments the fish has a

lower accuracy than those that can be obtained from the full-

resolution original images. Therefore, a final stage of mask refine-

ment is applied to obtain a much finer spatial layout of the fish,

i.e. a more accurate segmentation.

The blobs estimated by Mask R-CNN are first scaled and trans-

ferred to the full-resolution image (1228 � 1027 pixels). Then,

the gradients of the V channel on the original image are com-

puted. This results in an image were the boundary of the objects

is clearly distinguishable. The gradient magnitudes are thresh-

olded to keep only the higher values, that is, the most prominent

boundaries. Finally, both the Mask R-CNN masks, resulting in

most cases in conservative segmentation, and the gradient-based

boundary refinement masks, are fused into a single one for each

image object. Empty inner areas are filled using binary morpho-

logical operators.

In case of overlapping fish, Mask R-CNN masks are used to

guess where the boundaries of every specimen should be placed,

given that the gradient-based refinement cannot distinguish

among different objects. To determine which pixel belongs to

each fish, Mask R-CNN masks are dilated using a customized

multi-label dilate operation, which stops growing in a given di-

rection when another neighbouring object is growing in the op-

posite direction and colliding with the first. The result of this

dilate operation is used to determine the contribution of the gra-

dients image to each fish mask.

Segmentation performance

To evaluate the performance of the masks obtained by our proc-

essing pipeline, a detection accuracy measure is required. A stan-

dard set of metrics [intersection over union (IoU) and pixel

accuracy] is used to quantify the segmentation results, since they

are the de facto evaluation metrics used in object detection. IoU,

also referred as Jaccard index, is an evaluation metric used to

measure the accuracy of object segmentation on a particular data-

set. IoU is often computed using the bounding box predicted by

the CNN detector and the ground-truth (i.e. hand labelled)

bounding box. In our case, since our detector generates a pixel re-

gion (mask) containing the pixels that correspond to a given fish,

and the ground-truth is also a hand-labelled pixel region, IoU is

computed using these two regions. The final score is obtained by

dividing the area of overlap of the predicted region and the

ground-truth region by the area of union of both the predicted

region and the ground-truth region:

IoU ¼
ground-truth \ prediction

ground-truth [ prediction
:

However, the measure of pixel accuracy corresponds to the

percentage of pixels in the image which were correctly classified.

Automatic segmentation of fish 1357
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Usually it is presented for each class and the mean of all classes is

provided. In our case both values are the same as we only have

the “fish” class.

For this metric we need to introduce the notions of TP, TN, FP,

and FN. True positive (TP) represents a pixel that is correctly pre-

dicted to belong to the given class whereas a true negative (TN)

represents a pixel that is correctly identified as not belonging to the

given class. False positives (FP) and false negatives (FN) are defined

accordingly. The accuracy metric is then computed as

accuracy ¼

X TP þ TN

TP þ TN þ FP þ FN
:

Length estimation

Once the specimens have been properly segmented, the final stage

consists of finding a line that accurately describes the length of

the fish. For this purpose, we estimate the fish skeleton using

morphological operations applied to the labelled image, but it

should be noted that the actual length of the fish should be esti-

mated taking into account its 3D pose. The thinning morphologi-

cal operation involves eroding the segmented region until

skeleton level (Dougherty, 1992), i.e. shrinking the region corre-

sponding to the individual fish until the blob becomes 1 pixel

wide. This typically leads to a line centred along the main axis of

the fish. Before performing morphological skeletonization, the bi-

nary masks resulting from the segmentation of the previous sec-

tion are smoothed by applying a “closing” morphological

operation. In this way, a continuous and typically smooth line is

obtained, representing the main axis of the fish.

The next step is the estimation of a curve following the trajec-

tory described by the pixels of the skeleton. Once the points

defining the skeleton have been obtained, a cubic polynomial is

estimated using RANSAC (Fischler and Bolles, 1981). In this way,

the points of the skeleton are classified in inliers and outliers, and

after a number of iterations, a consensus solution is computed by

least squares fit of the largest set of inliers, obtaining the final esti-

mation of the curve.

Once the curve equation is derived, the starting and ending

points defining the length of the fish are determined as the inter-

section between the estimated curve and the boundaries of the

smoothed fish blob. Since the stereo system has been calibrated

and the images rectified (Hartley and Zisserman, 2003), these

points can then be easily transferred from the right to the left im-

age of the stereo pair by applying the axis constraints determined

by the stereo rectification. Then, once front and back points have

been established in both images of the stereo pair, a set of uni-

formly distributed points along the curve are selected in the right

image. These points are transferred to the left image following the

same uniform distribution, using the image rectification to deter-

mine its Y location. Finally, the set of measurement point pairs

from the right and left images is used to compute the distances of

the segments connecting them using epipolar geometry, thanks to

the calibration of the stereo system.

Results
A total of 1805 manually annotated images (corresponding to the

left camera of the stereo pairs) have been used to validate the

pipeline proposed in this paper, with a total of 2629 fish annota-

tions. These images have been acquired in two different cruises.

Dataset 1, including 1605 annotated images, was acquired by R/V

Dr Fridtjof Nansen on March 2017. This dataset represents a

small subset of all the images acquired during the survey, and

includes frames from three different hauls (138 055 stereo pairs).

Figure 3. Fish segmentation. In simple cases such as (a), fish can be segmented into individual specimens simply by background subtraction
(b). However, we need a cognitive understanding of the image to be able to segment the three fish instances in (c) shown in (d).
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Dataset 2 was acquired by F/V Vendla on May 2017 and it

includes 200 annotated images, all of them from the same haul

(28 117 stereo pairs). Both surveys consist of thousands of images,

but only small samples containing fish suitable for an appropriate

labelling (a large percentage of images contain no fish at all) can

be used. The annotation effort is significant, taking into account

that the labelling procedure implies a precise manual segmenta-

tion of each specimen, not a simpler approximate bounding box

specification.

Figure 4 illustrates the appearance of the images of both data-

sets, as well as the result of correcting non-uniform illumination.

It should be noted that the appearance of the images in both

datasets is different due to the change of lighting arrangement

and camera parameters (with a gain factor of 1.2 in case of dataset

1 and gain factor of 2 in case of dataset 2). In dataset 2, the central

part of the image is considerably brighter than in dataset 1, and

as a consequence, the margins of the image are darker than in the

first dataset. After applying the strategy to compensate the non-

uniform lighting, using a specific per-haul pattern to maximize

precision, the images of both datasets become better suited for

posterior processing. The frames attain a more even appearance,

with uniform light distribution, making the contained data better

conditioned for the subsequent steps.

Two different sets of experiments have been conducted. In the

first experiment, we aimed at evaluating the capability of the ar-

chitecture to generalize the problem of fish detection by training

using the 1605 images of dataset 1, and then testing on the 200

annotated images of dataset 2, in which lighting conditions and

camera settings have changed.

It should be noted that the two datasets also present different

characteristics in terms of the type of fish present. Saithe domi-

nated in the first cruise, which also included blue whiting, redfish,

Atlantic mackerel, velvet belly lanternshark, and Norway pout.

The second cruise included images of Atlantic mackerel, blue

whiting, and Atlantic herring. In addition to these fish, the second

dataset also included northern krill, Meganyctiphanes norvegica,

in most images. Moreover, the average number of fish per image

is also much larger in the second dataset.

The Mask R-CNN was trained with the images of dataset 1, ac-

quired by the R/V “Dr Fridtjof Nansen,” but applying the data

augmentation techniques described above. The original dataset

was split into 80% for training and 20% for validating.

After finishing this training we applied the obtained weights

on 200 annotated images from the second dataset acquired by F/

V “Vendla.” This dataset is completely independent from the

images used for training and validation. Test images were previ-

ously segmented by hand, creating a ground-truth to compare all

methods. Fifty of these images contain overlapping fish while the

other 150 contain one or more fish, but with no overlap. Table 1

illustrates the results obtained in this first trial.

Analysing the values of Table 1, the reader would think that

the CNN is doing a good job. We differentiate between “single

fish,” which is the detection of fish when the masks correspond-

ing to the fish are not connected to each other (see Figure 3a),

and “overlapping fish,” which corresponds to the cases in which

these masks overlap (see Figure 3b, central fish). In Table 1, IoU

is ranging between 0.84 for “single fish” detection, and 0.82 for

“overlapping fish.” And the accuracy is even higher with values of

>0.98 in both cases. Therefore, at first glance, the Mask R-CNN

architecture seems to have done a good job to generalize the

problem of fish detection.

It should be noted, however, that in our case we want to seg-

ment every isolated fish to enable its later sizing. In the case of

overlapping fish (see Figure 3b), applying IoU out of the box

would only take into account if a pixel that was predicted as class

“fish” belongs to a fish in the ground-truth. However, this is not

what we need in our application. Consider the example of

Figure 5. The ideal ground-truth masks are shown in Figure 5a,

with the red fish labelled as 1 and the blue fish with label 2.

Figure 5c shows a fish segmentation in which the two overlapping

fish are detected as a single fish. This would be considered as a

very good segmentation in the standard IoU metric frequently

used in the literature, e.g. (He et al., 2017), but in our case we

consider this a bad result since it is missing the detection of fish

2, and over-segmenting fish 1. Therefore, we introduce a new

metric, namely IoU*, to measure IoU on a slightly different way

that better serves our purposes. This measurement of IoU* will

work as follows. An IoU* measurement will be computed for ev-

ery fish in the ground-truth. The IoU* corresponding to the red

fish as the area of intersection between the red region in Figure 5a

and the red area in Figure 5c, and that value will be divided by

the union of the same two regions. In this way, the detection of

fish 1 will have a low IoU, as we will divide by a large area of

union. Equally, for fish 2 we will divide the area of intersection by

the total area of union of Figure 5b plus the blue area of

Figure 5a, also producing a low IoU* value since it will have also

a large number in the denominator. Using this metric, large val-

ues of IoU* guarantee that only one fish has been detected, while

low values indicate that two or more overlapping fish in the

ground-truth have been predicted as a single fish in the detection

phase. Experimentally, this threshold has been set as 0.7.

The results of this new metric are given in Table 2. Again, we

distinguish between the previous two cases depending on

whether fish are overlapping to have a better insight of the per-

formance of the system under this critical situation. In the first

two columns the table details the number of images of the sec-

ond dataset, and the total number of fish manually annotated in

those images. The third column states how many of these fish

are detected with an IoU* with a value of >0.7, which intuitively

means that the detection is good, i.e. two fish in the ground-

truth are detected as two fish in the trial, and not as a single,

larger fish. For the case of single fish (non-overlapping) we ob-

serve that 334 fish are correctly detected out of the 368 fish in

the ground-truth. This is really a good performance if we take

into account that several of the fish manually annotated in the

datasets correspond to partially visible fish that are entering or

leaving the field of view of the camera. However, for the images

in which fish are overlapping, only 154 out of 272 fish are

detected with an IoU* >0.7. And 94 fish are detected with IoU*

<0.7, i.e. one fish is detected when >1 fish appeared in the

ground-truth. It can be observed that, as opposed to what it

seemed in Table 1 using the standard IoU metric, the perfor-

mance of Mask R-CNN in this first trial is not so great, espe-

cially in the case of overlapping fish. The next two columns

present the number of false negatives, i.e. fish not detected at

all, and false positive. In this dataset the false positives normally

correspond to the prediction of fish in areas of the image that

correspond to northern krill, present in all the images of se-

quence 2. Finally, the last column corresponds to the average

IoU* measurement, giving a value of 0.76 for the single fish

case, and 0.58 in the case of overlapping fish. It should be noted

that this average is computed from all the IoU* values of all the
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images in the corresponding dataset. We average all IoU* values

for every fish in the ground-truth, but we also accumulate and

account for 0 if FN or FP occur in the test images. Therefore,

our average IoU* metric strongly penalizes false detections.

The last two rows of Table 2 detail the results of taking the fish

detection masks obtained in this first trial by Mask R-CNN and

applying the gradient mask refinement to them. We notice that

gradient refinement is not able to improve fish detection, al-

though it raises IoU* to 0.80 and 0.61, respectively. This basically

means that the segmentation mask is more accurate after gradient

refinement.

Table 3 reports the results of the second experiment. In this

case, both datasets were used to create the train, validation, and

test sets. Out of the total number of images (1805), roughly a

10% is used to evaluate the final model fit on the training dataset

(test set), and the remaining 90% of the images were further di-

vided into 80% for training and 20% for validation to tune the

hyperparameters of the Mask R-CNN. Again, to better under-

stand the performance of the network, we divided the test set

images between (a) single fish and (b) overlapping fish situations.

For the single fish scenario, as expected, we see that the perfor-

mance of the detection is better than in the first experiment, since

the training data includes images of datasets 1 and 2. More than

96% of the fish are correctly detected when there is no overlap-

ping fish, i.e. 225 correct detections from 233 annotated fish. This

percentage goes down to roughly 79% when fish are occluded by

other fish. These results with overlapping fish drastically improve

the results of experiment 1, with 57% of correct detections of

overlapping fish. It can also be observed that the number of FN

and FP has also been drastically reduced with respect to the previ-

ous trial. Finally, the last column of Table 3 includes IoU* average

values of 0.89 and 0.79 for non-overlapping and overlapping fish,

respectively. These values are slightly improved by the gradient

refinement technique, on 0.01 in every case. This is a sign that the

masks generated by Mask R-CNN in the second experiment are

more accurate than the ones predicted in the first trial, but can

still be improved through gradient refinement. Some sample

results of the second experiment can be shown in Figures 6 and 7.

Figure 7 shows intermediate qualitative results of the proposed

pipeline. It can be observed how the individual fish segmentation

algorithm provides a much better fish delineation with respect to

the labelled image provided by Mask R-CNN.

Discussion and conclusions
Fish length estimation and catch composition are among the

most crucial information collected in fisheries research. The Deep

Vision system allows fishing vessels to collect stereo imagery, and

proper processing of these data enables gaining critical informa-

tion about average fish size and catch composition during the

trawling operation.

Figure 4. Correction of non-uniform illumination in dataset 1 (top) and dataset 2 (bottom). (a) Image from the Dr Fridtjof Nansen March
2017 dataset. (b) Image after non-uniform illumination compensation. (c) Image corresponding to the Vendla May 2017 dataset. Note the
different appearance of the image with respect to (a). The centre of the image is brighter, while the boundary areas are still significantly dark.
(d) Image after non-uniform illumination compensation.

Table 1. Results obtained by Mask R-CNN.

IoU Accuracy

Single fish 0.845 0.994

Overlapping fish 0.824 0.984

The network was trained using dataset 1, and the test has been quantified us-

ing the images of dataset 2. The results suggest a very good generalization ca-

pability of the network for detecting fish.
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Several works in the literature have tried to segment fish in un-

derwater video sequences. Some achieve fish detection based on

matrix decomposition (Qin et al., 2014) or exploiting texture and

shape features that characterize fish with respect to the back-

ground (Spampinato et al., 2010). Other works rely on salient fea-

tures (Fernandes et al., 2016), carefully selected double thresholds

(Chuang et al., 2016), or the guided filter (Sanchez-Torres et al.,

2018). In many cases, the approach involves a static camera that

allows modelling the background to then isolate the fish to carry

out monocular detection or stereo measurements (Costa et al.,

2006; Pérez et al., 2018), while other works train-specific Deep

Learning architectures for fish classification (Qin et al., 2016).

However, in all cases the detected fish where not overlapping

with other fish in the field of view of the camera. Proper delinea-

tion of individual fish in overlapping situations still remains a

challenge.

Stereo imaging is often employed to obtain depth information,

and depth cues can be used to segment RoI in some well-

conditioned situations. However, traditional stereo matching

techniques such as Semi Global Matching (Hirschmuller, 2005) or

Block Matching (Konolige, 1998) fail to reliably detecting the fish

boundaries in cluttered situations, as depicted in Figure 8. Depth

cues from stereo alone can potentially be used to separate fish

standing at clearly different distances, such as in the case of

Figure 8a and b. On the contrary, we find in our datasets many

cases in which multiple fish stand at approximately the same dis-

tance while overlapping, or are imaged while being significantly

rotated from the ideal fronto-parallel configuration (such as in

Figure 8e and f), In these situations, stereo matching fails to pro-

vide enough information to successfully and robustly separate the

fish (Figure 8g and h). Figure 9 illustrates the result of our ap-

proach for this particular complicated case. While the result is

not perfect in Figure 9b, it can nonetheless be considered as a suc-

cessful detection and separation.

The processing pipeline proposed in this paper is able to pro-

vide accurate segmentations of individual fish in images acquired

during standard fisheries surveys using the Deep Vision commer-

cially available system. The pipeline involves three main phases:

pre-processing, CNN-based segmentation, and gradient refining.

Each phase contributes decisively to the performance of the over-

all system.

Pre-processing aims at exploiting the fact the imaging acqui-

sition setup is well defined and constrained in terms of

optical sensors, illumination characteristics, and background.

By performing adequate modelling of the camera response

and background illumination field, the variability of the visual

appearance is reduced across different datasets and surveys.

This, in turn, promotes the performance of the CNN, and, to

(a) (b)

(c) (d)

Figure 5. Fish masks. (a) Ground-truth hand annotation. (b) Example of masks detected by the CNN. The dashed lines show the
corresponding ground-truth. The coloured area outside the dashed region corresponds to a false positive area, the white area inside the
dashed region defines a false negative. (c) Example of an incorrect segmentation in which the CNN detects as a single instance the two fish of
(a). (d) False detection of a non-existent fish, giving rise to another false positive.

Table 2. Experiment 1: results obtained by Mask R-CNN after training with dataset 1 (D#1) and testing with dataset 2 (D#2).

No. of images

Total no. of

annotated fish

No. of detected fish

with IoU* >0.7

No. of detected fish

with IoU* <0.7 FN FP IoU*

Mask R-CNN train and valid.

on D#1 þ test on D#2

Single fish 150 368 334 15 19 25 0.76

Overlapping fish 50 272 154 94 24 16 0.58

Gradient refinement Single fish 150 368 333 16 19 24 0.80

Overlapping fish 50 272 156 95 21 15 0.61

Performance taking into account the new metric IoU* that penalizes detection of a single fish when two or more fish instances are labelled in the ground-truth.
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a lesser extent, also benefits the gradient refinement step at the

end.

The Mask R-CNN architecture was selected for the CNN-based

segmentation. A central reason behind this choice was its superior

performance reported by He et al. (2017), when compared to

closely related instance-aware alternatives such as Multi-task

Network Cascades (Dai et al., 2016) and Fully Convolutional

Semantic Segmentation (Li et al., 2017).

Finally, the gradient refining phase improves the delineation

of the fish by using local contour cues. The impact of this step

is clearly visible on Tables 2 and 3 regarding the IoU* mea-

surement, where there was a noticeable improvement. The

improved delineation is also of clear benefit for fish sizing

accuracy.

In this study, we have also proved that standard IoU values are

not adequate to quantify the performance of segmentation of in-

dividual fish in the overlapping situations in which specimens are

occluded by other fish. A modification of the previous metric has

been proposed (IoU*) as a statistic that can effectively be used for

gauging the similarity of the detected masks with respect to the

hand-labelled ground-truth masks.

The approach in this paper has been developed with the op-

erational goal of achieving real-time execution on dedicated

hardware inside the Deep Vision imaging system. The testing

Figure 6. Fish detection and semantic segmentation performed by Mask R-CNN. (a) and (c) correspond to the original images. (b) and (d)
illustrate the outcome of the algorithm. Note how Mask R-CNN is also able to detect overlapping fish, as shown in (d).
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reported in this paper was conducted offline on a high-end

desktop computer with a NVIDIA TITAN V GPU. The seg-

mentation was run on the GPU at a frame rate was 2.67 images

per second. The refinement in the current state is not opti-

mized for speed.

A number of extensions to this work is planned in the near

future. The validation of the size measurements is currently

being pursuit with the intent of using fish specimens or accu-

rate fish shape reproductions of known dimensions. The test-

ing is to be conducted in water, to take into account the

Figure 7. Automatic fish detection and length estimation. (a) Original image. (b) Fish detection and semantic segmentation through the
Mask R-CNN processing. Note that the system is able to correctly detect the central fish, although it fails to detect the two tails on the left as
two separate fish. (c) Labelled image as provided by Mask R-CNN. (d) Fish boundary gradient refinement mask. Note that, in this case, the
segmentation is not able to distinguish among touching fish. (e) Multi-label dilate morphological operation of the Mask R-CNN
segmentation. (f) Fish mask resulting of the combination of both gradient refinement and multi-label dilate. (g) Final segmented fish. (h)
Skeleton pixels (in green) of the segmented fish and measurement points (in red) of the estimated fish-shape curve used to perform an
automatic size measurement.

Table 3. Experiment 2: results obtained by Mask R-CNN after training with randomly selected 90% images from dataset 1 (D#1) and dataset

2 (D#2), the other 10% is reserved for testing.

No. of

images

Total no. of

annotated fish

No. of detected fish

with IoU* >0.7

No. of detected fish

with IoU* <0.7 FN FP IoU*

Mask R-CNN train and valid. on 90%

(D#1 þ D#2), test in 10% (D#1 þ D#2)

Single fish 170 233 225 7 1 10 0.89

Overlapping fish 26 104 82 16 6 5 0.79

Gradient refinement Single fish 170 233 224 8 1 10 0.90

Overlapping fish 26 104 84 14 6 4 0.80

Performance taking into account the new metric IoU* that penalizes detection of a single fish when two or more fish instances are labelled in the ground-truth.
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refraction effects of the flat-port camera housing and how it

affects the stereo geometry.

A second extension is directed towards achieving an execution

frame rate in the order of 10 fps, on the target embedded process-

ing hardware. This hardware is based on NVIDIA Jetson AGX

Xavier modules and will be deployed with Deep Vision imaging

system. The intended frame rate will allow performing tracking of

fish across time, given that multiple instances of the same fish are

likely to occur when images are acquired at 10 fps or higher, for

nominal trawling speeds. This will enable the ability of estimating

in real time the amount of fish in the trawl as well as the average

size. Finally, as more data becomes annotated, future develop-

ment will extend this work to use Mask R-CNN for automatic

fish species identification.
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