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Abstract. Preoperative planning systems are commonly used for oral
implant surgery. One of the objectives is to determine if the quantity
and quality of bone is sufficient to sustain an implant while avoiding
critical anatomic structures. We aim to automate the segmentation of
jaw tissues on CT images: cortical bone, trabecular core and especially
the mandibular canal containing the dental nerve. This nerve must be
avoided during implant surgery to prevent lip numbness. Previous work
in this field used thresholds or filters and needed manual initialization.
An automated system based on the use of Active Appearance Models
(AAMs) is proposed. Our contribution is a completely automated seg-
mentation of tissues and a semi-automatic landmarking process necessary
to create the AAM model. The AAM is trained using 215 images and
tested with a leave-4-out scheme. Results obtained show an initialization
error of 3.25% and a mean error of 1.63mm for the cortical bone, 2.90mm
for the trabecular core, 4.76mm for the mandibular canal and 3.40mm
for the dental nerve.

1 Introduction

Dental implants are titanium roots placed in the bone of the jaw to support
replacement teeth. Preoperative planning systems are commonly used for oral
implant surgery. The dentist or surgeon placing the implant needs to determine if
the quality and quantity of bone is sufficient for long-term function and stability.

The body of the mandible is formed by a hard exterior, the cortical bone,
and a soft spongy inside, the trabecular core. Teeth are fixed to the jaw by their
roots and nerved to the mandibular canal. The canal contains the mandibular
nerve which has to be avoided to prevent permanent or temporary lip numbness.
This nerve runs from the area behind the wisdom teeth, passes under the molars
and emerges under the skin of the face in the region where the premolar teeth
are or used to be (Fig. 1).
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Fig. 1. Mandible structure: diagram and CT sectional view

Oral implant surgery uses different views on CT images to plan the interven-
tion. Our work aims to segment cortical bone, trabecular core and the mandibu-
lar canal in sectional views (Fig. 1, right) because of their simplicity and the
coherence existing between nearby slices. Depending on the patient, the shape
of the bone can be very different and present mandible bone reabsorption. More-
over, the boundary of the trabecular core is not always well defined. We attempt
to detect this region roughly because the mandibular canal is located inside. The
canal is not always distinguishable in the trabecular zone because of the similar-
ity of intensities in this region. Furthermore, these images present artifacts and
sometimes teeth which make segmentation difficult.

2 Previous Work

We aim to automate the segmentation of cortical bone, trabecular core and
the mandibular canal in CT images. Most of the studies carried out in the
area of implantology has focused on 3D mandible reconstruction from projec-
tions [1] [2] avoiding the segmentation of tissues. Few studies have been found
about mandible tissues segmentation. In most cases, the method was based on
threshold and needed the intervention of an expert. For example, Fütterling
et al. [3] developed an approach to automate the segmentation process of jaw
tissues. They concluded that it was not possible to reliably detect any border
between the cortical bone and the trabecular core without massive interaction.
Stein et al. [4] proposed an approach to the detection of the mandibular canal
using Dijkstra’s algorithm to find the path and a deformable model to build the
tubular structure. The process required the initialization of an expert.

De Bruijne et al. [5] obtained good results in the segmentation of tubular
structures using Active Shape Models (ASMs). ASMs adapt the shape of the
object to be segmented according to the statistical information of a training set
previously annotated by an expert.

Previous work has shown that the problem to solve is complex and often re-
quires expert interaction. Threshold techniques have proved to be inefficient to
separate cortical bone and trabecular core. Nonetheless, the use of ASM to seg-
ment tubular structures gave good results. Therefore, if we want more accuracy
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we have to consider texture information. Active Appearance Models is an exten-
sion of ASMs that takes into account texture and shape variability. We will use
this method to segment mandibular tissues automatically.

3 Method

Active Appearance Models (AAMs), recently proposed by Cootes et al. [6][7],
can model both shape and texture variability existing in a training set. To create
a model we need a set of labeled images representative of the real variability of
the object we want to segment. AAMs have proved to be powerful tools for
medical image segmentation and understanding [8]. The whole process followed
is summarized in Fig. 2.

Evaluation
Training Set 
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Training Set 
Annotation the Model

Training Segmenting
New Images

Model

Fig. 2. Methodology

3.1 Selection of the Training Set

The images forming the training set must be representative of the variability exis-
ting in real cases. The data and the source should reflect the target population
for the algorithm that is being developed.

3.2 Semi-automatic Annotation of the Training Set

Because of the high variability of shape and the few anatomic landmarks exist-
ing in these images, manual landmarking, with high correspondence of points
between images, will be difficult, tedious and error prone. The best solution is to
automatize the process as much as possible. We use threshold techniques to find
the contour of each structure. First, we find the external contour of the cortical
bone (Fig. 3.a). Second, we define five mathematical landmarks (points of high
curvature) on the cortical contour (Fig. 3.b). Third, we find the contour of the
trabecular core (Fig. 3.c). Then, we locate the dental nerve, which is the only
anatomical landmark, in the center of the mandibular canal (Fig. 3.d). Finally,
we select the radius of the canal (Fig. 3.e).

Once this is done, we automatically define pseudo-landmarks equally spaced
between the anatomical and mathematical landmarks previously located. To
describe each structure we use a large number of landmarks. As stated in [9],
duplicating the structure gives more specificity to the model and more accurate
segmentation. The annotation for each structure can be seen in black in Fig. 4.
Each black point is a landmark.

The cortical bone (Fig. 4.a) is described with 30 landmarks and a double
contour of 28 points. The structure is open to avoid the presence of teeth. The
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Fig. 3. Semi-automatic landmarking steps

Cortical bone Trabecular bone Mandibular canal Nerve

Fig. 4. Model landmarking

trabecular core is described with 10 landmarks and a double contour of 10 points.
This structure has high variability and we use few points to avoid the adaptation
of the shape to details. The mandibular canal uses 8 landmarks and the dental
nerve only one.

3.3 Training the Model

To generate a statistical model of shape and texture variation it is necessary
to describe the shape and the texture of each training example. Therefore, we
represent n landmark points, (xi, yi), for each image as a 2n vector, x, where x =
(x1, . . . , xn, y1, . . . , yn)T describes the shape of an object. The annotated training
set is then aligned in a common co-ordinate frame using a Procrustes Analysis.
Hence, we obtain the Point Distribution Model (PDM) for all the images of the
training set. The mean shape is extracted and the appearance variation collected
by establishing a piece-wise affine warp (based on the Delaunay triangulation)
between each image of the training set and the mean shape. Next, the intensity is
sampled from the shape-normalized images over the region covered by the mean
shape. The resulting samples are then normalized to minimize the effect of global
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lighting variation and the texture (grey-levels) vector g is obtained. Finally, for
both shape and texture, we perform a Principal Component Analysis (PCA)
on the aligned training set to describe the shape and appearance variations of
the object. Often, shape and texture are correlated. Therefore, we can deduce a
combined model of shape and texture with parameters c, controlling the shape
and texture at the same time. We obtain:

x = x + Qsc (1)

g = g + Qgc (2)

where x and g are the mean shape vector and the mean normalized grey-level
vector, Qs and Qg are matrices describing the modes of variation derived from
the training set and c the combined PCA parameters. New images of the object
can be synthetically constructed from c. More details about AAMs can be found
in [6][7]. The whole process is summarized in Fig. 5.

x
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Point Distribution Model
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Fig. 5. Building an Active Appearance Model

3.4 Segmenting New Images

We first place an initial template model over the unseen image. We then use a
principal component multivariate linear regression model to generate new images
to fit the unseen image in the best way. Once the process converges, a match can
be declared. Finally, an optimization scheme accomplishes further refinement of
the match.
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3.5 Model Evaluation

The final step of the whole process consists of testing the performance of the
algorithm. Care should be taken to test the algorithm in data that has not been
used in the training.

In this case, we will use a common methodology called leave-N-out. In this
approach, a set of M images (ground truth) is split in N different ways into
a training set of size M-N and a test set of size N. For each of the N splits,
training is done on the M-N images and then testing is done on the remaining
N. Performance is then estimated as the average of the N tests.

For each image segmented, we compare the result with the corresponding
ground truth image. We calculate the distance between the structures segmented
and those previously annotated, which gives the average error for each image and
for each structure. There are two ways of measuring this distance: point-to-point
(pt.pt) or point-to-curve (pt.crv). The pt.pt distance measures the Euclidean dis-
tance between each corresponding landmark, whereas the pt.crv distance mea-
sures the shortest distance to the curve in the neighborhood of the corresponding
landmark. Pt.crv distance is more representative of the global segmentation be-
cause it does not evaluate each isolated point. We therefore based our evaluation
on the pt.crv distance.

4 Results

The method described to segment cortical bone, trabecular core and the mandibu-
lar canal was applied to 215 CT images which were selected from 62 patients com-
ing from different sources in order to cover the variability existing in real cases. The
entire model was described by 87 landmarks annotated on each image of the train-
ing set. Semi-automatic landmarking was undertaken to give more accuracy to the
system and assure that all the intermediate points were really equally spaced. The
open C++ source code AAM-API[10] was partially used in this study. We created
a tool with OpenCV libraries in C++ to annotate the images semi-automatically
and to build AAM models automatically. We developed the leave-4-out to evalu-
ate the models.

To calculate the optimized parameters in shape, we fixed the texture variance
at 40% and the combined variance at 95%. We then took into account the re-
sults obtained and fixed the shape variance at 25% to calculate the optimized
parameters in texture. The results can be seen in Fig. 6.

The best configuration is for 25% of the shape variance and 50% of the texture
variance. For the optimal configuration, results in mean and standard deviation
for each structure are shown in Table 1.

For a mean pt.crv distance lower than 5mm for at least 90% of the points for
each image or structure, a good initialization can be defined. Accordingly, 90%
of cortical bones, 66% of trabecular cores, 70% of mandibular canals and 72% of
dental nerves were found correctly for all the 215 images. An example of good
segmentation can be seen in Fig. 7.



Automatic Segmentation of Jaw Tissues 173

20 40 60 80 100
30

40

50

60

70

80

90

100

shape variance (%)

%
 fo

un
d

20 30 40 50 60 70 80

60

70

80

90

100

texture variance (%)

%
 fo

un
d

initialization cortical trabecular canal nerve

Fig. 6. Influence of shape and texture variance considered

Table 1. Results for the optimal configuration

mean (mm) std (mm)
Cortical Trabecular Canal Nerve Cortical Trabecular Canal Nerve

pt.crv 1.63 2.90 4.76 3.40 1.63 2.16 0 1.11

Fig. 7. Successful fitting

We do not expect more accuracy in the trabecular core because this structure
has a high shape variability and we annotated the training set to avoid trabecular
details during the segmentation.

5 Conclusion

AAMs perform accurate and automatic segmentation of cortical bone, trabecular
core, mandibular canal and dental nerve taking into account all the variability of
real cases. None of the previous work undertaken had achieved a real, automatic
jaw tissues segmentation. In the research presented in this paper, semi-automatic



174 S. Rueda et al.

landmarking was developed to improve the AAM method and decrease annota-
tion time.
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