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Abstract—Latent fingerprints are routinely found at crime
scenes due to the inadvertent contact of the criminals’ finger
tips with various objects. As such, they have been used as
crucial evidence for identifying and convicting criminals by
law enforcement agencies. However, compared to plain and
rolled prints, latent fingerprints usually have poor quality of
ridge impressions with small fingerprint area, and contain large
overlap between the foreground area (friction ridge pattern) and
structured or random noise in the background. Accordingly,
latent fingerprint segmentation is a difficult problem. In this
paper, we propose a latent fingerprint segmentation algorithm
whose goal is to separate the fingerprint region (region of
interest) from background. Our algorithm utilizes both ridge
orientation and frequency features. The orientation tensor is
used to obtain the symmetric patterns of fingerprint ridge
orientation, and local Fourier analysis method is used to estimate
the local ridge frequency of the latent fingerprint. Candidate
fingerprint (foreground) regions are obtained for each feature
type; an intersection of regions from orientation and frequency
features localizes the true latent fingerprint regions. To verify the
viability of the proposed segmentation algorithm, we evaluated
the segmentation results in two aspects: a comparison with the
ground truth foreground and matching performance based on
segmented region.

I. INTRODUCTION

Automated Fingerprint Identification Systems (AFISs) have

played a critical role in forensics and law enforcement ap-

plications to identify suspects and criminals for more than a

century. There are two main types of matching performed in

AFIS: (i) tenprint search and (ii) latent search [2]. In tenprint

search, the rolled or plain fingerprints of the 10 fingers of

a subject are searched against the tenprints in a fingerprint

database. Most of the tenprint searches (matchings) can be

done effectively in a “lights out mode” (fully-automatic), since

rolled and plain fingerprints are typically of good quality

with rich ridge information. According to the Fingerprint

Vendor Technology Evaluation (FpVTE) report [10], the best

performing AFIS had rank-1 identification rate of 99.4% on

a database of 10, 000 plain fingerprints (single finger match

performance).

The second type of search conducted by AFIS is latent

to tenprint match. Latent fingerprints “lifted” from crime

scenes are extensively used as forensic evidence in criminal

prosecutions. However, latent search is a challenging problem

due to poor quality of latents in terms of the clarity of the ridge

impressions. Typically, latent fingerprints have significantly

poor quality compared to rolled and plain fingerprints and

(a) (b) (c)

Fig. 1. Three types of finger impressions. (a) rolled fingerprint (b) plain
or slap fingerprint, (c) latent fingerprint. The average number of minutiae in
NIST SD27 is 21 for latents versus 106 for the rolled prints [3].

contain only a small area of a finger with unclear ridges and

large non-linear skin distortion (see Figure 1).

Due to the above characteristics of latent fingerprints, latent

searches are performed in a “semi-lights out mode” (semi-

automatic). In other words, manual intervention is necessary

in latent feature extraction and verification stages. As an

example, latent experts manually mark the region of interest

(ROI) in latents. Given this ROI, AFIS is used to filter a

large database of reference full prints to a small number of

potential mates (typically 50) for manual examination. The

manual examination and matching of latent fingerprints are

clearly stated in law enforcement protocol, referred to as the

ACE-V protocol [1]. Figure 2 shows an example of a latent

fingerprint and its mated rolled impression in NIST SD27 [31].

Given the large size of background database containing

rolled and plain fingerprints in law enforcement databases

Fig. 2. Example of a latent (a) and its mated rolled fingerprint (b). Manually
marked ROI in latent is shown in red and manual markup of corresponding
minutiae are shown in yellow [31].



(e.g., FBI’s IAFIS contains fingerprint records of about 70

million subjects), latent search in a lights out mode is very de-

sirable. In fact, this is one of the major goals of the FBI’s Next

Generation Identification (NGI) system [12]. Such a process

should automatically identify the region of interest (separate

the foreground from background), extract features from latent

fingerprints and match them with a database of known prints

(rolled and plain) to obtain a set of possible mates (with high

confidence) with no or little manual intervention. For high-

profile and “cold” cases1, a fast and accurate response to

latent queries would permit latent examiners to spend more

time to visually verify the returned fingerprint matches. To

benchmark and analyze the state of the art in latent search, Na-

tional Institute of Standards and Technology (NIST) initiated

a project on Evaluation of Latent Fingerprint Technologies

(ELFT). In ELFT Phase I [30], the rank-1 accuracy of the

best system was 80% in identifying 100 latents against 10, 000
rolled prints. In ELFT Phase II [24], the best rank-1 accuracy

of 97.2% was reported on good quality latent fingerprints

when matched with a background database of 100, 000 rolled

fingerprints. In a recent report on “ELFT: Extended Feature

Sets (EFS)” [25], NIST evaluated the state of the art in

latent feature-based matching, by comparing the performance

of using images alone against using different feature sets.

The best matcher achieved a 66.7% rank-1 accuracy while

matching 1, 114 latents with a background of 100, 000 full

prints. While the inclusion of extended feature set (EFS)

provided an improvement in accuracy, the latent fingerprint

image itself was shown to be the single most effective search

component for improving accuracy in current AFIS.

To achieve efficient automatic latent identification, it is

important to minimize human intervention while, at the same

time, maintaining the same matching accuracy as obtained by

trained latent experts. Based on above consideration, there

is an urgent need to develop an accurate automatic latent

segmentation method that separates foreground from back-

ground as an initial step towards lights out latent identification.

The rest of the paper is organized as follows. Section II

presents a summary of previous approaches to fingerprint

segmentation. Section III presents the proposed method based

on ridge orientation and frequency information. Section IV

presents experimental results. Conclusions and future work are

addressed in Section V.

II. RELATED WORK

One of the first processing steps in AFIS is segmentation of

fingerprint images. Fingerprint images usually consist of two

components: foreground and the background. The foreground

is the friction ridge impression from the fingertip whereas the

background contains the noisy area or any non-friction ridge

pattern which is irrelevant to fingerprint matching. The aim of

the segmentation is to decompose the input fingerprint image

1The definition of a “cold” case varies from one law enforcement agency
to other agency. The National Institute of Justice currently defines a cold case
as any case whose probative investigative leads have been exhausted [29].

into foreground and background regions. Accurate segmen-

tation is especially important for reliable feature extraction

(e.g., minutiae), since most feature extraction methods extract

a number of false minutiae in the background region (see

Figure 3).

Several approaches are available in the literature for the

segmentation of rolled and plain fingerprints. These methods

typically extract features for every element, which can be a

pixel or a block of pixels, say N×N , in the fingerprint image.

Each element is then classified as a foreground or background

based on a threshold. Mehtre et al. [9] proposed a segmentation

method based on directional image features. The ridge direc-

tion is selected by using the value of total fluctuations of the

gray values among the 8 possible directions and the blockwise

histogram of ridge direction is used to find the foreground. In

[8], a composite method was proposed using both gray value

variance and directional image. Ratha et al. [28] measured the

variance of the ridge projection signal on different directions to

find the foreground. Foreground blocks have a large variance

in a direction orthogonal to the ridges whereas background

blocks have small variance along all directions. Hong et al.

[22] proposed a method to classify the fingerprint image

into non-ridge-and-valley (unrecoverable) and ridge-and-valley

(recoverable) regions based on the amplitude, frequency and

variance features obtained from projected ridge signals. Bazen

and Gerez [5] proposed a segmentation method based on pixel-

wise coherence to handle the noisy background. Bazen and

Gerez [6] further improved their segmentation method based

on three pixel-based features (coherence, mean and variance).

An optimal linear classifier was used for the classification.

Yin et al. [36] developed a quadric surface formula based

on coherence, mean and variance features to overcome the

limitations of a linear classifier. Wang et al. [23] proposed an

algorithm based on Gaussian-Hermite Moments (GHM) for

non-uniform background removal. Bernard et al. [32] proposed

a multiscale Gabor wavelet filter bank based approach to

segment the fingerprint images. The phase component of

Gabor wavelet was used to determine ridges and valleys.

Some segmentation methods were especially designed for

segmenting low quality fingerprint images. These methods rely

on gradient-based features [18], intensity-based features [13],

[37] and structure-based features [21].

While rolled and plain fingerprint segmentation solutions

Fig. 3. Desired segmentation results for a latent and a full print. Latent
segmentation is a more difficult task compared to full print segmentation.



Method Approach Database
Performance
evaluation

Matcher Limitation

Karimi et al. [34] Ridge frequency computation
2 latents from
NIST SD27

N/A N/A No performance evaluation

Short et al. [26]
Correlation with ideal ridge

templates
NIST SD27 EER of 33.8%

Not
reported

Did not use a state of the
art matcher

Zhang et al. [20] Adaptive Total Variation model
3 latents from
NIST SD27

N/A N/A No performance evaluation

Proposed approach
Ridge orientation and frequency

computation
NIST SD27
WVU DB

Rank-1 identification
accuracy of 16.28%,

35.19% in NIST
SD27 and WVU DB

COTS
matcher

Need a robust confidence2

measure for segmentation
output

TABLE I
A COMPARISON OF PUBLISHED AND THE PROPOSED LATENT FINGERPRINT SEGMENTATION METHODS.

(a) (b) (c)

Fig. 4. Latent fingerprints of three different quality levels in NIST SD27
[31]. (a) Good, (b) Bad, and (c) Ugly.

are available, latent fingerprint segmentation still poses a

challenge. The segmentation methods designed for rolled/plain

fingerprints do not work properly on latents due to their

poor quality in terms of the clarity of the ridge impressions.

Further, latent images contain severe background noise (such

as speckle, stain, line, and text), which makes the latent seg-

mentation problem significantly more challenging (see Figure

4).

There have been a few recent studies on latent fingerprint

segmentation [34], [20], [26]. In [34], local frequency of the

ridge/valley pattern was estimated based on ridge projection

with varying orientations (5 degree resolution). The variance

of frequency and amplitude of the ridge signal was used as

features for the segmentation algorithm. However, segmenta-

tion results for only two latent images were reported without

any evaluation. Short et al. [26] proposed ridge template

correlation method for latent segmentation. An ideal ridge

template was generated and then cross-correlation values were

computed to define the local fingerprint quality. Authors man-

ually selected 6 different threshold values to assign a quality

value to each fingerprint block. Unfortunately, the information

regarding the ideal ridge template (size and number) was not

reported and evaluation criteria was not clearly described.

Zhang et al. [20] proposed an adaptive total variation (TV)

model for latent segmentation. The weight assigned to the

fidelity term in the model is adaptively determined according

to the background noise level. This was used to remove various

kinds of background noise in the latent fingerprint images.

However, the effectiveness of the segmentation results in latent

fingerprint matching was not reported. Table I summarizes

Fig. 5. A flowchart of the proposed latent fingerprint segmentation algorithm.

published methods to segment latent fingerprint images.

III. PROPOSED METHOD

A. Algorithm overview

The most evident structural characteristic of a fingerprint is

a pattern of interleaved ridges and valleys. Thus, by consid-

ering a fingerprint as a texture pattern (oriented line pattern

within a certain valid range of frequency), we utilize both

fingerprint orientation and frequency information to segment

latents. The main difficulty in latent fingerprint segmentation

is the presence of structured noise (e.g., arch, line, character

and speckle). This motivates the use of orientation tensor

approach to extract the symmetric patterns of a fingerprint as

well as to remove the structured noise in background. Local

Fourier analysis method is used to estimate the local frequency

in the latent fingerprint image and locate fingerprint region

by considering valid frequency regions. Candidate fingerprint

(foreground) regions are obtained for each feature (orientation

and frequency) and then an intersection of these regions is

used to localize the latent fingerprint region. A flowchart of

the proposed method is shown in Figure 5.

2Confidence is an indicator of the reliability of the segmentation output.
If the confidence of the segmentation output is high, it suggests no manual
intervention is necessary.



Fig. 6. Various types of structured noise in a latent fingerprint image.

Fig. 7. Examples of the symmetry patterns of order n. Linear, parabolic and
circular symmetry for n = 0, n = ±1 and n = ±2, respectively. Method in
[7] is used to generate the patterns.

B. Orientation feature

In our method symmetry features based on orientation

tensor are exploited, since orientation tensor contains edge

and texture information in an image [16], [14]. Compared to

rolled and plain fingerprint images, the structured noise such

as arch, line, character and speckle is frequently present and

intermingled with friction ridge pattern in latent images (see

Figure 6). Orientation tensor is appropriate for the representa-

tion of various kinds of symmetry type and can distinguish

ridge and valley pattern from background noise in latent

images. Figure 7 illustrates the patterns with simple orientation

description z = exp(inφ). The linear symmetry type (n = 0)

corresponds to the typical ridge-valley flow whereas parabolic

symmetry types (n = ±1) correspond to the singular points

of a fingerprint as well as the structured noise.

We decompose the orientation tensor of the latent image

into several symmetry representations. The orientation tensor

is computed as

z = (Dxf + iDyf)
2, (1)

where Dxf and Dyf denote the gradients of the latent

image f(x, y) with respect to the x and y axes [14]. Then,

the orientation tensor is decomposed into symmetry features

of order n by applying filters, hn, which can model these

symmetry descriptions. Filters are defined as

hn = (x+ iy)n.g, for n ≥ 0,

hn = (x− iy)|n|.g, for n < 0, (2)

where g denotes a 2D Gaussian function (23 × 23 Gaussian

kernel with σ = 8). To detect the nth order symmetry

property in an image, normalized filter responses are obtained

by calculating

sn =
< z, hn >

< |z|, |hn| >
, (3)

(a) (b) (c)

(d) (e) (f)

Fig. 8. Latent fingerprint image decomposition by orientation tensor. (a)
Original latent image, (b) s0 response, (c) s1 response, (d) s2 response, (e)
s−1 response, and (f) s−2 response.

where <· , ·> denotes the 2D complex valued scalar product.

The filter response of the nth order sn is a complex value,

where high magnitude regions in the image indicate a prob-

able nth order symmetry. Thus, normalized filter responses,

{sn}n∈N , describes the various symmetry properties of an

image. The filter responses are normalized in the [0, 1]

interval. Figure 8 shows decomposition of a latent fingerprint

image into 5 symmetries (n = 0,±1,±2).

As shown in Figure 8, the response of order 0, s0, is high

not only in fingerprint regions but also in the background

containing structured noise. However, for the other responses,

only structured noisy background regions have high responses.

Based on this observation, we eliminate background to seg-

ment the fingerprint region. Segmentation based on orientation

tensor is summerized as follows:

1) Compute the normalized filtered responses, {sn}n∈N ,

where

• s0 has high response in fingerprint regions (straight

lines);

• {sk}k∈{−2,−1,1,2} has high response in noisy re-

gions (non-fingerprint patterns representing struc-

tured background);

2) Obtain orientation response in the image by calculating

sOT = s0 ·
∏

k

(1− sk), k ∈ {−2,−1, 1, 2}. (4)

3) Divide the orientation response image, sOT , into non-

overlapping blocks of size 16× 16 pixels and calculate

the mean value of each block. A 5 × 5 block median

filter is applied to smooth the response.

4) If the mean value of a block is larger than a threshold,

the block is considered as a foreground (value 1),

otherwise it is set to background (value 0). In here,

the threshold value is automatically obtained by Otsu’s

method [27] (see Figure 9).

5) Remove individual foreground blocks that are sur-

rounded by background blocks.



Fig. 9. Examples of latent fingerprints and their orientation feature maps
(second column) and obtained foregrounds by adaptive thresholding (third
column). High response (bright) regions in the image indicate a probable
ridge-valley flow.

C. Frequency feature

Even though the orientation tensor based approach can

estimate the foreground region well, it still contains some

background regions which have linear symmetry patterns.

Therefore, based on the fact that ridge frequency is an intrinsic

feature of a fingerprint, we utilize it to segment the foreground

region more accurately. Ridge frequency or ridge density is

a measure of the number of ridges per unit area. According

to [22], the range of valid ridge frequency is [1/3, 1/25]
for a 500dpi fingerprint image. Methods for measuring the

ridge frequency can be roughly classified into two categories:

spatial-domain methods [22], [19], [35], [11], and frequency-

domain methods [33], [4]. The methods in [22], [19], [35]

assumed that the gray levels along ridges and valleys can be

modeled as a 1D sinusoidal-shaped wave along a direction

normal to the local ridge orientation. Peaks of the wave

(called x-signature) are used to measure the ridge frequency.

In [11], this assumption was extended to 2D spatial domain

and the variation and the average amplitude of a 2D ridge

pattern were estimated to measure the local ridge frequency.

However, due to the relatively poor quality of latent fingerprint

images, this assumption may not be correct and it is difficult

to reliably detect the peaks of the wave. Further, an accurate

estimation of local ridge orientation is a critical limitation.

Therefore, we adopt the local Fourier analysis method [4] to

classify a latent fingerprint image into valid and non-valid

frequency regions since the method can easily localize the

valid frequency regions with suitable amplitude and frequency

parameters. In a valid frequency region, a corresponding

frequency image has energy concentration in corresponding

ridge and valley frequency. However, in a non-valid frequency

region, a corresponding frequency image has more diffused en-

ergy distribution with relatively low amplitude. The approach

used for the segmentation based on local Fourier analysis is

as follows:

1) Divide the image into nonoverlapping blocks of size

16× 16 pixels.

Fig. 10. Estimation of ridge frequency by local Fourier analysis. (a) Original
latent image, (b) local image blocks (64× 64), (c) local image multiplied by
Gaussian function, (d) local maximum points with the highest amplitude in
the frequency image.

Fig. 11. Examples of latent fingerprints and their frequency feature maps
(second column) and obtained foregrounds by adaptive thresholding (third
column). Brighter regions in the image indicate higher energy in valid ridge
and valley frequency regions.

2) Centered at each block, the local image in the 64× 64
window is normalized using the norm of the block

(to handle the intensity variation of each block) and

multiplied by a Gaussian function (σ = 16). See Figure

10 (c).

3) The Discrete Fourier Transform (DFT), F (u, v), of the

local image I(x, y) is calculated.

4) The largest local amplitude value is found within the

valid frequency range which corresponds to a ridge

period in the range (5.3, 12.8) pixels. (see Figure 10

(d)).

5) The amplitude value is obtained in each block which

are normalized in [0, 1]. A 5× 5 block median filter is

applied to smooth the values.

6) If the normalized value of the block is below a thresh-

old, the block is considered as background (value 0),

otherwise it is set as foreground (value 1). In here,

the threshold value is automatically obtained by Otsu’s

method [27] (see Figure 11).

7) Remove individual foreground blocks that are sur-

rounded by background blocks.



Fig. 12. Examples of segmentation results on NIST SD27 (first row) and WVU database (second row). Foreground regions and manually marked minutiae
are indicated by polygons and dots, respectively.

D. Post-processing

Candidate fingerprint (foreground) regions are obtained for

each of the two fingerprint features (orientation and fre-

quency). Common regions between them are used to localize

the foreground region. To obtain final segmentation results,

morphological operations (dilation and opening) are applied

to remove small foreground blocks as well as to fill holes

inside the foreground. The convex hull of a set of foreground

blocks is computed to determine the final segmentation result.

IV. EXPERIMENTAL RESULTS

Our experiments were conducted on two latent databases:

NIST SD27 database [31] and West Virginia University latent

database (WVU DB) [15]. NIST SD27 and the WVU DB,

respectively, contain 258 and 449 latent fingerprints with their

corresponding rolled prints. NIST SD27 contains latents and

mated full prints from operational settings whereas WVU

DB was collected in a laboratory setting at West Virginia

University. The characteristics of these two databases are

quite different with NIST SD27 being a better representative

of type of images processed by AFIS. Figure 12 shows

examples of segmentation results on NIST SD27 and WVU

databases. The proposed method provides satisfactory results

as far as visual inspection is concerned. However, to deter-

mine the performance of the proposed segmentation method

quantitatively, we evaluated the segmentation results in two

aspects: segmentation accuracy as compared to ground truth

and matching performance.

A. Comparison with manual segmentation

The aim of this evaluation is to analyze the segmentation

accuracy by comparing the segmentation results to manual

markup (ground truth). The segmentation accuracy was evalu-

ated based on two error measurements: Missed Detection Rate

(MDR) and False Detection Rate (FDR). MDR refers to the

frequency of a ground truth foreground pixel being classified

as background and FDR refers to the frequency of a ground

truth background pixel being classified as foreground. MDR

TABLE II
SEGMENTATION ACCURACY OF THE PROPOSED METHOD.

Segmentation error (%)
Database MDR FDR

NIST SD27 14.78 47.99

WVU DB 40.88 5.63

and FDR are computed as follows:

MDR =
NMD

NGF

,

FDR =
NFD

NSF

, (5)

where NGF and NSF denote the number of pixels in the

ground truth foreground and foreground obtained by the pro-

posed method, respectively, and NMD and NFD denote the

number of pixels misclassified as background and foreground

by the proposed method, respectively. As shown in Table II,

the FDR value is higher than the MDR value for NIST SD27

since the images in NIST SD27 have complex background

with high feature responses. However, for the WVU DB,

even though the background is relatively simple, the MDR

value is relatively higher than NIST SD27 due to the poor

ridge contrast and relatively large foreground size. This further

confirms the very different characteristics of the two latent

databases.

B. Matching performance evaluation

The accuracy of the proposed latent fingerprint segmentation

algorithm was also evaluated by measuring the latent match-

ing performance using a commercial off the shelf (COTS)

matcher3. The range of match scores given by this matcher

is [0, 16783]. To make the latent matching problem more

realistic, the background database was extended to 31,997

fingerprints by including 258, 27,000 and 4,739 rolled prints

in NIST SD27, NIST SD14 and WVU databases, respectively.

We report our results on the following three scenarios on NIST

SD27 and WVU DB.

3Since we were unable to obtain any SDK for latent to full print matcher,
we used a state of the art SDK for full print to full print comparison.



(a)

(b)

Fig. 13. CMC curves for three different scenarios on (a) NIST SD27 and
(b) WVU DB.

• Manual segmentation: Input to the matcher is the seg-

mented image by manual segmentation.

• Automatic segmentation: Input to the matcher is the

output of the proposed segmentation algorithm.

• Without segmentation: Input to the matcher is the original

latent image.

The Cumulative Match Characteristic (CMC) curves of the

three scenarios are shown in Figure 13. As expected, the

performance with manually marked ROI provides the upper

bound. The matching performance is higher when automati-

cally segmented images are used as input to the COTS matcher

compared to the case without segmentation for NIST SD27.

However, for the WVU DB, the matching performance is

degraded since our segmentation algorithm fails to detect some

low contrast latents that are prevalent in this database.

C. Confidence in segmentation

It is necessary to provide a confidence (reliability) value

to the latent segmentation output. If the confidence of the

segmentation output is high, it means no manual intervention is

necessary and the segmentation output can be directly used for

further processing. Our scheme for estimating the confidence

is based on the separability of the feature responses (F) (in

here, orientation and frequency features) between segmented

foreground and background regions. If the ridge structure

in fingerprint is clear and background is simple, the feature

response values between foreground and background will be

highly separable. However, if the quality of fingerprint is poor,

the separability of feature values will be relatively low and the

segmentation output may not be as reliable. To calculate the

separability of the given feature response (SF ), we modified

Fig. 14. Two latents with their feature maps (orientation (second column) and
frequency (third column)) and segmentation output. Manually marked ROI
(green) and ROI by the proposed method (red) are shown. The confidence
value of the segmentation is 0.72 (top) and 0.29 (bottom).

(a) (b)

Fig. 15. Histograms of the confidence values for latent databases. (a) NIST
SD27, (b) WVU DB.

the d
′

measure [17] as follows:

SF =
mean(FF )−mean(BF )

1 +
√

1

2
(var(FF ) + var(BF )

×
1

mean(FF )
, (6)

where FF and BF are, respectively, the feature response

values in the segmented foreground and background. Note that

the feature response values were normalized to [0, 1]. Then

the separability values for each feature response (orientation

(SOT ) and frequency (SFR)) were obtained based on equation

6. Finally, the confidence value is calculated as follows:

Confidence =
(SOT + SFR)

2
×

1

NFG

, (7)

where NFG is the number of foreground regions obtained

by the proposed method. Figure 14 shows two latent seg-

mentation examples with their respective confidence values.

Figure 15 shows the histograms of confidence values for

segmentations obtained for NIST SD27 and WVU DB. To

validate the usability of our confidence measure, we also

analyzed the identification rate for various thresholds on the

confidence measure. In here, threshold values of 0.2, 0.3, and

0.4 were used. We accept a latent for automatic processing

if the confidence value of segmentation output exceeds the

threshold. The identification rates monotonically increase as

we reject more latents with low confidence (higher threshold).

As shown in Figure 16, for the NIST SD27 and WVU DB, at

a rejection threshold of 0.4 on segmentation confidence, the

rank-20 identification accuracy increased by about 4% and 5%,

respectively.



(a) (b)

Fig. 16. Identification rate for different confidence threshold values. (a) NIST
SD27, (b) WVU DB.

V. CONCLUSIONS AND FUTURE WORK

We have proposed a new latent fingerprint segmentation

algorithm that identifies the region of interest, namely the

friction ridge pattern, and suppresses the background. The

segmentation algorithm utilizes both ridge orientation and

frequency features. Experimental results on two latent print

databases were provided. The matching performance of a

commercial matcher is improved by utilizing the segmented

latent fingerprints compared to the case of using original

latent image without segmentation on NIST SD27. However,

for poor quality latent fingerprint images, the automatic seg-

mentation remains a challenging problem. Our ongoing work

consists of (i) improving the segmentation accuracy by incor-

porating additional features (such as orientation and frequency

continuity) and fingerprint models, and (ii) developing more

accurate confidence measures for the segmentation results.
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