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Abstract—The new video coding standard MPEG-4 is enabling
content-based functionalities. It takes advantage of a prior de-
composition of sequences into video object planes (VOP’s) so that
each VOP represents one moving object. A comprehensive review
summarizes some of the most important motion segmentation and
VOP generation techniques that have been proposed. Then, a new
automatic video sequence segmentation algorithm that extracts
moving objects is presented. The core of this algorithm is an
object tracker that matches a two-dimensional (2-D) binary model
of the object against subsequent frames using the Hausdorff
distance. The best match found indicates the translation the
object has undergone, and the model is updated every frame
to accommodate for rotation and changes in shape. The initial
model is derived automatically, and a new model update method
based on the concept of moving connected components allows for
comparatively large changes in shape. The proposed algorithm
is improved by a filtering technique that removes stationary
background. Finally, the binary model sequence guides the ex-
traction of the VOP’s from the sequence. Experimental results
demonstrate the performance of our algorithm.

Index Terms—Content-based functionalities, MPEG-4, object
tracking, video object planes, video sequence segmentation.

I. INTRODUCTION

T RADITIONAL video standards such as MPEG-1, MPEG-
2, H.261, or H.263 are low-level techniques in the sense

that no segmentation or analysis of the scene is required. They
can achieve high compression ratios and are suitable for a wide
range of applications. However, with the increasing popularity
of multimedia applications and content-based interactivity,
new video coding schemes are necessary.

The standard MPEG-4 [1], [2], which is currently being
developed, enables content-based functionalities by introduc-
ing the concept of video object planes (VOP’s). Each frame
of the input sequence is segmented into arbitrarily shaped
image regions (VOP’s) such that each VOP describes one
semantically meaningful object or video content of interest. A
video object layer is assigned to each VOP containing shape,
motion, and texture information.

Decomposing a video sequence into VOP’s is very difficult,
and comparatively little research has been undertaken in this
field. An intrinsic problem of VOP generation is that objects
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of interest are not homogeneous with respect to low-level
features such as color, intensity, or optical flow. Thus, conven-
tional segmentation algorithms will fail to obtain meaningful
partitions.

This paper addresses video object plane generation and
presents a new algorithm that can automatically extract moving
objects from a sequence. Since these objects are characterized
by a different motion from that of the background, some
type of motion information must be incorporated into the
segmentation algorithm.

Optical flow or motion fields could theoretically be used, but
they are extremely noise sensitive, and their accuracy is limited
due to the aperture and occlusion problem. Change detectors
or difference images, on the other hand, mark occlusion areas
as changed, while the objects themselves are unchanged unless
they contain sufficient texture. This makes exact boundary
location difficult, and an additional mechanism is necessary
to fill the holes inside objects.

Our proposed algorithm is based on pattern recognition
and object tracking principles, and thereby avoids many of
the problems associated with motion estimation. The concept
of moving connected components is introduced to enable
automatic detection of moving objects, and a novel model
update method allows for relatively large changes in shape.
To improve the stability of the segmentation and to reduce the
computational complexity, a filter is presented that removes
stationary background. The VOP’s obtained by our algorithm
are more accurate than those of other techniques examined.

The rest of this paper is organized as follows. Section II
covers motion estimation and points out some limitations
of motion fields for segmentation. A comprehensive review
of motion segmentation and VOP generation techniques is
given in Section III. Our new algorithm is then described
in Section IV, and results are shown in Section V. Finally,
Section VI concludes this paper and outlines some extensions
of the proposed algorithm for future research.

II. M OTION

A. Motion as Cue for Segmentation

Moving objects are often characterized by a coherent motion
that is distinct from that of the background. This makes motion
a very useful feature for segmenting video sequences. It can
complement other features such as color, intensity, or edges
that are commonly used for segmentation of still images,
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and some motion segmentation algorithms are even based on
motion only.

Let us start by defining the rather vague term motion.
We denote by the intensity or luminance of pixel

in frame Following the definitions in [3], we have
to distinguish between two-dimensional (2-D) motion and
apparent motion. The projection of the three-dimensional (3-D)
motion onto the image plane is referred to as 2-D motion. It
is the true motion that we would like to know. On the other
hand, apparent motion is what we perceive as motion and is
induced by temporal changes in the image intensity
Apparent motion can be characterized by a correspondence
vector field or by an optical flow field. A correspondence
vector describes the displacement of a pixel between two
frames, whereas the optical flow at pixel refers
to a velocity and is defined as

(1)

It is easy to see that optical flow and correspondence vectors
are related.

Note that apparent motion and 2-D motion are not equiva-
lent. Consider a static scene with varying illumination. The
2-D motion is obviously zero because no 3-D motion is
present; however, the change in illumination induces optical
flow, and therefore apparent motion. From (1), it can also be
seen that apparent motion is highly sensitive to noise, which
can cause largely incorrect results. Further, moving objects
or regions must contain sufficient texture to generate optical
flow, because the luminance in the interior of moving regions
with uniform intensity remains constant. Unfortunately, we
can only observe apparent motion, making motion estimation
a very challenging task.

B. Motion Estimation

Besides the difficulties already mentioned, motion estima-
tion algorithms have to solve the so-called occlusion and
aperture problem. The occlusion problem refers to the fact
that no correspondence vectors exist for covered and uncov-
ered background. To illustrate the aperture problem, we first
introduce the optical flow constraint (OFC). It is generally
assumed that the intensity remains constant along the motion
trajectory [3], i.e.,

(2)

where denotes the vector inner product. The aperture
problem states that the number of unknowns is larger than
the number of observations. From the optical flow constraint
(2) follows that only the flow component in the direction of the
gradient the so-called normal flow, can be estimated. The
orthogonal component can take on any value without changing
the inner product, and is therefore not defined. Thus, additional
assumptions are necessary to obtain a unique solution. These
usually impose some smoothness constraints on the optical
flow field to achieve continuity.

Two ways of describing motion fields are possible. In the
nonparametric representation, a dense field is estimated where
each pixel is assigned a correspondence or flow vector. Block
matching and variants thereof are among the most popular
nonparametric approaches due to their simplicity. The current
frame is subdivided into blocks of equal size, and for each
block the best match in the next (or previous) frame is
computed. All pixels of a block are assumed to undergo the
same translation, and are assigned the same correspondence
vector. The selection of the block size is crucial. Large
windows might contain more than one motion and cannot
accurately locate motion boundaries, whereas small windows
often result in wrong matches within uniform regions in the
presence of noise. A weakness of block-matching algorithms
is their inability to cope with rotations and deformations.
Nevertheless, their simplicity and relative robustness make it
a popular technique.

Nonparametric dense field representations are generally not
suitable for segmentation because an object moving in the
3-D space generates a spatially varying 2-D motion field even
within the same region, except for the simple case of pure
translation. That is the reason why parametric models are
commonly used in segmentation algorithms. However, dense
field estimation is often the first step in calculating the model
parameters.

Parametric models require a segmentation of the scene,
which is our ultimate goal, and describe the motion of each
region by a set of a few parameters. The motion vectors
can then be synthesized from these model parameters. A
parametric representation is more compact than a dense field
description and less sensitive to noise, because many pixels
are treated jointly to estimate a few parameters.

In order to derive a model or transformation that describes
the motion of pixels between successive frames, assumptions
on the scene and objects have to be made. Let and

denote the 3-D coordinates of an object point in
frame and respectively. The corresponding image
plane coordinates are and If a 3-D object
undergoes translation, rotation, and linear deformation, the 3-D
displacement of a point on the object is given by [4]

(3)

It is very common to model 3-D objects by (piecewise)
planar patches whose points satisfy

(4)

If such a planar object is moving according to (3), the affine
motion model is obtained under orthographic projection and
the eight-parameter model under perspective projection.

As can be seen from Fig. 1, the 3-D coordinates are re-
lated to the image plane coordinates under the orthographic
(parallel) projection by

and (5)

This projection is computationally efficient and a good approx-
imation if the distance between the objects and the camera is
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Fig. 1. Projection of pixel(X;Y;Z) onto image plane(x; y) under ortho-
graphic (parallel) projection.

Fig. 2. Projection of pixel(X;Y;Z) onto image plane(x; y) under per-
spective (central) projection.

large compared to the depth of the objects. From (3)–(5), it
follows that

(6)

which is known as the affine model. In the case of the more
realistic perspective (central) projection, we can see from
Fig. 2 that

and (7)

Together with (3) and (4), this results in the eight-parameter
model

(8)

Both the affine and eight-parameter model are very popu-
lar, but many other transformations exist depending on the
assumptions made.

Parametric models describe each region by one set of
parameters that is either estimated by fitting a model in the
least squares sense to a dense motion field obtained by a
nonparametric method or directly from the luminance signal

as in [5] and [6]. Although parametric representa-
tions are less noise sensitive, they still suffer from the intrinsic
problems of motion estimation. It should be noticed that one
has to be careful when interpreting an estimated flow field.
Most likely, it is necessary to include additional information
such as color or intensity to accurately and reliably detect
boundaries of moving objects.

III. M OTION SEGMENTATION

A classical approach to motion segmentation is to estimate
a dense motion field followed by a segmentation of the scene
based only on this motion information [7]–[10]. In his early
work, Adiv [7] proposed a hierarchically structured two-stage
algorithm. The flow field is first segmented into connected
components using the Hough transform such that the motion
of each component can be modeled by an affine transformation
(6). Adjacent components are then merged into segments if
they obey the same eight-parameter quadratic motion model.
In the second stage, neighboring segments that are consistent
with the same 3-D motion (3) are combined, resulting in the
final segmentation.

The Bayesian framework provides an elegant formalism and
is among the most popular approaches to motion segmentation
[8]–[13]. The key idea is to find the maximuma posteri-
ori (MAP) estimate of the segmentation for some given
observation i.e., to maximize

Murray and Buxton [8] used an estimated flow field as
observation As it is common, the segmentation or prior
model is assumed to be a sample of a Markov random field
(MRF) to enforce continuity of the segmentation labels, and
thus, is a Gibbs distribution [14]. The energy function
of the MRF consists of a spatial smoothness term, a temporal
continuity term, and a line field as in [15] to allow for motion
discontinuities. To define the observation model the
parameters of a quadratic flow model [7] are calculated for
each region by linear regression. The mismatch between this
synthesized flow and the flow field given in is assumed to
be zero-mean white Gaussian noise. The resulting probability
function is maximized by simulated annealing
[15]. Major drawbacks of this proposal are the computational
complexity and that the number of objects likely to be found
has to be specified.

A similar approach was taken by Bouthemy and François
[9]. The energy function of their MRF consists only of a spatial
smoothness term. The observationcontains the temporal and
spatial gradients of the intensity function, which is essentially
the same information as the optical flow due to the OFC (2).
For each region, the affine motion parameters (6) are computed
in the least-squares sense, and models the deviation
of this synthesized flow from the optical flow constraint
(2) by zero-mean white Gaussian noise. The optimization is
performed by iterated conditional modes (ICM) [16], which
is faster than simulated annealing, but likely to get trapped
in a local minimum. To achieve temporal continuity, the
segmentation result of the previous frame is used as an initial
estimate for the current frame. The algorithm then alternates
between updating the segmentation labelsestimating the
affine motion parameters, and updating the number of regions
in the scene.

The techniques [7]–[9] include only optical flow data into
the segmentation decision, and hence, their performance is
limited by the accuracy of the estimated flow field. This means
that they inevitably suffer from the problems described in
Section II such as noise sensitivity and inaccuracy at motion
and therefore object boundaries. In contrast, Changet al. [10]
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incorporated intensity information into the observationThe
energy function of the MRF includes a spatial continuity
term and a motion-compensated temporal term to enforce
temporal continuity. Two methods were proposed to generate
a synthesized flow field for each region: the eight-parameter
quadratic model [7] or the mean flow vector of the region
calculated from the given field in For the conditional
probability it is assumed that both the deviation of
the observed flow from the synthesized flow and the difference
between the gray level of a pixel and the mean gray level of
the region it belongs to obey zero-mean Gaussian distributions.
By controlling the variances of these two distributions, more
weight is put on the flow data in the case where it is reliable,
i.e., for small values of the displaced frame difference (DFD),
and more weight on the intensity in areas with unreliable flow
data. The optimization is then performed by ICM as in [9].

It is possible to treat motion estimation and segmentation
jointly in the Bayesian framework [11]–[13]. In this case,
the observation consists only of the gray-level intensity,
and both the segmentation and the motion field have to be
estimated. Changet al. [11] used both a parametric and a
dense correspondence field representation of the motion, with
the parameters of the eight-parameter model (8) being obtained
in the least squares sense from the dense field. The objective
function resulting from the MAP criterion consists of three
terms, each derived from an MRF. The first term is maximized
when both the synthesized and dense motion field minimize
the DFD, and the second term is maximized if the dense
field is smooth and the parametric representation is consistent
with the dense field. However, smoothness is only enforced
for pixels having the same segmentation label, i.e., it is not
enforced across region boundaries. The last term is a standard
spatial continuity term to describe the prior expectation on the
segmentation. Since the number of unknowns is three times
higher when the motion field has to be estimated as well,
the computational complexity is significantly larger. Chang
et al. decomposed the objective function into two terms so
that the motion estimates and the segmentation labels can be
maximized alternating using highest confidence first (HCF)
[17] and ICM.

The technique proposed by Stiller in [12] and extended in
[13] is similar, but no parametric motion field representation is
necessary. In [12], the objective function consists of two terms.
The DFD generated by the dense motion field is modeled
by a zero-mean generalized Gaussian distribution, and an
MRF ensures segmentwise smoothness of the motion field
and spatial continuity of the segmentation. In [13], the DFD
is also assumed to obey a zero-mean generalized Gaussian
distribution; however, occluded regions are detected, and no
correspondence is required for them. The MRF modeling the
motion field and segmentation is made up of four terms
enforcing spatial and temporal continuity of the segmenta-
tion, segmentwise spatial smoothness of the motion field,
and temporal continuity of motion vectors along the motion
trajectories. Although ICM is used to obtain the MAP estimate,
the computational burden of this algorithm is enormous.

Techniques that make use of Bayesian inference and model
images by Markov random fields are more plausible than

some rather ad hoc methods. They can also easily incorporate
mechanisms to achieve spatial and temporal continuity. On the
other hand, these approaches suffer from high computational
complexity, and many algorithms need the number of objects
or regions in the scene as an input parameter.

Hierarchically structured segmentation algorithms were pro-
posed by H¨otter and Thoma [5], Musmannet al. [6], and
Diehl [18]. A change detector divides the current frame into
changed and unchanged regions, and each connected changed
region is assumed to correspond to one object. Starting from
the largest changed region, the motion parameters for this
object are estimated directly from the spatiotemporal image
intensity and gradient. If the prediction error after motion
compensation is too large, this object is further subdivided
and analyzed in subsequent levels of hierarchy. The algorithm
sequentially refines the segmentation and motion estimation
until all changed regions are accurately compensated. Because
these techniques alternate between analyzing the image and
synthesizing, they have been described as object-oriented anal-
ysis–synthesis algorithms. In [5] and [6], the eight-parameter
motion model (8) is used, and the parameters are obtained
by a direct method. The luminance function is approximated
by a Taylor series expansion so that the frame difference
can be expressed in terms of spatial intensity gradients and
the unknown parameters. Both frame difference and gradients
are easy to compute, and the model parameters are obtained
by linear regression. A 12-parameter quadratic motion model
that describes a parabolic surface undergoing the 3-D motion
(3) under parallel projection is proposed in [18]. An iterative
technique that is similar to the Newton–Raphson algorithm
estimates the parameters by minimizing the MSE between the
motion-compensated and the current frame. Edge information
is incorporated into the segmentation algorithm to improve
the accuracy of boundaries.

Morphological tools such as the watershed algorithm and
simplification filters are becoming increasingly popular for
segmentation and coding [19]–[23]. An introduction, discus-
sion of potential problems, and several applications to segmen-
tation are presented by Meyer and Beucher [19]. Salembier
and Pard̀as [20] described a segmentation algorithm that has a
typical structure for morphological approaches. In a first step,
the image is simplified by the morphological filter “open–close
by reconstruction” to remove small dark and bright patches.
The size of these patches depends on the structuring element
used. The color or intensity of the resulting simplified images
is relatively homogeneous. An attractive property of these
filters is that they do not blur or change contours like low-
pass or median filters. The following marker extraction step
detects the presence of homogeneous areas, for example, by
identifying large regions of constant color or luminance. This
step often contains most of the knowhow of the algorithm.
Each extracted marker is then the seed for a region in the
final segmentation. Undecided pixels are assigned a label in
the decision step, the so-called watershed algorithm, which
is a technique similar to region growing. The watershed
algorithm is well defined and can be efficiently implemented
by hierarchical FIFO queues. A quality estimation is performed
in [20] as a last step to determine which regions require
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resegmentation. The proposed segmentation by Salembieret
al. in [21] is very similar, but an additional projection step
is incorporated that warps the previous partition onto the
current frame. This projection, which is also computed by the
watershed algorithm, ensures temporal continuity and linking
of the segmentation.

The segmentation algorithms in [19]–[21] are not true video
segmentation techniques. They consider video sequences to be
3-D signals and extend conventional 2-D methods, although
the time axis does not play the same role as the two spatial
axes. A morphological video segmentation algorithm was
proposed by Choiet al. [22]. Their marker extraction step
detects areas that are not only homogeneous in luminance,
but also in motion, so-called joint markers. For that, intensity
markers are extracted as in [20], and affine motion parameters
(6) are calculated for each marker by linear regression from a
dense flow field. Intensity markers for which the affine model
is not accurate enough are split into smaller markers that are
homogeneous. As a result, multiple joint markers might be ob-
tained from a single intensity marker. The watershed algorithm
also uses a joint similarity measure that incorporates luminance
and motion. In a last stage, the segmentation is simplified
by merging regions with similar affine motions. A drawback
of this technique is the lack of temporal correspondence to
enforce continuity in time.

Morphological segmentation techniques are computationally
efficient, and there is no need to specify the number of
objects as with some Bayesian approaches, because this is
determined automatically by the marker or feature extraction
step. However, due to its nature, the watershed algorithm
suffers from the problems associated with region-growing
techniques.

The algorithms described so far are mainly focused on
coding. They segment video sequences into regions that are
homogeneous with respect to motion and possibly color or
luminance. For content-based functionalities as in MPEG-
4, we would like to partition the frames into objects that
are semantically meaningful to the human observer. Thus,
the above techniques will fail in many practical situations
where objects do not correspond to partitions based on simple
features like motion or color. Segmentation algorithms that
specifically address video object plane (VOP) generation have
been proposed, many of them just recently with the develop-
ment of the new video coding standard MPEG-4 [24]–[26],
[23], [27].

Wang and Adelson [24] proposed a layered representation
of image sequences that corresponds to the VOP technique
used by MPEG-4. The current frame is segmented based
on motion with each object or layer being modeled by an
affine transformation (6). The algorithm starts by estimating
the optical flow field, and then subdivides the frame into
square blocks. The affine motion parameters are computed
for each block by linear regression to get an initial set
of motion hypotheses. The pixels are then grouped by an
iterative adaptive -means clustering algorithm. Pixel
is assigned to hypothesis or layerif the difference between
the optical flow at and the flow vector synthesized from
the affine parameters of layeris smaller than for any other

hypothesis. To construct the layers, the information of a longer
sequence is necessary. The frames are warped according to the
affine motion of the layers such that coherently moving objects
are aligned. A temporal median filter is then applied to obtain
a single representative image for each object. This proposal
has several disadvantages. If in a sequence different views
of the same object are shown, it is not possible to represent
that object by a single image that is warped from frame to
frame. Further, the affine transformation (6) might not be able
to describe the motion of a complete layer in the presence
of strongly nonrigid motion such as a person walking. The
algorithm also depends completely on the accuracy of the
optical flow estimates since no color or intensity information
is used. Finally, the layer construction process makes real-time
execution impossible, because a longer sequence of frames is
required.

A double-partition approach based on morphology was
suggested by Marqués and Molina [23]. Initially, objects of
interest have to be selected interactively, leading to a partition
at object level that corresponds to a decomposition into video
object planes. These objects are normally not homogeneous in
color or motion and are resegmented to obtain a fine partition
that is spatially homogeneous. After estimating a dense motion
field by block matching, the fine partition is projected onto
the next frame using motion compensation. These projected
regions are used to extract the markers for the next frame,
which is then segmented by the watershed algorithm based on
luminance. To improve the temporal stability, the segmentation
process is guided by a change detection masks that prevents
markers of static areas to overgrow moving areas and vice
versa. Finally, the new object level partition is computed
from the projected and segmented fine partition, whereby the
algorithm must keep track of the labels of each region to know
the correspondence between fine regions and objects.

Automatic segmentation is formulated by Neriet al. [25]
as the problem of separating moving objects from a static
background. In a preliminary stage, potential foreground re-
gions are detected by applying a higher order statistics (HOS)
test to a group of interframe differences. The nonzero values
in the difference frames are either due to noise or moving
objects, with the noise being assumed to be Gaussian in
contrast to the moving objects, which are highly structured.
In the case of moving background, the frames must first be
aligned by motion compensation. For all difference frames,
the zero-lag fourth-order moments are calculated because of
their capability to suppress Gaussian noise. These moments
are then thresholded, resulting in a preliminary segmentation
map containing moving objects and uncovered background.
To identify uncovered background, the motion analysis stage
calculates the displacement of pixels that are marked as
changed. The displacement is estimated at different lags from
the fourth-order moment maps by block matching. If the
displacement of a pixel is zero for all lags, it is classified
as background and as foreground otherwise. Finally, the reg-
ularization phase applies morphological opening and closing
operators to achieve spatial continuity and to remove small
holes inside moving objects of the segmentation map. The
resulting segmented foreground objects are slightly too large,
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because the boundary location is not directly determined from
the gray level or edge image. A version of this technique is
currently under investigation in the ISO MPEG-4 N2 Core
Experiment on Automatic Segmentation Techniques [28]. It
has a postprocessor incorporated to improve the boundary
location by adjusting the boundaries to spatial edges.

Mech and Wollborn [26] generate the video object plane
or object mask from an estimated change detection mask
(CDM). Initially, a change detection mask is generated by
taking the difference between two successive frames using
a global threshold. This CDM is then refined in an iter-
ative relaxation that uses a locally adaptive threshold to
enforce spatial continuity. Temporal stability is increased by
incorporating a memory such that each pixel is labeled as
changed if it belonged to an object at least once in the last

change detection masks. The simplification step includes a
morphological close and removes small regions to obtain the
final CDM. The object mask is calculated from the CDM by
eliminating uncovered background and adapting to gray-level
edges to improve the location of boundaries. A version of this
algorithm is also part of the ISO MPEG-4 N2 Core Experiment
[29]. It contains an additional scene change or cut detector, a
global motion estimation and compensation step based on the
eight-parameter model (8), and the memory lengthhas been
made adaptive.

While the two proposals [28], [29] to the ISO MPEG-4 N2
Core Experiment perform segmentation mainly based on tem-
poral information, Choiet al. [30] presented a spatial mor-
phological segmentation technique. It starts with a global
motion estimation and compensation step. The global affine
motion parameters (6) are calculated from the correspondence
field, which is obtained by a block-matching algorithm. After
that, the presence of a scene cut is examined. Then, the
actual segmentation commences by simplifying the frame
with a morphological open–close by reconstruction filter. The
thresholded morphological gradient image, calculated from the
luminance and chrominance components of the frame, serves
as input for the watershed algorithm which detects the location
of the object boundaries. To avoid oversegmentation, regions
smaller than a threshold are merged with their neighbors.
Finally, a foreground/background decision is made to create
the video object planes. Every region for which more than half
of its pixels are marked as changed in a change detection mask
is assigned to the foreground. To enforce temporal continuity,
the segmentation is aligned with that of the previous frame,
and those regions for which a majority of pixels belonged to
the foreground before are added to the foreground too. This
allows tracking an object even when it stops moving for an
arbitrary time. In contrast, the techniques [25] and [26] will
lose track after a certain number of frames, depending on the
size of the group of frames and memory length, respectively.

A combination of the two temporal segmentation techniques
[28], [29] with the spatial segmentation method [30] to form
one algorithm is currently under investigation [31], [32].

In the next section, we will describe a new video object
plane segmentation algorithm based on Hausdorff object track-
ing. It is an extension of the technique by Meier and Ngan
submitted to the ISO MPEG-4 N2 Core Experiment [27].

IV. V IDEO OBJECT PLANE SEGMENTATION ALGORITHM

In this section, a new segmentation algorithm is presented
that automatically extracts moving objects from a video se-
quence. It extends the techniques proposed in [27], [33] to
scenes with a moving camera or background. The resulting
video object planes (VOP’s) can be used as input for content-
based coding schemes such as MPEG-4.

As explained in Sections II and III, motion estimation is
a very difficult task, and motion fields are often not reliable
enough. In fact, many of these estimation techniques were
developed for coding purposes and not for segmentation. If a
correspondence vector points to a completely wrong pixel in
the sense of motion, it hardly affects the coding result as long
as the pixel the vector points to has similar color. In contrast,
errorneous motion vectors have a visible, negative effect on
segmentation results.

Some sort of motion information is, of course, necessary
because our ultimate goal is to segment objects that are
moving relative to the background. Several methods employ a
change detection mask instead of a motion field. Although easy
to compute, this approach has two drawbacks. First, unless
moving objects contain sufficient texture, only occlusion areas
will be marked as changed, while the interior of objects will be
unchanged [see Fig. 5(a)]. Second, objects or parts of objects
that stop moving for a certain period of time will be lost, which
is not acceptable in content-based applications. To prevent
this, a memory would have to be incorporated. Unfortunately,
this would cause background that is becoming uncovered to
remain classified as an object for the length of the memory, and
the resulting VOP’s would be larger than the actual objects,
depending on the speed of movement and length of memory.

Nevertheless, change detection masks are sometimes more
useful than motion fields. For example, in head-and-shoulder
sequences, there is only little movement of the person, and
the occlusion regions are very small. Thus, a relatively long
memory can be attached without getting VOP’s that are
significantly larger than the object. Estimating a motion field
would be more difficult because the motion is simply too small.

In our algorithm, we focus on applications comprising
outdoor scenes or objects with strongly nonrigid motion where
change detection masks have been shown to be ineffective
[25], [28], [29].

The core of our proposed technique is an object tracker that
naturally establishes the temporal correspondence of objects
throughout the video sequence. This is important for content-
based functionalities and allows us to keep track of objects
even when they stop moving for an arbitrarily long time.

After a binary model for the object of interest has been
derived from the edge image, the tracker matches the model
against subsequent frames in the sequence and updates the
model every frame to accommodate for rotation and changes
in shape of the object. The output of the tracker is a se-
quence of binary models that will guide the extraction of the
VOP’s.

Finding the best match for the binary model is very reliable
even when the background or camera is moving. The main
difficulty is to obtain an initial model and to update the model
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of a nonrigid object with considerable changes in shape in the
presence of cluttered background.

The location of object boundaries is determined based on
the binary model, which in turn is derived from the edge
image. Hence, the problem of occlusion areas associated
with motion fields is avoided. In fact, our algorithm only
requires motion estimates in the case of a moving camera or
background to align the frames. This global motion estimation
is normally very robust if appropriate techniques are applied
[see Section IV-B2].

A. Hausdorff Object Tracker

Gray scale images are normally not suitable for template or
object matching because they are too sensitive to changes in
illumination. Instead, it is common to use binary edge images,
which also involve fewer computations. The edge points of
the models are not restricted to object boundaries, but can
also be in the interior such as eyes and mouth in a face. In
our algorithm, the edge images are obtained by the Canny
operator [34].

A robust matching method must be able to detect objects
that are undergoing translation, rotation, and changes in shape.
This excludes basic template matching where the new position
is determined by the highest correlation between the model and
subsequent frames. The generalized Hough transform, which
is used in [35], has been successfully applied to the detection
of arbitrarily shaped 2-D binary objects. However, it comes at
a high computational cost, especially for a multidimensional
Hough accumulator space that includes translation, rotation,
and scaling.

The Hausdorff distance was proposed by Huttenlocheret
al. [36], and an object tracker was described in [37] where
the model of the video object of interest was matched against
subsequent frames by minimizing the Hausdorff distance. This
approach is computationally efficient and robust to noise and
changes in shape.

1) The Hausdorff Distance:The Hausdorff distance was
proposed in [36] as a measure to compare binary images or
portions thereof. The edge pixels that form the model of the
object to track are considered as a set of feature points. The
same applies to the edge image in which we have to search
for the object. Let these sets of feature points be denoted by

for the object and for
the image where and are the number of object and image
points, respectively. Then, the Hausdorff distance is defined as

(9)

with

(10)

and

(11)

Thus, for every model point the distance to the nearest
image point has to be calculated, and the maximum value is
assigned to Then, for each image point the distance

(a) (b)

Fig. 3. Calculation of Hausdorff distance. (a)h(O; I) measures the maxi-
mum distance of an object point to the nearest image point and (b)h(I; O)
the maximum distance of an image point to the nearest object point. In
this example,h(O; I) is smaller thanh(I; O); and therefore the Hausdorff
distanceH(O; I) is equal toh(I; O).

to the nearest model point is computed, and is set
to the maximum distance. The Hausdorff distance is the larger
of the two maxima (see Fig. 3). It is easy to see that for

every model point must be within distance
of some point in

The definitions in (10) and (11) can cause some problems, as
can be seen in Fig. 3. If one model or image point is outlying,
the resulting Hausdorff distance will be very large, even if all
other points perfectly match. Therefore, it is preferable to use
the generalized Hausdorff distance [36]. Instead of using the
maximum value in (10) and (11), the distances are sorted in
ascending order and theth value is chosen, i.e.,

(12)

Equation (12) is equivalent to (10) for For
points may be outlying without increasing the Hausdorff

distance. This is a very useful property when dealing with
objects that are partially occluded or rapidly changing their
shape. Similarly, is defined as theth value of the
ordered distances. With the parametersand we can
essentially choose how many model points have to be near
image points and vice versa.

There are no point correspondences between model and
image points required, because the Hausdorff distance au-
tomatically selects the (or best matching points. This
is helpful when objects are changing their shape. The best
match is found by minimizing the Hausdorff distance between
the image and the model for all translations of the model
relative to the image. Fig. 4 shows the best match according to
the Hausdorff distance with the model of the previous frame
shifted to the position of the best match and superimposed on
the current frame. Despite the change in shape, the match is
very accurate.

2) Implementation of Hausdorff Distance:Several sugges-
tions for efficient implementation are presented in [36]. The
main idea is to assume that the Hausdorff distance is smaller
than a threshold so that bad matches can be ruled out
early. Obviously, matches can only be found if the Hausdorff
distance is indeed smaller than In our algorithm, early scan
termination has been implemented.

The Hausdorff distance can be computed using the distance
transformation (see part A of the Appendix). First, the distance
transform is calculated for the edge image so that for each pixel
the distance to the nearest edge pixel is known. Then, for all
translations we calculate where the
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Fig. 4. Model of the person for frame 40 (black) of the sequencehall monitor
is shifted to the position of best match with respect to the Hausdorff distance
in frame 41. The match is accurate except for the right leg, which is moving
differently from the rest of the person.

index indicates that depends on the translation
For that, the object is translated by the vector and the
distance transform at the location of model pointsdirectly
gives the distance betweenand the nearest edge pixel. These
distances are then sorted in ascending order, and theth
value is selected to get Because of early scan
termination, can only be found for translations
where For these translations,
is calculated in a similar way to finally obtain
The smallest Hausdorff distance indicates the new
position, i.e., the translationthat the model has undergone.

To further accelerate the matching process, the search area
has been restricted to translations of up to a specified number
of pixels in all directions relative to the position of the object
in the previous frame.

B. Initialization of Moving Objects

Initially, the position of objects is unknown and has to be
determined based on motion since we would like to segment
moving objects. For scenes with nonstationary background or
moving camera, the global motion must first be compensated.
Therefore, this will be treated as a separate case.

1) Stationary Background:Let us first assume that the
background is stationary and that there is only one moving
object in the scene. The extension to multiple objects is
straightforward as long as they do not overlap.

Taking the color or intensity difference between two frames
is one of the most efficient ways to detect changed areas.
High values indicate objects that are moving or changing their
shape, as can be seen in Fig. 5(a) where the difference image
was thresholded. Unless the objects are highly textured, only
the boundaries of moving objects can be observed, and not the
objects themselves. However, this is exactly what we need to
derive a model for the tracker.

The threshold that is required for the difference image
[Fig. 5(a)] depends on the characteristics of the sequence
like speed of motion, changes in overall illumination, and
noise. Currently, this threshold must be specified as an input
parameter to our algorithm, and further study is needed to

(a)

(b)

(c)

Fig. 5. Gray-level difference image after (a) thresholding, (b) thinning, and
(c) moving connected component labeling for frame 31 of sequencehall
monitor.

make the threshold estimation fully automatic. The estimation
might be performed similarly to the method in [25], which
involves statistical tests and measurement of background ac-
tivity. The segmentation result is expected to be relatively
robust to variations of the threshold for two reasons. First,
if the threshold is chosen too low, the following thinning step
ensures that all components in the difference image are only
one pixel wide. Second, the model is updated every frame
and can pick up components of the object that were initially
missing in the case where the threshold was too high.

Occlusion areas are normally more than one pixel wide and
are thinned by eroding the difference image. It is important
that connected components are not split during this thinning
process. The algorithm described in part B of the Appendix
does not alter connectedness and also preserves geometry well
by alternately eroding from north, south, west, and east. In the
same step, isolated noisy pixels are eliminated because they
are unlikely to indicate an object.
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(a)

(b)

Fig. 6. Model initialization. (a) Displacement field obtained by hierarchi-
cal block matching [39]. (b) Model obtained for frame 121 of sequence
coastguard.

The result after thinning in Fig. 5(b) demonstrates that
the pixels belonging to the object are connected, whereas
noisy pixels form isolated clusters. A simple algorithm to
find connected components in binary images is connected
component labeling [38]. Components larger than a specified
threshold are then assumed to belong to a moving object, and
we refer to them as moving connected components (MCC). It
should be possible to determine this threshold automatically,
because noisy components are significantly smaller than those
belonging to objects. Fig. 5(c) shows an MCC for the sequence
hall monitor.

Thus, moving objects are detected by finding moving con-
nected components. It remains the task of deriving an initial
model for the object tracker by choosing all pixels in the binary
edge image that are within a small distance (one–two pixels) of
the MCC. This can easily be implemented using the distance
transform (see part A of the Appendix).

2) Moving Background:In the case of nonstationary back-
ground, it is necessary to compensate the global motion.
For that, the correspondence vector field is calculated by
hierarchical block matching [39]. Fig. 6(a) shows the motion
field obtained for the sequencecoastguard. The vectors at
the bottom and on the right are all zero due to padding.
In Sections II and III, difficulties with motion estimation
and segmentation were outlined. Global motion estimation

is normally an easier task for two reasons. First, global
motion is relatively simple and consists only of translation,
panning, and possibly zooming. Second, in many applications
the background area is large compared to the independently
moving objects. Therefore, the effect of occluded regions or
errors in the correspondence field is minimal, and robust pa-
rameter estimation techniques are likely to yield good results.
We suggest using the affine model (6) and estimating the
parameters by least median of squares [40] instead of linear
regression.

A straightforward approach to extract an initial model
would be to calculate the difference between the aligned
frames, but due to inaccuracies of the motion model and the
estimated correspondence field, the difference image is too
noisy. Instead, we propose a different approach.

The block motion estimation algorithm is used to partition
the frame into square blocks. Blocks that are moving differ-
ently from the global motion can be identified by comparing
the estimated correspondence vectors with those synthesized
from the affine global motion model. Connected blocks of
coherent motion that is distinct from the global motion indicate
moving objects, and the initial model consists of the edge
pixels inside these blocks [see Fig. 6(b)].

C. Model Update

As a tracked object moves through a video sequence, it
might rotate or change its shape. To allow for this, the model
must be updated every frame. This stage can be difficult in the
presence of cluttered background or moving camera.

In [37], it was assumed that the model changes only
slowly between subsequent frames. However, there are often
situations where parts of an object change or move more
rapidly than the rest of the object. For a walking person, for
example, legs and arms move faster than the body. Therefore,
we would like to relax this assumption and propose a new
update technique that consists of two components: one for
slowly changing parts, and the other for parts that change or
move rapidly compared to the overall motion of the object.
The combination of these two components yields a robust
updating mechanism.

The first component updates quasi-rigid parts. The model of
the previous frame is shifted to the new position of best match,
and it is assumed that pixels close to this shifted old model
are part of the object. Thus, all edge pixels within a specified
distance of the shifted old model, typically about one–three
pixels, are assigned to the new model. This is accomplished
by calculating the distance transform of the old model and
finding all points in the edge image that have a value for
the distance transform smaller or equal to Fig. 7(a) shows
that the slowly changing component can update the object very
well, except for the left leg and right arm, which are moving
differently from the overall motion.

The larger is chosen, the more likely the whole object
will be included into the new model. However, it also increases
the possibility of background becoming part of the model. To
avoid picking up cluttered background, it is often preferable
to filter stationary background beforehand (see Section IV-D).
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(a) (b) (c)

Fig. 7. Model update. (a) Slowly changing component. (b) Fast-changing
component. (c) Updated model (combination of slowly and fast-changing
component) for frame 48 of sequencehall monitor.

The second component picks up nonrigid motion. As the
initialization process, it is based on the concept of moving
connected components. Components that are connected to the
tracked object are used to update the corresponding model by
adding all edge pixels that are within a specified distance of
these MCC’s. The result in Fig. 7(b) shows that the left foot
and right arm were picked up in contrast to the right foot,
which was not moving.

The combination of both components results in an updated
model that extracts slowly and fast-changing or moving com-
ponents very well [Fig. 7(c)].

D. Filtering Stationary Cluttered Background

Object tracking would be fairly easy if all pixels in the edge
image belonged to objects, but unfortunately, many sequences
contain cluttered background [see Fig. 8(a)]. This can be a
problem, and it is desirable to remove cluttered background
prior to model matching and updating. Otherwise, the model
update might pick up background edge points if they are close
enough to the model. Note that Hausdorff matching could
handle cluttered background quite well, but it is preferable
to use the edge image after filtering to reduce the number of
image points and therefore the computation time.

To eliminate stationary background, one could remove all
edge pixels that were already edge pixels in the previous frame.
However, this simple binary differencing is very sensitive to
noise and would remove objects that stop moving as well.
In Fig. 8(b), for example, the person’s left leg, which was
stationary between two frames, has been removed.

We propose a filtering technique that counts for each pixel
how often it has been classified as edge. If this counter exceeds
a threshold, the pixel is assumed to be part of the background
and is removed. The counter is updated only for pixels that
are not occluded by an object. This is achieved by updating
the counter after processing a frame when the position of
all objects is known. Hence, we only collect information
on pixels that are really classified as background. For the
first few frames, the counter cannot give reliable results and
simple binary differencing of consecutive frames is applied
until enough data have been collected.

Our proposed filter preserves the edge pixels belonging to
objects much better than simple differencing [Fig. 8(c)]. It is
less sensitive to noise, and more importantly, it works even

(a)

(b)

(c)

Fig. 8. (a) Binary edge image of frame 40 of sequencehall monitorobtained
by Canny operator. (b) Simple binary difference image. (c) Binary feature
image obtained by proposed method.

when an object stops for an arbitrarily long time. Since the
counter is not increased at the location of objects, it will never
exceed the threshold for removal.

The assumption of stationary background is valid for many
applications. Unfortunately, an extension to filtering moving
background is not simple because global motion estimation
and compensation cannot perfectly align edge images. A
different approach is necessary and is currently under inves-
tigation.

E. Extraction of VOP’s

The output of the tracker is a sequence of binary edge
images modeling the object of interest. The remaining step is
to extract the corresponding object from the video sequence,
i.e., we have to create the VOP of the object. This is done by
finding the first and last model points for each row. The pixels
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(a)

(b)

(c)

Fig. 9. (a) Original frame 32, (b) binary model, and (c) resulting VOP for
sequencehall monitor.

in between are assigned to the VOP, and the same procedure
is repeated for each column. The following results section will
demonstrate the performance of our proposed video sequence
segmentation algorithm.

V. RESULTS

In this section, the results of our new algorithm are given
for the two test sequenceshall monitorandcoastguard. In hall
monitor, the background is not moving, but very cluttered, and
there is also a high level of noise present. The original frame,
the binary model of the person, and the VOP for frames 32,
46, and 98 are shown in Figs. 9–11, respectively.

As can be seen, the model adapted very well to the large
changes in shape. The resulting video object planes are clearly
more accurate than those reported for other VOP segmentation
algorithms in [25], [28], or [29] and at least as good as in [26]
and [30]. The slightly jagged look of the VOP’s is caused
by the simple extraction technique described in Section IV-E,
and improvements are possible.

The camera in the sequencecoastguardis following the
boat so that the background appears to be moving. The results
in Fig. 12 show that the boat was quite well segmented. Most
problems were caused by the waves below the boat, because
they were temporally varying and close to the tracked object,

(a)

(b)

(c)

Fig. 10. (a) Original frame 46, (b) binary model, and (c) resulting VOP for
sequencehall monitor.

which made the tracker include the waves into the model. The
results on the same sequence reported in [28] and [29] are not
as good as the ones of our proposed method.

VI. CONCLUSIONS AND FUTURE WORK

A new video sequence segmentation algorithm based on
object tracking was presented. A model of the object was
automatically derived and matched against subsequent frames
using the Hausdorff distance. To accommodate for rotation
and changes in shape, the model was updated every frame
by a novel update technique that consists of two components
for slowly and rapidly changing or moving parts. Further, a
new filtering method to improve the performance in the case
of stationary background was described. Experimental results
showed that the algorithm can extract video object planes from
sequences with stationary and moving backgrounds.

Matching the binary model using the Hausdorff distance is
remarkably robust. The new position is accurately detected
even when the objects undergo large changes in shape or the
background is moving. The most difficult task is to distinguish
between background and objects in the initialization and
update stage because the models must not pick up background.
This is particularly difficult in the presence of cluttered or
moving background. It has to be further investigated in filters
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(a)

(b)

(c)

Fig. 11. (a) Original frame 98, (b) binary model, and (c) resulting VOP for
sequencehall monitor.

that can recognize background, possibly by analyzing the color
or intensity of successive frames using temporal filters.

Extracting the VOP based on the binary object model is
not trivial because the boundaries are not closed. In this
paper, a very simple technique is used that leads to a slightly
jagged look. We are currently developing a postprocessing
method that can correct the boundary location of the extracted
VOP’s. Most VOP boundary pixels coincide with binary
model points and are assumed to be correct. However, some
parts of the VOP boundaries do not correspond to model
points because they were artificially created by our simple
extraction technique. These wrong boundaries can easily be
detected by comparing the extracted VOP boundary with the
binary model. Each wrong boundary is then removed, and
the correct boundary between the two endpoints is determined
by analyzing the binary model points. Preliminary results
indicate a potential to significantly improve the boundary
location.

The results of our combined segmentation and tracking
algorithm are very promising when compared to those of
other techniques. Nevertheless, the human visual system is
still much more accurate at locating the boundaries of moving
objects. At the moment, it is not possible to extract objects
and to place them into other sequences. For example, the floor
that is visible between the legs of the person in Fig. 10(c) does
not allow that VOP to be copied into a scene with different
background.

(a)

(b)

(c)

Fig. 12. (a) Original frame 150, (b) binary model, and (c) resulting VOP
for sequencecoastguard.

There exist some techniques such as chroma keying that
achieve precise extraction of moving objects, but their ap-
plications are limited. Otherwise, we are not aware of any
automatic segmentation algorithm that can accurately locate
the boundaries of moving objects in generic video sequences.
More research, and probably the inclusion of higher level
concepts from artificial intelligence, image understanding, and
a priori knowledge, are necessary to successfully perform
segmentation of real video sequences.

APPENDIX

A. Distance Transformation

To calculate the Hausdorff distance for object matching,
it is necessary to know for each pixel the distance to the
nearest edge pixel. Edge pixels obviously have a distance of 0,
while there horizontal and vertical neighbors, if not edge pixels
themselves, have a distance of 1. For diagonal neighbors, the
corresponding distance is unless they or their horizontal
or vertical neighbors are edge pixels.

Unfortunately, computing these distances is a global op-
eration and computationally expensive. An algorithm that
operates locally and approximates the Euclidean distance
well enough is described in [41]. This so-called distance
transformation (DT) defines small masks containing integer
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(a) (b)

Fig. 13. (a) Mask Chamfer 3-4 and (b) Chamfer 5-7-11 suggested as integer
approximations of Euclidean distance for the distance transformation.

(a) (b)

Fig. 14. (a) Binary image with edge pixels having value of 1 and nonedge
pixels being 0. (b) Corresponding distance transform using Chamfer 3-4
indicates for each pixel the distance to the nearest edge pixel.

approximations of distances in a small neighborhood. There
are two such masks suggested, Chamfer 3-4 and Chamfer 5-
7-11 (see Fig. 13). The horizontal and vertical distances for
Chamfer 3-4 are 3 and the diagonal is 4. This gives a ratio of
1.333 compared to 1.414 for Euclidean distances.

The DT is initialized by assigning zero to edge pixels and
infinity or a suitably large number to nonedge pixels. In two
iterations, the distances are calculated by centering the mask
at each pixel in turn and updating the distance of this pixel. A
binary image and its distance transform using Chamfer 3-4 are
given in Fig. 14. Note that the distances are about three times
higher than the corresponding Euclidean distances because of
the approximation made by Chamfer 3-4.

In our algorithm, the metric Chamfer 5-7-11 is used because
of its higher accuracy.

B. Thinning

Thinning or erosion is a very popular tool in image process-
ing. The idea is to erode an object until a topological skeleton
of one pixel width is obtained. Many algorithms, however,
do not ensure that connected components remain connected
during the thinning procedure. An algorithm that does preserve
connectedness by examining 33 neighborhoods is described
in [42]. We implemented that algorithm by using an adjacency
code (AC) combined with a lookup table. The adjacency code
(AC) at pixel is defined by [see Fig. 15(a)]

(13)

(a) (b)

Fig. 15. (a) Labeling of neighbor pixels for adjacency code. (b) Example of
a configuration where the pixel in question(x; y) must not be removed.

where is one for foreground pixels and zero for background.
Thus, there are 256 different values for AC , and for each
one it can be determined in advance whether the pixel
should be removed or not, resulting in a very efficient lookup
table. In Fig. 15(b), we have
and the pixel may not be removed because otherwise, the
connectedness of the top left and bottom right pixels would
not be guaranteed anymore. Thus, the lookup table entry for
AC is “do not remove.”

The same lookup table can be employed to remove isolated
noise pixels. The corresponding adjacency code is AC0,
and thus, pixels with adjacency code zero are removed as well.
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