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Abstract—The new video coding standard MPEG-4 is enabling of interest are not homogeneous with respect to low-level
content-based functionalities. It takes advantage of a prior de- features such as color, intensity, or optical flow. Thus, conven-

composition of sequences into video object planes (VOP's) so that i) segmentation algorithms will fail to obtain meaningful
each VOP represents one moving object. A comprehensive reV|ewpartitions

summarizes some of the most important motion segmentation and . . . .
VOP generation technigues that have been proposed. Then, anew This paper addresses video object plane generation and
automatic video sequence segmentation algorithm that extracts presents a new algorithm that can automatically extract moving
moving objects is presented. The core of this algorithm is an gpjects from a sequence. Since these objects are characterized
object tracker that matches a two-dimensional (2-D) binary model by a different motion from that of the background, some

of the object against subsequent frames using the Hausdorfft f i inf fi t be i ted into th
distance. The best match found indicates the translation the YP® O motion information must be incorporated into the

object has undergone, and the model is updated every frame S€gmentation algorithm.

to accommodate for rotation and changes in shape. The initial ~ Optical flow or motion fields could theoretically be used, but
model is derived automatically, and a new model update method they are extremely noise sensitive, and their accuracy is limited
based on the concept of moving connected components allows fordue to the aperture and occlusion problem. Change detectors

comparatively large changes in shape. The proposed algorithm . . .
is improved by a filtering technique that removes stationary ©F difference images, on the other hand, mark occlusion areas

background. Finally, the binary model sequence guides the ex- &s changed, while the objects themselves are unchanged unless
traction of the VOP’s from the sequence. Experimental results they contain sufficient texture. This makes exact boundary

demonstrate the performance of our algorithm. location difficult, and an additional mechanism is necessary
Index Terms—Content-based functionalities, MPEG-4, object tO fill the holes inside objects.
tracking, video object planes, video sequence segmentation. Our proposed algorithm is based on pattern recognition

and object tracking principles, and thereby avoids many of
the problems associated with motion estimation. The concept
of moving connected components is introduced to enable
RADITIONAL video standards such as MPEG-1, MPEGautomatic detection of moving objects, and a novel model
2, H.261, or H.263 are low-level techniques in the senggdate method allows for relatively large changes in shape.
that no segmentation or analysis of the scene is required. TheYimprove the stability of the segmentation and to reduce the
can achieve high compression ratios and are suitable for a wiggnputational complexity, a filter is presented that removes
range of applications. However, with the increasing populariftationary background. The VOP’s obtained by our algorithm
of multimedia applications and content-based interactivityre more accurate than those of other techniques examined.
new video coding schemes are necessary. The rest of this paper is organized as follows. Section Il
The standard MPEG-4 [1], [2], which is currently beingovers motion estimation and points out some limitations
developed, enables content-based functionalities by introdgg-motion fields for segmentation. A comprehensive review
ing the concept of video object planes (VOP’s). Each framg motion segmentation and VOP generation techniques is
of the input sequence is segmented into arbitrarily shapgien in Section Ill. Our new algorithm is then described
image regions (VOP's) such that each VOP describes ojpeSection IV, and results are shown in Section V. Finally,
semantically meaningful object or video content of interest. 8ection VI concludes this paper and outlines some extensions
video object layer is assigned to each VOP containing shapg the proposed algorithm for future research.
motion, and texture information.
Decomposing a video sequence into VOP's is very difficult, II. MOTION
and comparatively little research has been undertaken in this
field. An intrinsic problem of VOP generation is that objecta Motion as Cue for Segmentation

I. INTRODUCTION
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and some motion segmentation algorithms are even based omwo ways of describing motion fields are possible. In the
motion only. nonparametric representation, a dense field is estimated where
Let us start by defining the rather vague term motiomach pixel is assigned a correspondence or flow vector. Block
We denote byl (x,y; k) the intensity or luminance of pixel matching and variants thereof are among the most popular
(z,y) in frame k. Following the definitions in [3], we have nonparametric approaches due to their simplicity. The current
to distinguish between two-dimensional (2-D) motion anftame is subdivided into blocks of equal size, and for each
apparent motion. The projection of the three-dimensional (3-Block the best match in the next (or previous) frame is
motion onto the image plane is referred to as 2-D motion. dbmputed. All pixels of a block are assumed to undergo the
is the true motion that we would like to know. On the othesame translation, and are assigned the same correspondence
hand, apparent motion is what we perceive as motion andvisctor. The selection of the block size is crucial. Large
induced by temporal changes in the image intensity, v; £). windows might contain more than one motion and cannot
Apparent motion can be characterized by a correspondem@eurately locate motion boundaries, whereas small windows
vector field or by an optical flow field. A correspondenceften result in wrong matches within uniform regions in the
vector describes the displacement of a pixel between tyweesence of noise. A weakness of block-matching algorithms
frames, whereas the optical flow, v) at pixel (z,y; k) refers is their inability to cope with rotations and deformations.

to a velocity and is defined as Nevertheless, their simplicity and relative robustness make it
dz dy a popular technique.
(u,v) = <E’ $> (1) Nonparametric dense field representations are generally not

suitable for segmentation because an object moving in the

It is easy to see that optical flow and correspondence vect@r® space generates a spatially varying 2-D motion field even
are related. within the same region, except for the simple case of pure

Note that apparent motion and 2-D motion are not equivganslation. That is the reason why parametric models are
lent. Consider a static scene with varying illumination. Theommonly used in segmentation algorithms. However, dense
2-D motion is obviously zero because no 3-D motion ifield estimation is often the first step in calculating the model
present; however, the change in illumination induces opticgdrameters.
flow, and therefore apparent motion. From (1), it can also beParametric models require a segmentation of the scene,
seen that apparent motion is highly sensitive to noise, whighich is our ultimate goal, and describe the motion of each
can cause largely incorrect results. Further, moving objectsyion by a set of a few parameters. The motion vectors
or regions must contain sufficient texture to generate optiagn then be synthesized from these model parameters. A
flow, because the luminance in the interior of moving regiongarametric representation is more compact than a dense field
with uniform intensity remains constant. Unfortunately, welescription and less sensitive to noise, because many pixels
can only observe apparent motion, making motion estimatiafe treated jointly to estimate a few parameters.

a very challenging task. In order to derive a model or transformation that describes
the motion of pixels between successive frames, assumptions
B. Motion Estimation on the scene and objects have to be made(Ket’, Z) and

Besides the difficulties already mentioned, motion estimiX »Y’, Z’) denote the 3-D coordinates of an object point in
tion algorithms have to solve the so-called occlusion affgme & and & + 1, respectively. T/he/correspondmg Image
aperture problem. The occlusion problem refers to the fad@ne coordinates arez,y) and (+',4'). If a 3-D object
that no correspondence vectors exist for covered and uncyidergoes translation, rotation, and linear deformation, the 3-D
ered background. To illustrate the aperture problem, we filigPlacement of a point on the object is given by [4]

introduce the optical flow constraint (OFC). It is generally X/ 11 S12 513 X t1
assumed that the intensity remains constant along the motion Y'| = |s21 S22 soz |- |Y |+ [ta]. 3)
trajectory [3], i.e., z! $31  S32  S33 VA t3
if(%y; t) = ﬂ . 8_35 ﬂ . @ ﬂ It is very common to r_nodel 3—D objects by (piecewise)
dt dr Ot Oy ot Ot planar patches whose points satisfy
:(VI,(u,v))—i—a:O 2 aX +0Y +¢cZ =1. 4

where (-,-) denotes the vector inner product. The apertutésuch a planar object is moving according to (3), the affine
problem states that the number of unknowns is larger th&wtion model is obtained under orthographic projection and
the number of observations. From the optical flow constraitiie eight-parameter model under perspective projection.

(2) follows that only the flow component in the direction of the As can be seen from Fig. 1, the 3-D coordinates are re-
gradientVI, the so-called normal flow, can be estimated. THeted to the image plane coordinates under the orthographic
orthogonal component can take on any value without changiffgrallel) projection by

the inner_product, and is therefore n(_)t defint_ad. Thus, gdditional (r,9) = (X,Y) and («,¢) = (X', Y"). )
assumptions are necessary to obtain a unique solution. These

usually impose some smoothness constraints on the opti€hls projection is computationally efficient and a good approx-
flow field to achieve continuity. imation if the distance between the objects and the camera is
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image [ll. M OTION SEGMENTATION

I . . L .
pane A classical approach to motion segmentation is to estimate

X a dense motion field followed by a segmentation of the scene
based only on this motion information [7]-[10]. In his early
work, Adiv [7] proposed a hierarchically structured two-stage
(x.y T (X,Y,2) algorithm. The flow field is first segmented into connected
components using the Hough transform such that the motion
of each component can be modeled by an affine transformation
Fig. 1. Projection of pixe[X,Y, Z) onto image planéz, y) under ortho- (6). Adjacent Compon?nts are then merged !nto S?gmems if
graphic (parallel) projection. they obey the same eight-parameter quadratic motion model.
In the second stage, neighboring segments that are consistent
image with the same 3-D motion (3) are combined, resulting in the
plane final segmentation.
X The Bayesian framework provides an elegant formalism and
is among the most popular approaches to motion segmentation
>z [8]-[13]. The key idea is to find the maximura posteri-
N ori (MAP) estimate of the segmentatiokl for some given
observationO, i.e., to maximizeP(X|0) «x P(O|X)P(X).
Murray and Buxton [8] used an estimated flow field as
observationO. As it is common, the segmentation or prior
Fig. 2. Projection of pixel X, Y, Z) onto image pland,y) under per- model X is assumed to be a sample of a Markov random field
spective (central) projection. (MRF) to enforce continuity of the segmentation labels, and
thus, P(X) is a Gibbs distribution [14]. The energy function
large compared to the depth of the objects. From (3)—(5),0f the MRF consists of a spatial smoothness term, a temporal

»
>

follows that continuity term, and a line field as in [15] to allow for motion
discontinuities. To define the observation mod¢D| X), the
&' =a1x +azy +as parameters of a quadratic flow model [7] are calculated for
Y =asx + azy + ag (6) each region by linear regression. The mismatch between this

synthesized flow and the flow field given {n is assumed to
which is known as the affine model. In the case of the mokg zero-mean white Gaussian noise. The resulting probability
realistic perspective (central) projection, we can see frofnction P(O]X)P(X) is maximized by simulated annealing
Fig. 2 that [15]. Major drawbacks of this proposal are the computational

complexity and that the number of objects likely to be found

_ (XY bon XY has to be specified.
(.9) = <f7’ff> and (a,y) = <f7’f7>' 0 A similar approach was taken by Bouthemy and FEgis

[9]. The energy function of their MRF consists only of a spatial

Together with (3) and (4), this results in the eight-parametgmoothness term. The observati@rontains the temporal and

model spatial gradients of the intensity function, which is essentially
/01T +azy+as the same information as the optical flow due to the OFC (2).
T = For each region, the affine motion parameters (6) are computed
azr +asy +1 . L
a4 + azy + a in the least-squares sense, aR@D|X ) models the deviation
Yy =———"" (8) of this synthesized flow from the optical flow constraint
arr+agy +1

(2) by zero-mean white Gaussian noise. The optimization is

Both the affine and eight-parameter model are very popeerformed by iterated conditional modes (ICM) [16], which
lar, but many other transformations exist depending on tke faster than simulated annealing, but likely to get trapped
assumptions made. in a local minimum. To achieve temporal continuity, the
Parametric models describe each region by one set Sgfgmentation result of the previous frame is used as an initial
parameters that is either estimated by fitting a model in tigstimate for the current frame. The algorithm then alternates
least squares sense to a dense motion field obtained byesveen updating the segmentation lab&lsestimating the
nonparametric method or directly from the luminance signaffine motion parameters, and updating the number of regions
I(z,y; k) as in [5] and [6]. Although parametric representain the scene.
tions are less noise sensitive, they still suffer from the intrinsic The techniques [7]-[9] include only optical flow data into
problems of motion estimation. It should be noticed that orlbe segmentation decision, and hence, their performance is
has to be careful when interpreting an estimated flow fiellimited by the accuracy of the estimated flow field. This means
Most likely, it is necessary to include additional informatiorthat they inevitably suffer from the problems described in
such as color or intensity to accurately and reliably deteStction Il such as noise sensitivity and inaccuracy at motion
boundaries of moving objects. and therefore object boundaries. In contrast, Chetrey. [10]
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incorporated intensity information into the observat@nThe some rather ad hoc methods. They can also easily incorporate
energy function of the MRF includes a spatial continuitynechanisms to achieve spatial and temporal continuity. On the
term and a motion-compensated temporal term to enforather hand, these approaches suffer from high computational
temporal continuity. Two methods were proposed to generat@mplexity, and many algorithms need the number of objects
a synthesized flow field for each region: the eight-parametar regions in the scene as an input parameter.
guadratic model [7] or the mean flow vector of the region Hierarchically structured segmentation algorithms were pro-
calculated from the given field ). For the conditional posed by Htter and Thoma [5], Musmanet al. [6], and
probability P(O|X), it is assumed that both the deviation oDiehl [18]. A change detector divides the current frame into
the observed flow from the synthesized flow and the differenchanged and unchanged regions, and each connected changed
between the gray level of a pixel and the mean gray level gfgion is assumed to correspond to one object. Starting from
the region it belongs to obey zero-mean Gaussian distributiotte largest changed region, the motion parameters for this
By controlling the variances of these two distributions, morebject are estimated directly from the spatiotemporal image
weight is put on the flow data in the case where it is reliabletensity and gradient. If the prediction error after motion
i.e., for small values of the displaced frame difference (DFDgpmpensation is too large, this object is further subdivided
and more weight on the intensity in areas with unreliable floand analyzed in subsequent levels of hierarchy. The algorithm
data. The optimization is then performed by ICM as in [9]. sequentially refines the segmentation and motion estimation
It is possible to treat motion estimation and segmentatiamtil all changed regions are accurately compensated. Because
jointly in the Bayesian framework [11]-[13]. In this casethese techniques alternate between analyzing the image and
the observationD consists only of the gray-level intensity,synthesizing, they have been described as object-oriented anal-
and both the segmentation and the motion field have to psis—synthesis algorithms. In [5] and [6], the eight-parameter
estimated. Changt al. [11] used both a parametric and anotion model (8) is used, and the parameters are obtained
dense correspondence field representation of the motion, with a direct method. The luminance function is approximated
the parameters of the eight-parameter model (8) being obtairlyd a Taylor series expansion so that the frame difference
in the least squares sense from the dense field. The objectta@ be expressed in terms of spatial intensity gradients and
function resulting from the MAP criterion consists of thre¢he unknown parameters. Both frame difference and gradients
terms, each derived from an MRF. The first term is maximizeate easy to compute, and the model parameters are obtained
when both the synthesized and dense motion field minimibg linear regression. A 12-parameter quadratic motion model
the DFD, and the second term is maximized if the densleat describes a parabolic surface undergoing the 3-D motion
field is smooth and the parametric representation is consisté3it under parallel projection is proposed in [18]. An iterative
with the dense field. However, smoothness is only enforcéethnique that is similar to the Newton—Raphson algorithm
for pixels having the same segmentation label, i.e., it is nestimates the parameters by minimizing the MSE between the
enforced across region boundaries. The last term is a standation-compensated and the current frame. Edge information
spatial continuity term to describe the prior expectation on tlie incorporated into the segmentation algorithm to improve
segmentation. Since the number of unknowns is three timte accuracy of boundaries.
higher when the motion field has to be estimated as well,Morphological tools such as the watershed algorithm and
the computational complexity is significantly larger. Changimplification filters are becoming increasingly popular for
et al. decomposed the objective function into two terms ssegmentation and coding [19]-[23]. An introduction, discus-
that the motion estimates and the segmentation labels canstmn of potential problems, and several applications to segmen-
maximized alternating using highest confidence first (HCRtion are presented by Meyer and Beucher [19]. Salembier
[17] and ICM. and Pards [20] described a segmentation algorithm that has a
The technique proposed by Stiller in [12] and extended igpical structure for morphological approaches. In a first step,
[13] is similar, but no parametric motion field representation ihie image is simplified by the morphological filter “open—close
necessary. In [12], the objective function consists of two termisy reconstruction” to remove small dark and bright patches.
The DFD generated by the dense motion field is model8the size of these patches depends on the structuring element
by a zero-mean generalized Gaussian distribution, and ased. The color or intensity of the resulting simplified images
MRF ensures segmentwise smoothness of the motion figddrelatively homogeneous. An attractive property of these
and spatial continuity of the segmentation. In [13], the DFMlters is that they do not blur or change contours like low-
is also assumed to obey a zero-mean generalized Gausgass or median filters. The following marker extraction step
distribution; however, occluded regions are detected, and detects the presence of homogeneous areas, for example, by
correspondence is required for them. The MRF modeling tigentifying large regions of constant color or luminance. This
motion field and segmentation is made up of four ternsep often contains most of the knowhow of the algorithm.
enforcing spatial and temporal continuity of the segment&ach extracted marker is then the seed for a region in the
tion, segmentwise spatial smoothness of the motion fielihal segmentation. Undecided pixels are assigned a label in
and temporal continuity of motion vectors along the motiothe decision step, the so-called watershed algorithm, which
trajectories. Although ICM is used to obtain the MAP estimatés a technique similar to region growing. The watershed
the computational burden of this algorithm is enormous. algorithm is well defined and can be efficiently implemented
Techniques that make use of Bayesian inference and mobglhierarchical FIFO queues. A quality estimation is performed
images by Markov random fields are more plausible than [20] as a last step to determine which regions require
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resegmentation. The proposed segmentation by Salerabiehypothesis. To construct the layers, the information of a longer
al. in [21] is very similar, but an additional projection stepsequence is necessary. The frames are warped according to the
is incorporated that warps the previous partition onto thadfine motion of the layers such that coherently moving objects
current frame. This projection, which is also computed by thae aligned. A temporal median filter is then applied to obtain
watershed algorithm, ensures temporal continuity and linkimgsingle representative image for each object. This proposal
of the segmentation. has several disadvantages. If in a sequence different views
The segmentation algorithms in [19]-[21] are not true videaf the same object are shown, it is not possible to represent
segmentation techniques. They consider video sequences tthiag object by a single image that is warped from frame to
3-D signals and extend conventional 2-D methods, althoufiame. Further, the affine transformation (6) might not be able
the time axis does not play the same role as the two spataldescribe the motion of a complete layer in the presence
axes. A morphological video segmentation algorithm waxf strongly nonrigid motion such as a person walking. The
proposed by Choet al. [22]. Their marker extraction stepalgorithm also depends completely on the accuracy of the
detects areas that are not only homogeneous in luminanegtical flow estimates since no color or intensity information
but also in motion, so-called joint markers. For that, intensiig used. Finally, the layer construction process makes real-time
markers are extracted as in [20], and affine motion parametesecution impossible, because a longer sequence of frames is
(6) are calculated for each marker by linear regression fronreguired.
dense flow field. Intensity markers for which the affine model A double-partition approach based on morphology was
is not accurate enough are split into smaller markers that aeggested by Mar@s and Molina [23]. Initially, objects of
homogeneous. As a result, multiple joint markers might be olmterest have to be selected interactively, leading to a partition
tained from a single intensity marker. The watershed algorithan object level that corresponds to a decomposition into video
also uses a joint similarity measure that incorporates luminaragject planes. These objects are normally not homogeneous in
and motion. In a last stage, the segmentation is simplifiedlor or motion and are resegmented to obtain a fine partition
by merging regions with similar affine motions. A drawbackhat is spatially homogeneous. After estimating a dense motion
of this technique is the lack of temporal correspondence field by block matching, the fine partition is projected onto
enforce continuity in time. the next frame using motion compensation. These projected
Morphological segmentation techniques are computationatiygions are used to extract the markers for the next frame,
efficient, and there is no need to specify the number wfich is then segmented by the watershed algorithm based on
objects as with some Bayesian approaches, because thituiisinance. To improve the temporal stability, the segmentation
determined automatically by the marker or feature extractigmocess is guided by a change detection masks that prevents
step. However, due to its nature, the watershed algorithmarkers of static areas to overgrow moving areas and vice
suffers from the problems associated with region-growingersa. Finally, the new object level partition is computed
techniques. from the projected and segmented fine partition, whereby the
The algorithms described so far are mainly focused aigorithm must keep track of the labels of each region to know
coding. They segment video sequences into regions that #re correspondence between fine regions and objects.
homogeneous with respect to motion and possibly color orAutomatic segmentation is formulated by Net al. [25]
luminance. For content-based functionalities as in MPE@s the problem of separating moving objects from a static
4, we would like to partition the frames into objects thabackground. In a preliminary stage, potential foreground re-
are semantically meaningful to the human observer. Thugpns are detected by applying a higher order statistics (HOS)
the above techniques will fail in many practical situationtest to a group of interframe differences. The nonzero values
where objects do not correspond to partitions based on simpiethe difference frames are either due to noise or moving
features like motion or color. Segmentation algorithms thabjects, with the noise being assumed to be Gaussian in
specifically address video object plane (VOP) generation hasentrast to the moving objects, which are highly structured.
been proposed, many of them just recently with the develolp- the case of moving background, the frames must first be
ment of the new video coding standard MPEG-4 [24]-[26&ligned by motion compensation. For all difference frames,
[23], [27]. the zero-lag fourth-order moments are calculated because of
Wang and Adelson [24] proposed a layered representatitheir capability to suppress Gaussian noise. These moments
of image sequences that corresponds to the VOP technigue then thresholded, resulting in a preliminary segmentation
used by MPEG-4. The current frame is segmented basedp containing moving objects and uncovered background.
on motion with each object or layer being modeled by afo identify uncovered background, the motion analysis stage
affine transformation (6). The algorithm starts by estimatincalculates the displacement of pixels that are marked as
the optical flow field, and then subdivides the frame intohanged. The displacement is estimated at different lags from
square blocks. The affine motion parameters are computbd fourth-order moment maps by block matching. If the
for each block by linear regression to get an initial setisplacement of a pixel is zero for all lags, it is classified
of motion hypotheses. The pixels are then grouped by as background and as foreground otherwise. Finally, the reg-
iterative adaptiveK-means clustering algorithm. Pixét,y) ularization phase applies morphological opening and closing
is assigned to hypothesis or layeif the difference between operators to achieve spatial continuity and to remove small
the optical flow at(z, y) and the flow vector synthesized fromholes inside moving objects of the segmentation map. The
the affine parameters of layéris smaller than for any other resulting segmented foreground objects are slightly too large,
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because the boundary location is not directly determined fromIV. VIDEO OBJECT PLANE SEGMENTATION ALGORITHM
the gray level or edge image. A version of this technique is |, hig section, a new segmentation algorithm is presented

currently under investigation in the 1SO MPEG-4 N2 COrg, 4 5\tomatically extracts moving objects from a video se-
Experiment on Automatic Segmentation Techniques [28]. (lﬁjence. It extends the techniques proposed in [27], [33] to

has a postprocessor incorporated to improve the boundafynes with a moving camera or background. The resulting

location by adjusting the boundaries to spaial edges. video object planes (VOP’s) can be used as input for content-

Mech and Wollborn [26] generate the video object planr?%sed coding schemes such as MPEG-4,

or object mask from an estimated change detection mas As explained in Sections Il and Ill, motion estimation is

(CDM). Initially, a change detection mask is generated t_)g very difficult task, and motion fields are often not reliable

taking the difference between two successive frames using o )
erfough. In fact, many of these estimation techniques were

a global threshold. This CDM is then refined in an iter- . .
eveloped for coding purposes and not for segmentation. If a

ative relaxation that uses a locally adaptive threshold to . T
correspondence vector points to a completely wrong pixel in

gnforce spa‘ual continuity. Temporal stab|llt)_/ 1S |_ncreased q¥|e sense of motion, it hardly affects the coding result as long
incorporating a memory such that each pixel is labeled as

chanaed if i . . as the pixel the vector points to has similar color. In contrast,
ged if it belonged to an object at least once in the 1as . o .

L change detection masks. The simplification step includes 30 Neous motion vectors have a visible, negative effect on
morphological close and removes small regions to obtain tﬁggmentatlon results_. . L

final CDM. The object mask is calculated from the CDM b Some sort of motion information is, of course, necessary

eliminating uncovered background and adapting to gray-le cause :)u.r uItlmstebgokaI IS tg ;egme?t otﬂegts tha: are
edges to improve the location of boundaries. A version of thi oving relative to the background. Several methods employ a

algorithm is also part of the ISO MPEG-4 N2 Core Experime ange detection mask instead of a motion field. Although easy

[29]. It contains an additional scene change or cut detector'CaCOMPUte, this approach has two drawbacks. First, unless

global motion estimation and compensation step based on fA8VINg objects contain sufficient texture, only occlusion areas
eight-parameter model (8), and the memory lengthas been will be marked as ghanged, while the |nt'er|or of objects will .be
made adaptive. unchanged [sge Fig. 5(a)]._Seco.nd, ob!ects or parts of opjects
While the two proposals [28], [29] to the 1ISO MPEG-4 Néhat stop moving for a certain period of t|m9 WI!| be lost, which
Core Experiment perform segmentation mainly based on te}ﬁ__not acceptable in content-bas_ed applications. To prevent
poral information, Choiet al. [30] presented a spatial mor-th!sv a memory would have to be mgorporate_d. Unfortunately,
phological segmentation technique. It starts with a glob§lis would cause background that is becoming uncovered to
motion estimation and compensation step. The global affifgmain classified as an object for the length of the memory, and
motion parameters (6) are calculated from the correspondeff@ resulting VOP’s would be larger than the actual objects,
field, which is obtained by a block-matching algorithm. Afteflepending on the speed of movement and length of memory.
that, the presence of a scene cut is examined. Then, th&evertheless, change detection masks are sometimes more
actual Segmentation commences by S|mp||fy|ng the franl}@EfL” than motion fields. For example, in head-and-shoulder
with a morphological open—close by reconstruction filter. ThHgegquences, there is only little movement of the person, and
thresholded morphological gradient image, calculated from tHte occlusion regions are very small. Thus, a relatively long
luminance and chrominance components of the frame, serf@mory can be attached without getting VOP’s that are
as input for the watershed algorithm which detects the locatigignificantly larger than the object. Estimating a motion field
of the object boundaries. To avoid oversegmentation, regioguld be more difficult because the motion is simply too small.
smaller than a threshold are merged with their neighbors.In our algorithm, we focus on applications comprising
Finally, a foreground/background decision is made to creapgtdoor scenes or objects with strongly nonrigid motion where
the video object planes. Every region for which more than halthange detection masks have been shown to be ineffective
of its pixels are marked as changed in a change detection mg&K, [28], [29].
is assigned to the foreground. To enforce temporal continuity, The core of our proposed technique is an object tracker that
the segmentation is aligned with that of the previous frameaturally establishes the temporal correspondence of objects
and those regions for which a majority of pixels belonged tihroughout the video sequence. This is important for content-
the foreground before are added to the foreground too. Thiased functionalities and allows us to keep track of objects
allows tracking an object even when it stops moving for agven when they stop moving for an arbitrarily long time.
arbitrary time. In contrast, the techniques [25] and [26] will After a binary model for the object of interest has been
lose track after a certain number of frames, depending on erived from the edge image, the tracker matches the model
size of the group of frames and memory length, respectivelygainst subsequent frames in the sequence and updates the
A combination of the two temporal segmentation techniqu@sodel every frame to accommodate for rotation and changes
[28], [29] with the spatial segmentation method [30] to fornn shape of the object. The output of the tracker is a se-
one algorithm is currently under investigation [31], [32].  quence of binary models that will guide the extraction of the
In the next section, we will describe a new video objeafOP’s.
plane segmentation algorithm based on Hausdorff object trackinding the best match for the binary model is very reliable
ing. It is an extension of the technique by Meier and Ngagven when the background or camera is moving. The main
submitted to the ISO MPEG-4 N2 Core Experiment [27].  difficulty is to obtain an initial model and to update the model
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of a nonrigid object with considerable changes in shape in the

presence of cluttered background. * . ¢ .
The location of object boundaries is determined based on_ * * model point . .

the binary model, which in turn is derived from the edge ° — o image point I

image. Hence, the problem of occlusion areas associated hO | \

with motion fields is avoided. In fact, our algorithm only © ©.0) h(.0)

requires motion estimates in the case of a moving camera or @ (b)

background to align the frames. This global motion estimatigiy. 3. Calculation of Hausdorff distance. (aJO, I) measures the maxi-

is normally very robust if appropriate techniques are appliéEIJm distance i’;f an Obiecft point to the nearest ir:nage point akr;_ﬂ((h)O)_ |
[See SeCtion IV'BZ] the maximum distance of an Image pOII’lt to the nearest o Ject pOInt. n

this example2(O, I) is smaller tham (I, O), and therefore the Hausdorff
distanceH (O, I) is equal toh(I,O).

A. Hausdorff Object Tracker

Gray scale images are normally not suitable for template @r the nearest model pointis computed, and:(I, O) is set
object matching because they are too sensitive to changesoithe maximum distance. The Hausdorff distance is the larger
illumination. Instead, it is common to use binary edge images the two maxima (see Fig. 3). It is easy to see that for
which also involve fewer computations. The edge points @O, 1) = d, every model point must be within distance
the models are not restricted to object boundaries, but cahsome point ini.
also be in the interior such as eyes and mouth in a face. InThe definitions in (10) and (11) can cause some problems, as
our algorithm, the edge images are obtained by the Cangan be seen in Fig. 3. If one model or image point is outlying,
operator [34]. the resulting Hausdorff distance will be very large, even if all

A robust matching method must be able to detect objeaigher points perfectly match. Therefore, it is preferable to use
that are undergoing translation, rotation, and changes in shape. generalized Hausdorff distance [36]. Instead of using the
This excludes basic template matching where the new positigiaximum value in (10) and (11), the distances are sorted in
is determined by the highest correlation between the model agstending order and tHeh value is chosen, i.e.,
subsequent frames. The generalized Hough transform, which
is used in [35], has been successfully applied to the detection hi(O, 1) = kthoeo I?Ci}l llo—|. (12)
of arbitrarily shaped 2-D binary objects. However, it comes at ) ) )

a high computational cost, especially for a multidimensiongauation (12) is equivalent to (10) fér=m. Fork <m,m—
Hough accumulator space that includes translation, rotatidpPCints may be outlying without increasing the Hausdorff
and scaling. distance. This is a very useful property when dealing with

The Hausdorff distance was proposed by Huttenlogter objects tk_lat' are partlally'occlu.ded or rapidly changing their
al. [36], and an object tracker was described in [37] whe@ape. Similarly (1, 0) is defined as théth value of the
the model of the video object of interest was matched agaifflered distances. With the parametérsand I/, we can
subsequent frames by minimizing the Hausdorff distance. TiigSentially choose how many model points have to be near

approach is computationally efficient and robust to noise affjage points and vice versa.
changes in shape. There are no point correspondences between model and

1) The Hausdorff DistanceThe Hausdorff distance wasiMage points required, because the Hausdorff distance au-
proposed in [36] as a measure to compare binary imagesF%rF‘at'Ca"y selects _thdc (or ) best_ match!ng points. This
portions thereof. The edge pixels that form the model of te Nelpful when objects are changing their shape. The best
object to track are considered as a set of feature points. TH&(Ch is found by minimizing the Hausdorff distance between
same applies to the edge image in which we have to sealef image and the model for all translations of the model
for the object. Let these sets of feature points be denoted 'I§jative to the image. Fig. 4 shows the best match according to
O = {o1, -, 0,} for the object andl = {iy,---,in} for thg Hausdorff d|s_ta_1nce with the model of the previous frame
the image wheren andn are the number of object and imageshlfted to the position of the best match and superimposed on

points, respectively. Then, the Hausdorff distance is defined!8§ current frame. Despite the change in shape, the match is
very accurate.

H(O,I) = max{h(O,I),h(1,0)} 9) 2) Implementation of Hausdorff Distanc&Several sugges-
tions for efficient implementation are presented in [36]. The

with main idea is to assume that the Hausdorff distance is smaller
h(O, ) = max min |0 — | (10) than a thr.eshoIdT so that bad matches can be ruled out
0CO icI early. Obviously, matches can only be found if the Hausdorff
and distance is indeed smaller thdh In our algorithm, early scan

termination has been implemented.
h(I,0) = max min||i — ol|. (11) The Hausdorff distance can be computed using the distance
el oco transformation (see part A of the Appendix). First, the distance
Thus, for every model poinb, the distance to the nearestransform is calculated for the edge image so that for each pixel
image point; has to be calculated, and the maximum value the distance to the nearest edge pixel is known. Then, for all
assigned t& (O, I). Then, for each image poitit the distance translationst = (¢..,¢,), we calculateh; ,(O, I), where the
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Fig. 4. Model of the person for frame 40 (black) of the sequérademonitor .
is shifted to the position of best match with respect to the Hausdorff distance i L e
in frame 41. The match is accurate except for the right leg, which is moving
differently from the rest of the person.

index ¢ indicates thath, (O, ) depends on the translatian
For that, the objecO is translated by the vectar, and the
distance transform at the location of model pointdirectly
gives the distance betweerand the nearest edge pixel. These
distances are then sorted in ascending order, andkithe
value is selected to geft. (O, ). Because of early scan
termination, hy .(O,I) can only be found for translations !
where h;:(O,I) < T. For these translationsh; .(I,O)
is calculated in a similar way to finally obtai#f,(O,T). (b)
The smallest Hausdorff distandé;(O, I) indicates the new
position, i.e., the translatiohthat the model has undergone.

To further accelerate the matching process, the search area
has been restricted to translations of up to a specified number !
of pixels in all directions relative to the position of the object
in the previous frame.

B. Initialization of Moving Objects ©

Initially, the position of objects is unknown and has to bejg 5. Gray-level difference image after (a) thresholding, (b) thinning, and
determined based on motion since we would like to segmegt moving connected component labeling for frame 31 of sequératie
moving objects. For scenes with nonstationary background Bnitor
moving camera, the global motion must first be compensated.

Therefore, this will be treated as a separate case. make the threshold estimation fully automatic. The estimation

1) Stationary Backgroundiet us first assume that themight be performed similarly to the method in [25], which
background is stationary and that there is only one movimgvolves statistical tests and measurement of background ac-
object in the scene. The extension to multiple objects fiwity. The segmentation result is expected to be relatively
straightforward as long as they do not overlap. robust to variations of the threshold for two reasons. First,

Taking the color or intensity difference between two frameagthe threshold is chosen too low, the following thinning step
is one of the most efficient ways to detect changed areasisures that all components in the difference image are only
High values indicate objects that are moving or changing theine pixel wide. Second, the model is updated every frame
shape, as can be seen in Fig. 5(a) where the difference imagd can pick up components of the object that were initially
was thresholded. Unless the objects are highly textured, omhjssing in the case where the threshold was too high.
the boundaries of moving objects can be observed, and not th@©cclusion areas are normally more than one pixel wide and
objects themselves. However, this is exactly what we needare thinned by eroding the difference image. It is important
derive a model for the tracker. that connected components are not split during this thinning

The threshold that is required for the difference imagerocess. The algorithm described in part B of the Appendix
[Fig. 5(a)] depends on the characteristics of the sequerd®es not alter connectedness and also preserves geometry well
like speed of motion, changes in overall illumination, anly alternately eroding from north, south, west, and east. In the
noise. Currently, this threshold must be specified as an inmame step, isolated noisy pixels are eliminated because they
parameter to our algorithm, and further study is needed d&oe unlikely to indicate an object.
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is normally an easier task for two reasons. First, global
motion is relatively simple and consists only of translation,
panning, and possibly zooming. Second, in many applications
the background area is large compared to the independently
moving objects. Therefore, the effect of occluded regions or
errors in the correspondence field is minimal, and robust pa-
rameter estimation techniques are likely to yield good results.
We suggest using the affine model (6) and estimating the
parameters by least median of squares [40] instead of linear
regression.

A straightforward approach to extract an initial model
would be to calculate the difference between the aligned
frames, but due to inaccuracies of the motion model and the
estimated correspondence field, the difference image is too
noisy. Instead, we propose a different approach.

The block motion estimation algorithm is used to partition
the frame into square blocks. Blocks that are moving differ-
ently from the global motion can be identified by comparing
the estimated correspondence vectors with those synthesized

2 from the affine global motion model. Connected blocks of
Ao, coherent motion that is distinct from the global motion indicate
?“ﬂ.—-&,‘ moving objects, and the initial model consists of the edge
_ N ' ll:_'d:—-—- pixels inside these blocks [see Fig. 6(b)].
v - . ! b — —
-::*Q'i \"T%. = "‘:'i —
= p— - C. Model Update

As a tracked object moves through a video sequence, it
might rotate or change its shape. To allow for this, the model
must be updated every frame. This stage can be difficult in the
Fig. 6. Model ir_1itia|ization. (a) Displacement field obtained by hierarchinresence of cluttered background or moving camera.
cal block matching [39]. (b) Model obtained for frame 121 of sequence In [37] it was assumed that the model changes only
coastguard ’

slowly between subsequent frames. However, there are often
S situations where parts of an object change or move more

The result after thinning in Fig. 5(b) demonstrates thahpidly than the rest of the object. For a walking person, for
the pixels belonging to the object are connected, whereggample, legs and arms move faster than the body. Therefore,
noisy pixels form isolated clusters. A simple algorithm t@ue would like to relax this assumption and propose a new
find connected components in binary images is conneciggdate technique that consists of two components: one for
component labeling [38]. Components larger than a specifigwly changing parts, and the other for parts that change or
threshold are then assumed to belong to a moving object, gAgve rapidly compared to the overall motion of the object.
we refer to them as moving connected components (MCC).1he combination of these two components yields a robust
should be possible to determine this threshold automaticaljsdating mechanism.
because noisy components are significantly smaller than thosehe first component updates quasi-rigid parts. The model of
belonging to objects. Fig. 5(c) shows an MCC for the sequengg previous frame is shifted to the new position of best match,
hall monitor. and it is assumed that pixels close to this shifted old model

Thus, moving objects are detected by finding moving co@re part of the object. Thus, all edge pixels within a specified
nected components. It remains the task of deriving an initigistancel’s of the shifted old model, typically about one—three
model for the object tracker by choosing all pixels in the binaryixels, are assigned to the new model. This is accomplished
edge image that are within a small distance (one—two pixels)i9f calculating the distance transform of the old model and
the MCC. This can easily be implemented using the distanfigding all points in the edge image that have a value for
transform (see part A of the Appendix). the distance transform smaller or equallte. Fig. 7(a) shows

2) Moving Background:In the case of nonstationary back+that the slowly changing component can update the object very
ground, it is necessary to compensate the global motiagell, except for the left leg and right arm, which are moving
For that, the correspondence vector field is calculated bifferently from the overall motion.
hierarchical block matching [39]. Fig. 6(a) shows the motion The largerTs is chosen, the more likely the whole object
field obtained for the sequenamastguard The vectors at will be included into the new model. However, it also increases
the bottom and on the right are all zero due to paddinthe possibility of background becoming part of the model. To
In Sections Il and IIl, difficulties with motion estimationavoid picking up cluttered background, it is often preferable
and segmentation were outlined. Global motion estimatiaa filter stationary background beforehand (see Section IV-D).
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@ (b)

Fig. 7. Model update. (a) Slowly changing component. (b) Fast-changing
component. (¢) Updated model (combination of slowly and fast-changing
component) for frame 48 of sequeniall monitor.

The second component picks up nonrigid motion. As the
initialization process, it is based on the concept of moving
connected components. Components that are connected to the
tracked object are used to update the corresponding model by
adding all edge pixels that are within a specified distance of
these MCC's. The result in Fig. 7(b) shows that the left foot
and right arm were picked up in contrast to the right foot,
which was not moving. o

The combination of both components results in an updated T e D
model that extracts slowly and fast-changing or moving com- (b)
ponents very well [Fig. 7(c)].

D. Filtering Stationary Cluttered Background

Object tracking would be fairly easy if all pixels in the edge .
image belonged to objects, but unfortunately, many sequences e
contain cluttered background [see Fig. 8(a)]. This can be a
problem, and it is desirable to remove cluttered background
prior to model matching and updating. Otherwise, the model t
update might pick up background edge points if they are close
enough to the model. Note that Hausdorff matching could AR .
handle cluttered background quite well, but it is preferable e el
to use the edge image after filtering to reduce the number of (©
image points and therefore the computation time. Fig. 8. (a) Binary edge image of frame 40 of sequeimakmonitor obtained

To eliminate stationary background, one could remove &l Canny operator. (b) Simple binary difference image. (c) Binary feature
edge pixels that were already edge pixels in the previous frarifeage obtained by proposed method.

However, this simple binary differencing is very sensitive to

noisg and would remove objects tha} stop moving'as wWelkhen an object stops for an arbitrarily long time. Since the
In Fig. 8(b), for example, the person’s left leg, which wagsynter is not increased at the location of objects, it will never
stationary between two frames, has been removed. exceed the threshold for removal.

We propose a filtering technique that counts for ach pixel the assumption of stationary background is valid for many
how often it has been classified as edge. If this counter excegdications. Unfortunately, an extension to filtering moving
a threshold, the pixel is assumed to be part of the backgro kground is not simple because global motion estimation

and is removed. The counter is updated only for pixels thghq compensation cannot perfectly align edge images. A

are not occluded by an object. This is achieved by updatiggiferent approach is necessary and is currently under inves-
the counter after processing a frame when the position ﬁﬁation.

all objects is known. Hence, we only collect information

on pixels that are really classified as background. For the i

first few frames, the counter cannot give reliable results afrd EXtraction of VOP’s

simple binary differencing of consecutive frames is applied The output of the tracker is a sequence of binary edge

until enough data have been collected. images modeling the object of interest. The remaining step is
Our proposed filter preserves the edge pixels belongingttw extract the corresponding object from the video sequence,

objects much better than simple differencing [Fig. 8(c)]. It ise., we have to create the VOP of the object. This is done by

less sensitive to noise, and more importantly, it works evdimding the first and last model points for each row. The pixels
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Fig. 9. (a) Original frame 32, (b) binary model, and (c) resulting VOP foFig. 10. (a) Original frame 46, (b) binary model, and (c) resulting VOP for
sequencehall monitor. sequencehall monitor.

in between are assigned to the VOP, and the same proceduhéch made the tracker include the waves into the model. The
is repeated for each column. The following results section wiksults on the same sequence reported in [28] and [29] are not
demonstrate the performance of our proposed video sequeasegood as the ones of our proposed method.
segmentation algorithm.

VI. CONCLUSIONS AND FUTURE WORK

V. RESULTS A new video sequence segmentation algorithm based on

In this section, the results of our new algorithm are giveobject tracking was presented. A model of the object was
for the two test sequencésll monitorandcoastguardin hall automatically derived and matched against subsequent frames
monitor, the background is not moving, but very cluttered, anasing the Hausdorff distance. To accommodate for rotation
there is also a high level of noise present. The original framend changes in shape, the model was updated every frame
the binary model of the person, and the VOP for frames 38y a novel update technique that consists of two components
46, and 98 are shown in Figs. 9-11, respectively. for slowly and rapidly changing or moving parts. Further, a

As can be seen, the model adapted very well to the largew filtering method to improve the performance in the case
changes in shape. The resulting video object planes are cleaflystationary background was described. Experimental results
more accurate than those reported for other VOP segmentatitiowed that the algorithm can extract video object planes from
algorithms in [25], [28], or [29] and at least as good as in [26Jequences with stationary and moving backgrounds.
and [30]. The slightly jagged look of the VOP’s is caused Matching the binary model using the Hausdorff distance is
by the simple extraction technique described in Section IV-Eemarkably robust. The new position is accurately detected
and improvements are possible. even when the objects undergo large changes in shape or the

The camera in the sequenceastguardis following the background is moving. The most difficult task is to distinguish
boat so that the background appears to be moving. The resbi$ween background and objects in the initialization and
in Fig. 12 show that the boat was quite well segmented. Magpbdate stage because the models must not pick up background.
problems were caused by the waves below the boat, becalibes is particularly difficult in the presence of cluttered or
they were temporally varying and close to the tracked objechoving background. It has to be further investigated in filters
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Fig. 11. (a) Original frame 98, (b) binary model, and (c) resulting VOP for ©

sequencehall monitor.
Fig. 12. (a) Original frame 150, (b) binary model, and (c) resulting VOP
for sequencecoastguard

that can recognize background, possibly by analyzing the color

or intensity of successive frames using temporal filters. There exist some techniaues such as chroma keving that
Extracting the VOP based on the binary object model is q ying

not trivial because the boundaries are not closed. In thallCh'eVe precise extraction of moving objects, but their ap-

aper. a very simple technique is used that leads to a sli h(glcations are limited. Otherwise, we are not aware of any
Paper, y P d 9 dftomatic segmentation algorithm that can accurately locate

jagged look. We are currently developing a postprocessi . . . . .
. boundaries of moving objects in generic video sequences.
method that can correct the boundary location of the extrac . : .

ore research, and probably the inclusion of higher level

VOP's. Most VOP boundary pixels coincide with blnaryconcepts from artificial intelligence, image understanding, and

model points and are assumed to be correct. However, so ?)riori knowledge, are necessary to successfully perform
parts of the VOP boundaries do not correspond to mo gmentation of real video sequences

points because they were artificially created by our simple
extraction technique. These wrong boundaries can easily be
detected by comparing the extracted VOP boundary with the
binary model. Each wrong boundary is then removed, and
the correct boundary between the two endpoints is determirféd Distance Transformation
by analyzing the binary model points. Preliminary results To calculate the Hausdorff distance for object matching,
indicate a potential to significantly improve the boundary is necessary to know for each pixel the distance to the
location. nearest edge pixel. Edge pixels obviously have a distance of 0,
The results of our combined segmentation and trackinghile there horizontal and vertical neighbors, if not edge pixels
algorithm are very promising when compared to those @femselves, have a distance of 1. For diagonal neighbors, the
other techniques. Nevertheless, the human visual systencd$responding distance ig2 unless they or their horizontal
still much more accurate at locating the boundaries of moving vertical neighbors are edge pixels.
objects. At the moment, it is not possible to extract objects Unfortunately, computing these distances is a global op-
and to place them into other sequences. For example, the flemition and computationally expensive. An algorithm that
that is visible between the legs of the person in Fig. 10(c) doeperates locally and approximates the Euclidean distance
not allow that VOP to be copied into a scene with differewell enough is described in [41]. This so-called distance
background. transformation (DT) defines small masks containing integer

APPENDIX



MEIER AND NGAN: AUTOMATIC SEGMENTATION OF MOVING OBJECTS

11 11

3)
0
9)

WA

3
0
3

WA

11 11

11 |11
7|57
5/0]5
7|57
11 (11

@ (b)

537
Po| P1| P2 e 0|0 f d
e foregroun
P7 X,Y| Ps oXY ol o baclggrgund
Ps| Ps| Ps 0|0 e

@ (b)

Fig. 15. (a) Labeling of neighbor pixels for adjacency code. (b) Example of
a configuration where the pixel in questién, y) must not be removed.

wherep; is one for foreground pixels and zero for background.
Thus, there are 256 different values for &Cy), and for each

Fig. 13. (a) Mask Chamfer 3-4 and (b) Chamfer 5-7-11 suggested as integgfe it can be determined in advance whether the Ff'-xej/)

approximations of Euclidean distance for the distance transformation.
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should be removed or not, resulting in a very efficient lookup
table. In Fig. 15(b), we have\C(z,y) = 2° + 2* = 17,
and the pixel may not be removed because otherwise, the
connectedness of the top left and bottom right pixels would
not be guaranteed anymore. Thus, the lookup table entry for
AC = 17 is “do not remove.”

The same lookup table can be employed to remove isolated
noise pixels. The corresponding adjacency code is-AQ,
and thus, pixels with adjacency code zero are removed as well.
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