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Automatic Segmentation of Moving Objects in Video
Sequences: A Region Labeling Approach

Yaakov Tsaig and Amir Averbuch

Abstract—The emerging video coding standard MPEG-4 en-
ables various content-based functionalities for multimedia applica-
tions. To support such functionalities, as well as to improve coding
efficiency, MPEG-4 relies on a decomposition of each frame of an
image sequence into video object planes (VOPs). Each VOP corre-
sponds to a single moving object in the scene. This paper presents
a new method for automatic segmentation of moving objects in
image sequences for VOP extraction. We formulate the problem as
graph labeling over a region adjacency graph (RAG), based on mo-
tion information. The label field is modeled as a Markov random
field (MRF). An initial spatial partition of each frame is obtained
by a fast, floating-point based implementation of the watershed al-
gorithm. The motion of each region is estimated by hierarchical
region matching. To avoid inaccuracies in occlusion areas, a novel
motion validation scheme is presented. A dynamic memory, based
on object tracking, is incorporated into the segmentation process
to maintain temporal coherence of the segmentation. Finally, a la-
beling is obtained by maximization of thea posterioriprobability
of the MRF using motion information, spatial information and the
memory. The optimization is carried out by highest confidence first
(HCF). Experimental results for several video sequences demon-
strate the effectiveness of the proposed approach.

Index Terms—Markov random fields, MPEG-4, video segmen-
tation, VOP extraction, watershed segmentation.

I. INTRODUCTION

W ITH THE phenomenal growth of the Internet and the
World Wide Web, the interest in advanced interactivity

with audio–visual contents is increasing rapidly. To address
these growing needs, a new video coding standard, MPEG-4
[1], was introduced. Unlike its predecessors, MPEG-1 [2] and
MPEG-2 [3], MPEG-4 targets more than just large coding
gains. To provide new functionalities for multimedia applica-
tions, such as content-based interactivity and content-based
scalability, it introduces a content-based representation. Scenes
are treated as compositions of audio–visual objects, which are
separately encoded and decoded.

To support the more advanced functionalities offered by
MPEG-4, a prior decomposition of a scene into physical objects
is required. A physical object in a frame is represented by a
video object plane(VOP), which is a snapshot of a moving
object at a given time and from a given view. Each frame of a
video sequence is composed of VOPs corresponding to objects
in the scene. From this definition, it is clear that VOPs carry
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a semantical meaning. As a result, VOPs cannot be uniquely
characterized by a low-level feature such as motion, intensity,
color, etc. Therefore, VOP segmentation is generally far more
difficult than low-level segmentation. Furthermore, VOP ex-
traction for content-based interactivity functionalities requires
that the obtained object mask would be flawless, since even
small errors in the object contour can render a VOP useless for
such applications.

Segmentation of a video sequence into VOPs is not a norma-
tive part of the MPEG-4 video coding scheme. Yet, VOP seg-
mentation constitutes the basis for content-based representation
of natural video sequences. Therefore, accurate VOP segmen-
tation is a crucial factor in the future success of MPEG-4 as a
content-based video coding standard.

Most of the segmentation techniques suggested for extraction
of VOPs from image sequences rely on change detection as
the source of temporal information [4]–[8]. This approach is
motivated by the assumption that moving objects usually entail
intensity changes between successive frames. Hence, a change
detection mask (CDM) can be computed by applying a decision
rule on the intensity differences between successive frames in
a sequence. This approach is also attractive from a computa-
tional point of view, since CDMs are much easier to compute
than motion fields. However, this approach suffers from two
major drawbacks. First, unless moving objects are sufficiently
textured, only occlusion areas (covered background) will be
marked as changed, while the interior of objects will remain
unchanged. Second, uncovered background will be marked
as changed in the process as well, thus the boundaries of the
moving objects are likely to be inaccurate. To overcome this
drawback, a post-processing step that distinguishes between
moving objects and uncovered background has to be applied
[4], [8].

This paper presents a new algorithm for automatic segmenta-
tion of moving objects in image sequences. The approach under-
lying our algorithm is to classify regions obtained in an initial
partition as foreground or background, based on motion infor-
mation. A block diagram of the proposed algorithm is depicted
in Fig. 1.

We formulate the segmentation problem as detection of
moving objects over a static background. Thus, the first step in
the algorithm is to compensate the motion of the camera. The
global motion is modeled by an eight-parameter perspective
motion model and estimated using a robust gradient-based
technique [9].

An initial spatial partition of the current frame is obtained by
applying the watershed segmentation algorithm. For this pur-
pose, the spatial gradient is first estimated in the color space
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Fig. 1. Block diagram of the proposed algorithm.

through the use of Canny’s gradient [10]. Then, the optimized
rainfalling watershed algorithm is applied [11]. To reduce over-
segmentation, small regions are merged together in a post-pro-
cessing step based on spatio-temporal information.

Based on the initial partition, the classification stage labels re-
gions as foreground or background. It begins with an initial clas-
sification based on a statistical significance test, which marks
regions as foreground candidates. This initial stage is useful in
increasing the efficiency and robustness of the classification.
The motion of each foreground candidate is estimated by re-
gion matching in a hierarchical framework. To avoid false move-
ments caused by occlusion, an iterative validation scheme exam-
ines the estimated motion vectors and corrects them, if neces-
sary. The estimated motion vectors are then incorporated into a
Markov random field model, along with spatial information and
information gathered from previous frames. The optimization
of the Markov random field (MRF) model is performed using
highest confidence first (HCF) [12], leading to a classification
of the regions in the initial partition.

Finally, a dynamic memory is introduced into the algorithm
to ensure temporal coherency of the segmentation process. The
memory is updated using the estimated motion vectors and the
MRF-based classification. Each region is tracked to the next
frame in the sequence and the memory is updated accordingly.

The paper is organized as follows. Section II addresses the
preliminary stages of the algorithm, namely, global motion es-
timation and compensation and scene-cut detection. Section III
discusses the initial partition and Section IV explains the clas-
sification process. Experimental results are presented in Sec-
tion V, and concluding remarks are given in Section VI.

II. PRELIMINARY STEPS

A. Global Motion Estimation

For the estimation of the global motion, we utilize a gra-
dient-based parametric motion estimation technique suggested
in [9]. The camera motion is modeled by the eight-parameter
perspective motion model

(1)

and the global motion is estimated using the Levenberg–Mar-
quardt (LM) nonlinear minimization algorithm. To increase the
robustness of the estimation process, as well as to reduce com-
putation time, the LM algorithm is applied within a hierarchical
framework, using a three-level multiresolution pyramid. To as-
sure convergence of the algorithm, an initial stage is performed
that computes a coarse estimate of the translation component
of the displacement, by applying a matching technique at the
coarsest level of the pyramid.

To remove the influence of local motions on the estimation
process, the estimation is carried out considering only pixels
within background regions of the current frame. Background
regions are determined according to the tracked mask of the
previous frame (the tracking mechanism is described in Sec-
tion IV-D). This also reduces the computation time of the es-
timation process. In case the background regions are not yet
known, e.g., in the first frame or after a scene-cut, the global
motion estimation is carried out over the entire frame.

B. Scene-Cut Detection

To allow the segmentation of sequences composed of sev-
eral shots, the transitions (cuts) between adjacent shots need
to be detected. For this purpose, a scene-cut detector evaluates
whether or not the difference between the current original frame

and the motion-compensated reference frame exceeds
a given threshold. In detail, we examine the average sum of ab-
solute differences (ASAD) between the two frames

(2)

where the summation is carried over all pixels that partic-
ipate in the GME. A scene-cut is detected by comparing the
ASAD with a predetermined threshold . If the ASAD is
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(a) (b)

Fig. 2. (a) Minima, catchment basins, and watersheds on the topographic representation of a gray-scale image. (b) Building dams at the places where the water
coming from two different minima would merge.

Fig. 3. Topographic watershed cross section, after the drowning process.
Lakes are formed by merging neighboring pixels below the drowning threshold.

larger than , then a scene-cut is detected between frames
and , thus frame cannot serve as a reference frame
for frame . Hence, the classification for frameis based only
on the memory. Furthermore, the segmentation algorithm is
reset in frame , i.e., all parameters are set to their initial
values.

C. Global Motion Compensation

Following the global motion estimation, the camera motion is
compensated. Before applying the compensation, the estimated
parameters of the motion model defined in (1) are evaluated to
determine if a camera motion actually occurred. This step is per-
formed to increase the robustness of the algorithm, since the
global motion estimation may falsely detect small global mo-
tion due to local motions in the scene, or due to noise. In order to
prevent this, the sum of the absolute values of the estimated mo-
tion parameters is compared to a threshold .
Global motion is compensated only when

If this is the case, then the global motion between frames
and is compensated by warping frame to frame
according to the perspective projection defined in (1).

III. I NITIAL PARTITION

After the global motion has been estimated and compensated,
an initial partition of the current frame is formed by watershed
segmentation. The initial partition consists of three steps. First,
the spatial gradient is approximated using Canny’s method [10].
Then, the optimized rainfalling watershed algorithm is applied
[11] using the gradient image as input. Finally, a spatio-temporal
merge is performed on small regions to reduce the oversegmen-
tation caused by the watershed algorithm. The obtained partition

serves as input to the classification phase, which labels each re-
gion in the partition as foreground or background.

A. Gradient Approximation

The spatial gradient of the current frame is estimated using
Canny’s gradient approximation [10]. Specifically, the image is
convolved with the first derivative of a Gaussian

(3)

where the standard deviation of the Gaussian is chosen to be
.

Many researchers base the gradient approximation solely on
the luminance component of the color, which contains most of
the information. However, it is clear that some information is
lost by discarding the chrominance components. In cases where
the objects are not clearly distinct from the background, this
extra information may have a profound impact on the segmen-
tation results. Therefore, we incorporate color information into
the segmentation process. For this purpose, Canny’s gradient is
first computed on each of the three color components, resulting
in the gradient magnitudes , and . Then, a common
gradient image is generated, that combines the information of
the three color components. (The use of principal component
analysis on the color components was investigated in [13], but
the improvement gained did not justify the excess computations
involved). Since the luminance component () contains most of
the information, it is likely that its associated gradient image dif-
fers considerably in magnitude from the gradient images of the
chrominance components ( and ). Thus, if we attempt to
generate a common gradient image by a simple summation, the
luminance component will prevail over the other components
and some very useful complementary details are likely to be
lost. To overcome this problem, some sort of scaling must be
incorporated in order to normalize the three gradient images.
Therefore, the common gradient image is generated using

(4)

where , , and are the variances of the gradient mag-
nitudes of the three color components and, , are
the associated weight coefficients. Notice that this scaling also
has the obvious drawback of amplifying the noise in the chromi-
nance components. To partly eliminate this side-effect, we used
a weighted maximization over the three color components rather
than a weighted sum (as was used, e.g., in [14]). Experimentally,
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we found that setting the weights to ,
leads to satisfactory results. This set of weights gives the

luminance component more importance than the other two com-
ponents, in order to suppress false gradient maxima due to noise
in the gradients of the chrominance components. Fig. 4(b) shows
the gradient image obtained for the first frame of the sequence
Foremanusing this set of weights.

B. Watershed Segmentation

To obtain an initial partition of the current frame, the water-
shed algorithm is applied on the gradient image . Water-
shed segmentation draws its origins from mathematical mor-
phology and is, in fact, a region-growing algorithm that treats
the input image as a topographic surface, and through the intu-
itive process of water-filling, creates a partition of the image.
Commonly, two approaches exist for the implementation of the
watershed algorithm. The first approach relies on rainfalling
simulations. Assume that a drop of water falls on a topographic
surface. According to the law of gravitation, it will flow down
along the steepest slope path until it reaches a minimum. The
whole set of points of the surface whose steepest slope paths
reach a given minimum constitutes the catchment basin associ-
ated with this minimum. The watersheds are the zones dividing
adjacent catchment basins. This is illustrated in Fig. 2(a). The
second approach makes use ofimmersionor flooding simula-
tions. Consider again the topographic surface and assume that
holes have been punctured in each regional minimum of the sur-
face. The surface is then slowly immersed into a lake. Starting
from the minima at the lowest altitude, the water will progres-
sively flood the catchment basins of the image. In addition, dams
are erected at places where the water coming from two different
minima would merge [see Fig. 2(b)]. At the end of this flooding
procedure, each minimum is completely surrounded by dams,
which delineate its associated catchment basin. The resulting
dams correspond to the watersheds. They provide us with a par-
tition of the input image into its different catchment basins.

The latter definition was used in [15] to derive an efficient im-
plementation using FIFO queues. However, the implementation
required that the input image be discrete. Hence, the gradient
image must be quantized, which may lead to inaccuracies in the
resulting segmentation. Recently, a new algorithm for computa-
tion of watersheds was presented [11]. This algorithm relies on
the definition of watershed in terms of rainfalling simulations.
As a result, it does not require the input image to be discrete.
Moreover, the optimized implementation is 3–4 times faster than
the one presented in [15]. In addition, the algorithm introduces a
newdrowningstep that removes some of the weakest edges and
helps reduce the influence of noise. This drowning step can be
thought of as flooding the surface with water at a certain level.
This process will create a number oflakesgrouping all the pixels
that lie below the drowning level (see Fig. 3).

While the watershed algorithm in [11] produces very accu-
rate results, it has one inherent drawback: it is extremely sensi-
tive to gradient noise and usually results in oversegmentation.
This is evident from Fig. 4(c), which shows the result of the wa-
tershed algorithm on the first frame of the sequenceForeman.
In order to eliminate the oversegmentation caused by the water-
shed algorithm, it is common to employ a post-processing step

Fig. 4. Initial partition for the first frame ofForeman. (a) Original
image. (b) gradient magnitude. (c) Partition after watershed segmentation
(2020 regions). (d) Partition after spatio-temporal merging (312 regions).

that merges small regions. In the following section, we suggest
a region-merging scheme, which relies on temporal information
as well as spatial information, to maintain an accurate segmen-
tation.

C. Spatio-Temporal Merging

The goal of the merging step is to reduce the number of
regions in the partition by eliminating small regions, while
maintaining the accuracy of the partition. If we base the region
merging solely on spatial information, we may jeopardize the
accuracy of the segmentation, since moving regions might
mistakenly be merged with the background. In order to avoid
this, it is obvious that we must consider temporal information,
as well as spatial information. Therefore, we suggest the
following scheme for spatio-temporal merging.

Suppose that the output of the watershed segmentation con-
sists of regions , where the number of pixels
within the region is . We assume that the spatial rela-
tions between regions in the partition are known. Let

denote the intensity functions of
the three color components (, and ) of the current frame
(the frame index is omitted to simplify notation) and

denote the vector of mean intensity values of the
three color components, with components

(5)

Define two distance measures between neighboring regions
and as

(6)

(7)
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where the inner summation in (7) is carried out over all pairs of
4-connected pixels , and and
is their cardinality. represents the difference between the
average intensities of the two regions, whereasmeasures the
weakness of the common boundary between the two regions.

Based on these two distance measures, the spatial distance
between two neighboring regions and is defined as

(8)

In addition, we define a temporal distance measure, based
on the differences between the current frame and the reference
frame. Specifically, let
denote the image of absolute luminance differences between
frames and . Then, the temporal distance between

and is defined as

(9)
is the difference of luminance differences between succes-

sive frames on the common boundary of the two regions
and . A high value of indicates that one of the regions
is moving relative to the other, whereas a low value of in-
dicates that the regions either belong to the background or to a
single moving object and can be merged without concern. Thus,
by adding a constraint on , we can avoid merging moving re-
gions with the background.

Using this set of distance measures, the spatio-temporal
merging process can now be described as follows.

1) Set .
2) For each region , whose size (number

of pixels) is smaller than , starting with the smallest
region:

a) Among the neighbors of region , find the region
which satisfies

(10)

that is, the region whose distance to is
minimal, among all neighbors that their tem-
poral distance measure is lower than a predefined
threshold .

b) If , where is a predefined similarity
threshold, or is the only neighbor of , merge

and .
3) .
4) If , stop. Otherwise, go back to step 2.

Selection of the thresholds and allows us to control the
sensitivity of the merging process. The higher we setand

, the more regions will be merged, resulting in a smaller
number of regions, yet it is more likely that true boundaries
will be violated in the process as well. Experimentally, we have
found that using and leads to satisfactory
results.

The effect of the spatio-temporal merge is illustrated in
Fig. 4(d) for the test sequencesForeman. We can see that the

spatio-temporal merge led to a dramatic decrease of about 85%
in the number of segments, while maintaining the integrity of
the object.

IV. CLASSIFICATION

The core of the proposed algorithm is the classification phase,
which determines whether each region in the initial partition is
part of a moving object or part of the background. The classifi-
cation phase consists of three steps. First, an initial classification
is performed that marks regions as potential foreground candi-
dates based on a significance test. Then, the motion of each fore-
ground candidate is estimated and validated. The motion infor-
mation, along with spatial information, is used to define a MRF
model. Finally, the classification problem is formulated as an
optimization problem in the Bayesian framework and a solution
is obtained using HCF.

A. Initial Classification

The classification phase begins with an initial classification
that is based on a statistical significance test [16]. This ini-
tial phase serves two main purposes. First, it reduces the com-
putational load of the following motion estimation phase by
eliminating most of the background regions from the estimation
process. This is especially important if the moving objects are
small compared to the overall frame size. Second, it increases
the robustness of the motion estimation by eliminating noisy
background regions that may be falsely detected as moving.

Let denote the image of
gray-level differences between framesand . Under the
hypothesis than no change occurred at position () (the null
hypothesis ), the corresponding difference follows
a zero-mean Gaussian distribution

(11)

where the noise variance is equal to twice the variance of the
camera noise, assuming that the camera noise is white. Rather
than performing the significance test directly on the values

, it is better to evaluate a local sum of normalized
differences

(12)

where is a window of observation centered at ( ).
Under the assumption that no change occurs within the window,
the normalized differences obey a Gaussian distribution

and are spatially uncorrelated, thus the local sum
follows a distribution with degrees of freedom,

being the number of pixels within the window .
With the distribution known, we can obtain a

decision rule for each pixel by performing a significance test
on . Specifically, for a given significance level, we
can compute a corresponding thresholdusing

(13)
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The significance level is in fact the false alarm rate associated
with the statistical test. The higher the value ofis, the more
likely we are to classify unchanged pixels as changed.

From the description above, it is obvious that the significance
test depends on the noise variance. Thus, an accurate esti-
mate of the noise variance is crucial for the performance of the
test. To ensure this is obtained, the variance is estimated only
within background regions of the current frame, to remove the
influence of changed regions. The background regions are de-
termined according to the tracked mask of the previous frame
(the tracking mechanism is described in Section IV-D). In case
the background regions are not yet known, e.g., in the first frame
or after a scene-cut, a robust estimation scheme is used, in which
the highest 5% differences are removed from the estimate.

It is important to note that the suggested significance test has
one major drawback. Like all change-detection based methods,
moving pixels will be marked as changed only within areas that
are sufficiently textured. In other words, within smooth, uni-
form areas, only a small percentage of the overall pixels will
be marked as changed, mostly due to covered/uncovered back-
ground. Thus, it is obvious that we cannot make a decision for
each region based on a majority rule, since many truly moving
regions will be eliminated in the process. Therefore, a region
is classified as a foreground candidate if more than 10% of its
pixels are marked as changed, otherwise it is marked as back-
ground.

Finally, in order to avoid elimination of slowly moving re-
gions, we must also consider the information gathered in pre-
vious frames of the sequence. For this purpose, regions that a
majority of their pixels appear in the tracked mask of the pre-
vious frame, are marked as foreground candidates as well.

Experimentally, we have found that using a significance level
with an observation window of 5 5, leads to good

results.

B. Hierarchical Motion Estimation and Validation

Following the initial classification stage, the motion of po-
tential foreground candidates is estimated. The estimation takes
place within a segmentation-based framework. That is, the mo-
tion of each region is determined by estimating a parametric mo-
tion model for the region. As the motion model, we selected the
simple 2-parameter translational motion model. Our choice of
this motion model is supported by the following facts. First, the
regions resulting from the initial segmentation are usually small
enough to justify the assumption of piecewise constant motion.
Second, the goal of the motion estimation phase is to identify
moving regions, rather than minimize the motion-compensation
errors, thus the use of a complex model which accurately de-
scribes the motion of each region is not required. Finally, the
use of a simple 2-parameter motion model allows for a very ef-
ficient implementation.

The motion estimation is carried out by intensity matching
in a hierarchical framework [17]. The 3-level multi-resolution
pyramid constructed in the global motion estimation stage (Sec-
tion II-A) is used. The hierarchical search begins at the coarsest
level of the pyramid and propagates to the higher levels of the hi-
erarchy, while refining the displacement estimate in each level.

(a)

(b)

Fig. 5. Illustration of the occlusion problem. (a) Synthetic scene where the
left object is moving over the middle object. The numbers denote the intensity
values. (b) Estimated motion. The middle object was falsely detected as moving.

The hierarchical estimation technique suggested above, like
all motion estimation techniques, suffers from the occlusion
problem. Let us illustrate this problem with a simple example.
Fig. 5(a) shows a synthetic scene composed of three objects,
where the leftmost object (the black circle) is moving to the
right, while partially occluding the middle object. Now, suppose
that the motion estimation is carried out for each object sepa-
rately. The motion of the rightmost and leftmost objects is de-
termined correctly. However, when estimating the motion of the
middle object, the occlusion created by the black circle causes
a high difference in the occluded area. Since the ultimate goal
of the motion estimation is to minimize the sum of differences,
the differences caused by the occlusion induce motion toward
the right object in order to compensate for these differences.
Since the intensity differences between the left circle and the
middle rectangle are significantly higher than the differences
between the middle and right rectangles, the middle rectangle
will be identified as moving, as shown in Fig. 5(b).

For the segmentation task at hand, this poses a serious
problem, since it causes background regions to be detected as
moving, which will inevitably lead to their misclassification
as foreground. In order to overcome this problem, we propose
a motion-validation scheme, based on a statistical hypothesis
test.

The idea underlying the hypothesis test is to validate the mo-
tion vector of each region, by examining the motion-compen-
sated differences (MCDs) within the occlusion area formed by
its movement. If the estimated motion vector is valid, then the
MCDs inside the region should be smaller than the frame differ-
ences inside it. If, on the other hand, the estimated motion was
induced by occlusion, then, within the occlusion area, the MCDs
are likely to be much bigger than the frame differences. Let us
illustrate this point with an example. In Fig. 5(b), the estimated
motion of the middle object formed an occlusion area over the
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right square. Inside the occlusion area the MCD is 50, while the
frame differences in this area equal zero (assuming that the se-
quence is noiseless). Thus, the estimated displacement is wrong.

Let us formalize this notion, in order to obtain a hypothesis
test. If we assume that the estimated motion vector ( ) for
the region is valid, then, according to the brightness change
constraint, we have the following:

(14)

Assuming that the sequence is subject to camera noise, then for
pixels ( ) within the occlusion area, the frame differences
satisfy

(15)

where the noise obeys a zero-mean Gaussian distribution

(16)

and its variance is equal to twice the variance of the camera
noise. Conversely, if the estimated motion vector for the region

is invalid, then the differences within the occlusion area are
attributed only to camera noise

(17)

Therefore, we can define the two hypotheses as

(18)

where we define to
simplify notation. Using (16), we can write

(19)

Now, with thea priori probabilities unknown, the optimal deci-
sion rule is themaximum likelihood(ML) criterion

Decide if (20)

Substituting (19) into (20), we obtain

Decide if (21)

Thus, a decision rule is obtained for the validation of the mo-
tion vector for a pixel in the occlusion area of a given region.
Assuming that the noise is spatially uncorrelated, the decision
for the entire region is obtained by applying the above decision
rule for each pixel within the occlusion area and deciding based
on a majority rule.

If, based on this decision, we find that the estimated mo-
tion vector is invalid, it does not imply that the region is not
moving, only that its current displacement estimate is wrong.

Hence, we must estimate its motion again, while denying move-
ment to the same location. This is done by applying the hier-
archical matching algorithm again, while considering only dis-
placements that do not coincide with the occlusion area. After
a new motion vector has been estimated, it is validated in the
same manner and if it is not valid, then the new occlusion area
is appended to the previous one and the entire process is re-
peated. This leads to an iterative motion estimation and valida-
tion scheme.

To increase the efficiency of the validation process, only
regions that lie on the border of a moving object (have a
common boundary with a background region) are validated,
since these regions are the most likely to be affected by the
occlusion problem.

Following is a summary of the hierarchical motion estimation
and validation scheme.

1) Estimate the motion for all the regions that were classified
as foreground candidates in the initial classification using
hierarchical region matching.

2) For each region that lies on the boundary of a moving
object and its estimated motion vector

.

a) Perform a hypothesis test on each pixel in the oc-
clusion area using (21).

b) If the majority of the pixels in the occlusion area
are valid, then the estimated motion vector for the
region is valid.

c) Otherwise, mark the occlusion area and apply the
hierarchical region matching algorithm again,
while avoiding displacements that coincide with
the marked area.

d) Go back to (a).

The performance of the suggested motion estimation and val-
idation scheme is demonstrated in Fig. 6 for the test sequence
Foreman. Notice that this sequence exhibits global motion due
to a moving camera, thus global motion compensation was ap-
plied before estimating the local motion. In the example shown,
the person’s head is moving to the left, leading to occlusion in
the areas left to the head. The effect of the occlusion can be seen
in Fig. 6(a) and (b), which displays the estimated motion before
the validation. We can see that many regions on the left side of
the head were mistakenly detected as moving (moving regions
are marked by white). The estimated motion after the validation
scheme is displayed in Fig. 6(c) and (d). The motion vectors
of regions that were mistakenly estimated as moving were cor-
rected, resulting in a more accurate estimate of the motion in the
scene.

C. MRF-Based Classification

1) MRFs on Graphs:Without doubt, the most prominent
stochastic models in image processing and computer vision are
based on Markov processes. Due to their ability to capture the
spatial continuity that is inherent in natural images, MRFs have
been used extensively in the past years for the solution of many
problems in these fields. Applications of MRFs range from low-
level vision tasks like image restoration [18] and image seg-
mentation [19]–[21], through mid-level vision problems such
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Fig. 6. Estimated motion between frames 22 and 25 of the test sequence
Foreman: moving regions and corresponding motion field. (a), (b) Before
motion validation. (c), (d) After motion validation. Moving regions are marked
by white.

as texture classification [22] and change detection [8], [16], to
high-level tasks such as image interpretation and understanding
[23]. The main drawback of MRF models is their high computa-
tional load, since they are usually defined directly over the pixels
in the image. However, we define the MRF model over the set of
regions obtained in the initial partition, rather than on the rect-
angular lattice that composes the image. Since the number of
regions is relatively small (a few hundreds), the optimization of
the MRF is remarkably efficient.

Let denote the set of regions obtained in
the initial partition. Then can be represented by a set of nodes
in a connected graph, called theregion adjacency graph(RAG),
as depicted in Fig. 7. Formally stated, a RAG is an
undirected graph such that

• is the set of nodes in the graph, where
node corresponds to region ;

• iff the corresponding regions and are
spatially adjacent (connected).

Representation using RAGs is very common in the formulation
of a segmentation problem using MRF models [20], [21], [23].

We can also define a neighborhood system on a RAG,
denoted by , where ,

, is the set of all the nodes in that are neigh-
bors of , such that

• ;
• if , then .

Let be a set of discrete-valued
random variables, where is the random variable representing
the label of the node . The value of a random variable
may be any member of the label set . An assignment of
values to all the variables in the random field is called a config-
uration and is denoted. The set of all possible configurations
is denoted .

(a)

(b)

Fig. 7. Example of a RAG. (a) Segmented image and (b) its RAG.

is Markov Random Fieldwith respect to the neighborhood
system if and only if

(22)

(23)

According to (23) above, a MRF is characterized by the
conditional distributions, called thelocal characteristicsof
the random field. An alternative characterization is given by
Hammersley–Clifford theorem [24]: is a MRF with respect
to a neighborhood systemif and only if its joint distribution
is a Gibbs distribution

(24)

where , theenergy function, is given by

(25)

and the term , often called thepartition function, is given by

(26)

is the set of all cliques in the graph. The partition function
is simply a normalizing constant, so that the sum of the prob-

abilities of all realizations , add to unity. The functions
are called theclique potentials. The only condition on
is that it depends only on the nodes within the clique. Clique
functions provide a mechanism to express soft constraints be-
tween labels at neighboring variables.
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In order to obtain a classification of the regions, we wish to
take into account not only the prior probabilities of particular
configurations, but also external evidence. Suppose that we have
an observation where is a set of fea-
tures for the site (region) . We are interested in the configura-
tion for the MRF that induced this observed set of features

. The optimal estimator (minimum probability of error esti-
mate) is themaximum a posteriori(MAP) estimator

(27)

From Bayes’ rule, we know that

(28)

Assuming the likelihoods are local and spatially dis-
tinct, it is reasonable to assume that they are conditionally inde-
pendent. That is

(29)

Now, under this assumption and using the Hammersley-Clifford
theorem, it can be shown [25] that thea posterioriprobability
in (28) follows a Gibbs distribution

(30)

So the maximuma posterioriestimate is obtained by mini-
mizing the posterior energy function .

2) Region Classification Based on MRF Model:To de-
fine a MRF model, we use the set of observations

, where the observation for the region is
defined as , where

• is the estimated motion vector of the
region ;

• is the sum of the average intensity values of the three
color components , and within the region , as
defined in (5);

• is the average value of the memory within the re-
gion (the memory will be explained in detail in Sec-
tion IV-D).

In addition, the label set is defined as , where
denotes foreground and denotes background.We define the
energy function as a composition of three terms

(31)
where, for practical reasons, only singleton and pairwise cliques
are considered.

Fig. 8. Similarity functionf(d).

• The first term is the motion term, which rep-
resents the likelihood of the region to be classified as
foreground/background, based on its estimated motion

and or
and
and or
and

(32)

where is the size (number of pixels) of the region.
The motion term simply states that moving regions should
be classified as foreground, whereas static regions should
be classified as background. Note that the magnitude of the
motion vector is not taken into consideration, only whether
it is different from zero. This ensures that the classifica-
tion process is not biased by incorrect motion vectors with
large magnitudes.

• The second term is a temporal continuity term

(33)

The temporal continuity term allows us to consider the
segmentation of prior frames, thus maintaining the co-
herency of the segmentation through time. If a region has
been classified as foreground several times in the past, its
memory value will be high and it is likely to be classified
as foreground again (the memory mechanism is explained
in Section IV-D). This will allow us to maintain an ac-
curate segmentation, even when parts of the object stop
moving for long periods of time.

• The last term is a spatial continuity term

(34)
where is the length of the common boundary between

and and the function is given by

(35)

as depicted in Fig. 8.
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Fig. 9. Frames: (a) 10, (b) 30, and (c) 40 of the test sequenceForeman, respectively. (e), (d), and (f) Corresponding memory status. Bright regions indicate high
memory values.

The spatial continuity term expresses the relationships be-
tween pairs of regions. A similarity measure is used in order
to incorporate the spatial properties of the regions into the opti-
mization process. Specifically, two regions with similar spatial
properties are likely to belong to the same moving object, thus
more weight is given to an equal labeling for the two regions.
Specification of the values , , , and in the function

will determine the effect of neighboring regions on one
another. In our experiments, we have used , ,

, . This implies that similar regions (whose
average intensities differ by no more than 20) have a similarity
coefficient 2 (their mutual effect is doubled). Dissimilar regions
(whose average intensities differ by more than 80) have a simi-
larity coefficient 0.5 (their mutual effect is halved). For regions
whose intensity differences range from 20 to 80, the similarity
coefficient varies linearly from 2 to 0.5, according to in
(35).

The constants , , , and determine the relative
contributions of the three terms to the energy functions. Exper-
imentally, we have found that using , and

leads to satisfactory results.
The minimization of the energy function is per-

formed using an iterative deterministic relaxation scheme
known as HCF, which was presented in [12]. Our implemen-
tation uses a slightly modified version of HCF. Rather than
starting with an all-uncommitted configuration, we set the
initial configuration based on the initial classification phase.
Specifically, all regions that were detected as foreground can-
didates are set to the uncommitted state, while all regions that
were classified as background are set to the background state.
This modification increases the computational efficiency of the
algorithm, since the number of uncommitted sites is reduced,
especially when the moving objects are small compared to the
background.

D. Object Tracking and Memory Update

To impose temporal coherency on the segmentation process,
we incorporate a memory into the algorithm. Rather than using
a static memory, as was suggested in [4], we use a dynamic
memory, based on region tracking. This memory will contain,
for each region, the number of times it was classified as fore-
ground in past frames. However, unlike the static memory in
[4], the update of the dynamic memory consists of tracking each
region to its new location in the frame, using the displacement
vector estimated in the hierarchical motion estimation phase.
This enables us to track objects as they move throughout the
sequence, without accumulating uncovered background in the
process. Error propagation is avoided by slowly decreasing
memory values of regions that stop moving. Thus, if a back-
ground region was mistakenly detected as moving once during
the sequence, its effect is diminished through time.

Let MEM denote the memory in theth frame. The tracking
memory is updated based on the following scheme:

• Initialization: MEM ;
• For each region ,

— If and (moving region),
then

MEM

MEM

— Otherwise

MEM MEM

where and are the indices of the current frame
and the next frame, respectively andis the labeling
obtained by the MRF.

We update the memory each frame by setting the memory
value of all the pixels each region to the average value of the
pixels inside that region.
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Fig. 10. Segmentation of the 43rd frame ofMother & Daughter. (a) Original frame. (b) Initial partition. (c) Initial classification. (d) Moving regions. (e) MRF
classification. (f) Segmentation mask.

Fig. 11. Segmentation masks for the sequenceMother & Daughter. Frames: (a) 55; (b) 91; (c) 127; (d) 169; (e) 211; (f) 292.

Of course, the spatial segmentation may be inconsistent
throught time, i.e., regions which correspond to the same object
may be segmented differently in consecutive frames, resulting
in incoherent memory values. In order to maintain a constant
memory value for each region and to avoid leaving residues due
to inaccuracies in the tracking mechanism, a post-processing
step is employed following the segmentation of the next
frame. In this step, a constant memory value for each region
is determined by averaging the memory values over the entire
region. If the majority of values is zero, then all memory values
in this region are set to zero, otherwise, all memory values are
set to the average value of the memory in this region.

Finally, note that in case of camera motion, the memory must
be adapted to the global motion as well, in order to maintain an
accurate tracking. Therefore, the memory is warped to the next

frame in the global motion compensation phase, based on the
estimated global motion parameters.

Fig. 9 illustrates the use of the memory for the test sequence
Foreman. As we can see, the memory successfully tracked the
moving object (the person’s head), without marking uncovered
background as moving.

V. EXPERIMENTAL RESULTS

The proposed algorithm for VOP segmentation was exper-
imentally investigated by means of computer simulations. The
sequencesMother & Daughter(10 Hz),Silent(10 Hz),Foreman
(30 Hz),Table Tennis(30 Hz), andStefan(30 Hz) were used in
CIF format (352 288 pixels).

The sequenceMother & Daughteris a typical video-confer-
ence scene that exhibits slow and smooth motion over a sta-
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Fig. 12. Segmentation of the 49th frame ofSilent. (a) Original frame. (b) Initial partition. (c) Initial classification. (d) Moving regions. (e) MRF classification.
(f) segmentation mask.

Fig. 13. Segmentation masks for the sequenceSilent. Frames: (a) 55; (b) 91; (c) 118; (d) 136; (e) 175; and (f) 181.

tionary background. The segmentation process of frame 43 of
the sequence is illustrated in Fig. 10. The initial partition in
Fig. 10(b), which is slightly oversegmented, is accurate enough
to obtain a reliable segmentation. Fig. 10(c) shows the result
of the initial classification, where white areas correspond to re-
gions detected by the memory and gray areas correspond to re-
gions detected based on the significance test. Moving regions,
as detected by the hierarchical motion estimation and validation
scheme, are depicted in Fig. 10(d). As we can see in Fig. 10(e),
the MRF-based classification provided a perfect labeling, re-
sulting in an accurate segmentation mask [Fig. 10(f)]. Segmen-
tation masks for several other frames in the sequence are shown
in Fig. 11.

Silent is another typical video-conference scene. Yet, unlike
Mother & Daughter, this sequence exhibits a combination of
rapid, nonrigid motion (the woman’s hands), along with slow

motion (the woman’s body), over a textured background. The
segmentation process of frame 49 is shown in Fig. 12. As we
can see in Fig. 12(b), the initial partition is oversegmented, due
to the textured background of the scene. Yet, most of the back-
ground regions were eliminated already in the initial classifi-
cation [Fig. 12(c)]. The obtained segmentation mask shown in
Fig. 12(f) is quite satisfactory, except for the woman’s right
hand, which was not detected accurately. VOPs extracted from
several other frames in this sequence are depicted in Fig. 13.
Despite the fast movement of the woman’s hands, the moving
object was tracked successfully throughout the sequence.

The sequenceForeman is another “head and shoulders”
scene. Yet, unlike the previous sequences,Foremanexhibits a
moving camera. Moreover, the background in this sequence is
not planar, which may lead to difficulties in the global motion
compensation. In addition, we note that the boundaries of the
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Fig. 14. Segmentation of the 7th frame ofForeman. (a) Original frame. (b) Initial partition. (c) Initial classification. (d) Moving regions. (e) MRF classification.
(f) Segmentation mask.

Fig. 15. Segmentation masks for the sequenceForeman. Frames: (a) 11; (b) 24; (c) 39; (d) 71; (e) 90; and (f) frame 120.

moving object, in particular the person’s hat, are not clearly
distinct. The segmentation process of the seventh frame of
Foremanis shown in Fig. 14. The initial partition obtained in
Fig. 14(b) is very accurate. This is attributed to the use of color
information in the watershed segmentation. Fig. 14(f) displays
the resulting segmentation mask, where only the person’s right
shoulder was not detected, since it lacks sufficient motion.
Segmentation masks obtained for subsequent frames in the
sequence are shown in Fig. 15.

Table Tennisis a very dynamic sequence that exhibits fast
global and local motion, as well as a cluttered and textured back-
ground. Moreover, the background is not planar in most of the
sequence, which may lead to difficulties in the global motion
compensation. Due to the strong motion of the moving objects
in the scene, they are easily separated from the background,

leading to a very accurate segmentation, as seen in Fig. 16 (the
segmentation masks in this sequence are depicted over a gray
background, to emphasize the moving objects). Segmentation
masks for subsequent frames in the sequence are depicted in
Fig. 17. As we can see in Fig. 17(b) and (c), the tennis table was
classified as foreground, even though it is not moving. This is
due to the fact that the table violates the assumption of a planar
background and cannot be incorporated into the global motion
model. Thus, it is detected as moving in the motion estimation
phase and is subsequently classified as foreground. Finally, note
that a scene-cut occurred between frames 131 and 132, thus the
segmentation algorithm was reset in frame 132.

The last sequence that we will consider, and perhaps the most
challenging, is the sequenceStefan. This sequence displays a
scene from a tennis match, with a mobile camera. The back-
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Fig. 16. Segmentation of the 4th frame ofTable Tennis. (a) Original frame. (b) Initial partition. (c) Initial classification. (d) Moving regions. (e) MRF classification.
(f) Segmentation mask.

Fig. 17. Segmentation masks for the sequenceTable Tennis. Frames: (a) 18; (b) 84; (c) 126; (d) 143; (e) 232; (f) 296.

ground in this sequence is very cluttered and the moving ob-
ject exhibits fast, nonrigid motion. The segmentation process for
the first frame in this sequence is shown in Fig. 18. Due to the
cluttered background, the initial partition is severely overseg-
mented. Moreover, the initial classification marked many of the
background regions as potential foreground candidates. How-
ever, the motion estimation effectively captured the local mo-
tion of the object, as seen in Fig. 18(d). The MRF-based classi-
fication eliminated some background regions, yet it also elimi-
nated part of the moving object, namely, the player’s shoes. This
is contributed to the fact that the shoes are inherently different
than the rest of the object and therefore considered to be part of

the background. As a result, the obtained VOP is not accurate
enough to allow perfect extraction of the moving object. This is
also inherent in the other VOPs, shown in Fig. 19.

Finally, we note that the proposed algorithm, while still not
suitable for realtime applications, is of modest computational
requirements. Currently, most of the computational load lies in
the global motion estimation phase. For sequences with a sta-
tionary background (without application of the GME phase), the
execution time of the algorithm is about 2 s for each frame in
CIF format. For sequences with a moving background, execu-
tion times are in the range of 5–10 s for each frame. The experi-
ments were carried out on a Pentium III 500-MHz workstation.
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Fig. 18. Segmentation of the 1st frame ofStefan. (a) Original frame. (b) Initial partition. (c) Initial classification. (d) Moving regions. (e) MRF classification.
(f) Segmentation mask.

Fig. 19. Segmentation masks for the sequenceStefan. Frames: (a) 25; (b) 53; (c) 82; (d) 92; (e) 125; (f) 142.

VI. DISCUSSION ANDCONCLUSIONS

This paper introduces a new algorithm for automatic seg-
mentation of moving objects in image sequences for VOP
generation. The algorithm is based on a MRF model defined
over a region adjacency graph, which uses motion information
to classify regions as foreground or background. The location
of object boundaries is guided by the initial partition, which
consists of a color-based watershed segmentation. Therefore,
the proposed technique succeeds in locating objects boundaries
that are not clearly distinct, where other techniques fail. A
hierarchical motion estimation and validation scheme detects
moving regions in the scene, while avoiding misdetections
caused by the occlusion problem. A tracking memory ensures
that a reliable segmentation is maintained throughout the
sequence, even when the objects stop moving. In addition, the
tracking memory also accommodates sequences with rapidly

moving objects, without marking uncovered background as
foreground. The memory contents are incorporated into a MRF
model, along with motion information and spatial information,
to obtain a spatio-temporal segmentation of the scene.

Experimental results demonstrated that our proposed tech-
nique can successfully extract moving objects from various
sequences, with stationary or mobile camera. Nevertheless,
the boundaries of the extracted objects are not always accurate
enough to place them in different scenes, which requires a
nearly perfect boundary location. Furthermore, in the case
of insufficient motion, the algorithm converges to the correct
segmentation only after several frames. However, the VOPs ob-
tained by our proposed technique could be used to provide other
content-based functionalities, such as content-based scalability.

Currently, automatic segmentation of video sequences
remains an unsolved problem, since none of the proposed tech-



612 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, VOL. 12, NO. 7, JULY 2002

niques can accomplish this task for generic video sequences.
This is mainly due to the fact that VOPs cannot be characterized
by homogeneous low-level features such as color, texture or
motion. The key to developing segmentation techniques that
achieve the performance of the human visual system is to
incorporate higher level information into the segmentation
process.

Future work should concentrate on incorporating temporal
information in the form of change or motion into the initial
partition, rather than relying only on spatial information. This
way, the number of resulting regions can be reduced dramati-
cally, while maintaining the structural integrity of moving ob-
jects in the scene. For instance, the entire background can be
segmented as one region, while only moving objects are parti-
tioned to smaller segments. This will surely reduce the compu-
tational load of the algorithm, while increasing its robustness at
the same time.

In addition, further work should be put into the global motion
estimation and compensation phase. As we saw in Section V,
the current technique does not handle scenes in which the back-
ground cannot be considered planar in a satisfactory manner.
Moreover, most of the computational burden of the algorithm
currently lies within the global motion estimation phase. There-
fore, other techniques should be investigated in order to over-
come these drawbacks.
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