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Automatic Segmentation of Moving Objects in Video
Sequences: A Region Labeling Approach

Yaakov Tsaig and Amir Averbuch

Abstract—The emerging video coding standard MPEG-4 en- a semantical meaning. As a result, VOPs cannot be uniquely
ables various content-based functionalities for multimedia applica- characterized by a low-level feature such as motion, intensity,
tions. To support such functionalities, as well as to improve coding color, etc. Therefore, VOP segmentation is generally far more
efficiency, MPEG-4 relies on a decomposition of each frame of an diffi 'It than low-I ,I tafi Furth VOP ex-
image sequence into video object planes (VOPs). Each VOP corre- | |c.u an low-leve segmen a '9'_]' ur Qrmo_r(_a, ,ex
Sponds to a sing|e moving Object in the scene. This paper presentstracuon for Content'based InteraCtIVIty funC“Ona“Ues requ|res
a new method for automatic segmentation of moving objects in that the obtained object mask would be flawless, since even
image sequences for VOP extraction. We formulate the problem as small errors in the object contour can render a VOP useless for
graph labeling over a region adjacency graph (RAG), based on mo- such applications.

tion information. The label field is modeled as a Markov random S tati f id into VOPS | i
field (MRF). An initial spatial partition of each frame is obtained EgmEntation of a video Sequence into S IS hot a norma-

by a fast, floating-point based implementation of the watershed al- tive part of the MPEG-4 video coding scheme. Yet, VOP seg-
gorithm. The motion of each region is estimated by hierarchical mentation constitutes the basis for content-based representation
region matching. To avoid inaccuracies in occlusion areas, a novel of natural video sequences. Therefore, accurate VOP segmen-

motion validation scheme is presented. A dynamic memory, based ta4i5n js a crucial factor in the future success of MPEG-4 as a
on object tracking, is incorporated into the segmentation process . -
content-based video coding standard.

to maintain temporal coherence of the segmentation. Finally, a la- . . .
beling is obtained by maximization of thea posterioriprobability Most of the segmentation techniques suggested for extraction
of the MRF using motion information, spatial information and the  of VOPs from image sequences rely on change detection as
memory. The pptimization is carried out by.highestconfidence first the source of temporal information [4]-[8]. This approach is
(sTrth)'thlzengﬁgggi?/gtwa;sf?fjlttﬁefcgrsgggfr;jl ;npdperg:cehquences demon- motivated by the assumption that moving objects usually entail
' intensity changes between successive frames. Hence, a change
Index Terms—Markov random fields, MPEG-4, video segmen- detection mask (CDM) can be computed by applying a decision
tation, VOP extraction, watershed segmentation. rule on the intensity differences between successive frames in
a sequence. This approach is also attractive from a computa-
|. INTRODUCTION tional point of view, since CDMs are much easier to compute
than motion fields. However, this approach suffers from two
WITH THE. phenomena_l growth_ of the Interr_1et and_th?najor drawbacks. First, unless mov?npg objects are sufficiently
5 Wprld W ide Web, the_mt_erest in advan<_:ed Inter"’wt'V't}'extured, only occlusion areas (covered background) will be
with audio—visual contents is increasing rapidly. To addre rked as changed, while the interior of objects will remain

t?ese grpwing ne((ejdso a|1_kneyv vide(;) coding St;nl:n)jé\(r;j,lePE inchanged. Second, uncovered background will be marked
[1], was introduced. Unlike its predecessors, -1[2] a changed in the process as well, thus the boundaries of the

MPEG-2 [3], MPEG-4 targets more than just large Coqm%oving objects are likely to be inaccurate. To overcome this
gains. To provide new functionalities for multimedia apphcaar whack, a post-processing step that distinguishes between

tions, such as content-based interactivity and content-ba ing objects and uncovered background has to be applied
scalability, it introduces a content-based representation. Sce 5[8]

are treated as compositions of audio—visual objects, which arg
separately encoded and decoded.

To support the more advanced functionalities offered
MPEG-4, a prior decomposition of a scene into physical obje

his paper presents a new algorithm for automatic segmenta-
tion of moving objects inimage sequences. The approach under-
ing our algorithm is to classify regions obtained in an initial

Artition as foreground or background, based on motion infor-

is required. A physical object in a frame is represented byrﬁat' A block di fth d algorithm is depicted
video object plangVVOP), which is a snapshot of a movingin Fli;n'l ock diagram ot the proposed algorithm 1 depicte

object at a given time and from a given view. Each frame of a\ve formulate the segmentation problem as detection of

yldeo sequence 1S compose.d 'o.f VO.P.S corresponding to Obj%tgving objects over a static background. Thus, the first step in
in the scene. From this definition, it is clear that VOPs carr,

the algorithm is to compensate the motion of the camera. The
global motion is modeled by an eight-parameter perspective
Manuscript received May 13, 2001; revised April 16, 2002. This paper w£§0t|o_n model and estimated using a robust gradient-based
recommended by Associate Editor K. Aizawa. _ technique [9].
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Ig Tan

Finally, a dynamic memory is introduced into the algorithm
‘L ‘L to ensure temporal coherency of the segmentation process. The

4% Global motion estimation ‘ memory is updated using the estimated motion vectors and the
MRF-based classification. Each region is tracked to the next
frame in the sequence and the memory is updated accordingly.

The paper is organized as follows. Section Il addresses the
preliminary stages of the algorithm, namely, global motion es-
timation and compensation and scene-cut detection. Section Ill
discusses the initial partition and Section IV explains the clas-
sification process. Experimental results are presented in Sec-
tion V, and concluding remarks are given in Section VI.

Scene-cut
detected ?

Global motion
detected 7

Il. PRELIMINARY STEPS

* 4 Gilobal motion compensation ‘ A. Global Motion Estimation

Initial partition For the estimation of the global motion, we utilize a gra-
dient-based parametric motion estimation technique suggested
in [9]. The camera motion is modeled by the eight-parameter
perspective motion model

i
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Classification |\ _____________._ and the global motion is estimated using the Levenberg—Mar-
; guardt (LM) nonlinear minimization algorithm. To increase the
| robustness of the estimation process, as well as to reduce com-

| »L : putation time, the LM algorithm is applied within a hierarchical

! ‘ Hierarchical mofion estimation & validation ‘ E framework, using a three-level multiresolution pyramid. To as-
t
i
H
{
i

| ¢ sure convergence of the algorithm, an initial stage is performed
! that computes a coarse estimate of the translation component
? " MRF*based classification using HCF ‘ of the displacement, by applying a matching technique at the
U coarsest level of the pyram|d
> To remove the influence of local motions on the estimation

‘ process, the estimation is carried out considering only pixels
within background regions of the current frame. Background
regions are determined according to the tracked mask of the
previous frame (the tracking mechanism is described in Sec-
tion IV-D). This also reduces the computation time of the es-
through the use of Canny’s gradient [10]. Then, the optimizdination process. In case the background regions are not yet
rainfalling watershed algorithm is applied [11]. To reduce oveknown, e.g., in the first frame or after a scene-cut, the global
segmentation, small regions are merged together in a post-pgrstion estimation is carried out over the entire frame.
cessing step based on spatio-temporal information.

Based on the initial partition, the classification stage labels rB- Scene-Cut Detection

gions as foreground or background. It begins with an initial clas- To allow the segmentation of sequences composed of sev-
sification based on a statistical significance test, which markga| shots, the transitions (cuts) between adjacent shots need
regions as foreground candidates. This initial stage is usefukibe detected. For this purpose, a scene-cut detector evaluates
increasing the efficiency and robustness of the classificatiaghether or not the difference between the current original frame
The motion of each foreground candidate is estimated by Ig- and the motion-compensated reference frdmg exceeds
gion matching in a hierarchical framework. To avoid false mover given threshold. In detail, we examine the average sum of ab-

ments caused by occlusion, an iterative validation scheme exaisute differences (ASAD) between the two frames
ines the estimated motion vectors and corrects them, if neces-

sary. The estimated motion vectors are then incorporated into a 1
y ' A7 2 M () = i (o) @)
?

‘ Object tracking & memory update

Fig. 1. Block diagram of the proposed algorithm.

Markov random field model, along with spatial information and

information gathered from previous frames. The optimization

of the Markov random field (MRF) model is performed usingvhere the summation is carried over afl pixels that partic-
highest confidence first (HCF) [12], leading to a classificatioipate in the GME. A scene-cut is detected by comparing the
of the regions in the initial partition. ASAD with a predetermined thresholfl.. If the ASAD is
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Fig. 2. (a) Minima, catchment basins, and watersheds on the topographic representation of a gray-scale image. (b) Building dams at the placestehere th
coming from two different minima would merge.
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serves as input to the classification phase, which labels each re-

T—— gion in the partition as foreground or background.
—_— A. Gradient Approximation

Eeaapy  oEREy The spatial gradient of the current frame is estimated using
Canny’s gradient approximation [10]. Specifically, the image is
convolved with the first derivative of a Gaussian

Fig. 3. Topographic watershed cross section, after the drowning process. . —x —2? /202
Lakes are formed by merging neighboring pixels below the drowning threshold. G(a:) = 3 ¢ ¢ (3)
V2nog,

sl menEns Ll

larger thanZ,., then a scene-cut is detected between framedvhere the standard deviation of the Gaussian is chosen to be
andk + 1, thus framek + 1 cannot serve as a reference framéc = 1. _ o
for framek. Hence, the classification for framieis based only ~ Many researchers base the gradient approximation solely on

on the memory. Furthermore, the segmentation algorithm tft€ luminance component of the color, which contains most of
reset in framek 4 1, i.e., all parameters are set to their initiafh® information. However, it is clear that some information is

values. lost by discarding the chrominance components. In cases where
the objects are not clearly distinct from the background, this
C. Global Motion Compensation extra information may have a profound impact on the segmen-

Followin the alobal motion estimation. the camera motion tation results. Therefore, we incorporate color information into
gtheg ' e segmentation process. For this purpose, Canny’s gradient is

compensated. Before applying the compensation, the estim fsq computed on each of the three color components, resulting

parame_ter_s of the motion _model defined in (1) are_evalua}tedinothe gradient magnitudes,-, Ge.. andGe,, . Then, acommon
determine if a camera motion actually occurred. This step is per- T

formed to increase the robustness of the alqorithm. since &{adient image is generated, that combines the information of
. o 9 ' @ three color components. (The use of principal component
global motion estimation may falsely detect small global mqg-

tion due to local motions in the scene, or due to noise. In order, Balysis on the color components was investigated in [13], but
. ’ . the improvement gained did not justify the excess computations
prevent this, the sum of the absolute values of the estimated mo P 9 justity P

tion parameters Y} is compared to a threshalg; involved). Since the luminance compone¥i) contains most of
P ZETL, - A8, P Mc- theinformation, itis likely that its associated gradient image dif-
Global motion is compensated only when

fers considerably in magnitude from the gradient images of the
8 chrominance component§&’{ andC;). Thus, if we attempt to
<Z Iai|> —2> Tovc. generate a common gradient image by a simple summation, the
el luminance component will prevail over the other components

o _ and some very useful complementary details are likely to be
If this is the case, then the global motion between framies |ost. To overcome this problem, some sort of scaling must be

and /., is compensated by warping frandg, to framel  incorporated in order to normalize the three gradient images.

according to the perspective projection defined in (1). Therefore, the common gradient image.; is generated using
IIl. INITIAL PARTITION Goop = max {wy. Gy we. - Ge, we, - Ge, } (4)
Vvoy' T ee] T ea,

After the global motion has been estimated and compensated,
an initial partition of the current frame is formed by watershedtheresy, o, ando¢, are the variances of the gradient mag-
segmentation. The initial partition consists of three steps. Firatiudes of the three color components and, w¢,, we, are
the spatial gradient is approximated using Canny’s method [1€8je associated weight coefficients. Notice that this scaling also
Then, the optimized rainfalling watershed algorithm is applidtas the obvious drawback of amplifying the noise in the chromi-
[11] using the gradient image as input. Finally, a spatio-temporsnce components. To partly eliminate this side-effect, we used
merge is performed on small regions to reduce the oversegmanveighted maximization over the three color components rather
tation caused by the watershed algorithm. The obtained partititnan a weighted sum (as was used, e.g., in [14]). Experimentally,
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we found that setting the weightst@- = 0.5, we, = we, = |
0.25 leads to satisfactory results. This set of weights gives t
luminance component more importance than the other two co
ponents, in order to suppress false gradient maxima due to nd
in the gradients of the chrominance components. Fig. 4(b) sho
the gradient image obtained for the first frame of the sequen
Foremanusing this set of weights.

B. Watershed Segmentation

To obtain an initial partition of the current frame, the water
shed algorithm is applied on the gradient imagg,. Water-
shed segmentation draws its origins from mathematical mc-
phology and is, in fact, a region-growing algorithm that treat
the input image as a topographic surface, and through the in
itive process of water-filling, creates a partition of the image
Commonly, two approaches exist for the implementation of th
watershed algorithm. The first approach relies on rainfallin
simulations. Assume that a drop of water falls on a topographic
surface. According to the law of gravitation, it will flow downFig. 4. Initial partition for the first frame ofForeman (a) Original
along the steepest slope path until it reaches a minimum. Tfge- e(;)or?sr;%”;a’?tﬁ%ﬂt;g; S(ggtiZi’éﬁ']%gr:Fﬁ:egfﬁgr(sshfzdr :;%’r?g‘ta“on
whole set of points of the surface whose steepest slope paths
reach a given minimum constitutes the catchment basin associ-

ated with this minimum. The watersheds are the zones dividifift merges small regions. In _the foI_Iowing section, we Squ_ESt
adjacent catchment basins. This is illustrated in Fig. 2(a). TREYION-Merging scheme, which relies on temporal information

second approach makes userafmersionor flooding simula- as well as spatial information, to maintain an accurate segmen-

tions. Consider again the topographic surface and assume fpen.
holes have been punctured in each regional minimum of the Spr-
face. The surface is then slowly immersed into a lake. Starting
from the minima at the lowest altitude, the water will progres- The goal of the merging step is to reduce the number of
sively flood the catchment basins of the image. In addition, darf@gions in the partition by eliminating small regions, while
are erected at places where the water coming from two differdfgintaining the accuracy of the partition. If we base the region
minima would merge [see Fig. 2(b)]. At the end of this floodingnerging solely on spatial information, we may jeopardize the
procedure, each minimum is completely surrounded by dang§curacy of the segmentation, since moving regions might
which delineate its associated catchment basin. The resultiiptakenly be merged with the background. In order to avoid
dams Correspond to the watersheds. They provide us with a ﬁai's, it is obvious that we must consider temporal information,
tition of the input image into its different catchment basins. as Wwell as spatial information. Therefore, we suggest the
The latter definition was used in [15] to derive an efficient imfollowing scheme for spatio-temporal merging.
plementation using FIFO queues. However, the implementationSuppose that the output of the watershed segmentation con-
required that the input image be discrete. Hence, the gradiéiits ofV regions{Ry, ..., Ry}, where the number of pixels
image must be quantized, which may lead to inaccuracies in #féhin the regionR; is IN;. We assume that the spatial rela-
resulting segmentation. Recently, a new algorithm for compuf#ns between regions in the partition are known. Iiet v) =
tion of watersheds was presented [11]. This algorithm relies 6A' (z, ), I*(x, ), I*(z,y)) denote the intensity functions of
the definition of watershed in terms of rainfalling simulationghe three color components’(C,. andC3) of the current frame
As a result, it does not require the input image to be discrefée frame index: is omitted to simplify notation) ané; =
Moreover, the optimized implementation is 3—4 times faster thér , 47, A7) denote the vector of mean intensity values of the
the one presented in [15]. In addition, the algorithm introducedhiee color components, with components

Spatio-Temporal Merging

newdrowningstep that removes some of the weakest edges and 1
helps reduce the influence of noise. This drowning step can be Al = A Z Iz, y), l=1,...,3. (5)
thought of as flooding the surface with water at a certain level. " (@,y)ER;

This process will create a numberakesgrouping all the pixels
that lie below the drowning level (see Fig. 3).

While the watershed algorithm in [11] produces very acc@d4% as
rate results, it has one inherent drawback: it is extremely sensi-

Define two distance measures between neighboring redigns

3
tive to gradient noise and usually results in oversegmentation. Aij :Z |Ai _ A§| (6)
This is evident from Fig. 4(c), which shows the result of the wa- —1
tershed algorithm on the first frame of the sequeRoeman 3.
In order to eliminate the oversegmentation caused by the water- G;; = S @iy - )| ()

shed algorithm, it is common to employ a post-processing step i i (iwi),(25595)
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where the inner summation in (7) is carried out over all pairs gpatio-temporal merge led to a dramatic decrease of about 85%
4-connected pixeléz;,y;) € R;, and(z;,y;) € R; andV;; in the number of segments, while maintaining the integrity of
is their cardinality.A;; represents the difference between ththe object.
average intensities of the two regions, wher@gsmeasures the
weakness of the common boundary between the two regions. IV. CLASSIFICATION

Based on these two distance measures, the spatial distan

D;; between two neighboring regiot andR; is defined as QFhe core of the proposed algorithm is the classification phase,

which determines whether each region in the initial partition is
part of a moving object or part of the background. The classifi-
cation phase consists of three steps. First, aninitial classification

-~ _ _ is performed that marks regions as potential foreground candi-
In addition, we define a temporal distance measure, baﬁ%ies based on a significance test. Then, the motion of each fore-

on the differences between the current frame and the referegggund candidate is estimated and validated. The motion infor-
frame. Specifically, led}™ (z,y) = L1 (2,5) — Ii(#.%)]  mation, along with spatial information, is used to define a MRF
denote the image of absolute luminance differences betw&gBdel. Finally, the classification problem is formulated as an
framesk andk + 1. Then, the temporal distandg;; between  optimization problem in the Bayesian framework and a solution
R; and ; is defined as is obtained using HCF.

1
Dij = 5 (AU + G“) . (8)

1
Bij = — > |2 (i, 43) — dit® (x5,5;)| - A. Initial Classification
Y @iy ER (o0 ER ©) The classification phase begins with an initial classification

B,; is the difference of luminance differences between succ tggt is based on a statistical significance test [16]. This ini-

sive frames on the common boundary of the two regifis %lal phase serves two main purposes. First, it reduces the com-

andR,. A high value ofB;, indicates that one of the regionsputatlonal load of the following motion estimation phase by

is moving relative to the other, whereas a low valueBef in- eliminating most of the background regions from the estimation

dicates that the regions either belong to the background or t'geess. This is especially important if the moving objects are

single moving object and can be merged without concern. Th sgnall compared to the overall frame size. Second, it increases

by adding a constraint aB;;, we can avoid merging moving re- & robustness of the motion estimation by eliminating noisy
; . background regions that may be falsely detected as moving.
gions with the background.

Using this set of distance measures, the spatio-temporal‘et di(2,y) = Diyr(z,9) — Iy(w,y) denote the image of
. - gray-level differences between framgsand ;1. Under the
merging process can now be described as follows. : o
1) Setr: 20 hypothesis than no change occurred at positiany) (the null

hypothesisH,), the corresponding differeneg (x, %) follows

2) For each regio®;, ¢« = 1,..., N whose size (number a zero-mean Gaussian distribution
of pixels) is smaller thaff;,., starting with the smallest
regir p(da(9) Ho) =~ T2 )
a) Among the neighbors of regidi;, find the region A 0 V202

R; which satisfies
where the noise variane€ is equal to twice the variance of the
R; = argR_.gl_i_gT D,; (10) camera noise, assuming that the camera noise is white. Rather
ST than performing the significance test directly on the values
that is, the regior?; whose distanc;; to R; is dk(a:,y), it is better to evaluate a local sum of normalized
minimal, among all neighbor®; that their tem- differences
poral distance measure is lower than a predefined Bt
thresholdZ’s. My = Y YD (12)
b) If D;; < 1p, wherelp is a predefined similarity (2’ 4" ) CW (2,y) g
threshold, otiz; is the only neighbor of;, merge

R; andR;. whereW (z,v) is a window of observation centered at {).
3) Tiive = Tyine + 20. Under the assumption that no change occurs within the window,
4) If Ty, > 100, stop. Otherwise, go back to step 2. the normalized differenced, /o obey a Gaussian distribution

Selection of the thresholds, andZs allows us to control the N(0,1) and are spatially uncorrelated, thus the local sum
sensitivity of the merging process. The higher weBgtand A (z,y) follows ax? distribution withV degrees of freedom,
T3, the more regions will be merged, resulting in a smallé¥ being the number of pixels within the windo (z, /).
number of regions, yet it is more likely that true boundaries With the distributionp(Ax(xz,y)) known, we can obtain a
will be violated in the process as well. Experimentally, we hav@ecision rule for each pixel by performing a significance test
found that usingl’)> = 20 and7s = 25 leads to satisfactory on Ax(z, ). Specifically, for a given significance level, we
results. can compute a corresponding threshldusing

The effect of the spatio-temporal merge is illustrated in
Fig. 4(d) for the test sequencEsreman We can see that the a=Pr{Ay(x,y) > Tu|Ho}. (13)
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The significance level is in fact the false alarm rate associated
with the statistical test. The higher the valuecofs, the more
likely we are to classify unchanged pixels as changed.

From the description above, it is obvious that the significance
test depends on the noise variamce Thus, an accurate esti-
mate of the noise variance is crucial for the performance of the \‘ \&\
test. To ensure this is obtained, the variance is estimated only
within background regions of the current frame, to remove the
influence of changed regions. The background regions are de-
termined according to the tracked mask of the previous frame
(the tracking mechanism is described in Section IV-D). In case
the background regions are not yet known, e.g., in the first frame
or after a scene-cut, a robust estimation scheme is used, in which ()
the highest 5% differences are removed from the estimate.

It is important to note that the suggested significance test has
one major drawback. Like all change-detection based methods,
moving pixels will be marked as changed only within areas that
are sufficiently textured. In other words, within smooth, uni-
form areas, only a small percentage of the overall pixels will
be marked as changed, mostly due to covered/uncovered back- (b)
ground. Thus, it is obvious that we cannot make a decision fﬂEj. 5. lllustration of the occlusion problem. (a) Synthetic scene where the
each region based on a majority rule, since many truly movitg object is moving over the middle object. The numbers denote the intensity
regions will be eliminated in the process. Therefore, a regidﬂlues. (b) Estimated motion. The middle object was falsely detected as moving.
is classified as a foreground candidate if more than 10% of its
pixels are marked as changed, otherwise it is marked as back¥he hierarchical estimation technique suggested above, like
ground. all motion estimation techniques, suffers from the occlusion

Finally, in order to avoid elimination of slowly moving re-problem. Let us illustrate this problem with a simple example.
gions, we must also consider the information gathered in priglg. 5(a) shows a synthetic scene composed of three objects,
vious frames of the sequence. For this purpose, regions thatlzere the leftmost object (the black circle) is moving to the
majority of their pixels appear in the tracked mask of the preight, while partially occluding the middle object. Now, suppose
vious frame, are marked as foreground candidates as well. that the motion estimation is carried out for each object sepa-

Experimentally, we have found that using a significance levedtely. The motion of the rightmost and leftmost objects is de-
« = 10~? with an observation window of & 5, leads to good termined correctly. However, when estimating the motion of the
results. middle object, the occlusion created by the black circle causes
a high difference in the occluded area. Since the ultimate goal
of the motion estimation is to minimize the sum of differences,
the differences caused by the occlusion induce motion toward

Following the initial classification stage, the motion of pothe right object in order to compensate for these differences.
tential foreground candidates is estimated. The estimation tal8isce the intensity differences between the left circle and the
place within a segmentation-based framework. That is, the maiddle rectangle are significantly higher than the differences
tion of each region is determined by estimating a parametric meetween the middle and right rectangles, the middle rectangle
tion model for the region. As the motion model, we selected thll be identified as moving, as shown in Fig. 5(b).
simple 2-parameter translational motion model. Our choice of For the segmentation task at hand, this poses a serious
this motion model is supported by the following facts. First, thgroblem, since it causes background regions to be detected as
regions resulting from the initial segmentation are usually smalioving, which will inevitably lead to their misclassification
enough to justify the assumption of piecewise constant moticas foreground. In order to overcome this problem, we propose
Second, the goal of the motion estimation phase is to identdiymotion-validation scheme, based on a statistical hypothesis
moving regions, rather than minimize the motion-compensatiest.
errors, thus the use of a complex model which accurately de-The idea underlying the hypothesis test is to validate the mo-
scribes the motion of each region is not required. Finally, thin vector of each region, by examining the motion-compen-
use of a simple 2-parameter motion model allows for a very efated differences (MCDs) within the occlusion area formed by
ficient implementation. its movement. If the estimated motion vector is valid, then the

The motion estimation is carried out by intensity matchinlyICDs inside the region should be smaller than the frame differ-
in a hierarchical framework [17]. The 3-level multi-resolutiorences inside it. If, on the other hand, the estimated motion was
pyramid constructed in the global motion estimation stage (Séeduced by occlusion, then, within the occlusion area, the MCDs
tion II-A) is used. The hierarchical search begins at the coarsasg likely to be much bigger than the frame differences. Let us
level of the pyramid and propagates to the higher levels of the Riustrate this point with an example. In Fig. 5(b), the estimated
erarchy, while refining the displacement estimate in each levehotion of the middle object formed an occlusion area over the

SRt

B. Hierarchical Motion Estimation and Validation
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right square. Inside the occlusion area the MCD is 50, while th&ence, we must estimate its motion again, while denying move-
frame differences in this area equal zero (assuming that the sent to the same location. This is done by applying the hier-
quence is noiseless). Thus, the estimated displacement is wrarghical matching algorithm again, while considering only dis-
Let us formalize this notion, in order to obtain a hypothesjglacements that do not coincide with the occlusion area. After
test. If we assume that the estimated motion vectar,Ay) for a new motion vector has been estimated, it is validated in the
the regionZ; is valid, then, according to the brightness changgame manner and if it is not valid, then the new occlusion area
constraint, we have the following: is appended to the previous one and the entire process is re-

peated. This leads to an iterative motion estimation and valida-
Li(z,y) = Liy1(z + Az, y + Ay) V(z,y) € R;. (14) tion scheme.

Assuming that the sequence is subject to camera noise, then fo-t:_O mcrr?asT_ the efrf:mel:c;(/j of t?e vallda_mon E_rocesi, only
pixels (z, v) within the occlusion area, the frame differendgs regions that lie on the border of a moving object (have a

satisfy common boundary with a background region) are validated,
since these regions are the most likely to be affected by the
di(z + Az, y + Ay) =Iip1(z + Az, y + Ay) occlusion prpblem. _ ' . o
~ Li(z + Az, y+ Ay) +n Following is a summary of the hierarchical motion estimation

and validation scheme.

1) Estimate the motion for all the regions that were classified
as foreground candidates in the initial classification using
hierarchical region matching.

2) For each regio®; that lies on the boundary of a moving

=Ii(z,y) — Lis1(z + Az,y + Ay) +n
(15)

where the nois@ obeys a zero-mean Gaussian distribution

1 2 2 i i i i . .
_ —n? /20 16 object and its estimated motion vectohz;, Ay;) #
p(n) V2ro? ‘ (16) (0,0).

and its variance? is equal to twice the variance of the camera a) Perform a hypothesis test on each pixel in the oc-

noise. Conversely, if the estimated motion vector for the region clusion area using (21).

R, is invalid, then the differences within the occlusion area are b) If the majority of the pixels in the occlusion area
attributed only to camera noise are valid, then the estimated motion vector for the

region is valid.

di(x 4+ Az, y + Ay) = n. a7 c) Otherwise, mark the occlusion area and apply the
] hierarchical region matching algorithm again,
Therefore, we can define the two hypotheses as while avoiding displacements that coincide with

the marked area.

Ho : du(z + Az, + Ay) =
0 i izt Az,y + Ay) =n d) Go back to (a).

Hy wdi(z + A,y + Ay) =D +n (18) The performance of the suggested motion estimation and val-
where we defineD = I(z,y) — Irp1(z + Az,y + Ay) to  idation scheme is demonstrated in Fig. 6 for the test sequence
simplify notation. Using (16), we can write Foreman Notice that this sequence exhibits global motion due

to a moving camera, thus global motion compensation was ap-

p (d|Ho) = ! e—di/20° plied before estimating the local motion. In the example shown,

V2ro? the person’s head is moving to the left, leading to occlusion in
p(di]Hy) = 1 o—(dx—D)* /25" (19) the areas left to the head. The effect of the occlusion can be seen
V2ro? in Fig. 6(a) and (b), which displays the estimated motion before

the validation. We can see that many regions on the left side of
the head were mistakenly detected as moving (moving regions
are marked by white). The estimated motion after the validation

Now, with thea priori probabilities unknown, the optimal deci-
sion rule is themaximum likelihoodML) criterion

DecideH if p(di|H1) > p(di|Hop) . (20) scheme is displayed in Fig. 6(c) and (d). The motion vectors
o ) ) of regions that were mistakenly estimated as moving were cor-
Substituting (19) into (20), we obtain rected, resulting in a more accurate estimate of the motion in the
_ _ D| scene.
DecideH; if |dp(z,v)| > - (21)

C. MRF-Based Classification
Thus, a decision rule is obtained for the validation of the mo-

tion vector for a pixel in the occlusion area of a givenregiyn 1) MRFs on Graphs:Without doubt, the most prominent
Assuming that the noise is spatially uncorrelated, the decisigipchastic models in image processing and computer vision are
for the entire region is obtained by applying the above decisi®@sed on Markov processes. Due to their ability to capture the
rule for each pixel within the occlusion area and deciding basggatial continuity that is inherent in natural images, MRFs have
on a majority rule. been used extensively in the past years for the solution of many
If, based on this decision, we find that the estimated m@¥oblems in these fields. Applications of MRFs range from low-
tion vector is invalid, it does not imply that the region is nolevel vision tasks like image restoration [18] and image seg-
moving, only that its current displacement estimate is wronmentation [19]-[21], through mid-level vision problems such
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Fig. 6. Estimated motion between frames 22 and 25 of the test sequence
Foreman moving regions and corresponding motion field. (a), (b) Before
motion validation. (c), (d) After motion validation. Moving regions are marked
by white.

as texture classification [22] and change detection [8], [16], f&%: 7~ Example of aRAG. (a) Segmented image and (b) its RAG.
high-level tasks such as image interpretation and understandin%( ] o ]

[23]. The main drawback of MRF models is their high computa- -+ 1S Markov Random Fielgvith respect to the neighborhood
tional load, since they are usually defined directly over the pixetyStemn if and only if

in the image. However, we define the MRF model over the set of o

regions obtained in the initial partition, rather than on the rect- P(X =w)>0,Yw e Q (22)
angular lattice that composes the image. Since the number of P(Xi =wi|X; = w;,Vj # L)
regions is relatively small (a few hundreds), the optimization of B B B

the MRF is remarkably efficient. _P(Xi = wilXj =w;, VS €n (Si)) (23)

h L_et_f_?.lz {}E_,...:r};]\%denoée the set oftredgg)ns Ob:a'fnedd"}kccording to (23) above, a MRF is characterized by the
e nitial partition. Ther: can be represented by a Set ofNodes, , yiinna| distributions, called théocal characteristicsof

in a connected graph, called tregion adjacency grap(RAG), the random field. An alternative characterization is given by

as o!epu:ted in Fig. 7. Formally stated, a RAG= (5, E) is an Hammersley—Clifford theorem [24]X is a MRF with respect
undirected graph such that to a neighborhood systemif and only if its joint distribution
¢ 5 ={51,...,5n}isthe set of nodes in the graph, wheres g Gibbs distribution
nodesS; corresponds to regioR;; 1
* (Si,S;) € E iff the corresponding region&; andR; are PX =w)= ¢ VW (24)
spatially adjacent (connected). Z
Representation using RAGs is very common in the formulatighherel/ (w), theenergy functionis given by
of a segmentation problem using MRF models [20], [21], [23].
We can also define a neighborhood system on a RAG Ulw) = Z Ve(w) (25)
denoted byn = {n(S1),n(S2),...,n(Sx)}, wheren(S;), eee
i+ =1,2,..., N, is the set of all the nodes ifi that are neigh- and the tern¥, often called thegpartition function is given by
bors of S;, such that

- —U(w)
« S, & n(S); Z = Ze . (26)
o if Sj € 71(57), thenSi c H(SJ) “
Let X = {X1,Xs,...,Xn} be a set of discrete-valuedC is the set of all cliques in the gragh. The partition function

random variables, whel,; is the random variable representingZ is simply a normalizing constant, so that the sum of the prob-
the label of the nodé;. The valuew; of a random variablél; abilities of all realizations., add to unity. The function¥.(w)

may be any membel; of the label setL.. An assignment of are called theclique potentials The only condition or;(w)
values to all the variables in the random field is called a configs that it depends only on the nodes within the cligu€lique
uration and is denoted. The set of all possible configurationsfunctions provide a mechanism to express soft constraints be-
is denoted?. tween labels at neighboring variables.
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In order to obtain a classification of the regions, we wish to e
) . I : A

take into account not only the prior probabilities of particular
configurations, but also external evidence. Suppose that we have 7,
an observatio® = {0y, Os,...,Oy} whereO,; is a set of fea-
tures for the site (regiony;. We are interested in the configura-
tion & for the MRF X that induced this observed set of features
O. The optimal estimator (minimum probability of error esti-
mate) is theamaximum a posterio(MAP) estimator

& = argmax P(w|O). (27) 17
From Bayes’ rule, we know that q dh
Fig. 8. Similarity functionf(d).
_ P(Olw)P(w)
P]0) = =5 o) (28)

* The first termV;* (w, O) is the motion term, which rep-
resents the likelihood of the regid®; to be classified as

Assuming the likelihood#>(0;|.X;) are local and spatially dis- foreground/background, based on its estimated motion

tinct, it is reasonable to assume that they are conditionally inde-

pendent. That is —alN;, (w; =FandMV; #0)or
M . (wi = BandMV; = 0)

Vit(w,0) = al; (wi = FandMV; =0)or

(32
~
P(Olw) =[] P (Oilwi) - (29) (w; = BandMV; # 0)

=1

wherel; is the size (number of pixels) of the regidi).
The motion term simply states that moving regions should

Now, under this assumption and using the Hammersley-Clifford o ? X
be classified as foreground, whereas static regions should

theorem, it can be shown [25] that theposterioriprobability

in (28) follows a Gibbs distribution be c-Iassified as background. Note that thg magnitude of the
motion vector is not taken into consideration, only whether
e—Up(10) it is different from zero. This ensures that the classifica-
P(w|0) = ~ (30) tion process is not biased by incorrect motion vectors with
P large magnitudes.

_ o ) ) o * The second teri;"(w, O) is a temporal continuity term
So the maximuna posterioriestimatew is obtained by mini-

mizing the posterior energy functidn,(w|O). VT (w,0) = —B-M; - N;, wj=F (33)
2) Region Classification Based on MRF Moddlo de- R g-M;-N;,  w;=B.
fine a MRF model, we use the set of observatians =

{0 On'}, where the observatio®; for the regionR; is The temporal continuity term allows us to consider the
def%é'd' ;@Af’— (MV;, A;, M} wherez ’ segmentation of prior frames, thus maintaining the co-

herency of the segmentation through time. If a region has
been classified as foreground several times in the past, its
memory value will be high and it is likely to be classified
as foreground again (the memory mechanism is explained
in Section 1V-D). This will allow us to maintain an ac-
curate segmentation, even when parts of the object stop
moving for long periods of time.
* The last termV3 (w, O) is a spatial continuity term

o« MV, = (Ax;, Ay;) is the estimated motion vector of the
region i;;

» A, is the sum of the average intensity values of the three
color component§’, C,. andC, within the regionk;, as
defined in (5);

» M; is the average value of the memory within the re-
gion R; (the memory will be explained in detail in Sec-

tion 1V-D).

In addition, the label set is defined ds= {I', B}, whereF' < —r - f (A = A;j) Ny, wi =wj=F
denotes foreground ankt denotes background.We define the¥ij (w: O) = § —vn - f (Ai — A;) Nij, wi =w; =B
energy functiorl/,(w|O) as a composition of three terms Yairy - f (A = Aj) Nij, wi # wj (39)

N wherelN;; is the length of the common boundary between
Uy(w|0) = ZWM(%O) + VI (w,0) + Z Vif»(w,O) R; andR; and the functiory(d) is given by

i=1 (i,5)EE T, =1,

(31) fld) =T — L (d—dy) (35)

i . - g dy, — d
where, for practical reasons, only singleton and pairwise cliques

are considered. as depicted in Fig. 8.
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Fig. 9. Frames: (a) 10, (b) 30, and (c) 40 of the test sequEnieenan respectively. (e), (d), and (f) Corresponding memory status. Bright regions indicate high
memory values.

The spatial continuity term expresses the relationships He- Object Tracking and Memory Update

twc_een pairs of regions_. A simila_rity measure_is u§ed in orde_r-l—0 impose temporal coherency on the segmentation process,
to incorporate the spatial properties of the regions into the opfje incorporate a memory into the algorithm. Rather than using
mization process. Specifically, two regions with similar spatig| static memory, as was suggested in [4], we use a dynamic
properties are likely to belong to the same moving object, thHgemory, based on region tracking. This memory will contain,
more weight is given to an equal labeling for the two regionger each region, the number of times it was classified as fore-
Specification of the value$}, 1i, d, andd; in the function ground in past frames. However, unlike the static memory in
f(d) will determine the effect of neighboring regions on ong¢4], the update of the dynamic memory consists of tracking each
another. In our experiments, we have uggd= 2, 7, = 0.5, region to its new location in the frame, using the displacement
d;, = 80, d; = 20. This implies that similar regions (whosevector estimated in the hierarchical motion estimation phase.
average intensities differ by no more than 20) have a similarifjhis enables us to track objects as they move throughout the
coefficient 2 (their mutual effect is doubled). Dissimilar regionsequence, without accumulating uncovered background in the
(whose average intensities differ by more than 80) have a sirpiocess. Error propagation is avoided by slowly decreasing
larity coefficient 0.5 (their mutual effect is halved). For regionshiemory values of regions that stop moving. Thus, if a back-
whose intensity differences range from 20 to 80, the similariground region was mistakenly detected as moving once during
coefficient varies linearly from 2 to 0.5, according f¢d) in the sequence, its effect is diminished through time.
(35). Let MEM,, denote the memory in thigh frame. The tracking

The constants, 3, vr, v5 andy,;s; determine the relative MemMory is updated based on the following scheme:
contributions of the three terms to the energy functions. Exper- * Initialization: V(z,y), MEMq(z,y) = 0;
imentally, we have found that using = 1.75, 3 = 0.75 and * Foreachregio®;,t = 1,..., N
vr =B = ais; = 5 leads to satisfactory results. —  If (Az;, Ay;) # (0,0) andw; = F' (moving region),

The minimization of the energy functioll,(w|O) is per- then
formed using an @terative determinis_tic reIaxatio_n sche 2,y) € Ry, MEM 11 (¢ + Azi,y + Ayy)
known as HCF, which was presented in [12]. Our implemen- — MEM 1
tation uses a slightly modified version of HCF. Rather than o w(z,y) +1.
starting with an all-uncommitted configuration, we set the —  Otherwise
initial configuration based on the initial classification phase.

Specifically, all regions that were detected as foreground can- V(z,y) € Ri, MEMyt1 (2, y) = MEMy (2, y) — 0.25

didates are set to the uncommitted state, while all regions that wherek andk -+ 1 are the indices of the current frame
were classified as background are set to the background state. and the next frame, respectively apds the labeling
This modification increases the computational efficiency of the obtained by the MRF.

algorithm, since the number of uncommitted sites is reduced,We update the memory each frame by setting the memory
especially when the moving objects are small compared to telue of all the pixels each region to the average value of the
background. pixels inside that region.
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Fig. 10. Segmentation of the 43rd frameMbther & Daughter (a) Original frame. (b) Initial partition. (c) Initial classification. (d) Moving regions. (€) MRF
classification. (f) Segmentation mask.

o |

fal} i) 1)

Fig. 11. Segmentation masks for the sequéviogher & Daughter Frames: (a) 55; (b) 91; (c) 127; (d) 169; (e) 211, (f) 292.

Of course, the spatial segmentation may be inconsistérame in the global motion compensation phase, based on the
throught time, i.e., regions which correspond to the same objestimated global motion parameters.
may be segmented differently in consecutive frames, resultingFig. 9 illustrates the use of the memory for the test sequence
in incoherent memory values. In order to maintain a constdrirfeman As we can see, the memory successfully tracked the
memory value for each region and to avoid leaving residues dii@Vving object (the person’s head), without marking uncovered
to inaccuracies in the tracking mechanism, a post-processRagkground as moving.
step is employed following the segmentation of the next
frame. In this step, a constant memory value for each region
is determined by averaging the memory values over the entireThe proposed algorithm for VOP segmentation was exper-
region. If the majority of values is zero, then all memory valuggentally investigated by means of computer simulations. The
in this region are set to zero, otherwise, all memory values asequenceblother & Daughter(10 Hz),Silent(10 Hz),Foreman
set to the average value of the memory in this region. (30 Hz), Table Tennig30 Hz), andStefan(30 Hz) were used in
Finally, note that in case of camera motion, the memory musStF format (352x 288 pixels).
be adapted to the global motion as well, in order to maintain anThe sequencMother & Daughteris a typical video-confer-
accurate tracking. Therefore, the memory is warped to the nexice scene that exhibits slow and smooth motion over a sta-

V. EXPERIMENTAL RESULTS
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Fig. 12. Segmentation of the 49th frameSifent (a) Original frame. (b) Initial partition. (c) Initial classification. (d) Moving regions. (e) MRF classification.
(f) segmentation mask.
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Fig. 13. Segmentation masks for the sequesitent Frames: (a) 55; (b) 91; (c) 118; (d) 136; (e) 175; and (f) 181.

tionary background. The segmentation process of frame 43mbtion (the woman’s body), over a textured background. The
the sequence is illustrated in Fig. 10. The initial partition isegmentation process of frame 49 is shown in Fig. 12. As we
Fig. 10(b), which is slightly oversegmented, is accurate enoughn see in Fig. 12(b), the initial partition is oversegmented, due
to obtain a reliable segmentation. Fig. 10(c) shows the restdtthe textured background of the scene. Yet, most of the back-
of the initial classification, where white areas correspond to rground regions were eliminated already in the initial classifi-
gions detected by the memory and gray areas correspond toaaion [Fig. 12(c)]. The obtained segmentation mask shown in
gions detected based on the significance test. Moving regiokfg. 12(f) is quite satisfactory, except for the woman’s right
as detected by the hierarchical motion estimation and validatiband, which was not detected accurately. VOPs extracted from
scheme, are depicted in Fig. 10(d). As we can see in Fig. 10(&yeral other frames in this sequence are depicted in Fig. 13.
the MRF-based classification provided a perfect labeling, rBespite the fast movement of the woman’s hands, the moving
sulting in an accurate segmentation mask [Fig. 10(f)]. Segmearbject was tracked successfully throughout the sequence.
tation masks for several other frames in the sequence are showhhe sequencdoremanis another “head and shoulders”
in Fig. 11. scene. Yet, unlike the previous sequenéesemanexhibits a
Silentis another typical video-conference scene. Yet, unlikmoving camera. Moreover, the background in this sequence is
Mother & Daughter this sequence exhibits a combination ofot planar, which may lead to difficulties in the global motion
rapid, nonrigid motion (the woman'’s hands), along with slowompensation. In addition, we note that the boundaries of the
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Fig. 14. Segmentation of the 7th frameFafreman (a) Original frame. (b) Initial partition. (c) Initial classification. (d) Moving regions. (e) MRF classification.
(f) Segmentation mask.
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Fig. 15. Segmentation masks for the sequerareman Frames: (a) 11; (b) 24; (c) 39; (d) 71; (e) 90; and (f) frame 120.
moving object, in particular the person’s hat, are not clearlgading to a very accurate segmentation, as seen in Fig. 16 (the
distinct. The segmentation process of the seventh frame sefgmentation masks in this sequence are depicted over a gray
Foremanis shown in Fig. 14. The initial partition obtained inbackground, to emphasize the moving objects). Segmentation
Fig. 14(b) is very accurate. This is attributed to the use of colorasks for subsequent frames in the sequence are depicted in
information in the watershed segmentation. Fig. 14(f) displaysg. 17. As we can see in Fig. 17(b) and (c), the tennis table was
the resulting segmentation mask, where only the person’s rigiassified as foreground, even though it is not moving. This is
shoulder was not detected, since it lacks sufficient motiodue to the fact that the table violates the assumption of a planar
Segmentation masks obtained for subsequent frames in Haekground and cannot be incorporated into the global motion
sequence are shown in Fig. 15. model. Thus, it is detected as moving in the motion estimation
Table Tennidgs a very dynamic sequence that exhibits fagthase and is subsequently classified as foreground. Finally, note
global and local motion, as well as a cluttered and textured ba¢kat a scene-cut occurred between frames 131 and 132, thus the
ground. Moreover, the background is not planar in most of tlkegmentation algorithm was reset in frame 132.
sequence, which may lead to difficulties in the global motion The last sequence that we will consider, and perhaps the most

compensation. Due to the strong motion of the moving objeatballenging, is the sequen&tefan This sequence displays a
in the scene, they are easily separated from the backgrouscene from a tennis match, with a mobile camera. The back-
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Fig.16. Segmentation of the 4th frameTable Tennis(a) Original frame. (b) Initial partition. (c) Initial classification. (d) Moving regions. (e) MRF classification.
(f) Segmentation mask.

i} (] i

Fig. 17. Segmentation masks for the sequeratde TennisFrames: (a) 18; (b) 84; (c) 126; (d) 143; (e) 232; (f) 296.

ground in this sequence is very cluttered and the moving dixe background. As a result, the obtained VOP is not accurate
ject exhibits fast, nonrigid motion. The segmentation process femough to allow perfect extraction of the moving object. This is
the first frame in this sequence is shown in Fig. 18. Due to tlaso inherent in the other VOPs, shown in Fig. 19.

cluttered background, the initial partition is severely overseg- Finally, we note that the proposed algorithm, while still not
mented. Moreover, the initial classification marked many of theuitable for realtime applications, is of modest computational
background regions as potential foreground candidates. Haweguirements. Currently, most of the computational load lies in
ever, the motion estimation effectively captured the local mthe global motion estimation phase. For sequences with a sta-
tion of the object, as seen in Fig. 18(d). The MRF-based classénary background (without application of the GME phase), the
fication eliminated some background regions, yet it also eliméxecution time of the algorithm is about 2 s for each frame in
nated part of the moving object, namely, the player’s shoes. TIg# format. For sequences with a moving background, execu-
is contributed to the fact that the shoes are inherently differeian times are in the range of 5-10 s for each frame. The experi-
than the rest of the object and therefore considered to be partradnts were carried out on a Pentium 11l 500-MHz workstation.
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Fig. 18. Segmentation of the 1st frameStefan (a) Original frame. (b) Initial partition. (c) Initial classification. (d) Moving regions. (e) MRF classification.
(f) Segmentation mask.
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Fig. 19. Segmentation masks for the sequeBiesdan Frames: (a) 25; (b) 53; (c) 82; (d) 92; (e) 125; (f) 142.

VI. DISCUSSION ANDCONCLUSIONS moving objects, without marking uncovered background as

This paper introduces a new algorithm for automatic S(ejb;_reground. Th? memory contents are incorpor.ate_d into a_MRF
mentation of moving objects in image sequences for V/ odel,_along Wl_th motion information {?md spatial information,
generation. The algorithm is based on a MRF model definé%lObta'n_ a spatio-temporal segmentation of the scene.

over a region adjacency graph, which uses motion informationEXPerimental results demonstrated that our proposed tech-
to classify regions as foreground or background. The locati@ffiué can successfully extract moving objects from various
of object boundaries is guided by the initial partition, whic§eduences, with stationary or mobile camera. Nevertheless,
consists of a color-based watershed segmentation. Therefd§,boundaries of the extracted objects are not always accurate
the proposed technique succeeds in locating objects bounda@@ugh to place them in different scenes, which requires a
that are not clearly distinct, where other techniques fail. Aearly perfect boundary location. Furthermore, in the case
hierarchical motion estimation and validation scheme dete@insufficient motion, the algorithm converges to the correct
moving regions in the scene, while avoiding misdetectiorsggmentation only after several frames. However, the VOPs ob-
caused by the occlusion problem. A tracking memory ensuri@éned by our proposed technique could be used to provide other
that a reliable segmentation is maintained throughout tkhentent-based functionalities, such as content-based scalability.
sequence, even when the objects stop moving. In addition, theCurrently, automatic segmentation of video sequences
tracking memory also accommodates sequences with rapidiynains an unsolved problem, since none of the proposed tech-
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nigues can accomplish this task for generic video sequenceas]
This is mainly due to the fact that VOPs cannot be characterized
by homogeneous low-level features such as color, texture 3%4]
motion. The key to developing segmentation techniques that
achieve the performance of the human visual system is ,tfls]
incorporate higher level information into the segmentatio
process.

Future work should concentrate on incorporating temporall6l
information in the form of change or motion into the initial
partition, rather than relying only on spatial information. This[17]
way, the number of resulting regions can be reduced dramati-
cally, while maintaining the structural integrity of moving ob- [18]
jects in the scene. For instance, the entire background can be
segmented as one region, while only moving objects are part'ﬁ9
tioned to smaller segments. This will surely reduce the compu- ]
tational load of the algorithm, while increasing its robustness at
the same time. (20]

In addition, further work should be putinto the global motion
estimation and compensation phase. As we saw in Section 1]
the current technique does not handle scenes in which the back-
ground cannot be considered planar in a satisfactory manngs,,
Moreover, most of the computational burden of the algorithm

currently lies within the global motion estimation phase. There-23
fore, other techniques should be investigated in order to ovei[- ]

come these drawbacks.

[24]
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