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Abstract. In this paper, we introduce a method for automatic renal compart-

ment segmentation from Dynamic Contrast-Enhanced MRI (DCE-MRI) im-

ages, which is an important problem but existing solutions cannot achieve high 

accuracy robustly for a wide range of data. The proposed method consists of 

three main steps. First, the whole kidney is segmented based on the concept of 

Maximally Stable Temporal Volume (MSTV). The proposed MSTV detects 

anatomical structures that are stable in both spatial domain and temporal dy-

namics. MSTV-based kidney segmentation is robust to noises and does not re-

quire a training phase. It can well adapt to kidney shape variations caused by 

renal dysfunction. Second, voxels in the segmented kidney are described by 

principal components (PCs) to remove temporal redundancy and noises. And 

then k-means clustering of PCs is applied to separate voxels into cortex, medul-

la and pelvis. Third, a refinement method is introduced to further remove noises 

in each segmented compartment. Experimental results on 16 clinical kidney da-

tasets demonstrate that our method reaches a very high level of agreement with 

manual results and achieves superior performance to three existing baseline me-

thods. The code of the proposed method will be made publicly available with 

the publication of this paper. 

1 Introduction 

DCE-MRI has been proved to be the most advantageous imaging modality of the 

pediatric kidney [1], providing one-stop comprehensive morphological and functional 

information, without the utilization of ionizing radiation. Accurate segmentation of 

renal compartments (i.e. cortex, medulla and renal pelvis) from DCE-MRI images is 

essential for functional kidney evaluation; however, there still lacks of effective and 

automatic solutions. Several limitations of DCE-MRI images make this task particu-

larly challenging: 1) low spatial resolution, poor signal-to-noise ratio and partial vo-

lume effects due to fast and repeated scanning, 2) inhomogeneous intensity changes 

during perfusion in each compartment, especially for disordered kidneys.  

Several papers in the literature tackle the problem of renal compartment segmenta-

tion. In [2], authors handled cortex segmentation as a multiple-surface extraction  
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Pseudo Code 1: MSTV-based Whole Kidney Segmentation from a DCE-MRI series 

Input:       DCE-MRI data , … , … , 
              All possible thresholds J = {1,…j,…J}, j is ranked in an increasing order 
             Parameters λ ,  and  
Output:     Segmentation of a whole kidney 

Procedure1: Connected Component Trees Construction 
   for , …  
       for j = 1,…J 

           Binarize using threshold j  a list of connected voxels, {… …};  
          Insert {… …}  the j

th
 level of Tree  ; 

      Insert Tree   Connected Component Trees  = { , … } 

Procedure2: Maximum Stable Temporal Volumes Detection 
   for j = 1,…J 

       Find temporally connected sequence  = … , 1, …  (1≤ k ≤ K) 

        K is the total number of temporal volumes in level j 
  Transverse  from root to the level J to detect M sequences of nested  
                            temporal volume { , … , , …}m (1≤ m ≤ M) 

    Calculate  for each { , … , , …}m  

   Search m* which achieves maximum ,and sequence is 

{ , … , }m* 

Procedure3: MSTV-based Whole Kidney Segmentation 

   Construct histogram H={h1,…,hN}for voxels in { , … , }m*, N = | | 

   for  = { , … , }m* 

         Update corresponding items of H for voxels appear in  

   Select voxels whose votes in H is greater than   whole kidney segmentation 

 

rare and random; therefore, segmented non-kidney voxels are sensitive to thresholds, 

usually are not spatially connected and have small overlap in temporal domain. Based 

on the characteristics described above, in the following we describe a concept of Max-

imally Stable Temporal Volume (MSTV) and propose its application to whole kidney 

segmentation. Formal definitions Temporal Volume and MSTV are as follows: 

 

1) Temporal Volume. We denote   1  as a set of spatially connected 

voxels segmented from original 3D volume at temporal point t by thresholding. T is 

the total number of temporal points in a DCE-MRI series. We define  ,  11  are temporally connected if  ,  have greater than λ (λ is 80% in this 

study) segmented voxels in common (i.e. voxel overlap between them > λ). If a se-

quence  , … , , } (t ≥ 2) that any two temporally consecutive voxel sets in 

the sequence are temporally connected, we denote the sequence  as a temporal vo-

lume. The cardinality of  is defined as |  | ∑ | | 
 

2) Maximally Stable Temporal Volume. If ,  are two temporal volumes ob-

tained using threshold j-1 and j respectively, and ,…, , 

, then  is a subset of 
,
i.e. . Let { , … , , …}m (1 )  
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data into a new coordinate space, such that the greatest variance lies along the first 

coordinate (denoted as 1
st
 PC), the second greatest variance along the second coordi-

nate, and so on. By discarding the less significant components, PCA can reduce the 

dimension of dynamic data and suppress noises. In addition, by linearly combining 

several temporal dimensions to form a new feature dimension, misalignment can be 

avoided. Thorough analysis of our experimental results show that, for all cases we 

experimented with, greater than 99.4% of the total information is included in the first 

10 PCs. As illustrated in Fig. 3, the 1
st
 principal component captures most global in-

formation of a kidney, and the 2
nd

 to the 10
th

 components encode detailed information 

of inner structures. For the later PCs, the variances tend to be more dominantly af-

fected by noise. Based on our experiment study, we choose 10 PCs for further analy-

sis. 

Once voxels in the segmented kidney are described by the first 10 PCs, unsuper-

vised clustering is applied to separate voxels into three groups: the cortex, the medulla 

and the pelvis. Among a number of suitable clustering methods, we choose k-means 

clustering in this study due to its simplicity, efficiency and effectiveness. 

2.3 Step 3 – Refinement 

We propose a refinement method for removing noise induced in Step 1 and for reco-

vering mis-classification due to ambiguous boundaries between clusters in the prin-

cipal component space. The refinement method starts from the segmented cortex, to 

the medulla and then to the pelvis. First, for each candidate cortex voxel obtained in 

Step 2 we calculate its maximum intensity enhancement (MIE) by subtracting its pre-

contrast intensity from its maximum intensity. Based on the fact that cortex voxels are 

mostly highlighted at similar moments, we compute the average intensity of all cortex 

voxels at each temporal point and select a point tmax whose average intensity reaches 

the maximum. We consider tmax and its neighboring temporal points tmax-1 and tmax+1 as 

the candidate moments at which the cortex tissues are maximally highlighted. Accor-

dingly, MIE for cortex voxel i is calculated based on Eq. (2): 

( ) ( ) ( ){ } { }
max 1 max max 1

( ) max ( ) ( ) ,  ( ) ( ) ,  ( ) ( )   candidate cortex voxels
cortex t b t b t b

MIE i S i S i S i S i S i S i i
− +

= − − − ⊂   (2) 

At tmax-1, tmax and tmax+1, the intensities of medulla and non-kidney tissues do not 

change too much from their pre-contrast intensities.  Thus, at those moments, the 

MIE of voxels should be much smaller than the cortex voxels and hence can be easily 

excluded by thresholding. The threshold is automatically selected via the Otsu method 

[15]. Second, we attempt to recover the mis-detection of true cortex voxels. For every 

non-cortex voxel within the segmented kidney, we examine its spatially adjacent vox-

els. If all of them are labeled as cortex voxels after the noise removal step described 

above, we re-label it from a non-cortex to a cortex voxel. Similarly, this refinement 

method is also applied to the segmented medulla and pelvis.     

3 Experimental Results 

This study, approved by the local institutional review board, consists of evaluation of 

16 kidney cases: 7 normal cases, 7 disordered cases, and 2 cases with operations 

where the medulla and the pelvis were removed. The MRI data acquisition was  
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Table 1. Comparison of Segmentation Methods 

 Compartment Our
method 

w/o 
MSTV 

w/o 
PCA 

Region 
Completion 

Disordered 
Kidneys 

Cortex 
Medulla 
Pelvis 

0.86
0.95 
0.69 

0.72
0.65 
0.54 

0.54
0.51 
0.56 

0.59 
0.52 
0.60 

Kidneys with Op. Cortex 0.92 0.39 0.47 0.45 

Healthy 
Kidneys 

Cortex 
Medulla 
Pelvis 

0.97
0.98 
0.95 

0.74
0.74 
0.79 

0.58
0.51 
0.74 

0.49 
0.52 
0.60 

 

performed using a 3.0T GE MR 750 system. To minimize the risk of gadolinium in 
patients with impaired kidney function, a low dose at 1/5 of Gadovist was used as the 
contrast agent with the injection rate of 0.3 mL/s, followed by 10mL saline chaser at 
the same rate. The DCE-MRI data sets were acquired by ventilator controlled breath-
hold and have sufficient temporal alignment in most cases. Bellows respiratory trig-
gering was implemented resulting in a temporal phase every two respiratory cycles. A 
3D T1-weighted gradient echo sequence with a dual-echo bipolar readout was used 
for data acquisition, and we used an in-house variable density Cartesian undersam-
pling scheme called DISCO to perform high spatiotemporal resolution dynamic MRU 
[14]. A two-point Dixon reconstruction was used for robust fat–water separation. 
Imaging parameters were: flip angle is 15

o
, TR=3.56ms, matrix size=256×256, FOV= 

340×340 mm
2
, the total number of slices is 34, and slice thickness is 4 mm. 

We evaluated the segmentation accuracy using the Dice Similarity Coefficient 

(DSC), a widely used metric to evaluate segmentation algorithms for different medi-

cal image modalities. The DSC is defined as: 

2 | |
( , )

| | | |

S G
DSC S G

S G

× ∩
=

+
         (3) 

where S and G represent the sets of automatically segmented voxels and manually 

segmented voxels respectively; | · | denotes the set cardinality. The DSC ranges from 

0, if S and G do not overlap at all, to 1, if S and G are identical. 

We compare our method with three baseline methods:  Region Competition [12], a 

popular active contour method for segmentation, our method without MSTV-based 

kidney segmentation (denoted as w/o MSTV) and our method without PCA dimen-

sion reduction (denoted as w/o PCA). We used the implementation in ITK-SNAP for 

Region Competition. Since Region Competition is originally designed for 2D or 3D, 

but not 4D, data, we manually selected 3D volumes at those temporal points when the 

cortex, the parenchyma (i.e. the cortex and the medulla) and a whole kidney respec-

tively seem maximally highlighted. Region Competition is applied to each 3D volume 

to segment the cortex, the parenchyma and a whole kidney; the medulla and the pelvis 

were obtained by subtracting the cortex from the segmented parenchyma, and by sub-

tracting the parenchyma from the whole kidney, respectively. 

Table 1 summarizes the average DSC for all four methods. Three observations can 

be made from Table 1. First, the DSC achieved by our method is over 0.9 for most 

cases except for the cortex (0.86) and the pelvis (0.69) of disordered kidneys. This 

might be because part of the cortex and pelvis tissues were not highlighted due to the  
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