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Abstract. A complete automatic speech segmentation technique has
been studied in order to eliminate the need for manually segmented sen-
tences. The goal is to fix the phoneme boundaries using only the speech
waveform and the phonetic sequence of the sentences.
The phonetic boundaries are established using a Dynamic Time Warping
algorithm that uses the a posteriori probabilities of each phonetic unit
given the acoustic frame. These a posteriori probabilities are calculated
by combining the probabilities of acoustic classes which are obtained
from a clustering procedure on the feature space and the conditional
probabilities of each acoustic class with respect to each phonetic unit.
The usefulness of the approach presented here is that manually seg-
mented data is not needed in order to train acoustic models. The results
of the obtained segmentation are similar to those obtained using the
HTK toolkit with the “flat-start” option activated. Finally, results us-
ing Artificial Neural Networks and manually segmented data are also
reported for comparison purposes.

1 Introduction

The automatic segmentation of continuous speech using only the phoneme se-
quence is an important task, specially if manually pre-segmented sentences are
not available for training. The availability of segmented speech databases is
useful for many purposes, mainly for the training of phoneme-based speech rec-
ognizers [1]. Such an automatic segmentation can be used as the primary input
data to train other more powerful systems like those based on Hidden Markov
Models (HMMs) or Artificial Neural Networks (ANNs).

In this work, two different Spanish speech databases composed of phonetically
balanced sentences were automatically segmented. The phonetic boundaries are
established using a Dynamic Time Warping algorithm that uses the a posteriori
probabilities of each phonetic unit given the acoustic frame. These a posteriori
probabilities are calculated by combining the probabilities of acoustic classes
which are obtained from a clustering procedure on the feature space and the
conditional probabilities of each acoustic class with respect to each phonetic
unit.
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2 Description of the System

The core of the approach presented here is the estimation of P (phu|xt), that is,
the a posteriori probability that the phonetic unit phu has been uttered given the
feature vector xt, obtained at every instant of analysis t. When this probability
is broken down using the Bayes rule, we obtain:

P (phu|xt) =
P (phu) · p(xt|phu)
U∑

i=1

P (phi) · p(xt|phi)
(1)

where U is the number of phonetic units used in the system, and P (phu) is the
a priori probability of phu. In this approach, we assume P (phu) = 1/U for all
units, so it can be removed from expression (1).

Now, we need to calculate p(xt|phu), which is the conditional probability
density that xt appears when phu is uttered. To do so, a clustering procedure
to find “natural” classes or groups in the subspace of R

d formed by the feature
vectors is done. From now on, we will refer to this subspace as “feature space”.
Once the clustering stage has been completed, we are able to calculate P (wc|xt),
that is, the a posteriori probability that a class wc appears given an input feature
vector xt, applying the Bayes rule as follows:

P (wc|xt) =
P (wc) · p(xt|wc)

C∑
i=1

P (wi) · p(xt|wi)
(2)

where C is the number of “natural” classes estimated using the clustering pro-
cedure, P (wc) is the a priori probability of the class wc, and p(xt|wc) is the con-
ditional probability density calculated as Gaussian distributions. In this work,
we assume P (wc) = 1/C for all classes.

At this point, the conditional probability densities p(xt|phu) from equa-
tion (1) can be estimated from the models learned using the clustering procedure.
The “natural” classes make a partition of the feature space which is more precise
than the phoneme partition. Since we already have p(xt|wc) from the clustering
procedure, p(xt|phu) can be approximated as

p(xt|phu) ≈
C∑

c=1

p(xt|wc) · P (wc|phu) (3)

where P (wc|phu) is the conditional probability that the class wc is observed
when the phonetic unit phu has been uttered (see how to obtain these conditional
probabilities in section 2.2).

Given that the a priori probabilities of the phonetic units P (phu) are con-
sidered to be equal, we can rewrite equation (1) using (3) as

P (phu|xt) =

C∑
c=1

p(xt|wc) · P (wc|phu)

U∑
i=1

C∑
c=1

p(xt|wc) · P (wc|phi)
, (4)

which is the a posteriori probability we were looking for.
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2.1 Clustering Procedure

One of the underlying ideas of this work is that we do not know how many
different acoustical manifestations can occur for each phoneme from a particular
parametrization. The obtained acoustical feature vectors form a subspace of R

d.
We assume that this subspace can be modeled with a Gaussian Mixture Model
(GMM), where each class or group is identified by its mean and its diagonal
covariance matrix. In our case, the a priori probabilities of each class or group,
P (wc), are considered to be equal to 1/C. The unsupervised learning of the
means and the diagonal covariances for each class have been done by maximum
likelihood estimation as described in [3, chapter 10].

The number of classes C has been fixed after observing the evolution of some
measures which compare the manual segmentation with the automatic one (see
section 3 and Figure 1). Once the number of classes is fixed and the parameters
which define the GMM are learned, we can calculate the conditional probability
densities p(xt|wc). Then, the probabilities P (wc|xt) are obtained as shown in
equation (2).

2.2 Coarse Segmentation and Primary Estimation
of the Conditional Probabilities

We need a segmentation of each sentence for the initial estimation of the condi-
tional probabilities P (wc|phu). This first coarse segmentation has been achieved
by applying a set of acoustic-phonetic rules knowing only the phonetic sequence
of the utterance. The phonetic sequence of each sentence is automatically ob-
tained from the orthographic transcription using a grapheme-to-phoneme con-
verter [4].

The coarse segmentation used at this stage is done by:

1. Searching for relative maxima and minima over the speech signal based on
the energy.

2. Associating maxima with vowel or fricative units and minima with possible
silences.

3. Estimating the boundaries between each unit by simple spectral distances.

Searching for relative maxima and minima over the speech signal
based on the energy. The location of relative maxima is restricted to those
instants t where the energy is greater or equal to the energy at the interval of
±30 ms. around t. Each maximum is considered to be more or less important
depending on whether its energy is greater or smaller than a threshold for max-
ima calculated specifically for each sentence. The importance of a maximum is
used to properly weight its deletion. The location of relative minima is done by
searching for intervals where the energy is under a threshold for minima, which
is also calculated for each sentence. After this step, we have a list of maxima
and minima (m1, m2, . . . , m|m|) for the sentence.
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Association of maxima with vowel or fricative units and minima with
possible silences. The association of phonetic units (vowels or fricative con-
sonants) is performed by a Dynamic Time Warping (DTW) algorithm that
aligns the list of maxima and minima (m1, m2, . . . , m|m|) with the phonetic se-
quence p1p2 . . . p|p|. The DTW algorithm uses the following set of productions:

– {(i − 1, j − 1), (i, j)}: Location of the phonetic unit pj around the instant
which mi occurs. If mi is a maximum, pj is a vowel or a fricative consonant;
if it is a minimum, pj is a silence.

– {(i, j − 1), (i, j)}: Insertion of phonetic unit pj , which is not associated with
any maximum or minimum.

– {(i − 1, j), (i, j)}: Deletion of maximum or minimum mi.
– {(i − 1, j − δ), (i, j)}, with δ ∈ [2..5]: To align consecutive vowels (such as

diphthongs).

Each production is properly weighted; for instance, the weight of the inser-
tion of possible silences between words is much lower than the weight of the
insertion of a vowel. In the case of several continuous vowels, the association of
this subsequence with a maximum is also allowed.

The association of vowels and fricative consonants with a maximum is
weighted using a measure which is related to the first MFCC (CC1). Fricative
consonants, when associated with a maximum, have a cost which is calculated
by differentiation of the CC1 with a threshold for fricatives, which is estimated
for each sentence. This differentiation is also used for the vowel “i”, and inverted
in the case of the vowels “a”, “o” and “u”.

Estimation of the boundaries between each phonetic unit by simple
spectral distances. After the association is done, we have some phonetic units
(vowels and fricative consonants) located around the instant where its associated
event (maximum or minimum) was detected. For instance, we could have the
following situation:

. . . mi mi+1 . . .

. . . a r d o . . .

We then take subsequences of units to locate the boundaries. These sub-
sequences are formed by two units which are associated with an event (in the
example, “a” and “o”) and the units between them (“r” and “d” in the ex-
ample). The boundaries are located by searching for relative maxima of spectral
distances. The interval used to locate the boundaries begins at the position where
the event mi is located, and it ends where mi+1 is located. The Euclidean met-
ric is used as the spectral distance, which is calculated using the feature vectors
before and after instant t, as ||xt−1 − xt+1||.

At this point, with a segmented and labeled sentence, the estimation of each
joint event (wc, phu) can be carried out as its absolute frequency. The conditional
probabilities P (wc|phu) are calculated by normalizing with respect to each phu.
Now, we can calculate p(xt|phu) as in equation (3).
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2.3 Conditional Probability Tuning

At this point, we can apply both a DTW algorithm, which uses the a posteriori
probabilities P (phu|xt) obtained as in equation (4), and the phonetic sequence
to segment a sentence. This algorithm assigns a phonetic unit phu to an interval
of the signal in order to minimize the measure

F∑

f=1

t1phf∑

t=t0phf

− logP (phf |xt) (5)

where F is the number of phonetic units of the sentence, and t0phf
is the initial

frame of phf and t1phf
the final frame.

When the DTW algorithm is used to segment all the sentences of the training
corpus, we obtain a new segmentation, which is used to make a new estimation
of the absolute frequency of each joint event (wc, phu). Then, the conditional
probabilities P (wc|phu) are recalculated by normalizing with respect to each
phu. This process is repeated until the difference between all the conditional
probabilities P (wc|phu) of two continuous iterations is smaller than an ε (we use
ε = 0.01).

To perform this iterative tuning process do the following:

1. Initialize the absolute frequencies to 0.
2. For each sentence of the training corpus:

(a) Estimate P (phu|xt) using equation (4).
(b) Segment minimizing equation (5).
(c) Increment the absolute frequencies.

3. Calculate the new conditional probabilities P (wc|phu) from the new absolute
frequencies.

4. If the difference between the conditional probabilities is smaller than ε, then
finish, otherwise go to step 1.

3 Evaluation

The measures used to evaluate the performance of the segmentation were ex-
tracted from [5]. The percentage of correctly located boundaries (PB) compares
the location of automatically obtained phoneme boundaries with the location of
manually obtained reference boundaries. The PB is the percentage of boundaries
located within a given distance from the manually set boundaries. Tolerance in-
tervals of 10 ms. to 30 ms. are considered.

The second measure used in this work is the percentage of frames (PF) which
matches both segmentations, the automatic one and the manual one. Other
measures are calculated using the ratios Cman, and Caut for each phonetic unit:

Cman =
correct
tot-man

× 100 Caut =
correct
tot-aut

× 100
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where correct is the number of frames matching both segmentations, tot-man is
the total number of frames in the manual segmentation for each phonetic unit,
and tot-aut is the total number of frames in the automatic segmentation.

These ratios allow us to determine the type of segmentation error for each
phonetic unit. A low value of Cman indicates a tendency of the system to assign
shorter segments than needed to the unit under consideration. A low value of
Caut indicates a tendency to assign longer segments than needed.

4 Experiments and Results

The experiments performed in this work were performed using two Spanish
speech databases composed of phonetically balanced sentences. The first one
(Frases) was composed of 170 different sentences uttered by 10 speakers (5 male
and 5 female) with a total of 1,700 sentences (around one hour of speech). The
second one was the Albayzin speech database [2], from which we only used 6,800
sentences (around six hours of speech) which were obtained by making subgroups
from a set of 700 distinct sentences uttered by 40 different speakers.

Each acoustic frame was formed by a d-dimensional feature vector: energy,
10 mel frequency cepstral coefficients (MFCCs), and their first and second time
derivatives using a ±20 ms. window, which were obtained every 10 ms. using
a 25 ms. Hamming window. A preemphasis filter with the transfer function
H(z) = 1− 0.95z−1 was applied to the signal.

For the Frases database, 1,200 sentences were used for training. First of all,
the feature vectors of these sentences were clustered to find “natural” classes. The
phonetic sequence of each sentence was obtained using a grapheme-to-phoneme
converter [4]. The coarse segmentation of each sentence was obtained using the
sequence of phonetic units uttered and the acoustic-phonetic rules explained in
section 2.2. The initial values of the conditional probabilities P (wc|phu) were
estimated using this coarse segmentation and the clusters. Next, the tuning
process to re-estimate the conditional probabilities is iterated by segmenting the
sentences with a DTW algorithm. Finally, the segmentation of the test sentences
was carried out for evaluation purposes.

A subset of 77 manually segmented sentences was used for testing. Table 1
shows the results obtained with 300 “natural” classes and the results reported
in [5] using HMMs for the same corpus and the same test sentences. In the case
of HMMs, the same 77 manually segmented sentences were also used for training.
From Table 1, it can be observed that our automatic system performs slightly
better than the HMM approach. The same segmentation task was carried out
using the HTK toolkit [6] with the “flat-start” option activated. Our automatic
procedure and the HTK toolkit led to similar results.

In addition, we trained a Multilayer Perceptron (MLP) with the 77 manu-
ally segmented sentences to estimate the a posteriori probabilities of the phonetic
units given the acoustic input. In this case, no derivatives were used: the input
to the MLP was composed of a context window of nine acoustic frames, each
of which was formed by energy plus 10 MFCCs. An MLP of two hidden lay-
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Table 1. Percentage of frames (PF) matching both segmentations, and percent-
age of correct boundaries (PB) within tolerance intervals of different lengths (in
ms.) for the Frases database.

Frases (C = 300)
PF PB

10 20 30

Automatic 82.1 67.9 85.1 93.0

HMMs 81.7 67.7 82.4 91.1

HTK 82.2 69.8 85.1 90.1

MLP+DTW 94.2 93.1 97.2 98.3

ers of 100 units each was trained achieving a classification error of around 6%
(at frame level). In order to have a biased result to compare our system to, we
resegmented the same 77 sentences using the trained MLP and the DTW seg-
mentation algorithm. The result of this experiment is also shown in Table 1. As
might be expected, the results of the closed-experiment (the same manually seg-
mented training data and testing data) using the MLP were much better than
our automatic approach, which did not use manual segmentation at all.

The same procedure was applied to the phonetic corpus of the Albayzin
database. In this case, the number of sentences used was 6,800. They were di-
vided into two subsets, one of 5,600 sentences used for training, and the other
of 1,200 sentences used for testing. These 1,200 test sentences were manually
segmented.

A subset of 400 sentences was selected out of the training sentences to do the
clustering and to obtain the initial conditional probabilities. All the 5,600 train-
ing sentences were used in the iterative tuning process to adjust the conditional
probabilities. In order to select the number of classes C, the whole experiment
was carried out for increasing values of C, from 80, 100, 120, . . . , 500 (see Fig-
ure 1). From this graph, it can be seen that performance is similar for values
of C above 120.

The results obtained for the Albayzin database are shown in Table 2 and
Figure 2 (performance of our automatic procedure is given for 400 “natural”
classes). As before, the same task was performed by using the HTK toolkit with
the “flat-start” option activated. An experiment with a MLP was also performed
using the same 1,200 manually segmented sentences for training and testing. The
results were quite similar to those obtained by the other speech database. Thus,
the system for automatic segmentation can be scaled to any speech database.

5 Conclusions

In this work, we have presented a completely automatic procedure to segment
speech databases without the need for a manually segmented subset. This task
is important in order to obtain segmented databases for training phoneme-based
speech recognizers.
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Table 2. Percentage of frames (PF) matching both segmentations, and percent-
age of correct boundaries (PB) within tolerance intervals of different lengths (in
ms.) for the Albayzin database

Albayzin (C = 400)
PF PB

10 20 30

Automatic 81.3 70.5 87.1 93.4

HTK 82.8 72.9 84.3 87.7

MLP+DTW 83.8 80.6 89.0 92.5
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Fig. 1. Left: Percentage of frames (PF) matching manual segmentation and au-
tomatic segmentation versus the number of classes C for the Albayzin database.
Right: Percentage of correct boundaries (PB) within tolerance intervals of dif-
ferent lengths (in ms.) versus the number of classes C for the Albayzin database
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Fig. 2. Cman and Caut for the phonetic units (SAMPA allophones) for the auto-
matic segmentation (with 400 classes) and for the segmentation obtained using
the HTK toolkit for the Albayzin database
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As future extensions, we plan to increment the ratio of analysis from 10 ms. to
5 ms. to obtain better representations of the acoustical transitions, specially the
burst of the plosive consonants. We also plan to extend the feature vectors with
a contextual window of acoustic frames. We hope that the incorporation of these
extensions will significantly increase the accuracy of the obtained segmentation.
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