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Abstract

Purpose The accurate and automatic localisation of SEEG electrodes is crucial for determining the location of epileptic

seizure onset. We propose an algorithm for the automatic segmentation of electrode bolts and contacts that accounts for

electrode bending in relation to regional brain anatomy.

Methods Co-registered post-implantation CT, pre-implantation MRI, and brain parcellation images are used to create regions

of interest to automatically segment bolts and contacts. Contact search strategy is based on the direction of the bolt with distance

and angle constraints, in addition to post-processing steps that assign remaining contacts and predict contact position. We

measured the accuracy of contact position, bolt angle, and anatomical region at the tip of the electrode in 23 post-SEEG

cases comprising two different surgical approaches when placing a guiding stylet close to and far from target point. Local

and global bending are computed when modelling electrodes as elastic rods.

Results Our approach executed on average in 36.17 s with a sensitivity of 98.81% and a positive predictive value (PPV) of

95.01%. Compared to manual segmentation, the position of contacts had a mean absolute error of 0.38 mm and the mean bolt

angle difference of 0.59◦ resulted in a mean displacement error of 0.68 mm at the tip of the electrode. Anatomical regions

at the tip of the electrode were in strong concordance with those selected manually by neurosurgeons, I CC(3, k) = 0.76,

with average distance between regions of 0.82 mm when in disagreement. Our approach performed equally in two surgical

approaches regardless of the amount of electrode bending.

Conclusion We present a method robust to electrode bending that can accurately segment contact positions and bolt orien-

tation. The techniques presented in this paper will allow further characterisation of bending within different brain regions.
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Introduction

Epilepsy is a disease characterised by an enduring predis-

position to generate epileptic seizures and affects 1% of the

population [8]. A third of patients develop chronic refractory

focal epilepsy and neurosurgery may provide a cure [9].

Brain imaging is fundamental in a typical neurosurgi-

cal evaluation for determining the epileptogenic zone (EZ)

5 The First Affiliated Hospital of Xian Jiaotong University,

Xian, People’s Republic of China

6 Vickie and Jack Farber Inst for Neuroscience, Thomas

Jefferson University, Philadelphia, USA

7 Dementia Research Centre, Department of Neurodegenerative

Disease, UCL Institute of Neurology, London, UK

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s11548-018-1740-8&domain=pdf
http://orcid.org/0000-0002-2866-1324
https://doi.org/10.1007/s11548-018-1740-8


936 International Journal of Computer Assisted Radiology and Surgery (2018) 13:935–946

with modalities including structural and functional MRI

(e.g. T1/T2-w, FLAIR) and PET [9]. If the EZ is not

identifiable, invasive electroencephalography (EEG) record-

ings are performed in the form of stereo-EEG (SEEG)

or subdural grid insertion. SEEG is a procedure in which

multiple electrodes are stereotactically inserted to identify

the seizure onset zone [21]. Accurate placement of elec-

trode contacts is important for safety, interpretation of the

recorded electrical signals, and subsequent resection plan-

ning [21]. Planning of electrode implantation is crucial for

avoiding blood vessel damage and subsequent intracranial

haemorrhage (which occurs in 1–2% of patients), and auto-

matic computer-assisted multiple trajectory planning tools

have been proposed [17,18]. However, intraoperatively, entry

point (EP) accuracy can be affected by misregistration of the

neuronavigation system, inaccurate alignment, and deflec-

tion during drilling, whereas target point (TP) errors may be

caused by the angle at which the electrode passes through

skull, deflection of the electrode at the dura or within the

brain, the rigidity of the electrode, and the depth to which

a guiding stylet is inserted [3,21]. Robotic systems have

been introduced to improve EP implantation accuracy [3,7].

However, TP displacement is the main source of error and

understanding why and how electrodes bend may help pre-

dict final TP positions during surgical planning and improve

EZ localisation [22].

Furthermore, it is convenient to have a rapid and reliable

scheme for segmenting contacts, assigning their anatomical

location when interpreting SEEG studies and for guid-

ing definitive surgical resections. Automatic segmentation

approaches have been proposed for SEEG [2,14,16] and deep

brain stimulation (DBS) [5,10,11] implantation. Arnulfo

et al. [2] used post- implantation CT (threshold = 1600)

co-registered with MRI to segment electrodes based on a

geometrical-constrained search. They randomly generated

different scenarios for 1–15-mm displaced TP in an experi-

mental study and reported accuracy of 10% of false negatives

(FN) and 7% of false positives (FP) for a maximum dis-

placement of 15 mm. However, bending may occur at any

point along the electrode’s trajectory. Meesters et al. [14]

co-registered the CT (threshold = 500 HU) with MRI and

extracted guiding screws with a multi-scale filter whilst deter-

mining likely tip locations within a wedge-shape region.

However, manual adjustments took between 10 s and several

minutes, and reported deviations of the tip and their method

did not account for electrodes bending. Additionally, these

methods relied on pre-operative plans and were tested only

on one electrode type.

Hubsch et al. [10,11] proposed an automated algorithm

reconstructing full electrode trajectory whilst accounting for

DBS electrode bending from CT scans. A convex hull brain

mask is extracted using thresholds, and the largest connected

components are skeletonised [10]. Trajectories of 11 elec-

trodes are modelled fitting a polynomial function and then

aligned to a common coordinate system reporting mean

deviation that varies from 0.92 to 2.0 mm. However, they

have mostly focused on fitting trajectories using polynomi-

als rather than computing the amount of electrode bending

and have not considered the reasons of bending within the

brain anatomy. Although Lalys et al. [13] looked at the rea-

sons of bending (mainly due to brain shift) by computing

a local and mean curvature index over the entire length of

DBS electrodes, the index provides no information about the

direction of bending. Unlike SEEG procedures, where 8–14

electrodes are inserted, DBS electrodes are typically inserted

bilaterally and the contacts are very close to the tip. To dis-

criminate between contacts located in white or grey matter,

Arnulfo et al. [1,16] compute the distance from each contact

to grey–white matter interface.

Contribution of this paper

Our main motivation is to automatically segment SEEG con-

tacts and bolts (Ad-Tech Med Instr Corp, USA) relative to

the anatomy whilst accounting for electrode bending along

its trajectory at contact positions rather than as a result of TP

displacement. Our algorithm (Fig. 1) allows estimating not

only the position of contacts but also the direction of the bolts

inserted into the skull since the angle of the bolt with respect

to the scalp surface normal is a measure of post-implantation

accuracy. We quantify local and global bending by means of

electrodes modelled as elastic rods in position-based dynam-

ics1 and validate our methods in 23 post-SEEG cases (224

electrodes, 1843 contacts) comprising two different surgical

approaches (placing a guiding stylet close to or far from the

TP).

Methods

Input images

A post-SEEG implantation resampled CT and an MRI T1

images are rigidly co-registered using NiftyReg (v1.5.43)

[15]. From the MRI image, we obtain the parcellation of

brain anatomy via NiftyWeb (GIF v3.0) (Fig. 2) [4].

Identification of anatomical masks

We use the MRI and the parcellation to create regions of

interest that are used to identify contacts, bolt heads, and the

section of the bolt crossing the scalp/skull, which we refer

1 https://github.com/InteractiveComputerGraphics/PositionBasedDyn

amics.
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Fig. 1 Flow chart of algorithm pipeline

Fig. 2 Input images: a post-SEEG implantation CT, b MRI T1, and c parcellation

Fig. 3 a Axial, b sagittal and c coronal planes showing computed masks of the brain (cyan), skull and scalp (yellow) together with the result of

connected components filters of contacts (red), bolt head (green), and the section of the bolt crossing the skull (blue)

as bolt body. First, a BinaryThresholdImageFilter

is applied to the parcellation to create a mask of intracra-

nial space B Ibrain, i.e. with a threshold tbrain in the range of

4 ≤ tbrain ≤ 208. We apply a method similar to Dogdas et al.

[6], which we describe herein for completeness. We compute

a skull threshold tskull from the MRI as the mean of the inten-

sities of the nonzero voxels that are not brain as an empirical

measure to split the low- and high-intensity regions, followed

by a scalp threshold tscalp as the mean of the non-brain vox-

els above the skull threshold (∀IM RI (x, y, z) ≥ tM RIskull ) to

identify the transition between the head and the background.

ABinaryThresholdImageFilter is applied to the

MRI to create a mask of the scalp B Iscalp with a lower

threshold equal to tscalp. We use morphological operators

to combine B Ibrain and B Iscalp and apply a closing fil-

ter with a ball structuring element (radius = 10) to obtain a

mask of the head, i.e. B Ihead = (B Iscalp ∪ B Ibrain) ⊙ B10,

and a mask of the skull, i.e. B Iskull = B Ihead ⊕ B Ibrain,

after applying an XOR morphological operator on the result

(Fig. 3).
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Table 1 Geometrical analysis,

μ(σ), and discriminant analysis

of bolt heads and contacts

Geometrical analysis Discriminant analysis

Number of Pixels Elongation Roundness Number of pixels Roundness

Bolt head 329.4 (183.5) 2.51 (0.59) 0.63 (0.06) > 100 [0.4, 1.0]

Contact 9.7 (6.6) 2.52 (1.27) 1.10 (0.06) [3, 50]

Fig. 4 Search strategy given the direction of the bolt and constraints (distance and angle)

Segmentation of electrode bolts and contacts

A mask B Ipost is created from a BinaryThreshold

ImageFilter applied to the post-op CT with lower thresh-

old tCT = (0.52) ∗ max(ICT(x, y, z)). B Ipost is used to

identify full bolts (B Ibolt) with at least a minimum of 200

pixels. Three subsections are identified: the head of the bolt

which is outside the patient’s head (B Ibolt ∩ ¬B Ihead), the

body (B Ibolt ∩ B Iskull), i.e. section crossing the skull, and the

tip (B Ibolt ∩ B Ibrain). Lastly, contacts are identified within

the brain whilst excluding bolt tips ((B Ipost ∩ B Ibrain) ⊕

B IboltTip). We applied a ConnectedComponentImage

Filter to the masks and a LabelImageToShape

LabelMapFilter to the blobs to get their centroids and

geometrical properties before conducting geometrical anal-

ysis to identify discriminants of segmentation (Table 1). We

detected contacts with blobs that were within a range of num-

ber of pixels ([3, 50]) and bolt heads with blobs that had a

minimum number of pixels (≥ 100) and were within a range

of roundness values ([0.4, 1.0]).

Contact search strategy

Given a bolt head (xh) and its closest bolt body (xb) posi-

tions, we compute the direction of search (n̂0 = xb−xh
‖xb−xh‖ )

and iteratively compute a number of points x p given a maxi-

mum electrode length (90 mm) and a step size (1 mm) in the

direction n̂0. An available contact xc is assigned to the elec-

trode if and only if it is located below a distance constraint

from x p (5 mm) and the angle between the previous direction

n̂0 and the current direction n̂c is below an angle constraint

(30◦) (Fig. 4), constraints which favour assigning contacts in

the direction of the bolt during a first pass.

Automatic segmentation of electrodes

The main steps of our algorithm include:

1. Initialisation All segmented contacts are initially labelled

as ’available’ and stored in a pool. Given a bolt head

position (xh), the closest bolt bodies (8 ≤ ‖xh − xb‖ ≤

25 mm) and the closest contact (‖xh − xc‖ ≤ 50 mm)

are identified in order to narrow the search down to only

those relevant.

2. Contact search strategy For each bolt head, the contact

search strategy is executed initially with the closest bolt

body (1st pass search) and subsequently with alternative

bolt bodies if no contacts have been assigned. Although

rare, bolt bodies may not be segmented and a direction of

search cannot be computed. Therefore, the contact search

strategy is called again with the closest contact position

rather than a bolt body position.

3. Project remaining contacts in pool For electrodes con-

taining at least one contact, we compute the minimum

distance between an available contact in the pool and

a line formed by the positions of the bolt head and the

electrode tip. The contact is assigned to the electrode if

and only if its distance to the closest point xp to the line

(tangent to the line) is below a constraint (5 mm) and xp

remains along the line or in a position of the line 20%

extended from the tip, i.e. within an interpolation range

of [0.0, 1.2] to project contacts that are further from the

currently identified tip of the electrode.
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Fig. 5 Modelling of electrodes as elastic rods. Bolt head (green) and body (blue) with contacts (red) modelled as point particles and ghost particles

(cyan) created orthogonally along the electrode with material frames located between contacts

4. Predict contacts in the bolt region For a given electrode,

we compute the most common segment along the elec-

trode based on the distances between subsequent contacts

rounded to the closest integer. Based on electrode spec-

ification, we infer the type of electrode depending on

the order of the segments and specify contact spacing.

We then compute the direction from the last contact xcn

towards the bolt head xh and create new contacts up to 21

mm before the bolt head position to segment only those

contacts closer to the skull.

Bending estimation

To quantify electrode bending, electrodes are modelled as

elastic rods using the Cosserat model proposed by [19]

and then implemented by [12] in position-based dynam-

ics. Electrode contact positions are represented as linked

particles with ghost particles located orthogonally half-way

between contact pairs (Fig. 5). A material frame is created

between contacts with a unit vector (d3 = Xcn−1 − Xcn )

aligned tangentially to its centreline followed by two addi-

tional orthonormal vectors, (d2 = d̂3 × (Xcn−1 − Xcn )) and

(d1 = d̂2 × d̂3) chosen to lie in the principal direction of the

cross section. We compute the rate of change of two consec-

utive frames, namely a Darboux vector �, to describe local

bending at the contact points [12,20]. Along the electrode, �

values are then accumulated to quantify global bending. We

then use the parcellation to report the region at which each

contact is located and report all those regions that the elec-

trode passes through. Lastly, contact displacement and depth

are estimated with respect to a rigid electrode with position

of contacts projected along the direction from the bolt head to

the last contact (Xcn ) at distances subject to electrode speci-

fication.

Validation

We asked two neurosurgeons and one clinical scientist to

(a) manually segment the contacts of a random subset of

electrodes (N = 109 contacts), (b) manually identify the

tip and head of the bolt of a random subset of electrodes

(N = 95 bolts), (c) confirm the correct number and location

of contacts and electrodes (N = 23 cases), and (d) identify

the TP anatomical region (N = 222 electrodes).

Results

Interface

We implemented our algorithms in C++ using MITK2 and

ITK3 as well as a GUI in Qt to allow clinicians to adjust the

automatic segmentation if needed (Fig. 6). On average, our

method executed in 36.17 s (N = 23, σ = 15.7), faster than

manual segmentation.

Performance

Of a total of 224 electrodes (1843 contacts), 29 contacts were

segmented but not assigned to any electrode due to: (a) three

bolt heads that were not automatically segmented (17), (b)

no segmented contacts close to them (5), and (c) due to one

incorrectly assigned contact to a bolt head (7). On average,

the sensitivity ( T r P
T r P+F N

∗ 100) and PPV ( T r P
T r P+F P

∗ 100) of

our approach was μ = 98.81%; σ = 2.04 (false-negative

rate of μ = 0.124; σ = 0.02) and μ = 95.01%; σ = 6.73

(false- positive rate of μ = 0.059; σ = 0.09), respectively

(Fig. 7 bottom), finding no statistical significant difference

between data sets of the two surgical approaches, i.e. placing

a stylet far from or close to target point. To illustrate our

results, Fig. 8 shows two cases correctly identified (a, b)

along two worst cases (c, d).

2 http://mitk.org.

3 http://itk.org/.
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Fig. 6 Automatic segmentation of electrodes interface and GUI for manual adjustment

Fig. 7 Top: Number of contacts initially segmented and assigned to

electrodes via a bolt head and bolt bodies association (step 2), pro-

jected (step 3), predicted (step 4), and left unassigned and available

in pool. Bottom: Number of contacts correctly segmented (TrP—true

positives), wrongly segmented (FP) and missed (FN) in 23 data sets

(order by number of electrodes)

Validation

Computed contact positions, bolt angles, and regions of

anatomy are compared with those manually segmented in

a subset of cases (Table 2).

– Contact position Compared to the manual segmentation

done by a clinical scientist (M1) and a neurosurgeon

(M2), we found that the contact location of our auto-

matic segmentation approach had a mean absolute error

(MAE) of 0.38 and 0.40 mm, respectively, and a root-

mean-square deviation (RMSD) of 0.45. The distance

of contact positions between both manual segmentations

was on average μ = 0.37 mm (σ = 0.22). We found

no statistical difference when comparing the distances

from automatically computed contact position to those

positions obtained via manual segmentation (paired dif-

ferences: μ = 0.036, σ = 0.21).

– Bolt angle We found that the angle of bolts between

automatic and manual segmentation (Fig. 9) by M1 and

M2 differed on average by 0.59◦ and 0.22◦, respec-

tively, with pair samples strongly and positively corre-

lated (Pearson correlation) and with strong reliability

(Cronbach’s alpha). We study the displacement error

derror = sin(θerror) ∗ le at the tip of the electrode

caused by this angle difference θerror and the length

of the electrode le within the brain and define a maxi-

mum tolerance value Te = 2.29 mm related to contact

length. On average, derror at the tip of a rigid elec-

trode caused by the angle difference is μ = 0.68 mm

for M1 and μ = 0.72 mm for M2. We found 3 out-

liers above Te for M1 ([2.46, 4.79] mm) and 8 outliers

for M2 ([2.37, 5.48] mm). Given Te, a non-inferiority

test indicates that 0.68 mm is an estimate of derror with

95% of CI (0.431–0.926) after accounting for clustering
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Fig. 8 Examples: a segmented bolt head and contacts of electrodes overlaying CT; b contacts predicted at the skull and scalp level; c 22 FP (red

marks along the skull); and d our worst case with 3 contacts not segmented due to crossings and 4 FNs

using a patient-level random effect. Figure 10 shows

an example with electrodes automatically segmented

and their corresponding rigid electrodes (lighter colours)

computed using the direction of bolts automatically

segmented.

– Regions of anatomy We also ran a intra-class correlation

two-way mixed effects model with average measures and

found a strong agreement when identifying the anatomi-

cal region of the brain at the tip of the electrode between

our algorithm and that done manually by two neuro-

surgeons, I CC(3, k) = 0.76, p < 0.001. When in

disagreement, the average distance between regions was

0.82 mm (σ = 0.78), a distance below contact size.

Furthermore, it is estimated that electrode contacts elec-

trically sample regions of grey matter within a 3 mm

radius. Any discrepancy in identified anatomical regions

below this is therefore not clinically significant.

Bending estimation

In order to study whether Darboux vectors are a represen-

tative measure of bending, we look into the relationship

(Pearson correlation) between global bending and the fol-

lowing variables: accumulated displacement of contacts (r =

0.532, p < 0.001), length of electrode inside the brain tissue

(r = 0.373, p < 0.001), amount of white matter traversed

by the electrode (r = 0.257, p < 0.001), and bolt angle

(r = 0.189, p = 0.045). Of the two surgical approaches,

placing a stylet far from TP resulted in larger global bending

of electrodes (μ = 0.49; σ = 0.34) compared to the bend-

ing observed in electrodes that had a stylet placed close to TP

(μ = 0.31; σ = 0.18), a difference which was statistically

significant, t(222) = 5.36, p < 0.01.

Generalisability and robustness

Three SEEG post-resection cases using SEEG DEPTH elec-

trodes (PMT Corp., USA) were obtained from the Vickie

and Jack Farber Institute for Neuroscience (Thomas Jeffer-

son University) to assess generalisability and robustness of

our algorithm. We observed a reduced average performance

(sensitivity = 69.7% and PPV = 82.6%) due to the following

factors (Fig. 11a–c): (a) smaller bolt heads (our parameter of

minimum number of pixels of bolt heads could be adjusted),

(b) contacts being very close to each other and merged as sin-

gle blobs (addressed by adopting optimal oblique resampling

used for DBS electrodes [11]), and (c) electrodes inserted

deeply (our parameter of maximum electrode length could

be adjusted to account for this). Despite this, our algorithm

was agnostic of electrode types and implantation planning

and was robust in post-resection data sets.

We randomly chose 3 of our data sets to test the method

proposed in [2,16] and implemented in SEEGA (Slicer

v4.6.2). We configured electrode types based on electrode

specification, used the implantation plan (EP and TP) as fidu-

cials and imported the CT image. We modified SEEGA to

use the same threshold that we computed in our algorithm

for consistency and because the default threshold computed
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Table 2 Validation between manual and automatic segmentation

Measure Manual vs automatic Statistical test Result

Contact position

N = 109/1843

MAE (μ, σ , IQR) M1: 0.38 mm, 0.24, 0.22 Paired t test t (106) = −1.756, p = 0.82

M2: 0.40 mm; 0.22, 0.26 Pearson correlation r = 0.454, p < 0.001

Cronbach’s alpha 0.615

MAE (x, y, z

components)

M1: (0.14, 0.15, 0.27) mm

M2: (0.17, 0.15, 0.26) mm

RMSD M1: 0.45

M2: 0.45

Bolt angle

M1: N=95/224

mean angle difference M1: 0.59◦ (1.27) Paired t test t (94) = −4.54, p < 0.001

M2: 0.22◦ (1.53) t (112) = 1.533, p = 0.128

Pearson correlation r = 0.991, p < 0.001

r = 0.985, p < 0.001

Cronbach’s alpha 0.995

0.992

M2: N = 113/224 displacement error at

first contact due to

angle difference (μ,

σ , IQR)

M1: 0.68 mm, 0.81, 0.83 Non-inferiority test CI = (0.431, 0.926)

tolerance = 2.29 mmM2: 0.72 mm, 0.84, 0.81

Regions of anatomy

N = 222/222

region of anatomy at

first contact

Intra-class correlation 0.76, p < 0.001

distance between

regions when in

disagreement

0.82 (0.78) mm

Fig. 9 Bolt angles. a Bolt from post-CT image and b manual iden-

tification of the direction along bolts by a clinical scientist. c, d

(Inconspicuous) comparison of manual (pink) and automatic identi-

fication (rigid electrode shown in blue) of bolt direction of an outlier

case with angle difference of θerror = 5.73◦ and displacement error at

the tip of derror = 4.79 mm

by SEEGA resulted in segmentations errors. We observed

an average sensitivity of 82.9% and PPV of 65.3% (97.3%

and 98.2%, respectively, using our algorithm). Whilst we

noticed that most of the contact positions were not accurate

(Fig. 11d), we only report performance on the number of con-

tacts that were incorrectly or not segmented. Similarly to our
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Fig. 10 Anatomical regions traversal (top) and contact displacement (bottom) of automatically segmented electrodes with respect to a rigid electrode

computed based on bolt direction

approach tested with data from other centres, SEEGA might

perform better after fine-tuning parameters. Both algorithms

have parameters the user must select to guarantee optimal

performance.

Discussion

Automatic segmentation

The automatic segmentation of bolts is typically overlooked

in the literature and could be used to report accuracy errors

caused by differences in angle with respect to planning.

We use bold direction to search for contacts with neither

prior information of electrode type nor implantation plan-

ning. Compared to previous work [2,14], we use a factor

of maximum intensity from CT images rather than a con-

stant. Regions of interests were used to segment position

of contacts and bolts based on geometrical properties with

their centroids equivalent to the signal peaks found in [11]

and more generally in the literature. The choice of intensity

threshold and constraints favour few incorrectly segmented

contacts (FP) over missing contacts (FN), since these can

be easily discarded by surgeons during manual adjustment.

We found that FP were located in the inner surface of the

skull and were caused by pixel size inaccuracies of CSF

regions overlapping with bone structure. The performance

of our algorithm is similar to previous approaches although

[2] only considers displacements at the tip of the electrode

with no details of displacement of other contacts along the

electrode and [14] uses a very small sample size assuming

rigid electrodes.

Compared to the search strategy by Arnulfo et al. [2],

our algorithm uses a higher angle constraint (30◦ rather than

10◦) because we use instead the bolt direction to search for

contacts rather than a direction from previously segmented

contacts. It is also clinically relevant to accurately segment

the position of the contacts closer to the skull to ensure grey

matter at the cortical entry is adequately sampled, but these

might be difficult to segment in the bolt region. Therefore,

contacts are predicted in this region after inferring electrode

type. Further conditions would need to be included in this step

to support more electrodes from different manufacturers. To

cope with electrodes crossing, we initially used geometri-

cal features to identify large blobs that relate to more than

one contact for splitting. However, the resulting position of

contacts was not good enough to make the method fully auto-

matic, so we rely on manual adjustments that can be quickly
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Fig. 11 Generalisability and robustness tests. Our proposed algorithm

using data from a different centre: a with smaller bolt heads, b con-

tacts very close to each other, and c electrodes inserted deeply (pink

electrode with insertion depth of 110 mm); Our data in SEEGA: d seg-

mented contact positions (green fiducials) and implantation plan (pink

fiducials)

performed with our interface. Moreover, the reason for con-

tacts not being assigned to an electrode was because of bolt

heads or contacts not being segmented and because of incor-

rectly assigned contacts to bolt heads. However, electrode

bending did not influence accuracy of contact assignment as

evidenced by our approach performing equivalent between

the two surgical approaches (placing a stylet close to and far

from TP), where global bending is significantly different.

Validation

The MAE of the centroids validated from the manual iden-

tification of contacts in our study is slightly lower than the

localisation error of 0.5 mm reported in [2,16], although with

a greater standard deviation. The RMSD reported in our study

of axial and sagittal planes is similar to the RMS reported in

[11]. However, we see a higher error in the coronal plane due

to greater CT slice thickness (μ = 0.87 vs. μ = 1.14 mm)

and thus a greater RMSD than that reported in their work

with deep brain electrodes. We also confirmed the accuracy

of the computed contact positions with respect to those from

two manual segmentations which varied less that 0.8 mm

(CI of 95%). We defined equivalence of bolt angles between

manual and automatic segmentation as an interval of −2.29–

2.29 mm based on the sample size calculation (14 manual

and 14 automatic; power = 90%, p < 0.05, σ = 1 mm) for

the angle error displacement. The sample size has also been

increased to account for the possible effect of clustering of

electrodes within patients, with an assumed I CC = 0.25 and

average number of 8 electrodes per patient. The mean angle

difference observed (paired t test) is small and has a strong

and positive correlation and good reliability. Related to the

non-inferiority test of the displacement error caused by this

angle difference, there is no suggestion that, at the tolerance

level of contact length, either method is worse that the other.

We were also able to confirm that the anatomy regions at

the tip of the electrodes are concordant with those manually

identified by two neurosurgeons. Our sample size is above

the sample size computed (159) that is sufficient for a 95%

confidence interval with width ± 0.1 assuming an estimate of

0.6 ICC. This is important for post-surgical analysis of SEEG

electrodes as knowing the anatomical region each contact is

located in can aid in identifying the seizure onset zone.

Bending

Compared to previous approaches for DBS that fit trajecto-

ries along electrodes using polynomials [10,11], we quantify

the amount of bending as well as the displacement at contact

positions, permitting to study the reasons of bending within
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the anatomy. The parcellation is used to accurately report the

anatomical regions the electrodes have traversed. We were

able to estimate local bending by modelling electrodes as

elastic rods and using Darboux vectors to quantify the 3-

degrees-of-freedom rate of change of the material frames

orthogonally aligned to the electrode. The large and positive

correlation observed between global bending and the accu-

mulated displacement of contacts in addition to the medium

positive correlation with length of electrode indicate that Dar-

boux vectors are a representative measure of bending. The

projection of a rigid rod is based on the bolt direction rather

than on planned trajectories as in previous studies. This facil-

itates evaluating the displacement of each contact, rather than

a displacement due to EP location errors and angle of drilling.

We confirmed the displacement at the tip of the electrode due

to angle difference between bolts automatically and manu-

ally segmented is below a tolerance displacement error, and

therefore, we were able to report contact displacement due

to bending with respect to a rigid electrode.

Conclusions and future work

We present a method for automatic segmentation of elec-

trodes, including their contacts and bolts, that takes bending

into account by quantitatively estimating local and global

bending. We show the importance of accurately detecting

the angle of the bolt, since it is one of the main reasons for

TP errors, as well as the importance of accurately and auto-

matically reporting the region of anatomy the contacts are

located in, since it aids identifying the seizure onset zone. Our

approach was validated in 23 data sets comprising two surgi-

cal techniques and demonstrated in these cases our method

is robust to bending along the electrode.

Future work is required to guarantee generalisability of

automatic segmentation of SEEG electrodes by enabling

automatic parameter selection to support data from multi-

ple centres. We hypothesise that white matter tracks may be

one of the factors of electrodes bending, and therefore, we

envisage using diffusion MRI tractography in combination

with our proposed methods in future studies to understand

the reasons to bending. Understanding the mechanical prop-

erties of electrodes along with the biomechanical properties

of the brain tissue as well as simulating instrument–tissue

interaction will permit greater fidelity to the implantation

plan resulting in more accurately targeting specific regions

and potentially improve clinical outputs including the ability

to reduce the number of implanted electrodes and targeting

riskier areas. We envisage to incorporate our work to an EEG

analysis pipeline and validate the activity read from SEEG

contacts with their anatomical location. Parallel clinical work

will look into different types of techniques and their effect on

electrodes bending, i.e. understanding the reasons why push-

ing a stylet closer to the target point result in lower bending

of electrodes.
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