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Background: Two-dimensional echocardiography (2D echo) is the most widely used non-invasive imaging 

modality due to its fast acquisition time, low cost, and high temporal resolution. Boundary identification 
of left ventricle (LV) in 2D echo, i.e., image segmentation, is the first step to calculate relevant clinical 

parameters. Currently, LV segmentation in 2D echo is primarily conducted semi-manually. A fully-automatic 

segmentation of the LV wall needs further development. 

Methods: We evaluated the performance of the state-of-the-art convolutional neural networks (CNNs) 

for the segmentation of 2D echo images from 6 standard projections of the LV. We used two segmentation 

algorithms: U-net and segAN. The models were trained using an in-house dataset, which consists of 

1,649 porcine images from 6 to 8 different pigs. In addition, a transfer learning approach was used for the 

segmentation of long-axis projections by training models with our database based on the previously trained 

weights obtained from Cardiac Acquisitions for Multi-structure Ultrasound Segmentation (CAMUS) dataset. 

The models were tested on a separate set of images from two other pigs by computing several metrics. The 

segmentation process was combined with a 3D reconstruction framework to quantify the physiological 

indices such as LV volumes and ejection fraction (EF).

Results: The average dice metric for the LV cavity was 0.90 and 0.91 for the U-net and segAN, 

respectively, which was higher than 0.82 for the level-set (P value: 3.31×10−25). The average Hausdorff 

distance for the LV cavity was 2.71 mm and 2.82 mm for the U-net and segAN, respectively, which was 

lower than 3.64 mm for the level-set (P value: 4.86×10−16). The LV shapes and volumes obtained using the 

CNN segmentation models were in good agreement with the results segmented by the experts. In addition, 

the differences of the calculated physiological parameters between two 3D reconstruction models segmented 

by the experts and CNNs were less than 15%.

Conclusions: The results showed that both CNN models achieve higher performance on LV segmentation 

than the level-set method. The error of the reconstruction from automatic segmentation compared to the 

expert segmentation is less than 15%, which is within the 20% error of echo compared to the gold standard.
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Introduction

Two-dimensional echocardiography (2D echo) is the most 
widely used non-invasive method for evaluation of heart 
disease because of its high temporal resolution [50–250 
frames per second (fps)] (1) and short acquisition times (2).  
2D echo provides a gray scale image from which anatomical 
features are identified to assess cardiac functions. 
Segmentation of the left ventricular (LV) walls in 2D echo 
is the first step toward quantification of cardiac function, 
such as ejection fraction (EF) and LV volumes.

At present, semi-automatic or manual delineation 
conducted by experts are the main boundary identification 
techniques for 2D echo (3). However, semi-automatic 
or manual techniques are not only time-consuming but 
also subjective, which makes them prone to intra- and 
inter-observer variability (4). Prior to the development 
of deep learning techniques, methods for automatic LV 
segmentation could be described as pixel classification (5),  
image-based methods (6), deformable methods (7), active 
appearance and shape models (AAM/ASM) (8), and 
atlas models (9). These methods generated high-quality 
automatic LV segmentation models on magnetic resonance 
imaging (MRI) and computerized tomography (CT) images. 
However, due to speckle noise, brightness inhomogeneities, 
presence of trabeculae and papillary muscles, and shape and 
motion variances, these LV segmentation methods suffered 
from low robustness and accuracy on 2D echo (4). Besides, 
it was challenging to build a model that would be general 
enough to cover all possible shapes and dynamics of the LV 
with previous methods (10). Here, a state-of-the-art deep 
learning segmentation method is employed for robust and 
accurate segmentation from 2D echo images.

Medical image analysis has recently been revolutionized 
through the widespread adoption of deep learning 
techniques (11). This revolution has primarily been powered 
by supervised machine learning with convolutional neural 
networks (CNNs). CNNs typically operate on images and 
provide one prediction per image sample, e.g., an image 
class label or quantitation of disease burden (12). Recently, 
many medical image analyses have employed CNN models 
(13,14). The most important prerequisite for applying 
CNNs to the medical image process is to have enough 
data that are used to train the CNN models. Currently, LV 
segmentation CNN models are mostly based on MRI or 
CT images because they are considered as standards (15).  
The Left Ventricle Segmentation Challenge (LVSC) 
dataset, organized by the Medical Image Computing 

and Computer Assisted Intervention Society (MICCAI), 
consists of 100 fully delineated MRI images of the LV (16). 
Automated Cardiac Diagnosis Challenge (ACDC) dataset, 
organized by the MICCAI, consists of 100 patient short-
axis MRI images that cover the LV from the base to the 
apex with a thickness of 5 mm (17). Bai et al. generated a 
large-scale dataset, which consists of 4,875 patients with 
93,500 images, including both short- and long-axis MRI 
images (18). Zreik et al. made their dataset with cardiac CT 
angiography (CCTA) short-axis images from 60 patients (19) 
and trained their CNN model. Lieman-Sifry et al. created 
a dataset of 1,143 short-axis MRI images (20). With these 
large datasets, different CNN models are applied to LV 
segmentation tasks. Çiçek et al. showed that 3D U-net (21) 
works better than 2D U-net (22) on the ACDC data. Tan 
et al. used a CNN regression model to segment the LV and 
parameterize the radius of endocardium and epicardium in 
short-axis projections with LVSC data (23). 

In contrast to MRI, there is no large dataset of 2D 
echo images. Cardiac Acquisitions for Multi-structure 
Ultrasound Segmentation (CAMUS) dataset, which consists 
of 450 patients’ long-axis 2-chamber and 4-chamber 
projection images, is the only open large dataset (4). For 
this reason, 2D echo datasets are created for specific 
studies. Veni et al. constructed 69 2D echo 4-chamber 
projections for training U-net (24). Zhang et al. used 
their 2D echo dataset with 214 images of 2-chamber, 
141 images of 3-chamber, and 182 images of 4-chamber 
projections, and 124 short-axis projections, to train their 
U-net model, and applied the segmented results for auto-
diagnosis of the cardiac disease (25). Li et al. used own 
multi-view dataset, which consists of 9,000 images, and 
CAMUS dataset for training their multiview recurrent 
aggregation network (MV-RAN) on the 2-chamber, 
3-chamber, and 4-chamber projection images (26,27). 
However, there was no attempt to segment the standard 
six 2D echo images, i.e., three short-axis projections and 
three long-axis projections (28). Furthermore, previous 
datasets were only concentrated on the end-diastolic and 
end-systolic images. To segment the LV in this study,  
U-net (22) and generative adversarial networks model 
(segAN) (29) were applied on an in-house dataset, which 
consisted of six standard 2D echo projections, each 
representing the entire cardiac cycle. Transfer learning was 
conducted to compensate the limitation of training datasets 
using CAMUS dataset.

Most of the previous studies for volume analysis using 2D 
echo images employed single-plane or biplane algorithms. 
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The single-plane area-length algorithm calculated the LV 
volume by assuming that LV is an ellipsoid and rotating 
the 4-chamber projection about the long-axis. Biplane 
Simpson’s algorithm measured the volume of LV by 
summing volumes of short-axis discs with their radii based 
on the 4-chamber and 2-chamber long-axis projections. 
These volumetric studies focused on images at end-systole 
and end-diastole to calculate the EF. However, visualizing 
the wall motion and reconstructing the LV geometries over 
the cardiac cycle is critical for calculating other clinical 
indices. Also, calculated volumes using these methods 
showed about 35% error at end-diastole and about 45% 
error at end-systole compared to the 3D echocardiography 
or MRI technique (30).

In the current study, six standard projection images, 
which were segmented by deep learning algorithms (U-net 
and segAN) over one cardiac cycle, were integrated into 
a fully automated reconstruction algorithm developed by 
our group (31). Reconstructed 3D LV geometries over 
one cardiac cycle facilitated the calculation of clinical 
indices and tracked the LV wall motion. The results of 
physiological indices and 3D reconstruction models using 
automated segmentation versus expert delineation were 
compared against each other.

Methods

Six standard-projection 2D echo images (three long-axis: 
3-, 2- and 4-chamber projections and three short-axis: base, 
mid, and apex projections) were divided into training and 
testing datasets. CNN models, which segment the LV were 
trained on the training dataset. Trained CNN models were 
evaluated on the test datasets. Segmented images were 
reconstructed to 3D geometry.

Image acquisition

We obtained the 2D echo scans during ongoing preclinical 
studies in ten anesthetized open-chest pigs. Porcine models 
are routinely used in preclinical cardiovascular studies 
because pig’s cardiovascular anatomy closely replicates 
human cardiovascular anatomy and physiology (32). 
However, closed-chest transthoracic ultrasound scans 
in adult domestic pigs do not reproduce transthoracic 
echocardiographic scans in humans because of the 
differences in porcine chest configuration and narrow 
intercostal spaces (33). Therefore, an open chest setting is 
often preferred in preclinical studies. Another advantage is 

that exposing the heart eliminates undesired interposition 
of lungs, allows unrestricted reproduction of standardized 
echocardiographic projections, and provides access for 
experimental instrumentation. 

Six standard 2D echo projections of the porcine LV in situ,  
similar to the ones acquired regularly from human subjects 
during clinical visits, were captured over one cardiac cycle 
(R-wave to R-wave) using a Vivid 7 ultrasound system 
(GE Vingmed Ultrasound AS, Horton, Norway) and an 
M4S transducer operating at 1.7/3.4 MHz (fundamental/
harmonic) frequency. The ultrasound transducer was 
placed directly on the LV surface to obtain both long- and 
short-axis images. A transmission gel was applied between 
the transducer and the LV surface to assure an acoustic 
coupling. The frame rate was between 36 to 55 fps.

Reference segmentation and contouring protocol

Acquired 2D echo images were delineated by experts 
using interactive speckle-tracking software (EchoPAC, GE 
Healthcare). Also the boundary was adjusted, if the tracking 
was not satisfactory based on a visual inspection by an 
experienced operator. Manual detection of the myocardium 
boundary is error-prone and subjective due to typical image 
dropouts and noise. Therefore, a semi-automatic speckle 
tracking band was used as a surrogate of the boundary. 
Speckle tracking methods have been used to obtain LV 
characteristics in cardiovascular research (34,35). The six 
standard projections delineated for a given time instant are 
shown in Figure 1. These delineation images provide the 
ground truth for the segmentation task.

Deep learning segmentation

Dataset and data augmentation

We employed two different datasets in the current study. 
First, the CAMUS dataset was used (4). The CAMUS 
dataset is a fully annotated dataset, which consists of 1,800 
long-axis 2-chamber and 4-chamber projections images 
from 450 patients. The “ground truth image” has four 
labels, 0: background, 1: LV cavity, 2: LV myocardium, and 
3: left atrium. As mentioned above, CAMUS dataset is the 
only open validated dataset for the 2D echo, but includes 
only two long-axis projections. 

Second, an in-house dataset, which consists of six 
standard projections, was created and employed. Table 1 

shows the total number of images and pigs of the in-house 
dataset which were used for training and testing of different 
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Figure 1 The delineated 2D echo images for one time instant. LV boundary is delineated by the experts using the speckle tracking software. 

(A,B,C) are long-axis 3-chamber, 4-chamber, and 2-chamber projections. (D,E,F) are short-axis base, mid and apex projections. LV, left 

ventricle.
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Table 1 Information of the in-house dataset

Projections
Training Testing

Images Pigs Images Pigs

3-chamber 297 8 77 2

4-chamber 229 6 77 2

2-chamber 225 6 77 2

Base 301 8 76 2

Mid 300 8 75 2

Apex 297 8 77 2



1767Quantitative Imaging in Medicine and Surgery, Vol 11, No 5 May 2021

© Quantitative Imaging in Medicine and Surgery. All rights reserved.   Quant Imaging Med Surg 2021;11(5):1763-1781 | http://dx.doi.org/10.21037/qims-20-745

projections. One porcine data consists of 30 to 40 images 
over one cardiac cycle with the same time interval. The 
ground truth images in the in-house dataset have 3 labels: 0: 
background, 1: LV cavity, and 2: LV myocardium; 75 to 77 
images from 2 pigs (different from those used for training) 
for each projection, i.e., about 20% of total images in the 
dataset, were assigned to the testing dataset.

Ronneberger (22) showed that based on the aggressive 
image augmentation, U-net models could generate 
promising results with few training images. Several data 
augmentation techniques were used to overcome the 
limitations of the training dataset. Rotating, cropping, and 
blacking-out techniques were used for data augmentation. 
The training data underwent rotating with 0.7 probability. 
They were randomly rotated between −25 and 25 degrees. 
A blank region, created after rotation, was filled using a 
spline interpolation method. Cropping was conducted 
with 0.7 probability. It filled out the random amount of 
missing edges in the images. Finally, a black-out technique 
by Zhang et al. was applied (25). The technique generated 
circular areas whose pixel values are zero. In this study, a 
random diameter circular area was created with random 
pixel intensities between the maximum and minimum pixel 
values.

CNN algorithm and training

The previously published U-net (22) and a generative 
adversarial network (SegAN) (29) models were employed 
for the LV segmentation. Both models were trained 
separately for all six standard projections with the in-house 
training dataset. Transfer learning approach was used for 
training the models of the long-axis projections. First, the 
models were trained on the CAMUS dataset (4). Based on 
these calculated weights, the models were trained with the 
in-house dataset. Using transfer learning helps to speed 
up the process of model training and can result in a more 
accurate segmentation. 

To train both CNN models, all input images were resized 
to 128×128 pixels. Segmented results from both CNN 
models also had a resolution of 128×128 pixels. The batch 
size for training both models was 16. The Adam optimizer 
was used to optimize each model’s loss. Transfer learning 
was conducted using fine-tuning with reduced learning rate 
for the long-axis projections. First, our model was trained 
with 0.001 learning rate on the CAMUS dataset. Next, this 
trained model was trained with 0.0005 learning rate with 
our dataset. The training was conducted with Python and 
TensorFlow. The experiments were performed on NVIDIA 

TESLA K80 GPU and NVIDIA GeForce GTX 1050 
GPU.

Resizing of input images

CAMUS dataset consists of various image sizes, e.g., 
486×764. Also, in-house dataset has 648×480. In order to 
apply these images to CNN models, these images were 
resized into 128×128 size, which is the same size of both 
CNN models’ first convolution layer. The original in-
house dataset image has 85 pixel/cm pixel spacing. After 
resizing, input image has 20 pixel/cm pixel spacing. This 
downsampling may reduce the segmentation performance. 
This reduction can be solved by increasing the size of the 
first convolution layer. However, there is a trade off on the 
memory and computational costs. In this study, we chose 
128×128 based on our computational environment.

Original image’s height-width ratio was also changed 
during the resizing process. This problem was solved with 
cropping technique during the data augmentation process. 
Before images were revised into 128×128, empty region 
was added to the original image’s edge (both gray and 
labeled images). As a result, original images size became 
(648+a)×(128+b), where a and b are the random numbers. 
These cropped images were resized into 128×128 and 
became input images of CNN models. Consequently, our 
CNN models were trained on the images with various 
height-width ratios.

U-net

Well-established U-Net neural network architecture 
proposed by Ronneberger (22) was the first algorithm used 
in this study. This architecture has been quite successful 
in biomedical segmentation tasks (11). U-net consists of 
an encoder performing the contracting and a decoder 
performing the expansion. Figure 2 illustrates the U-net 
model used in this study. The model consists of 4 max-
pooling layers in the encoder and 4 transposed convolution 
layers in the decoder. Max-pooling down-samples the 
images with a 2×2 pooling kernel, 2 strides, and the same-
padding method. Similarly, the transposed convolution layer 
up-samples the images with 4×4 kernel, 2 strides, and the 
same-padding method. After each transposed convolution 
layer up-samples the images, same-sized images from the 
encoder are concatenated to recover fine features, which are 
lost during the downsampling. All convolution layers use 
3×3 kernel, rectified linear unit (ReLU) activation function, 
and L2 regularization. Batch normalization is used for the 
normalization scheme. The final convolution layer uses a 
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1×1 kernel and generates feature maps that have the same 
number of label classes (3 for our dataset) for prediction. 
The multi-dimensional dice calculates the loss.

SegAN

The second algorithm used in this study is the segAN, 
a neural  network architecture for medical  image 
segmentation, proposed by Xue (29). Figure 3 shows the 
segAN structure. A generative adversarial network model 
(GAN) consists of a generator (a network that learns how 
to sample from the underlying distribution of the sample) 
and discriminator (a network that helps improve the quality 
of the data-points sampled by the generator). In the segAN 
architecture, the segmentor (which performs as a generator) 
produces the predicted segmentation images from original 
images with encoder-decoder architecture. The critic (which 
performs as a discriminator) has two inputs, one from the 
segmentor and the other from the ground truth images, and 
calculates the loss between two input images. During the 
training, the segmentor aims to minimize the loss, whereas 
the critic aims to maximize the same loss. SegAN model is 
improved while two structures conduct a min-max game. 
SegAN uses a multi-scale feature loss function based on 
the mean absolute error (MAE) and dice loss. Xue et al. 
showed that segAN outperformed other models, including 
U-net, in the BRATS brain tumor segmentation dataset. 

After training, segmentor was used for the LV segmentation 
task. For the segmentor architecture, U-net structure was 
employed.

Post-processing

Some segmented results from CNNs models made 
independent island-like structures in the background and an 
incomplete LV boundary line. Therefore, the post-process 
was conducted to treat this incompleteness. Morphological 
Transformation, which is based on the erosion and dilation 
function (36), was used for our post process. Erosion and 
dilation combine two sections, respectively, based on 
the vector subtraction and addition. Erosion, followed 
by dilation, was used for removing the island structures. 
Inversely, dilation followed by erosion was used to complete 
the LV boundary line.

Evaluation of the CNNs models

The performance of the level-set method, which is often 
used for the automatic segmentation process (37), was 
calculated on our test dataset to compare the two CNN 
models with a non-deep learning method. Open-source 
software was used to apply the level-set method (38). Five 
images were selected at the same time interval from each of 
the two pigs in the testing set, a total of 10 images, for each 
projection to test the level-set method.

Figure 2 The U-net architecture. Each layer consists of two convolution layers followed by batch normalization layers. Blue and red arrows 

indicate max pooling and deconvolution layer followed by batch normalization. Green arrows are concatenation operations.
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For quantitative comparison and assessment of the 
segmentation results, four widely used metrics in the 
segmentation research, the dice metric, precision, 
sensitivity, and Hausdorff distance, were calculated.

Let P and G represent the segmented image and ground 
truth image, respectively. The dice metric (39) calculates 
the overlap between P and G, and is defined as:

2 P G
Dice

P G

∩
=

+  [1]

The value varies from 0 (no overlap) to 1 (perfect 
overlap). The higher the value of the dice metric, the 
better the segmentation. The precision and sensitivity (40) 
evaluate the relevance of P and G. Precision and sensitivity 
are defined as follows:

TP
Precision

TP FP
=

+
  [2]

TP
Sensitivity

TP FN
=

+
 [3]

where TP, FP, and FN are the numbers of pixels, which are 
correctly classified as labels, incorrectly classified as labels, 
and incorrectly classified as not labels in P, respectively. 

These metrices are normalized (i.e., they vary from 0 to 1). 
High precision and sensitivity mean that the model makes 
significantly more relevant results than irrelevant results 
based on the segmented (P) and ground truth (G) images. 
The Hausdorff distance (41) calculates the maximum 
distance between the contours of P(δP) and G(δG). It is 
defined as:

( ) ( ). . (max , , max , )
i P i G

Hausd dist max d i G d i P
δ δ

δ δ
∈ ∈

=   [4]

where d(i,δ) is the shortest distance from a point i to a 
contour δ. A low Hausdorff distance value represents a good 
segmentation result. The unit of the Hausdorff distance is 
millimeter (mm), which is calculated from information in 
the echo images.

Statistical analysis

Kruskal-Wallis test was performed for the statistical  
analysis (42). This test is the non-parametric test and 
samples do not need to follow the normal distribution. 
Kruskal-Wallis test assumes that the samples are extracted 
from the same continuous distribution. P value was 
calculated using this test and performed as the criteria for 

Figure 3 The segAN architecture. In segmentor, U-net architecture is used for segmentation. In critic, two masked images are used to 

calculate the multi-scale loss. Masked image shows the segmented part of the input image (here, LV myocardium). LV, left ventricle.
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the statistical effectiveness.

3D reconstruction

Reconstruction algorithm

3D LV geometries over one cardiac cycle were generated 
from six standard 2D echo projection images using a 3D 
reconstruction algorithm developed by our group (31). This 
algorithm consists of seven steps: endocardium detection, 
data smoothing, temporal interpolation, sectional scaling 
and orientation, spatial interpolation, temporal smoothing, 
and mesh generation. During the sectional scaling and 
orientation process, six sections are first arranged based on 
the nominal positions. Next, optimization is conducted by 
minimizing the difference between the reconstructed and 
segmented sections.

The dynamic 3D reconstruction algorithm takes six 
standard-projection delineated videos as the input. One 
cardiac cycle images, which were generated from the CNN 
model, were concatenated into a video clip. The size of the 
output images from CNN models was fixed to 128×128 
pixels. Therefore, before concatenating the images, all 
images were first resized to the original 2D echo image size 
(e.g., 648×480 pixels) to recover the original LV dimensions. 
During the 3D reconstruction process, the inner LV 
boundary of the cavity section was extracted.

Evaluation method or model quantitative assessment

Several LV physiological parameters were calculated 
based on the pig’s 3D reconstructed volume to evaluate 
the segmentation results. In this study, reconstructed LV 
volume with ground truth images is the benchmark volume. 
Reconstructed LV volume using each CNN models’ 
segmented images were compared with this benchmark. LV 
volume was calculated on every time instance during the 
dynamic 3D reconstruction process. In the reconstruction 
process, non-dimensional time was used to associate each 
projection’s different time instances. From one cardiac cycle 
volume data, EF, stroke volume (SV), and cardiac output 
(CO) were calculated. These parameters are widely used in 
cardiac disease diagnosis and perform as the indicators of 
the LV assessment (43). 

The EF is defined as:

DV SV

DV

E E
EF

E

−
=   [5]

where EDV and ESV are end-diastolic and end-systolic 
volumes over the given cardiac cycle.

The SV is the difference between the end-diastolic and 
end-systolic volumes. Finally, CO, i.e., the volume of the 
blood that is ejected over one minute, is defined as:

  CO HR SV= ×  [6]

where HR is the heart rate.

Results

Segmentation result

CAMUS dataset segmentation

Two CNN models were tested on the CAMUS dataset 
to verify the method before employing on the in-house 
dataset. Additionally, the effect of the post-process, which 
employed morphological transformation, was calculated on 
this dataset. Among 450 patients’ images, which are open 
to the public, 400 patients’ images were assigned to the 
training set and the rest of (other 50) patients’ images were 
used for the testing set. 

Table 2 reports the dice metric, precision, sensitivity, 
and Hausdorff distance of U-net and segAN models. Each 
model’s metric was calculated twice, i.e., before and after 
the post-processing. The dice metric of the LV cavity is 
0.920 for the U-net and 0.917 for the segAN (P value: 
0.5617). The dice metric of the LV myocardium is 0.860 for 
the U-net and 0.859 for the segAN (P value: 0.6068). The 
precision and sensitivity are evaluated similar to the dice 
metric. The Hausdorff distance of the LV cavity is 4.92 mm 
for the U-net and 5.14 mm for the segAN (P value: 0.3992). 
The Hausdorff distance of the LV myocardium is 6.23 mm 
for the U-net and 6.18 mm for the segAN (P value: 0.5124). 
These metrics demonstrate the high performance of both 
U-net and segAN. However, the difference between U-net 
and segAN on the metrics was not statistically significant  
(P value >0.05).

The effect of the post-process was also calculated on the 
Table 2. Dice metric increases from 0.915 to 0.920 for the 
LV cavity (P value: 0.7624) and from 0.858 to 0.860 for the 
LV myocardium (P value: 0.7457) on the U-net model, and 
increases from 0.912 to 0.917 for the LV cavity (P value: 
0.7216) and from 0.855 to 0.859 for the LV myocardium  
(P value: 0.6411) on the segAN model.

The Hausdorff distance decreases from 5.17 to  
4.92 mm for the LV cavity (P value: 0.1641) and from 6.43 
to 6.23 mm for the LV myocardium (P value: 0.0778) on the 
U-net model, and decreases from 5.25 to 5.14 mm for the 
LV cavity (P value: 0.7491) and from 6.28 to 6.18 mm for 
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the LV myocardium (P value: 0.4573) on the segAN model. 
The effect of the post-process stands out on the Hausdorff 
distance. However, the effect of post-processing was not 
statistically significant (P value >0.05).

In-house dataset segmentation

U-net and segAN models were trained on the in-house 
training dataset and tested on the testing dataset for the 
six standard projections separately. Figure 4 illustrates the 
original 2D echo images (Gray), predicted segmentation 
images using the U-net and segAN models (U-net and 
segAN), ground truth images (Ground Truth), and level-set 
segmentation images (Level-set) on six standard projections. 
Green and red regions indicate LV cavity and LV 
myocardium, respectively, in the U-net, segAN, and ground 
truth images. The level-set method can only segment the 
LV cavity which is denoted by a red line in the Level-set 
images.

Figure 4 shows that both the U-net and segAN models 
achieve high performance on LV segmentation. Predicted 
segmentation images agree with ground truth images 
converted from expert’s delineation for both the long-axis 
(Figure 4A,B,C) and short-axis (Figure 4D,E,F) projections. 
The segmentation difference between U-net and segAN is 
small and hard to see in the figure.

For the long-axis projections, the level-set method also 
shows a good agreement with the ground truth in the LV 
cavity region. However, the existence of valves, which 
has similar brightness to the LV wall, disturbs the exact 
segmentation near the base. For the short-axis projections, 

the presence of the valve orifice, trabeculae, and papillary 
muscles restricts the LV cavity segmentation. The level-set 
method generated the curved circular segmentation results 
for the LV cavity.

Table 3 shows the dice metric, precision, sensitivity 
and Hausdorff distance of two CNN models and level-
set method calculated on the testing dataset. Metrics of six 
projections are calculated separately. Mean value of each 
metric was defined as:

3 2 4

6

ch ch ch Base Mid Apex

Mean

M M M M M M
M

+ + + + +
=   [7]

where M is each metric (3-chamber: 3ch, 2- and 4-chamber: 
2 and 4ch). 

The mean dice metric of U-net model is 0.903 for the LV 
cavity and 0.787 for the LV myocardium. For the LV cavity, 
the mid and apex projections show smaller dice metric than 
others (P value: 4.0206×10−5). For the LV myocardium, 
the 2-chamber view shows the smallest dice metric value  
(P value: 4.4151×10−4).

The mean dice metric of segAN is 0.912 for the LV 
cavity and 0.801 for the LV myocardium. For the LV cavity, 
segAN results show similar values for specific projections  
(P value: 1.3711×10−4). For the LV myocardium, the 
2-chamber view shows the smallest dice metric value  
(P value: 4.7263×10−5).

The mean dice metric of the level-set method is 0.821 
for the LV cavity and mean Hausdorff distance is 3.64 
mm. For the LV cavity, the mid and apex projections show 
smaller dice metrics than others (P value: 4.1672×10−8).

From all metrics, U-net and segAN generated better 

Table 2 The comparison of metrics: Dice metric, precision, sensitivity, and Hausdorff distance (HD) between the before and after the  
post-process for both U-net and segAN on CAMUS dataset (4-chamber and 2-chamber projections)

Method Label Post-process Dice Precision Sensitivity HD (mm)

U-net LV cavity Before post-process 0.915±0.066 0.920±0.105 0.919±0.059 5.17±1.39

After post-process 0.920±0.058 0.929±0.093 0.921±0.060 4.92±1.27

U-net LV myocardium Before post-process 0.858±0.066 0.852±0.089 0.867±0.077 6.43±1.40

After post-process 0.860±0.063 0.861±0.063 0.871±0.077 6.23±1.25

SegAN LV cavity Before post-process 0.912±0.079 0.907±0.123 0.930±0.053 5.25±1.90

After post-process 0.917±0.071 0.916±0.112 0.932±0.053 5.14±1.71

SegAN LV myocardium Before post-process 0.855±0.066 0.852±0.092 0.862±0.078 6.28±1.19

After post-process 0.859±0.064 0.862±0.086 0.866±0.077 6.18±1.17

The values are mean ± standard deviation.
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results than the level-set method (P value <0.05). Especially, 
level-set method showed a lower performance on the 
short-axis projections than the CNN models. Both U-net 
and segAN models generated better results on LV cavity 
than LV myocardium (P value <0.05). The segmentation 
performance between U-net and segAN is not significant 
and different with each metrics. For the LV cavity, U-net 
generated better results on the precision and Hausdorff 
distance. However, segAN made better results on the dice 
metric and sensitivity.

Figure 5 shows the final segmentation results. After the 
resizing process, the LV in Figure 5 has the original height-
width ratio and pixel-mm ratio. The videos generated by 

these images became the input of the 3D reconstruction 
algorithm. Even though the LV cavity made better 
segmentation results than LV myocardium, segmented 
images of LV myocardium were used as the input of the 
reconstruction algorithm because the reconstruction 
algorithm only uses the inner boundary of LV. 

Worst segmentation case

Figure 6 shows the worst segmentation results using CNN 
models. Both 2-chamber and mid projections’ images were 
segmented by U-net. The dice metrics of 2-chamber and 
mid projection images are 0.623 and 0.617, respectively. 

Figure 4 Illustration of the segmentation results for six standard projections. The first row shows original 2D echo images (Gray), second 
and third rows show predicted segmented result from U-net and segAN models (U-net and segAN), fourth row shows the ground truth 

images (Ground Truth), and the last row represents the segmentation results using level-set method (Level-set). Red region represents LV 

myocardium and green region represents LV cavity. Red line in the Level-set images denotes the LV cavity. Images are the one time instant 

of each projection’s cardiac cycle. Each column shows long-axis (A) 3-chamber, (B) 4-chamber and (C) 2-chamber and short-axis (D) base, (E) 

mid and (F) apex projections.

Gray 

U-net 

SegAN 

Ground Truth 

Level-set

A B C D E F
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Table 3 The comparison of metrics: Dice metric, precision, sensitivity and Hausdorff distance (HD) between the segAN, U-net, and level-set 
methods

Methods Projections Section Dice Precision Sensitivity HD (mm)

U-net 3-chamber Cavity 0.920±0.017 0.902±0.044 0.940±0.023 2.96±0.24

Myocardium 0.814±0.017 0.869±0.040 0.769±0.046 3.61±0.25

2-chamber Cavity 0.927±0.023 0.930±0.065 0.929±0.027 2.72±0.38

Myocardium 0.715±0.031 0.818±0.040 0.640±0.056 4.23±0.29

4-chamber Cavity 0.900±0.011 0.889±0.028 0.913±0.020 3.18±0.41

Myocardium 0.772±0.019 0.811±0.034 0.738±0.020 3.89±0.39

Base Cavity 0.931±0.037 0.917±0.083 0.954±0.054 2.20±0.26

Myocardium 0.860±0.041 0.896±0.039 0.827±0.049 3.14±0.33

Mid Cavity 0.888±0.022 0.918±0.063 0.863±0.036 2.92±0.24

Myocardium 0.761±0.079 0.751±0.151 0.791±0.035 4.19±0.57

Apex Cavity 0.854±0.040 0.928±0.109 0.811±0.093 2.26±0.38

Myocardium 0.804±0.059 0.829±0.094 0.785±0.040 3.05±0.29

Mean Cavity 0.903 0.914 0.901 2.71

Myocardium 0.787 0.829 0.758 3.68

SegAN 3-chamber Cavity 0.915±0.014 0.903±0.033 0.929±0.025 3.57±0.71

Myocardium 0.787±0.034 0.860±0.033 0.728±0.056 3.76±0.36

2-chamber Cavity 0.923±0.021 0.912±0.051 0.938±0.022 3.09±0.33

Myocardium 0.697±0.032 0.816±0.036 0.611±0.048 4.44±0.28

4-chamber Cavity 0.914±0.016 0.894±0.040 0.936±0.015 3.29±0.49

Myocardium 0.805±0.022 0.845±0.029 0.769±0.029 3.64±0.30

Base Cavity 0.917±0.039 0.891±0.088 0.954±0.053 2.27±0.31

Myocardium 0.847±0.042 0.889±0.043 0.810±0.046 3.21±0.43

Mid Cavity 0.903±0.038 0.874±0.079 0.941±0.045 2.46±0.27

Myocardium 0.799±0.102 0.758±0.162 0.865±0.043 3.64±0.77

Apex Cavity 0.901±0.072 0.894±0.142 0.930±0.060 2.27±0.40

Myocardium 0.864±0.101 0.864±0.138 0.852±0.060 3.03±0.54

Mean Cavity 0.912 0.895 0.938 2.82

Myocardium 0.801 0.842 0.772 3.62

Level-set 3-chamber Cavity 0.857±0.048 0.775±0.090 0.968±0.032 3.61±0.57

2-chamber Cavity 0.896±0.022 0.907±0.049 0.890±0.056 4.02±0.54

4-chamber Cavity 0.885±0.012 0.549±0.057 0.931±0.053 3.88±0.41

Base Cavity 0.815±0.050 0.788±0.103 0.856±0.040 4.37±0.36

Mid Cavity 0.784±0.067 0.892±0.120 0.704±0.080 3.26±0.46

Apex Cavity 0.695±0.081 0.866±0.057 0.555±0.114 2.68±0.29

Mean Cavity 0.821 0.846 0.817 3.64

The values are mean ± standard deviation.
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Figure 5 One-time instant of the LV segmented input videos 

clip using CNN for the 3D reconstruction algorithms. Long-

axis (A) 3-chamber, (B) 4-chamber, and (C) 2-chamber and short-

axis (D) base, (E) mid, and (F) apex projections. A, anterior; AS, 

anteroseptal; Ap, apical; B, basal; I, interior; IL, inferolateral; L, 

lateral; S, septal; CNN, convolutional neural network.

Figure 6 Worst cases of the segmentation of LV myocardium. (A) 

2-chamber projection (long-axis) and (B) mid projection (short-axis) 

cases. Red region represents LV myocardium from ground truth 

image and green region represents the LV myocardium segmented 

by U-net. LV, left ventricle.
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On the 2-chamber image, segmented LV myocardium 
(green region) is thicker than the ground truth one. Most 
of the thicker part is located outside the LV cavity. Left-
end part of the segmented myocardium was found to get 
out of the ground truth more than the right-end. In this 
case, the CNN model confused the white (bright) part 
with the myocardium. On the other hand, the segmented 
LV myocardium of mid projection image was thinner than 
the ground truth one. Left-upper part of the segmented 
myocardium was the most deviated part. Here, the CNN 
model confused the white part as the myocardium again.

3D reconstruction result

Figure 5 shows the first frame images of input videos 
processed by the dynamic 3D reconstruction algorithm 
using CNN on segmentation. In this study, the benchmark 
to evaluate the reconstructed geometries’ physiological 
parameters was the model reconstructed from ground truth 
images, which were delineated by experts. Two porcine LV 

geometries were reconstructed using test dataset images.
Table 4  reports the physiological parameters of 

reconstructed geometries from the ground truth, U-net 
segmented, and segAN segmented images. The average 
error of ejection pressure using the U-net model was 14.0%. 
The segAN model made 8.4% average error of ejection 
pressure. For the SV and CO, the U-net model made an 
average 6.4% error and segAN model made a 10.2% error. 
These errors are within the 20% error of previous methods 
using 2D echo compared to the gold standard MRI (44-46).  
These results showed that the U-net model generated 
reconstructed volumes, which represented the absolute 
volume value better than the segAN model. However, the 
segAN model made LV shapes, which represented the 
volume trend better than the U-net model. 

Figure 7 shows the comparison between LV geometries. 
Yellow LV shape was reconstructed with ground truth 
images. Red and green LV shapes were reconstructed with 
segAN and U-net segmented images, respectively. Figure 8  
illustrates the 3D reconstruction results over one cardiac 
cycle generated from segAN segmentation results. Each 
shape represents the specific time instances with the same 
time intervals during one cardiac cycle using a fixed apex 
position and the same point of view. Starting at the end-
diastole, the model contracts during the systole and expands 
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Figure 7 LV 3D reconstructed geometry comparison. Yellow LV 

shape is reconstructed with ground truth images. (A) Green LV 

shape is reconstructed with U-net segmented images. (B) Red LV 

shape is reconstructed with segAN segmented images. LV, left 

ventricle.

Figure 8 One cardiac cycle LV 3D reconstruction results. (A) Reconstruction shapes and (B) volume-time graphs of one cardiac cycle with 

red line which represents each shape’s corresponding time instance. t* represents the non-dimensional time.

Table 4 Physiological parameter comparison. GT denotes the geometry, which was reconstructed from ground truth images

Porcine Parameter GT U-net segAN

Case1 EF 0.37 0.33 0.36

SV 29.5 29.8 32.4

CO 2.18 2.21 2.39

Case2 EF 0.40 0.33 0.34

SV 26.3 23.2 23.6

CO 1.94 1.72 1.74

GT geometries performed as reference. EF, ejection pressure; SV, stroke volume (mL); CO, cardiac output (L/min).
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during the diastole.

Calculation time

U-net and segAN models were tested using NVIDIA 
GeForce GTX 1050 GPU. The level-set method was 
tested on the Intel® Core™ i7-7700HQ CPU. U-net took 
53±2 seconds for segmenting the one cardiac cycle images, 
between 40 to 42 images, i.e., 1.3 seconds per image. The 
segAN model required average 104±8 seconds to segment 
the one cardiac cycle images, i.e., 2.51 seconds per image. 
The level-set method took 75±2 seconds for segmenting 
one image.

3D reconstruction algorithm was operated on the 
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Intel Xeon E5-2670 v2 CPU. It required approximately  
49 seconds to reconstruct the geometry of one cardiac cycle.

Segmentation of the six projection images over one 
cardiac cycle and 3D reconstruction using U-net required 
367 seconds on average.

Discussion

In-house dataset analysis

Our in-house dataset is different from the datasets 
previously available for segmentation of LV in 2D echo. 
The previous datasets only consisted of one- or two-time 
instants, e.g., end-diastolic and end-systolic images, from 
each case. Those datasets had 60 to 450 different cases to 
support data diversity (4,24,25). However, our in-house 
dataset consisted of 30 to 40 images from one case and 
had 10 different cases. The segmentation results showed 
that, if the total number of images is enough, our new 
kind of dataset also achieves a high performance on the 
segmentation task. However, due to the small number of 
cases, the limitation of the current segmentation model is 
that it only worked well on similar 2D echo images, which 
are obtained from the same transducer. This problem can 
be solved by increasing the number of cases.

In the current study, six standard projections were 
trained individually based on in-house dataset. There is a 
clear structure difference, such as the number of chambers 
in long-axis projections, between six standard projections 
which are captured during the 2D echo image acquisition 
process. Therefore, each projection’s images have similar 
arrangement of structures and shape of cardiac structures. 
For this reason, training individual projections showed a 
higher segmentation performance than training with all  
projections together. For example, base projection’s LV 
cavity segmentation showed that the U-net model, which 
was trained on the base, mid, and apex images, generated 
0.872 dice metric and 2.41 mm Hausdorff distance, whereas 
training with only the base images generated 0.931 Dice 
metric and 2.20 mm Hausdorff distance.

Our segmentation results show that the usage of 2D echo 
images can be extended with CNN models by removing 
segmentation restrictions. Currently, CNN models are 
actively used in the segmentation of MRI and CT cardiac 
images (15). Most of the LV MRI and CT datasets consist 
of dense short-axis images. CNN models achieve more 
than 0.9 on the dice loss and precision for these image 
segmentation task (17-19). Our study shows that the CNN 

models also can achieve a similar accuracy on 2D echo 
projections. It suggests that if there is a large dataset for 
the segmentation, the data types, e.g., MRI, CT and echo, 
would not significantly affect the performance of the CNN 
models.

Post-process analysis

CNN models’ segmented results showed some unexpected 
island-like structures in the background. The post-process 
followed the segmentation task to remove these island-
like structures. The island-like structures caused a higher 
Hausdorff distance, which calculates the maximum distance 
between two contours, because most of the island-like 
structures were located on the edge of the background. 
However, the dice metric, precision, and sensitivity did 
not decrease a lot, because they occupied a small number 
of pixels compared to all of pixels of the LV cavity and 
myocardium. Table 2 represents the effect of the post-
process. Comparing the metrics before and after conducting 
the post-processing, the Hausdorff distance was decreased 
around 1.4% to 4.7%, while other metrics increased less 
than 1%. However, the metrices of LV myocardium were 
still worse than LV cavity’s metrics after post-processing. 
There are two main reasons for such lower metric values. 
First, the total number of pixels were inherently different 
between the LV cavity and myocardium. LV cavity had 
a larger number of pixels which is advantageous for 
calculating the metrics. Second, current post-process 
method removed the isolated part whose diameter is 
less than the input value. This input value was chosen to 
be less than the LV myocardium thickness, because the 
segmented LV myocardium should not be affected by the 
post-process. For this reason, the island-like structures 
whose diameters were larger than the LV myocardium 
thickness were not removed by the current post-
processing. Other background removing methods, such as 
the region of interest technique, should be developed to 
increase the segmentation accuracy.

Comparing U-net, segAN, and level-set methods

Figure 9 shows the comparison between the U-net and 
segAN models using the Tukey box of dice metric results. 
From these plots, U-net outperformed the segAN for the 
2-chamber and base projections. In contrast, for the apex 
projection, segAN performed better than the U-net. For 
the other three projections, the superiority of one model is 
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not clear. Based on the segmentation time, the segAN took 
twice time than the U-net on the same GPU.

Table 3 shows that the U-net and segAN models 
outperformed the level-set method on the LV segmentation 
task for the 2D echo images. The level-set method caused 
several specific problems. For the long-axis, the aortic and 
mitral valves, which were located between the LV and left 
atrium, disturbed the exact LV cavity segmentation. The 
seriousness of this problem changed over the cardiac cycle 
with opening and closing of the valves. The worst-case 
occurred when the valve was open. The level-set method 
could not distinguish between the LV and the left atrium. 
To get a reasonable breakpoint between the two structures, 
the total number of iterations should be carefully controlled 
by experts for the level-set, i.e., not fully automatic. For the 
short-axis, the existence of trabeculae and papillary muscle, 
which had similar brightness on 2D echo images, caused 
distorted segmentation results. However, CNN models 
generated segmentation results regardless of these problems 
on both long- and short-axis images. Furthermore, the 
CNN techniques were fully automatic. In contrast, the 
level-set method needed a manual starting box, which 
should be chosen carefully. Finally, the level-set method 
spent more calculation time than the machine learning 
models. The level-set method took almost 50 minutes to 

segment the images for one cardiac cycle.

Limitations

To make up for the insufficient datasets, transfer learning 
and augmentation techniques were employed. However, 
the different quality of the 2D echo images, e.g., sparse 
borders, variation in echo, and image noise, restricted the 
application of the trained models. When the model tries to 
segment different quality images, it generates non-robust 
segmentation results with incomplete segmentation lines 
and large island-like structures. Also, some 2D echo images 
depict cavities other than the LV. These limitations could be 
improved by training with a larger and diverse dataset.

The in-house dataset was obtained from open-chest pigs. 
As mentioned in the methods section, pig's cardiovascular 
anatomy closely replicates human cardiovascular anatomy 
and physiology (32) and open-chest is preferred as it allows 
reproduction of standardized echocardiographic projections 
which is not possible in closed-chest due to differences in 
chest configuration and intercostal space between pigs and 
humans (33). Open-chest echocardiographic scans do not 
include signal loss (attenuation) that would otherwise be 
caused by soft tissues within an intercostal imaging window 
during human transthoracic echocardiography. The avoided 

Figure 9 Tukey box plots computed from the dice metric. Each plot’s numbers denote dice metric of 1: LV myocardium using U-net, 2: LV 

myocardium using segAN, 3: LV cavity using U-net, and 4: LV cavity using segAN. LV, left ventricle.
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signal loss is generally an advantage because attenuation 
artifacts do not compromise the experimental scans’ quality, 
i.e., open-chest porcine echo has better quality than human 
echo. Nevertheless, we have shown that the method 
works on humans using the CAMUS dataset. In addition, 
the method was pre-trained (transfer learning) using the 
CAMAS dataset for two of the standard cross-sections 
(long-axis). Therefore, the methods used in this study can 
also be applied to humans.

Future work

For the future work, the automatic delineation method 
needs to be extended to segment the valves, which is not a 
trivial task because only small numbers of pixels represent 
the valves in standard 2D echo projections thus making it 
hard to distinguish them from LV ends in long-axis and 
tendineae in short-axis projections. Nevertheless, such 
capability enables creating a closed geometry that can 
be used for image-based computational fluid dynamics 
(CFD) simulations (47,48) and fluid-structure interaction 
simulations (49).

Here, we have used several pigs for training and testing. 
The study is designed to facilitate the translation to clinical 
data by using standard cross-sections for echo acquisition. 
In fact, we showed the method could successfully segment 
the human echo data in CAMUS dataset. Nevertheless, 
the application of the method to real clinical data is left for 
future.

Conclusions

In this study, a dynamic 3D LV model is automatically 
generated from six standard gray-scale 2D echo images. 
This process consists of automatic segmentation of the 2D 
echo images followed by 3D reconstruction of the segments. 
The deep learning (CNN) segmentation method facilitates 
a more rapid and consistent 3D reconstruction model from 
2D echo images.

Two CNN models, U-net and segAN, have been 
employed to segment the LV from 2D echo images 
automatically. We trained the CNN models with an in-
house dataset, which uniquely consisted of three long-axis 
and three short-axis LV projections over one cardiac cycle. 
Transfer learning with a CAMUS dataset (for two of long-
axis projections) and augmentation methods were used to 
compensate for a relatively small amount of training data.

The assessment metrics and segmented images show that 

both U-net and segAN achieve high performance on LV 
segmentation. U-net mean average 0.903 and 0.787 dice 
metrics for the LV cavity and myocardium, respectively. 
SegAN achieved mean 0.912 and 0.801 dice metrics for 
the LV cavity and myocardium, respectively. In addition, 
segmentation results were evaluated by using a dynamic 3D 
reconstruction algorithm. 

A fully automated pipeline, from 2D echo images to a 
3D geometric geometry of LV, was generated by combining 
the machine learning segmentation technique and a 3D 
reconstruction algorithm. This pipeline can help the 
rapid and hi-fidelity analysis of echo images in clinical 
applications to visualize 3D LV wall motion and evaluate 
global function. Our methodology offers a new direction 
in patient-specific LV modeling and simulation to augment 
the experts’ effort and simultaneously enhance the accuracy 
of their analysis
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