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Abstract

Our strategy for automatic selection in potentially non-linear processes is: test for non-linearity in
the unrestricted linear formulation; if that test rejects,specify a general model using polynomials, to
be simplified to a minimal congruent representation; finallyselect by encompassing tests of specific
non-linear forms against the selected model. Non-linearity poses many problems: extreme obser-
vations leading to non-normal (fat-tailed) distributions; collinearity between non-linear functions;
usually more variables than observations when approximating the non-linearity; and excess reten-
tion of irrelevant variables; but solutions are proposed. Areturns-to-education empirical application
demonstrates the feasibility of the non-linear automatic model selection algorithmAutometrics.

JEL classification:C51; C22; C87

Keywords:Econometric methodology; model selection;Autometrics; non-linearity; outliers; returns
to education.
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1 Introduction

It is a pleasure to contribute a chapter on non-linear model selection to a volume in honor of Peter C.
Young, who has himself contributed so much to modeling, to understanding and capturing key aspects
of non-linearity, and to data basing the choice of which models work in a wide range of important
areas in statistics, environmental studies and economics.While we do not also address his interests in
forecasting, we share them strongly and have tried to advance that subject in other publications–and as
a further objective, trying to establish the general approach adopted here for dynamic, non-stationary
processes. We congratulate Peter on his successes to date and look forward to many more.

Economic processes are complicated entities, which are often modeled by linear approximations,
leading to possible mis-specification when non-linearity matters. This chapter develops a strategy for se-
lecting non-linear in variables models for cross-section data, following the automatic general-to-specific
(Gets) multi-path search algorithms ofPcGets(see Hendry and Krolzig, 2001, which built on Hoover
and Perez, 1999), andAutometricswithin PcGive(see Doornik, 2009, and Hendry and Doornik, 2009).
The general properties ofAutometricsmodel selection are established in Castle, Doornik and Hendry
(2009a), multiple breaks are investigated by Castle, Doornik and Hendry (2009b), and an empirical ap-
plication is provided in Hendry and Mizon (2009). These properties ofAutometricscan be summarized
as follows for a linear static model. When there areK candidate variables, andk of these are relevant,
thenα (K − k) irrelevant variables will be retained on average, whereα is the chosen significance level.
Because it selects variables (K), rather than models (2K ), that result continues to hold even whenK is
greater than the sample size,N , providedN > k. Also, thek relevant variables will be retained with a
probability close to the theoreticalt-test powers determined by the non-centralities of their parameters.
For example, ifK − k = 100 andα = 0.01, then one irrelevant variable will be retained on average
by chance sampling, despite the plethora of candidate variables. Moreover, coefficients with|t|-values
greater than aboutcα = 2.6 will be retained on average. Next, although selection only retains variables
whose estimated coefficients have|t| ≥ cα, the resulting selection bias is easily corrected, which greatly
reduces the mean-square errors (MSEs) of retained irrelevant variables: see Hendry and Krolzig(2005).
Finally, the terminal models found byAutometricswill be congruent (well specified), undominated re-
ductions of the initial general unrestricted model (GUM). We will not discuss the details of the multi-path
search algorithms that have made such developments feasible, as these are well covered elsewhere (see
e.g., Hendry and Krolzig, 2001, Hendry and Doornik, 2009, Doornik, 2009, and Doornik, Hendry and
Nielsen, 2009): the reader is referred to those publications for bibliographic perspective on this exciting
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and burgeoning new field. The latest version of the model selection algorithmAutometricsis likelihood
based, so can accommodate discrete variable models such as logit and probit, along with many other
econometric specifications, but we focus on non-linear regression analysis here.

Thus, we investigate non-linear modelling as part of a general strategy of empirical model discovery.
Commencing with a low-dimensional portmanteau test for non-linearity (see Castle and Hendry, 2009),
non-rejection entails remaining with a linear specification, whereas rejection leads to specifying a gen-
eral non-linear, identified and congruent approximation. Next, the multi-path search procedure seeks a
parsimonious, still congruent, non-linear model, and thatin turn can be tested against specific non-linear
functional forms using encompassing tests (see, e.g., Mizon and Richard, 1986, and Hendry and Richard,
1989), and simplified to them if appropriate.

Since the class is one of non-linear in variables, but linearin parameters, the most obvious approach
is to redefine non-linear functions as new variables (e.g.,x2i = zi say), so the model becomes linear
but larger, and standard selection theory applies. However, non-linearityper seintroduces five specific
additional problems even in cross sections, solutions to which need to be implemented as follows.

First, determining whether there is non-linearity. The low-dimensional portmanteau test for non-
linearity in Castle and Hendry (2009) is applied to the unrestricted linear regression to check whether
any non-linear extension is needed. Their test is related tothe test for heteroskedasticity proposed by
White (1980), but by using squares and cubics of the principal components of the linear variables, the
test circumvents problems of high-dimensionality and collinearity, and is not restricted to quadratic de-
partures. Providing there are fewer linear variables,K, than about a quarter of the sample size,N , the
test can accommodate large numbers,MK , of potential non-linear terms, including more thanN , where
for a cubic polynomial:

MK = K (K + 1) (K + 5) /6.

If the test does not reject, the usualGetsapproach is applied to the linear model. Otherwise, a non-
linear, or indeed non-constant, model is needed to characterize the evidence, so these possibilities must
be handled jointly, as we do below.

Second, including both the linear and non-linear transformations of a variable can generate sub-
stantial collinearity, similar to slowly-varying regressors (as in Phillips, 2007). Such collinearity can be
problematic for estimation and selection procedures, as the information content of the extra collinear vari-
ables is small, yet disrupts existing information attribution. When the additional transformed variables
are in fact irrelevant, model selection algorithms may select poorly between the relevant and irrelevant
variables, depending on chance sampling. In a sense, automatic algorithms still perform adequately, as
they usually keep a ‘representative’ of the relevant effect. Nevertheless, orthogonality is beneficial for
model selection in general, both for that reason, and because deleting small, insignificant coefficients
leaves the retained estimates almost unaltered. We use a simple operational de-meaning rule to eliminate
one important non-orthogonality prior to undertaking model selection.

Third, non-linear functions can generate extreme outcomes, and the resulting ‘fat tails’ are problem-
atic for inference and model selection, as the assumption ofnormality is in-built into most procedures’
critical values. Non-linear functions can also ‘align’ with outliers, causing the functions to be retained
spuriously, which can be detrimental for forecasting and policy. Thus, data contamination, outliers and
non-linearity interact, so need to be treated together. To do so, we use impulse-indicator saturation
(denoted IIS), which adds an indicator for every observation to the candidate regressor set (see Hendry,
Johansen and Santos, 2008, and Johansen and Nielsen, 2009) to remove the impact of breaks and extreme
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observations in both regressors and regressand, and ensurenear normality. Johansen and Nielsen (2009)
show that IIS is a robust estimation method, and that despiteadding greatly to the number of variables in
the search, there is little efficiency loss under the null of no contamination. In the present context, there
is also a potentially large gain by avoiding non-linear terms that chance to capture unmodeled outliers,
but there are always bound to be more candidate variables forselection than the sample size.

General non-linear functional approximations alone can create more variables than observations.
However, building on Hendry and Krolzig (2005),Autometricsalready handles such situations by a
combination of expanding and contracting searches (see Doornik, 2007). Nevertheless, the number of
potential regressors,MK , grows rapidly asK increases:

K 1 2 3 4 5 10 15 20 30 40
MK 3 9 19 30 55 285 679 1539 5455 12300

(1)

An additional exponential component addsK more toMK , and impulse-indicator saturation (IIS) adds
N more dummies for a sample of sizeN (below, we use more than5000 observations). Selections of
such a magnitude are now feasible but lead to the next problem.

The fourth is the related problem of excess retention of linear and non-linear functions and indicators
due to a highly over-parameterized GUM. This is controlled by implementing a ‘super-conservative’
strategy for the non-linear functions, where selection is undertaken at stringent significance levels to
control the null rejection frequency. For example, whenMK +K+N = 8000 and no variables actually
matter, a significance level ofα = 0.001 would lead on average to8 irrelevant retentions, of which5
would simply be indicators, which just dummy out their respective observations (so is 99.9% efficient).
As discussed in Hendry and Krolzig (2005) and Castleet al. (2009b), post-selection bias correction will
drive the estimated coefficients of adventitiously retained variables towards the origin, leading to small
mean square errors, so is not a problematic outcome from learning that7992 of the candidate variables do
not in fact matter. Thus the distribution under the null is established as retainingα (MK +K +N − k)
chance significant effects whenk variables matter.

Finally, non-linearity comprises everything other than the linear terms, so some functional form class
needs to be assigned to search across, and that is almost bound to be an approximation in practice. In a
cross-section context, polynomials often make sense, so weuse that as the basis class. To then implement
any economic-theory based information, encompassing tests of the entailed non-linear form against the
selected model can be undertaken, and this order of proceeding avoids the potential identification prob-
lems that can arise when starting with non-linear-in-parameters models (see Granger and Teräsvirta,
1993). However, we do not focus on that aspect here.

We undertake an empirical study of returns to education for US males, using 1980 census data, ap-
plying the proposed non-linear algorithm after finding strong evidence for non-linearity using the Castle
and Hendry (2009) test. The log-wage data are non-normal, but we use IIS to obtain an approximation to
normality, adding the indicators to a general non-linear GUM, which controls for a wide range of covari-
ates such as education, experience, ability, usual hours worked, marital status, race, etc. The non-linear
selection algorithm finds a congruent model in which non-linear functions play a key role in explaining
the data.

The structure of the chapter is as follows. Section 2 outlines the non-linear specification procedure
to which a model selection algorithm such asAutometricsis applied, and details the non-linear functions
used, related to the RETINA algorithm in Perez-Amaral, Gallo and White (2003). Section 3 addresses
the five intrinsic problems of selecting models that are non-linear in the regressors. First,§3.1 sketches
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the non-linearity test, then§3.2 demonstrates the collinearity between linear and non-linear functions,
and proposes a solution by simply de-meaning all functions of variables. Third,§3.3 outlines the issue of
non-normality, with a Monte Carlo study that highlights theproblem of extreme observations for model
selection, and explains the application of IIS jointly withselecting variables. Finally,§3.5 discusses
the super-conservative strategy to ensure non-linear functions are retained only when there is definite
evidence of non-linearity in the data. Section 4 applies thenon-linear selection algorithm to a cross
section of log wages, modeling the returns to education: there is strong evidence both for non-linearity
and outliers that are captured by the algorithm. Finally, Section 5 concludes.

2 The non-linear algorithm

Finding a unique non-linear representation of an economic process can be formidable given the complex-
ity of possible local data generating processes (LDGPs, namely the DGP in the space of the variables
under analysis). As there are an infinite number of potentialfunctional forms that the LDGP may take,
specifying a GUM that nests the unknown LDGP is problematic.Here, we assume the LDGP is given
by:

yi = f (x1,i, . . . , xk,i;θ) + ǫi where ǫi ∼ IN
[
0, σ2

ǫ

]
(2)

for i = 1, . . . , N , with θ ∈ Θ. Three key concerns for the econometrician are the specification of
the functional form,f (·), the identification ofθ, and the selection of the potentially relevant variables,
x
′
i = (x1,i, . . . xk,i) from an available set of candidates(x1,i, . . . xK,i) whereK ≥ k.

The initial GUM includes allK candidates, in some non-linear formg (·):

yi = g (x1,i, . . . , xK,i;φ) + vi where vi ∼ IN
[
0, σ2

v

]
(3)

Economic theory, past empirical and historical evidence, and institutional knowledge all inform the spec-
ification of the variables in the GUM and their functional form. If the initial specification is too parsi-
monious, relevant variables may be omitted leading to a mis-specified final model. Theory often has
little to say regarding the functional-form specification,so an approximating class is required from the
infinite possibilities of non-linear functions. Many non-linear models–including smooth-transition re-
gressions, regime-switching models, neural networks and non-linear equations–can be approximated by
Taylor expansions, so polynomials form a flexible approximating class for a range of possible LDGPs.

A Taylor-series expansion of (3) around zero results in (seee.g., Priestley, 1981):

g (x1,i, . . . xK,i;φ) = φ0+
K∑

j=1

φ1,jxj,i+
K∑

j=1

j∑

l=1

φ2,j,lxj,ixl,i+
K∑

j=1

j∑

l=1

l∑

m=1

φ3,j,l,mxj,ixl,ixm,i+· · · (4)

While motivating the use of polynomial functions, (4) demonstrates how quickly the number of parame-
ters increases as (1), shows, exacerbated whenN impulse indicators are added. Polynomial functions are
often used in economics because of Weierstrass’s approximation theorem whereby any continuous func-
tion on a closed and bounded interval can be approximated as closely as one wishes by a polynomial, so if
x ∈ [a, b], for anyη > 0 there exists a polynomialp (x) ∈ [a, b] such that|f (x)− p (x)| < η ∀x ∈ [a, b].
However, the goodness of the approximation is unknowna priori in any given application, although it
can be evaluated by testing against a higher-order formulation and by mis-specification tests.
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A wide range of non-linear functions has been considered to approximate (2), including various
orthogonal polynomials, such as Hermite, Fourier series, asymptotic series (see e.g., Copson, 1965),
squashing functions (see White, 1992), and confluent hypergeometric functions (see Abadir, 1999).
Here, we include cubic functions, as these are sign-preserving (so could represent, say, non-linear de-
mand or price responses), and add to the flexibility of the transformations, potentially approximating
ogives. We do not include exponential components, althoughthe most general test in Castle and Hendry
(2009) does. If the LDGP contains an inverse polynomial function, the polynomial will detect this form
of non-linearity due to the high correlation between the variable and its inverse. Although the selected
model might then be prone to misinterpretation, we considerthe polynomial approximation to be an
intermediate stage before testing parsimonious encompassing of by a specific functional form.

Many other functional forms have been proposed in the literature: for example, RETINA (see Perez-
Amaralet al., 2003) uses the transformations (see Castle, 2005):

K∑

j=1

K∑

l=1

βj,lx
λ1

j,ix
λ2

l,i for λ1, λ2 = −1, 0, 1 (5)

Although we exclude inverses, squared inverses, and ratiosdue to their unstable behavior potentially cre-
ating outliers, and adequate correlations with levels (4) includes the remaining terms. Also, for example,
logistic smooth transition models (LSTAR: see e.g., Teräsvirta, 1994) will be approximated by the third-
order Taylor expansion given by (4). Thus, (4) approximatesor nests many non-linear specifications.

While (4) already looks almost intractable, the inclusion of more variables than observations does not
in fact make it infeasible for an automatic algorithm, enabling considerable flexibility when examining
non-linear models despite the number of potential regressors being large. WhenN > K, theGetsap-
proach is to specify a GUM that nests the LDGP in (2), to ensurethe initial formulation is congruent. As
K > N , both expanding and contracting searches are required, andcongruence can only be established
after some initial simplification to make it feasible to estimate the remaining model. Here, we propose
using the general formulation:

yi = φ0+

K∑

j=1

φ1,jxj,i+

K∑

j=1

j∑

l=1

φ2,j,lxj,ixl,i+

K∑

j=1

j∑

l=1

l∑

m=1

φ3,j,l,mxj,ixl,ixm,i+

N∑

j=1

δj1{j=i}+ui (6)

with K potential linear regressors,xi, where1{j=i} is an indicator for theith observation.

3 Problems when selecting non-linear models

There are five problems that arise when selecting from a GUM that consists of a large set of polynomial
regressors as in (6). These problems include first detectingnon-linearity (§3.1), reducing collinearity
(§3.2), handling non-normality (§3.3) leading to more variables than observations (§3.4), and avoiding
potential excess retention of irrelevant regressors (§3.5). Solutions to all of these problems are now
proposed, confirming the feasibility of our non-linear model selection strategy.
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3.1 Testing for non-linearity

The LDGP in (2) hask relevant andK − k irrelevant variables whenf (·) is linear. The first stage is to
apply the test for non-linearity in Castle and Hendry (2009)to see if it is viable to reduce (6) directly to:

yi =

K∑

j=1

βjxj,i +

N∑

j=1

δj1{j=i} + ei (7)

If outliers are likely to be problematic, IIS could first be applied to (7) to ascertain any major discrepan-
cies, leading to sayr indicators being retained (see§3.4):

yi =

K∑

j=1

βjxj,i +

r∑

j=1

δj1{j=i} + ei (8)

Whenxi denotes the set of linear candidate regressor variables, tocalculate their principal components,
denotedzi, defineH andΛ as the eigenvectors and eigenvalues ofN−1

X
′
X, such that:

zi = Λ
− 1

2

[(
H

′
xi

)
− (H′xi)

]
(9)

Let z2j,i = wj,i andz3j,i = sj,i, then the test for non-linearity is theF-test ofH0: β2 = β3 = 0 in:

yi = β0 + β′
1xi + β′

2wi + β′
3si +

r∑

j=1

δj1{j=i} + ǫi (10)

wherer = 0 if IIS is not first applied. If theF-test does not reject, the GUM is taken to be linear, and the
usual selection algorithm is applied to select the relevantregressors. Conversely, if the test rejects, non-
linearity is established at the selected significance level, so the remaining four problems need resolving
for a viable approach. If IIS was not applied, non-linearityis only contingently established, as it may be
proxying outliers as§3.3 shows.

3.2 Collinearity

Multicollinearity was first outlined by Frisch (1934) within the context of static general-equilibrium lin-
ear relations. Confluence analysis was developed to addressthe problem, although that method is not in
common practice now (see Hendry and Morgan, 1989). The definition of collinearity has shifted over
the years, but for anN × K regressor matrixX, we can define perfect collinearity as|X′

X| = 0, and
perfect orthogonality as a diagonal(X′

X) matrix. Since collinearity is not invariant under linear trans-
formations, it is difficult to define a ‘degree of collinearity’, as a linear model is equivariant under linear
transformations, and so the same model could be defined by various isomorphic representations, which
nevertheless deliver very different inter-correlations.Hence, collinearity is a property of the parametriza-
tion of the model, and not the variablesper se. Moreover,|X′

X| = 0 wheneverN > K anyway.
Nevertheless non-linear transformations can generate substantial collinearity between the linear and

non-linear functions. We consider a simple case in which we add the irrelevant transformationf (wi) =
w2
i to a linear model inwi. This polynomial transform is common in economics: see section 4 for an
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empirical application. The degree of collinearity varies as the statistical properties of the process vary:
collinearity betweenwi andw2

i is zero whenE [wi] = 0, but dramatically increases to almost perfect
collinearity asE [wi] = µ increases. To see that, consider the DGP given by the linear conditional
relation:

yi = βwi + ei = 0 + βwi + 0w2
i + ǫi (11)

whereǫi ∼ IN
[
0, σ2

ǫ

]
with i = 1, . . . , N , and:

wi ∼ IN
[
0, σ2

w

]
(12)

Since (11) is equivariant under linear transformations, inthat both the dependent variable and the error
process are unaffected, it can also be written forzi = wi + µ as:

yi = −βµ+ β (wi + µ) + 0 (wi + µ)2 + ǫi

= −βz + βzi + 0z2i + ǫi

= 0 + β (zi − z) + 0 (zi − z)2 + ǫi. (13)

Correspondingly, there are three models, namely, the original zero-mean case:

yi = β0 + β1wi + β2w
2
i + ui (14)

the non-zero-mean case:
yi = γ0 + γ1zi + γ2z

2
i + ui (15)

and the transformed zero-mean case:

yi = λ0 + λ1zi + λ2

(
z2i − z2

)
+ ui (16)

wherez2 is the sample mean ofz2i .
First, lettingX denote the general regressor matrix, for (15) with a non-zero mean:

E
[
N−1

X
′
X(µ)

]
= E






1.0 z z2

z N−1
∑

z2i N−1
∑

z3i
z2 N−1

∑
z3i N−1

∑
z4i






=




1.0 µ µ2 + σ2
w

µ µ2 + σ2
w µ3 + 3µσ2

w

µ2 + σ2
w µ3 + 3µσ2

w 3σ4
w + µ4 + 6µ2σ2

w


 (17)

with the inverse:

(
E
[
N−1

X
′
X(µ)

])−1
=

1

2σ6
w




µ4σ2
w + 3σ6

w −2µ3σ2
w µ2σ2

w − σ4
w

−2µ3σ2
w 2σ4

w + 4µ2σ2
w −2µσ2

w

µ2σ2
w − σ4

w −2µσ2
w σ2

w


 (18)

There is substantial collinearity between the variables, except for the squared term, which is irrelevant in
the DGP. Asµ–an incidental parameter here–increases,E[N−1

X
′
X(µ)] tends towards singularity, and for

σ2
w = 1, the ratioR of the largest to the smallest eigenvalues in (18) grows dramatically fromR = 5.83
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whenµ = 0 throughR = 60223 for µ = 4 to R = 5.6 × 107 whenµ = 10. Note that age enters some
regressions below, often with a mean above20.

Next, in the zero-mean model in (14):

E
[
N−1

X
′
X(0)

]
= E






1.0 w w2

w N−1
∑

w2
i N−1

∑
w3
i

w2 N−1
∑

w3
i N−1

∑
w4
i




 =




1.0 0.0 σ2
w

0.0 σ2
w 0.0

σ2
w 0.0 3σ4

w


 (19)

so the inverse is:

(
E
[
N−1

X
′
X(0)

])−1
=

1

2σ6
w




3σ6
w 0 −σ4

w

0 2σ4
w 0

−σ4
w 0 σ2

w


 (20)

There is no collinearity betweenwi andw2
i although there is an effect on the intercept, but this does not

cause a problem for either estimation or a selection algorithm.
Finally, in the transformed zero-mean model in equation (16):

(
E
[
N−1

X
′
X(0,0)

])−1
=

1

3σ6
w




3σ6
w 0.0 0.0

0.0 3σ4
w 0.0

0.0 0.0 σ2
w


 (21)

Thus, a near orthogonal representation can be achieved simply by taking deviations from means, which
re-creates the specification in terms of the original variableswi andw2

i aszi = wi + µ whereE [z] = µ
andE[z2] = µ2 + σ2

w:

E
[
N−1

X
′
X(µ)

]
=




1.0 0.0 0.0
0.0 σ2

w 2µσ2
w

0.0 2µσ2
w 3σ6

w − σ4
w + 4µ2σ2

w


 (22)

with the inverse:

(
E
[
N−1

X
′
X(µ)

])−1
=

1

σ6
w (3σ2

w − 1)




3σ8
w − σ6

w 0.0 0.0
0.0 3σ6

w − σ4
w + 4µ2σ2

w −2µσ2
w

0.0 −2µσ2
w σ2

w


 (23)

Taking deviations from sample means delivers a reduction incollinearity, which is particularly marked
for the intercept, but worse for the linear term(zi − z). Again the irrelevant squared term ‘benefits’.
To remove the collinearity, first de-meanzi, then also de-meanz2i . The linear term remains(zi − z),
but the squared term becomes(zi − z)2 − [E (zi − z)]2 which will result in a model that is identical to
equation (16). Double de-meaning thus removes the collinearity generated by the non-zero mean, and
Monte Carlo evidence confirms this is an effective solution to mean-induced collinearity.

A non-linear selection strategy should automatically double de-mean the generated polynomial func-
tions prior to formulating the GUM. Two caveats apply. First, the orthogonalizing rules will not remove
all collinearity between higher-order polynomials. We considered orthogonalizing using the Choleski
method (see Rushton, 1951), but double de-meaning removed enough collinearity to ensure theAutomet-
rics selection had the appropriate properties. Second, any information contained in the intercepts of the
explanatory variables will be removed, although there is rarely a theory of the intercept when developing
econometric models, especially for cross-section data.
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3.3 Non-normality

Normality is a central assumption for inference, as conventional critical values tend to be used, so null
rejection frequencies would be incorrect for non-normality. Normality tends to be even more vital for
selection, when many decisions are made. In non-linear models, normality is essential, as problems arise
when fat-tailed distributions result in extreme observations, as there is an increased probability that non-
linear functions will align with extreme observations, effectively acting as indicators and therefore being
retained too often (see e.g., Castle, Fawcett and Hendry, 2010).

We now show by a Monte Carlo example that non-normal variables pose similar problems. Consider
these DGPs for four variables:

xi,t = ǫi,t ǫi,t ∼ IN [0, 1] for i = 1, . . . , 4. (24)

We generate non-linear functions given by the inverses of these normal distributions (as in RETINA):

x−1
i,t =

1

xi,t
. (25)

The GUM contains twenty irrelevant variables given by:

x−1
1,t = ρ0 +

4∑

i=1

ρix
−1
1,t−i +

4∑

j=2

4∑

m=0

ρj,mx
−1
j,t−m + ǫt. (26)

Then selecting from (26) leads to|t|-values as large as19 for variables with zero non-centralities. Such
a variable would unequivocally, but incorrectly, be retained as a DGP variable. On average, two of the
twenty irrelevant regressors are retained at the 1% significance level. This implies that a fat-tailed dis-
tribution would have a null rejection frequency of 10% at the1% significance level. If the dependent
variable isxi,t rather thanx−1

i,t , the retention probabilities are correct as normality results. Non-normal
errors can also pose a similar problem (see Castleet al., 2009b). Hence, the problem of model selec-
tion is exacerbated by the inclusion of non-linear functions, such as inverses, which generate extreme
observations.

3.4 Impulse-indicator saturation

Hendryet al. (2008) propose the use of impulse-indicator saturation to detect and remove outliers and
breaks, utilizing the fact thatAutometricscan handle more variables than observations. Here the aim isto
ensure that the selection process will not overly favor non-linear functions that chance to capture outliers.
The modeling procedure generates impulse indicators for every observation,1{i=s}∀s. The indicators
are divided intoJ subsets, which form the initial GUMs (including an intercept) andAutometricsselects
the significant indicators from each subset, which are then stored as terminal models. The joint model is
formulated as the union of the terminal models andAutometricsre-selects the indicators. Under the null
that there are no outliers,αN indicators will be retained on average for a significance level α. Johansen
and Nielsen (2009) show that the cost of testing for the significance ofN indicators under the null is low
for smallα: for example, whenα = 1/N , only one observation is ‘removed’ on average. Also, Castle
et al. (2009b) show that IIS alleviates fat-tailed draws, and allows near-normal inference, important both
during search and for the post-selection bias correction which assume normality.
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Impulse-indicator saturation also overcomes the problem of ‘undetectable’ outliers. One concern
with non-linearity is that it is difficult to distinguish between extreme observations that are outliers or
data contamination and extreme observations that are due tothe non-linearity in the data. Non-linear
functions can ‘hide’ outliers by fitting to the extreme values, or conversely, methods that remove extreme
observations could be in danger of removing the underlying non-linearity that should be modeled. IIS
avoids this problem by including all potentially relevant variables as well as indicators for all observations
in the initial GUM, effectively applying IIS to the residuals of the model as opposed to the dependent
variable itself. Removing the extreme observations in conjunction with selecting the non-linear functions
avoids both problems of removing observations that generate the non-linearity and finding spurious non-
linearity that merely captures outliers.

In fact the empirical example does not carry out the strategyprecisely as proposed here because the
distributions transpired to be so highly non-normal, specifically very badly skewed. Since there were
more variables (including indicators) than observations,initial selection inferences based on subsets of
variables could be distorted by that skewness. Thus, we added a stage of pre-selecting indicators to
‘normalize’ the dependent variable. Johansen and Nielsen (2009) show the close relationship of IIS to
robust statistics: both can handle data contamination and outliers, and IIS appears to be a low cost way
of doing so. Thus, in the spirit of robust statistics, we sought the sub-sample that would be near normal,
representing the most discrepant observations by indicators rather than dropping them, so this was only a
transient stage. Those indicators are then retained as if they were additional regressors. If the indicators
are essential, then better initial selection inferences will ensue, and if they really are not needed, as there
were no outliers after the non-linear terms were included, then they should drop out during selection.

3.5 Super-conservative strategy

Irrelevant non-linear functions that are adventitiously retained are likely to be detrimental to modeling
and forecasting, making such models less robust than linearmodels, by ‘amplifying’ changes in collinear-
ity between regressors (see e.g., Clements and Hendry, 1998), and location shifts within the equation or
in any retained irrelevant variables. Hence, non-linear functions should only be retained if there is strong
evidence. Given the possible excess retention of irrelevant functions due to the large number of potential
non-linear functions in the candidate set, much more stringent critical values must be used for the non-
linear, than linear, functions during multi-path searches. Critical values should also increase with the
number of functions included in the model, and with the sample size, although as with all significance
levels, the choice can also depend on the preferences of the econometrician and the likely uses of the
resulting model. Parsimonious encompassing of the feasible GUM by the final selected model helps
control the performance of the selection algorithm: see Doornik (2008).

A potential problem could arise if the selection procedure eliminated all non-linear functions, con-
tradicting the results of the non-linearity test: it is feasible that the ellipsoid for a joint test at a looser
significance level does not include the origin, whereas thep-value hyper-square from individual tests at
a tighter significance level does. This can be avoided by thenrepeating the multi-stage strategy with tests
undertaken at consecutively looser significance levels. Rules for the super-conservative strategy could be
similar to those implemented for the Schwarz information criterion (see Campos, Hendry and Krolzig,
2003), so the selection strategy should deliver an undominated, congruent, specific non-linear model that
parsimoniously encompasses the feasible GUM.

We have now resolved the main problems likely to distort selection for a non-linear model, relative
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to what is known about its performance in linear settings, sonow apply the approach inAutometricsto
empirically modeling the returns to education.

4 Empirical Application: Returns to Education

A natural application of the non-linear algorithm is returns to education. The literature is replete with em-
pirical studies: see,inter alia, Garen (1984), Harmon and Walker (1995) and Altonji and Dunn(1996).
We focus on a one-factor model, where education is summarized as a single measure defined by years of
schooling, in keeping with the homogeneous returns literature of Griliches (1977) and Card (1999). We
do not allow for unobserved heterogeneity, capturing heterogeneity through the conditioning variables,
following Dearden (1999). There are a range of estimation procedures commonly used, including instru-
mental variables, control functions and matching methods (see Blundell, Dearden and Sianesi, 2005, for
an overview), all of which have been developed to mitigate the biases induced by least-squares estima-
tion. There are 3 sources of biases in a least-squares regression of wage on schooling:
(i) the ability bias, where there is a correlation between the length of schooling and an individual’s in-
herent, but unobserved, ability;
(ii) the returns bias, where the marginal return is correlated with the length of schooling; and
(iii) measurement-error bias due to incorrect measurementof the schooling variable.
In our simple one-factor model, these biases are likely to besmall, and Card (1999) argues that there
is some evidence that the biases balance out, resulting in near consistent OLS estimates of the returns’
coefficient. In order to reduce the biases it is important to include many control variables that can capture
omitted factors. Since the functional forms cannot be deduced from theory in this context, a non-linear
model must be postulated and so an automatic selection algorithm is a natural tool to use.

We use data from the 1980 US census, based on a random draw of 0.01% of the population of US
males in employment, resulting in5173 observations. Wage income has been top coded at$75, 000,
resulting in204 observations that are truncated. Figure 1 records the density and distribution of log
wages (wi) with their Gaussian reference counterparts. Normality isstrongly rejected forw asχ2 (2) =
1018.0∗∗, with substantial skewness in the left tail. Many studies have considered alternative distribu-
tions to the log-normal including the Pareto, Champernowneand inverse Gaussian: see Staehle (1943),
Lehergott (1959), Harrison (1981) and Ahmed (2007). Instead, we apply IIS as outlined in section 3.4.
Table 1 records summary statistics for wages and the covariates.

0.0 2.5 5.0 7.5 10.0

0.25

0.50

0.75
Density

w 

0.0 2.5 5.0 7.5 10.0

0

5

10 Distribution
w 

Figure 1: Distribution of log wages
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Variable Label Definition Mean Variance Min Max
Wage w logs 5.58 0.59 -1.24 9.47
Experience exp Age−years education−6 18.24 181.25 -3 57
Education edu Grade completed (21 categories) 12.64 9.67 0 20
Usual hours worked hrs Log ave. hours worked in 1979 3.70 0.11 0 4.60
Metropolitan status met City/rural (5 categories) 2.27 1.56 0 4
Race race (9 categories) 1.19 0.50 1 7
State state FIPS code (62 categories) 28.52 242.77 1 56
No. of own children child in household 1.01 1.69 0 9
Marital status mar (6 categories) 2.42 4.52 1 6
Educational attainment attain (9 categories) 6.97 3.12 1 9

Table 1: Potential explanatory variables

4.1 Fitting the theory model

The standard reduced-form model of returns to education is the Mincer regression (Mincer, 1958, 1974):

wi = β0 + β1edui + β2expi + β3exp
2
i + ui (27)

whereβ1 measures the ‘rate of return to education’ which is assumed to be the same for all education
levels, andE [ui|edui, expi] = 0. In practice, conditioning on additional covariates reduces the impact
of omitted variable bias. Here, the results for the augmented Mincer regression are:

wi = 2.85
(0.12)

+ 0.067
(0.008)

edui + 0.045
(0.003)

expi − 0.0007
(0.00006)

exp2i + 0.003
(0.014)

attaini + 0.408
(0.029)

hrsi

+0.043
(0.007)

meti − 0.050
(0.013)

racei − 0.002
(0.0006)

statei + 0.019
(0.009)

childi − 0.047
(0.006)

mari (28)

R
2 = 0.288 σ̂ = 0.651 χ2 (2) = 1947.7∗∗ SC = 1.997 N = 5173

Fhet (19, 5142) = 4.59∗∗ Freset (1, 5161) = 4.64∗

In (28), R2 is the squared multiple correlation,σ̂ is the residual standard deviation,SC is the Schwarz
criterion (see Schwarz, 1978), and coefficient standard errors are shown in parentheses. The diagnostic
tests are of the formFj(k, T − l) which denotes an approximateF-test against the alternative hypothesis
j for: heteroskedasticity (Fhet: see White, 1980) and the RESET test (Freset: see Ramsey, 1969); and a
chi-square test for normality (χ2

nd(2): see Doornik and Hansen, 2008).∗ and∗∗ denote rejection at 5%
and 1% respectively.

The model shows a positiveex postaverage rate of return to education of 7% which is broadly in line
with the Mincer regression results in Heckman, Lochner and Todd (2006, Table 2) although these are
slightly higher at 10-13% as they consider separate regressions for blacks and whites, whereas we take a
random sample of the population and condition on a race variable that includes 9 separate categories. We
also condition on a further 6 additional explanatory variables to control for omitted variable bias. The
economic theory leads to a relatively poor fit (R2 = 29%), and does not capture well the behavior of the
observed data as the model fails mis-specification tests fornormality, heteroskedasticity and the RESET
test for functional form. Despite poor model specification,the elasticity signs are ‘correct’, with positive
returns to education and experience and an earnings profile that is concave with a significant negative
estimated coefficient for experience squared (texp2 = −11).
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4.2 Theory equation with IIS

Given the poor performance of the theory model, and the highly significant non-normality test statistic,
we next introduce IIS into the specification, using a 0.001 significance level. The resulting model is:

wi = 3.58
(0.097)

+ 0.063
(0.006)

edui + 0.039
(0.002)

expi − 0.0006
(0.00004)

exp2i − 0.007
(0.010)

attaini + 0.268
(0.023)

hrsi

+0.039
(0.005)

meti − 0.048
(0.009)

racei − 0.001
(0.0004)

statei + 0.013
(0.006)

childi − 0.039
(0.004)

mari + 301 indicators

R
2 = 0.670 σ̂ = 0.457 χ2 (2) = 194.2∗∗ SC = 1.725 N = 5173 (29)

Fhet (19, 4852) = 5.439∗∗ Freset (1, 4860) = 0.945

IIS does not remove the heteroskedasticity found in (28) (note that the test for heteroskedasticity excludes
the indicators from the variable set), which suggests that an alternative functional form should be sought.
The RESET test indicates that there is no functional form mis-specification, although the RESET test
including squares and cubics rejects at the 5% significance level (Freset23 (2, 4859) = 4.29[0.014]∗); we
will see if we can improve on the functional-form specification in section 4.3.1 The normality test still
fails, but the statistic value is vastly reduced. At a significance level of 0.1%, with5173 observations,
5 variables will be retained on average under the null, andt-statistics of approximately 3.3 or greater
would be retained under normality. Autometrics finds301 indicators (less than 6% of observations) and
this greatly reduces non-normality (excluding the covariates, the test for normality after IIS isχ2 (2) =
77.17∗∗). The test is only an indication, as there is a mass at zero dueto the indicators, although Hendry
and Santos (2005) show that forming indexes of the indicators can avoid this problem. Figure 2 records
the density and QQ plot of log wages once the indicators have been included: there is some deviation
from the normal distribution in the tails with the distribution falling outside the pointwise asymptotic
95% standard error bands.

We also applied IIS atα = 0.05% andα = 0.01%, which would imply that under the null of no
outliers we would retain 2.5 and 0.5 of an indicator on average. The resulting Mincer regressions are
similar to (29) with 58 and 17 indicators retained.

w after IIS N(0,1) 

−3 −2 −1 0 1 2 3
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0.50

Density
w after IIS N(0,1) w after IIS × normal 

−3 −2 −1 0 1 2 3

−2.5

0.0

2.5

QQ plot
w after IIS × normal 

Figure 2: Log wages adjusted for extreme observations

1p-values shown in brackets.
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4.3 Non-linear models

In this section, we extend the Mincer regression in (27) to allow for non-linearities that may enter other
than through the experience squared term. We apply the non-linear algorithm presented in section 2, first
without IIS and then with IIS to assess the importance of removing outliers.

4.3.1 Testing non-linearity

The first stage of the algorithm is to test for non-linearity using the test proposed by Castle and Hendry
(2009). Herex′

i = {expi,edui,hrsi,meti, racei, statei, childi,mari,attaini}, so the regressors are a com-
bination of discrete and continuous variables with very different ranges, but principal components stan-
dardize the linear combinations. We apply IIS to the linear model in which we fix the linear regressors
in the model, i.e. do not select over them, and apply model selection to the impulse-indicators, which is
equivalent to applying IIS to the residuals after conditioning on the linear regressors. We retainr = 316
indicators (F(316, 4847) = 19.09[0.00]∗∗). We then compute the non-linearity test (10) based on (9).
The test statistic,F(18, 4829) = 20.15[0.00]∗∗ , strongly rejects the null hypothesis of linearity. Given the
strong evidence for a squared experience term in (28) and (29), the test may seem redundant, but we wish
to illustrate the general approach in action. In many applications, theory does not provide such a direct
non-linear functional-form specification, so there is value in confirming the need for a non-linear speci-
fication in advance of model selection to avoid over-parameterizing the GUM with non-linear functions
when they are not required.

4.3.2 Modeling non-linearity without IIS

We form the non-linear GUM given by (6), but excluding the impulse indicators, which results in 220
regressors (we also exclude ratios and inverses as highly collinear, and as some variables are discrete
with realizations of 0, resulting in numerical problems: RETINA naturally excludes such ratios and
inverses). The resulting model nests the Mincer regression(28). All functions are double de-meaned
as in section 3.2. The GUM equation standard error isσ̂GUM = 0.631. Selection is undertaken using
Autometricsat the 0.1% significance level, and equation (30) reports theselected model.

wi = 2.48
(0.219)

+ 0.076
(0.004)

edui + 0.018
(0.001)

expi − 0.0008
(0.00007)

exp2i + 0.382
(0.056)

hrsi

+0.134
(0.018)

meti + 0.083
(0.013)

childi + 48 non-linear variables

R
2 = 0.334 σ̂ = 0.632 χ2 (2) = 1820.6∗∗ SC = 2.003 N = 5173 (30)

Fhet (103, 5014) = 1.356∗ Freset (1, 5117) = 10.09∗∗

Education, experience and experience squared are retainedwith the correct signs and are highly sig-
nificant, although the coefficient on experience is smaller due to additional non-linear functions of ex-
perience that are retained. There is a small improvement in fit compared to (28) from anR2 of 29%
to 33%, but again the model fails the diagnostic tests and selection using critical values based on the
normal distribution is clearly violated. Further, 48 additional non-linear variables are retained, possibly
representing the problem of over-fitting when outliers are not accounted for, which could lead to poor
predictions. We next consider a model that includes both thenon-linear functions and IIS.
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4.3.3 Modeling non-linearity with IIS

The previous regressions demonstrate that both augmentingthe Mincer regression with additional non-
linear functions and applying IIS to account for outliers are necessary but insufficient steps on their own
in developing a theory-consistent model that also capturesthe key characteristics of the data. Instead
of applying both jointly, we add a preliminary step in which IIS is first applied by itself to the linear
model (7) to eliminate the most extreme observations: from section 4.3.1 we findr = 316 indicators.
Johansen and Nielsen (2009) show that under the null, impulse-indicator saturation can be applied to
any asymmetric distribution as long as the first four momentsexist, and the distribution satisfies some
smoothness properties. The reason for this preliminary stage, as opposed to the simultaneous application
of IIS and selection of non-linear functions (as recommended above to overcome the problem of extreme
observations), is that by obtaining a reasonable first approximation to normality, conventional critical
values are then applicable throughout the selection process, which perforce includes both expanding as
well as the usual contracting searches as all variables cannot be included in the GUM from the outset.
By selecting over the indicators again in the non-linear GUM, the problem of extreme observations is
overcome, and this second stage can be undertaken at looser significance levels as the procedure will
involve fewer variables than observations.

Augmenting the GUM in section 4.3.2 with the 316 impulse indicators results in 536 regressors in
the initial GUM. The GUM equation standard error isσ̂GUM = 0.431, which is only slightly smaller
than (29), although anF-test of the reduction to (29) (excluding indicators) is rejected (F (209, 4637) =
2.601[0.00]∗∗). Selection is undertaken usingAutometricsat the 0.1% significance level, and equation
(31) reports the selected model, with figure 3 recording the residual density and residual QQ plot.

ŵi = 3.19
(0.10)

+ 0.059
(0.002)

edui + 0.015
(0.001)

expi − 0.0008
(0.00006)

exp2i + 0.000014
(0.0000)

exp3i + 0.342
(0.023)

hrsi

+0.127
(0.012)

meti − 0.032
(0.005)

met2i − 0.032
(0.004)

met3i − 0.142
(0.023)

racei + 0.025
(0.005)

race2i

+0.041
(0.008)

childi − 0.013
(0.003)

child2
i − 0.003

(0.0004)
mar3i − 0.006

(0.0009)

(
hrs2 × state

)
i

+0.069
(0.013)

(
hrs2 × child

)
i
+ 242 indicators. (31)

R
2 = 0.667 σ̂ = 0.457 χ2

nd (2) = 193.63∗∗ SC= 1.646 N = 5173.

Fhet(25, 4905) = 0.913 Freset(1, 4914) = 3.349

15 explanatory variables are retained from the220 candidates, all witht-values greater than 4.6. Also
242 indicators are retained, picking up most of the left-tail skewness. The model passes all diagnostics
except for normality, partly due to the large number of indicators putting a mass at the origin, and partly
due to some residual skewness in the tails: Fig. 3b records the QQ plot with 95% pointwise standard error
bands around the normal and there are significant deviationsin the tails. Experience enters as a level,
quadratic and cubic, indicating strong non-linearity, as many authors have found when including age and
age-squared terms. Characteristics such as usual hours worked, race, metropolitan area, and the number
of children also help explain wages, with some strong interactions and non-linear terms. Some effects
enter with opposite signs on the level and quadratic term suggesting concave functions. The equation
standard error is similar to the GUM: the parsimonious encompassing test of the specific model against
the GUM isF(278, 4637) = 0.998, so a valid reduction has been undertaken.
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Figure 3: Non-linear wage model with IIS: residual density and residual QQ plot.

Double de-meaning was important: the correlation betweenexpandexp2 was 0.974, but after double
de-meaning the correlation was reduced to -0.327. Impulse-indicator saturation was also needed to obtain
near-normality for selection and inference. Finally, tight significance levels were vital to prevent excess
retention of irrelevant variables.

Although we do not have a substantive functional form specification deduced from a prior theory
to test as an encompassing reduction here, the logic thereofis fairly clear. Adding such a functional
form to (31) should eliminate many of the selected non-linear terms in favor of the theory-based form,
thereby delivering a more robust, identified, interpretable and parsimonious form that does not impugn
the congruence of the model or its parsimonious encompassing of the initial GUM, and indeed could
even improve the fit while reducing the number of parameters.Equally, such a theory-based function
might not remove all the non-linearity, so simply imposing it from the outset would have led to a poorer
final model.

5 Conclusion

This chapter develops a strategy for the selection of non-linear models, designed to be embedded within
the automatic model selection algorithm ofAutometrics. First, a GUM is formulated in which all poten-
tial variables that are thought to explain the phenomenon ofinterest are included and a test of linearity
is applied to that approximation. If the null is accepted, standard selection procedures are applied to the
linear GUM. If the null is rejected, a non-linear functionalform is generated using polynomial transfor-
mations of the regressors in which all functions are double de-meaned prior to inclusion in the GUM to
remove one potential collinearity. A set ofN impulse indicators is also generated for a sample of size
N , and included in the GUM to remove outliers and data contamination concurrently with selection of
the specific model. Above, because normality was so stronglyrejected, a preliminary stage was applied
with impulse-indicator saturation alone, to ensure more appropriate initial inferences. Selection is then
performed using the techniques developed to handle more variables than observations.

The chapter has shown that in order to achieve a successful algorithm, it is important to jointly
implement all the developments discussed above, namely:
testing for the need to select a non-linear model when there are many candidates;
transformations to a near-orthogonal representation;
impulse-indicator saturation to remove extreme observations;
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tight significance levels to avoid excess retention of irrelevant non-linear functions;
handling more variables than observations.
Removing any one of these ingredients would be deleterious to selection, and hence to the quality of the
resulting model.

An empirical study of returns to education demonstrated theapplicability of the approach. Fitting
theory-based models such as the Mincer equation without paying attention to the data characteristics by
addressing evidence of mis-specification and outliers, canresult in poor models. Further, many previ-
ous empirical studies did not address the implications of induced collinearity by including age and age
squared (or experience) without prior de-meaning. The empirical application is large in dimension, with
over 5000 observations and many linear covariates, leading to a largenumber of candidate non-linear
functions as well as indicators. Fortunately, advances in automatic model selection mean that problems
of this scale are now tractable; and the analyses and simulations in recent research demonstrate the high
success rates of such an approach.
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