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Abstract

Our strategy for automatic selection in potentially namelr processes is: test for non-linearity in
the unrestricted linear formulation; if that test rejesisecify a general model using polynomials, to
be simplified to a minimal congruent representation; fina#liect by encompassing tests of specific
non-linear forms against the selected model. Non-linggases many problems: extreme obser-
vations leading to non-normal (fat-tailed) distributiomsllinearity between non-linear functions;
usually more variables than observations when approxigdtie non-linearity; and excess reten-
tion of irrelevant variables; but solutions are proposedetrns-to-education empirical application
demonstrates the feasibility of the non-linear automatcleh selection algorithrAutometrics
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1 Introduction

It is a pleasure to contribute a chapter on non-linear moelecon to a volume in honor of Peter C.
Young, who has himself contributed so much to modeling, tdeustanding and capturing key aspects
of non-linearity, and to data basing the choice of which n®deork in a wide range of important
areas in statistics, environmental studies and econoritsle we do not also address his interests in
forecasting, we share them strongly and have tried to advdat subject in other publications—and as
a further objective, trying to establish the general apghoadopted here for dynamic, non-stationary
processes. We congratulate Peter on his successes to ddt®kiforward to many more.

Economic processes are complicated entities, which aem oftodeled by linear approximations,
leading to possible mis-specification when non-linearigtters. This chapter develops a strategy for se-
lecting non-linear in variables models for cross-sectiatadfollowing the automatic general-to-specific
(Getg multi-path search algorithms &fcGets(see Hendry and Krolzig, 2001, which built on Hoover
and Perez, 1999), ardlitometricswithin PcGive(see Doornik, 2009, and Hendry and Doornik, 2009).
The general properties dfutometricsmodel selection are established in Castle, Doornik and Hend
(2009a), multiple breaks are investigated by Castle, Dk@nd Hendry (2009b), and an empirical ap-
plication is provided in Hendry and Mizon (2009). These mmbies ofAutometricscan be summarized
as follows for a linear static model. When there &fecandidate variables, aridof these are relevant,
thena (K — k) irrelevant variables will be retained on average, wheigthe chosen significance level.
Because it selects variable&’), rather than model2{), that result continues to hold even wh&nis
greater than the sample siz€, provided N > k. Also, thek relevant variables will be retained with a
probability close to the theoreticikest powers determined by the non-centralities of theiameters.
For example, ifK — k = 100 anda = 0.01, then one irrelevant variable will be retained on average
by chance sampling, despite the plethora of candidateblesa Moreover, coefficients with|-values
greater than about, = 2.6 will be retained on average. Next, although selection oetgins variables
whose estimated coefficients have> ¢, the resulting selection bias is easily corrected, whicatly
reduces the mean-square errdvkSES) of retained irrelevant variables: see Hendry and Krgl2@p5s).
Finally, the terminal models found byutometricswill be congruent (well specified), undominated re-
ductions of the initial general unrestricted model (GUM}E Will not discuss the details of the multi-path
search algorithms that have made such developments feaaththese are well covered elsewhere (see
e.g., Hendry and Krolzig, 2001, Hendry and Doornik, 2009piik, 2009, and Doornik, Hendry and
Nielsen, 2009): the reader is referred to those publicationbibliographic perspective on this exciting



and burgeoning new field. The latest version of the modet#etealgorithmAutometricss likelihood
based, so can accommodate discrete variable models suobitianid probit, along with many other
econometric specifications, but we focus on non-linearasgjon analysis here.

Thus, we investigate non-linear modelling as part of a gdrsgrategy of empirical model discovery.
Commencing with a low-dimensional portmanteau test forlmoearity (see Castle and Hendry, 2009),
non-rejection entails remaining with a linear specificatiovhereas rejection leads to specifying a gen-
eral non-linear, identified and congruent approximatioextNthe multi-path search procedure seeks a
parsimonious, still congruent, non-linear model, and ith&iirn can be tested against specific non-linear
functional forms using encompassing tests (see, e.g.,iMind Richard, 1986, and Hendry and Richard,
1989), and simplified to them if appropriate.

Since the class is one of non-linear in variables, but lime@arameters, the most obvious approach
is to redefine non-linear functions as new variables (e:§.= z; say), so the model becomes linear
but larger, and standard selection theory applies. Howewsr-linearityper seintroduces five specific
additional problems even in cross sections, solutions fichwheed to be implemented as follows.

First, determining whether there is non-linearity. The Hddimensional portmanteau test for non-
linearity in Castle and Hendry (2009) is applied to the umieted linear regression to check whether
any non-linear extension is needed. Their test is relatatedest for heteroskedasticity proposed by
White (1980), but by using squares and cubics of the prih@peponents of the linear variables, the
test circumvents problems of high-dimensionality andicelrity, and is not restricted to quadratic de-
partures. Providing there are fewer linear variablésthan about a quarter of the sample sixg,the
test can accommodate large numba@is,, of potential non-linear terms, including more th&n where
for a cubic polynomial:

Mg =K (K+1)(K+5)/6.

If the test does not reject, the usu@etsapproach is applied to the linear model. Otherwise, a non-
linear, or indeed non-constant, model is heeded to chaizetihe evidence, so these possibilities must
be handled jointly, as we do below.

Second, including both the linear and non-linear transédions of a variable can generate sub-
stantial collinearity, similar to slowly-varying regress (as in Phillips, 2007). Such collinearity can be
problematic for estimation and selection procedures,amfhrmation content of the extra collinear vari-
ables is small, yet disrupts existing information attribnt When the additional transformed variables
are in fact irrelevant, model selection algorithms maydai@orly between the relevant and irrelevant
variables, depending on chance sampling. In a sense, alitaagorithms still perform adequately, as
they usually keep a ‘representative’ of the relevant efféidvertheless, orthogonality is beneficial for
model selection in general, both for that reason, and becdeketing small, insignificant coefficients
leaves the retained estimates almost unaltered. We usebesperational de-meaning rule to eliminate
one important non-orthogonality prior to undertaking maaidection.

Third, non-linear functions can generate extreme outcoargsthe resulting ‘fat tails’ are problem-
atic for inference and model selection, as the assumptigrohality is in-built into most procedures’
critical values. Non-linear functions can also ‘align’ ibutliers, causing the functions to be retained
spuriously, which can be detrimental for forecasting anlitpoThus, data contamination, outliers and
non-linearity interact, so need to be treated together. dea we use impulse-indicator saturation
(denoted 11S), which adds an indicator for every observatmthe candidate regressor set (see Hendry,
Johansen and Santos, 2008, and Johansen and Nielsen,@G88pve the impact of breaks and extreme



observations in both regressors and regressand, and ewsuraormality. Johansen and Nielsen (2009)
show that IS is a robust estimation method, and that deagidéeng greatly to the number of variables in
the search, there is little efficiency loss under the null@tontamination. In the present context, there
is also a potentially large gain by avoiding non-linear teitimat chance to capture unmodeled outliers,
but there are always bound to be more candidate variableglection than the sample size.

General non-linear functional approximations alone caater more variables than observations.
However, building on Hendry and Krolzig (20050\utometricsalready handles such situations by a
combination of expanding and contracting searches (seenikp@007). Nevertheless, the number of
potential regressors/x, grows rapidly ag< increases:

K 12 3 4 5 10 15 20 30 40 (1)
Mg 3 9 19 30 55 285 679 1539 5455 12300

An additional exponential component adismore toM, and impulse-indicator saturation (1IS) adds
N more dummies for a sample of si2é (below, we use more that00 observations). Selections of
such a magnitude are now feasible but lead to the next problem

The fourth is the related problem of excess retention oflirend non-linear functions and indicators
due to a highly over-parameterized GUM. This is controllgdiraplementing a ‘super-conservative’
strategy for the non-linear functions, where selectionridastaken at stringent significance levels to
control the null rejection frequency. For example, whdg + K + N = 8000 and no variables actually
matter, a significance level of = 0.001 would lead on average ®irrelevant retentions, of which
would simply be indicators, which just dummy out their restpee observations (so is 99.9% efficient).
As discussed in Hendry and Krolzig (2005) and Castlal. (2009b), post-selection bias correction will
drive the estimated coefficients of adventitiously retdinariables towards the origin, leading to small
mean square errors, so is not a problematic outcome fromitepthat7992 of the candidate variables do
not in fact matter. Thus the distribution under the null imbished as retaining (Mx + K + N — k)
chance significant effects wheérnvariables matter.

Finally, non-linearity comprises everything other thaa linear terms, so some functional form class
needs to be assigned to search across, and that is almost foolb@ an approximation in practice. In a
cross-section context, polynomials often make sense, ss@that as the basis class. To then implement
any economic-theory based information, encompassing téshe entailed non-linear form against the
selected model can be undertaken, and this order of prowpasidids the potential identification prob-
lems that can arise when starting with non-linear-in-patams models (see Granger and Terasvirta,
1993). However, we do not focus on that aspect here.

We undertake an empirical study of returns to education ®mhhles, using 1980 census data, ap-
plying the proposed non-linear algorithm after finding sgg@vidence for non-linearity using the Castle
and Hendry (2009) test. The log-wage data are non-normelyéuse 11S to obtain an approximation to
normality, adding the indicators to a general non-lineaG\Which controls for a wide range of covari-
ates such as education, experience, ability, usual houlsedlomarital status, race, etc. The non-linear
selection algorithm finds a congruent model in which noedinfunctions play a key role in explaining
the data.

The structure of the chapter is as follows. Section 2 oulife non-linear specification procedure
to which a model selection algorithm suchfgometricds applied, and details the non-linear functions
used, related to the RETINA algorithm in Perez-Amaral, Galhd White (2003). Section 3 addresses
the five intrinsic problems of selecting models that are lwo@ar in the regressors. Fir$3.1 sketches
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the non-linearity test, thef3.2 demonstrates the collinearity between linear and maai functions,
and proposes a solution by simply de-meaning all functidnvagables. Third§3.3 outlines the issue of
non-normality, with a Monte Carlo study that highlights fiveblem of extreme observations for model
selection, and explains the application of 1IS jointly wihlecting variables. Finally§3.5 discusses
the super-conservative strategy to ensure non-lineattiunscare retained only when there is definite
evidence of non-linearity in the data. Section 4 appliesrtbe-linear selection algorithm to a cross
section of log wages, modeling the returns to educatiormethsestrong evidence both for non-linearity
and outliers that are captured by the algorithm. Finallgti®a 5 concludes.

2 Thenon-linear algorithm

Finding a unique non-linear representation of an economaicgss can be formidable given the complex-
ity of possible local data generating processes (LDGPsghathe DGP in the space of the variables
under analysis). As there are an infinite number of potefiiattional forms that the LDGP may take,
specifying a GUM that nests the unknown LDGP is problemdtere, we assume the LDGP is given
by:

vi = f(x14,-..,2k,:;0) + € wheree ~ IN [0,03] 2

fori = 1,...,N, with @ € ©. Three key concerns for the econometrician are the spdaificaf
the functional formf (-), the identification o, and the selection of the potentially relevant variables,
X, = (14, ... 2k,) from an available set of candidates, ;, ... zx ;) whereK > k.

The initial GUM includes allK’ candidates, in some non-linear fogng-):

Yi = g (21,0, Tk 5 @) +v; Where v; ~ IN [0,07] (3)

Economic theory, past empirical and historical evidenod,iastitutional knowledge all inform the spec-
ification of the variables in the GUM and their functionalrfar If the initial specification is too parsi-
monious, relevant variables may be omitted leading to agpésified final model. Theory often has
little to say regarding the functional-form specificati@o, an approximating class is required from the
infinite possibilities of non-linear functions. Many nandar models—including smooth-transition re-
gressions, regime-switching models, neural networks amdlinear equations—can be approximated by
Taylor expansions, so polynomials form a flexible approxintaclass for a range of possible LDGPs.
A Taylor-series expansion of (3) around zero results in ésge Priestley, 1981):

K K K 5 1
9@ TRGB) = bob Y b1 Tty Y Dokt d D D bs @il iTmit e (4)
j=1 j=11=1 =

= 7j=11=1 m=1

While motivating the use of polynomial functions, (4) derawates how quickly the number of parame-
ters increases as (1), shows, exacerbated Wwhignpulse indicators are added. Polynomial functions are
often used in economics because of Weierstrass’s approgimtaeorem whereby any continuous func-
tion on a closed and bounded interval can be approximatedsely as one wishes by a polynomial, so if
x € [a,b], foranyn > 0 there exists a polynomial(x) € [a,b] suchthatf (z) —p (z)| < nVz € [a, b].
However, the goodness of the approximation is unknaewgriori in any given application, although it
can be evaluated by testing against a higher-order forinaland by mis-specification tests.



A wide range of non-linear functions has been consideredbfmoximate (2), including various
orthogonal polynomials, such as Hermite, Fourier serisgmatotic series (see e.g., Copson, 1965),
squashing functions (see White, 1992), and confluent hgoengtric functions (see Abadir, 1999).
Here, we include cubic functions, as these are sign-prieggfgo could represent, say, non-linear de-
mand or price responses), and add to the flexibility of thesfiamations, potentially approximating
ogives. We do not include exponential components, althadligimost general test in Castle and Hendry
(2009) does. If the LDGP contains an inverse polynomial fiong the polynomial will detect this form
of non-linearity due to the high correlation between thaalde and its inverse. Although the selected
model might then be prone to misinterpretation, we considerpolynomial approximation to be an
intermediate stage before testing parsimonious enconmmgagkby a specific functional form.

Many other functional forms have been proposed in the fiteea for example, RETINA (see Perez-
Amaralet al,, 2003) uses the transformations (see Castle, 2005):

K K
Z Z Bj,lxg\,lixl)\? for /\17 Ay = —-1,0,1 (5)

j=11=1

Although we exclude inverses, squared inverses, and @i@$o their unstable behavior potentially cre-
ating outliers, and adequate correlations with levelsridluides the remaining terms. Also, for example,
logistic smooth transition models (LSTAR: see e.g., Tarés 1994) will be approximated by the third-
order Taylor expansion given by (4). Thus, (4) approximatesests many non-linear specifications.

While (4) already looks almost intractable, the inclusibmaore variables than observations does not
in fact make it infeasible for an automatic algorithm, einaplconsiderable flexibility when examining
non-linear models despite the number of potential regredseing large. Whev > K, the Getsap-
proach is to specify a GUM that nests the LDGP in (2), to enswenitial formulation is congruent. As
K > N, both expanding and contracting searches are required;angiuence can only be established
after some initial simplification to make it feasible to esite the remaining model. Here, we propose
using the general formulation:

K K J K J l N
vi =00+ ) Sumiit YD bagumiatiit Y D Y Gy jumtiatiitmit Y 01—y +ui (6)
j=11=1

) j=11=1m=1 J=1

with K potential linear regressors;, wherel;_;, is an indicator for theéth observation.

3 Problemswhen selecting non-linear models

There are five problems that arise when selecting from a Gl¥idbnsists of a large set of polynomial
regressors as in (6). These problems include first deteatimglinearity §3.1), reducing collinearity
(§3.2), handling non-normality§8.3) leading to more variables than observatidi&4), and avoiding
potential excess retention of irrelevant regressg8s5). Solutions to all of these problems are now
proposed, confirming the feasibility of our non-linear micsldection strategy.



3.1 Testing for non-linearity

The LDGP in (2) hag relevant and — k irrelevant variables whelfi (+) is linear. The first stage is to
apply the test for non-linearity in Castle and Hendry (20@%ee if it is viable to reduce (6) directly to:

K N

yi= > Biwji+ Y 6l +e (")

j=1 j=1

If outliers are likely to be problematic, 11S could first bepdipd to (7) to ascertain any major discrepan-
cies, leading to say indicators being retained (s€8.4):

K r
Yi = Z Bjxji+ Z 0jlgj=iy +ei 8)
=1 =1

Whenx; denotes the set of linear candidate regressor variablesjdolate their principal components,
denotedz;, defineH and A as the eigenvectors and eigenvaluegvof! X’X, such that:

2= A% [(H'x;) - (Hx))| ©)

Let 27, = w;; andz}; = s;;, then the test for non-linearity is thetest ofHy: 3, = 3; = 0in:

yi = Bo + Bixi + Bow; + B3s; + Z djlgj—iy + € (10)
j=1

wherer = 0if lIS is not first applied. If the--test does not reject, the GUM is taken to be linear, and the
usual selection algorithm is applied to select the relevagrtessors. Conversely, if the test rejects, non-
linearity is established at the selected significance Jagthe remaining four problems need resolving
for a viable approach. If IIS was not applied, non-linearstynly contingently established, as it may be
proxying outliers ag§3.3 shows.

3.2 Cadllinearity

Multicollinearity was first outlined by Frisch (1934) witihthe context of static general-equilibrium lin-
ear relations. Confluence analysis was developed to adiiregsoblem, although that method is not in
common practice now (see Hendry and Morgan, 1989). The tefindf collinearity has shifted over
the years, but for av x K regressor matriX, we can define perfect collinearity 8X'X| = 0, and
perfect orthogonality as a diagon&’X) matrix. Since collinearity is not invariant under lineaaris-
formations, it is difficult to define a ‘degree of collinegfjtas a linear model is equivariant under linear
transformations, and so the same model could be defined lugasomorphic representations, which
nevertheless deliver very different inter-correlatioHgnce, collinearity is a property of the parametriza-
tion of the model, and not the variablpsr se Moreover,|X'X| = 0 wheneverN > K anyway.
Nevertheless non-linear transformations can generatantial collinearity between the linear and
non-linear functions. We consider a simple case in which deethe irrelevant transformatiofi(w;) =
w? to a linear model inw;. This polynomial transform is common in economics: seeiseet for an



empirical application. The degree of collinearity variastiae statistical properties of the process vary:
collinearity betweeny; andw? is zero wherE [w;] = 0, but dramatically increases to almost perfect
collinearity ask [w;] = p increases. To see that, consider the DGP given by the lireatitoonal
relation:

yi:ﬁwi+ei:0—|—5wi—|—0w?—l—ei (12)

wheree; ~ IN [0,02] withi =1,..., N, and:
w; ~ IN [0,02] (12)

Since (11) is equivariant under linear transformationghat both the dependent variable and the error
process are unaffected, it can also be writterzfor w; + . as:

yi = —Bu+B(w;+p)+0(wi+p)’+e
= —Bz+Bz+027 +¢
= 04+8(z—2) +0(z -2 +e. (13)

Correspondingly, there are three models, namely, theraligiero-mean case:
yi = Bo + Brw; + Pow? + u; (14)

the non-zero-mean case:
Yi = Yo + V1% + Vo2p + Ui (15)

and the transformed zero-mean case:
Yi = Ao+ A1z + Ao <Z12 — ;) + u; (16)

wherez2 is the sample mean af.
First, lettingX denote the general regressor matrix, for (15) with a nop-gezan:

1.0 z 22
E[NT'X'X(,)] = E|| 2 N'¥Yz2 N 1Y
22 N71Y 23 N-1Y 2
1.0 7 u? + a2
_ 2 2 3 2
= 7 I W =+ 3oy, 17)

pr+ o2 w4+ 3uc? 30k 4+ pt+6p20?

with the inverse:

. ) plog, +300, =2y, pPoy, — oy,
(E [N_ X X(u)]) = 556 —2u302 20 + 4u*o? —2uc?, (18)
v\ Wil —ow  —2u0% o

There is substantial collinearity between the variablesept for the squared term, which is irrelevant in
the DGP. Asu—an incidental parameter here—increaE@N,*X’X(M)] tends towards singularity, and for
o2 =1, the ratioR of the largest to the smallest eigenvalues in (18) grows dti@aily from R = 5.83
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wheny = 0 throughR = 60223 for 4 = 4to R = 5.6 x 107 whenyu = 10. Note that age enters some
regressions below, often with a mean abéoe
Next, in the zero-mean model in (14):

1.0 w w? 1.0 0.0 o2
E[NT'X'Xqp=E|| w N*'YXw? N'Sw ||=(00 o2 00 (19)
w2 NS wd NP wh 02 0.0 3oi
so the inverse is:
) ] 306 0 -0}
(E[NT'X'X(p)])” =55 | 0 20u 0 (20)
Ow 4 2
—0 0 o

w

There is no collinearity between; andw? although there is an effect on the intercept, but this doés no
cause a problem for either estimation or a selection algurit
Finally, in the transformed zero-mean model in equation: (16

3¢5 00 0.0
~— | 0.0 303 00 (21)
3% \ 00 00 o2

w

(E[NT'X'Xp]) " =

Thus, a near orthogonal representation can be achievedydiympaking deviations from means, which
re-creates the specification in terms of the original véesb; andw? asz; = w; + u whereE [z] = u

andE[z?] = p? + o2

1.0 00 0.0
E[NT'X'Xp] =] 00 o2 2u0? (22)

0.0 2uo? 305 — ot +4p20?

with the inverse:

) ] 308 — b 0.0 0.0
EN'XXp]) =<5 0.0 308 — ot + 44202 —2u0? (23)
6 2 w w w w
o (305, — 1) 0.0 —2,110%” U%U

Taking deviations from sample means delivers a reductiaoliinearity, which is particularly marked
for the intercept, but worse for the linear tefm — z). Again the irrelevant squared term ‘benefits’.
To remove the collinearity, first de-meap then also de-mear?. The linear term remaing:; — %),
but the squared term becom@es — z)? — [E (z; — z)]* which will result in a model that is identical to
equation (16). Double de-meaning thus removes the cotligegenerated by the non-zero mean, and
Monte Carlo evidence confirms this is an effective solutmmean-induced collinearity.

A non-linear selection strategy should automatically dede-mean the generated polynomial func-
tions prior to formulating the GUM. Two caveats apply. Fitbe orthogonalizing rules will not remove
all collinearity between higher-order polynomials. We sidered orthogonalizing using the Choleski
method (see Rushton, 1951), but double de-meaning remowejk collinearity to ensure tifutomet-
rics selection had the appropriate properties. Second, anymiattion contained in the intercepts of the
explanatory variables will be removed, although thererislyaa theory of the intercept when developing
econometric models, especially for cross-section data.
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3.3 Non-normality

Normality is a central assumption for inference, as conweat critical values tend to be used, so null
rejection frequencies would be incorrect for non-normalllormality tends to be even more vital for
selection, when many decisions are made. In non-linear Isaaermality is essential, as problems arise
when fat-tailed distributions result in extreme obsensadi as there is an increased probability that non-
linear functions will align with extreme observations,egffively acting as indicators and therefore being
retained too often (see e.g., Castle, Fawcett and Hendiy)20

We now show by a Monte Carlo example that non-normal var&aptese similar problems. Consider
these DGPs for four variables:

Tit = €t €t~ IN [0, 1] fori=1,...,4. (24)

We generate non-linear functions given by the inversesas@mormal distributions (as in RETINA):

_ 1
%,tl = (25)

)

The GUM contains twenty irrelevant variables given by:

4 4 4
i =pot Z Pt i+ Z Z Pim T + €t (26)
i=1 j=2 m=0

Then selecting from (26) leads f-values as large a) for variables with zero non-centralities. Such
a variable would unequivocally, but incorrectly, be retairas a DGP variable. On average, two of the
twenty irrelevant regressors are retained at the 1% signifie level. This implies that a fat-tailed dis-
tribution would have a null rejection frequency of 10% at fi% significance level. If the dependent
variable isz; rather thanz; ., the retention probabilities are correct as normality litssiNon-normal
errors can also pose a similar problem (see Cadtkd.,, 2009b). Hence, the problem of model selec-
tion is exacerbated by the inclusion of non-linear functiosuch as inverses, which generate extreme
observations.

3.4 Impulse-indicator saturation

Hendryet al. (2008) propose the use of impulse-indicator saturationetea and remove outliers and
breaks, utilizing the fact tha&utometricscan handle more variables than observations. Here the &m is
ensure that the selection process will not overly favor lva@ar functions that chance to capture outliers.
The modeling procedure generates impulse indicators feryesbservationl;_,,Vs. The indicators
are divided inta/ subsets, which form the initial GUMs (including an interjemdAutometricsselects
the significant indicators from each subset, which are thened as terminal models. The joint model is
formulated as the union of the terminal models &utiometricge-selects the indicators. Under the null
that there are no outliers,V indicators will be retained on average for a significancellev Johansen
and Nielsen (2009) show that the cost of testing for the B@amce ofN indicators under the null is low
for small«: for example, wherx = 1/N, only one observation is ‘removed’ on average. Also, Castle
et al. (2009b) show that 1IS alleviates fat-tailed draws, andvedlmear-normal inference, important both
during search and for the post-selection bias correctioiciwdissume normality.
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Impulse-indicator saturation also overcomes the problémiraetectable’ outliers. One concern
with non-linearity is that it is difficult to distinguish b@een extreme observations that are outliers or
data contamination and extreme observations that are dtie toon-linearity in the data. Non-linear
functions can ‘hide’ outliers by fitting to the extreme vauer conversely, methods that remove extreme
observations could be in danger of removing the underlyimgrimearity that should be modeled. 1S
avoids this problem by including all potentially relevaatiables as well as indicators for all observations
in the initial GUM, effectively applying 1IS to the residigabf the model as opposed to the dependent
variable itself. Removing the extreme observations inwociion with selecting the non-linear functions
avoids both problems of removing observations that gead¢hat non-linearity and finding spurious non-
linearity that merely captures outliers.

In fact the empirical example does not carry out the strafggisely as proposed here because the
distributions transpired to be so highly non-normal, sfeadly very badly skewed. Since there were
more variables (including indicators) than observationsial selection inferences based on subsets of
variables could be distorted by that skewness. Thus, wedaddsage of pre-selecting indicators to
‘normalize’ the dependent variable. Johansen and Niel2@@9) show the close relationship of IIS to
robust statistics: both can handle data contamination atigbis, and IIS appears to be a low cost way
of doing so. Thus, in the spirit of robust statistics, we sduge sub-sample that would be near normal,
representing the most discrepant observations by indeather than dropping them, so this was only a
transient stage. Those indicators are then retained asyifwlere additional regressors. If the indicators
are essential, then better initial selection inferencdlsansue, and if they really are not needed, as there
were no outliers after the non-linear terms were includeen they should drop out during selection.

3.5 Super-conservative strategy

Irrelevant non-linear functions that are adventitiouslyamed are likely to be detrimental to modeling
and forecasting, making such models less robust than Imedels, by ‘amplifying’ changes in collinear-
ity between regressors (see e.g., Clements and Hendry),888location shifts within the equation or
in any retained irrelevant variables. Hence, non-lineacfions should only be retained if there is strong
evidence. Given the possible excess retention of irretdumctions due to the large number of potential
non-linear functions in the candidate set, much more stnhgritical values must be used for the non-
linear, than linear, functions during multi-path search€sitical values should also increase with the
number of functions included in the model, and with the sangute, although as with all significance
levels, the choice can also depend on the preferences ottmmmetrician and the likely uses of the
resulting model. Parsimonious encompassing of the feasi#M by the final selected model helps
control the performance of the selection algorithm: seerBikd2008).

A potential problem could arise if the selection procedummiaated all non-linear functions, con-
tradicting the results of the non-linearity test: it is fildes that the ellipsoid for a joint test at a looser
significance level does not include the origin, whereagptivalue hyper-square from individual tests at
a tighter significance level does. This can be avoided by peeating the multi-stage strategy with tests
undertaken at consecutively looser significance leveléesor the super-conservative strategy could be
similar to those implemented for the Schwarz informatiatedon (see Campos, Hendry and Krolzig,
2003), so the selection strategy should deliver an unddednaongruent, specific non-linear model that
parsimoniously encompasses the feasible GUM.

We have now resolved the main problems likely to distort@la for a non-linear model, relative
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to what is known about its performance in linear settingsh@e apply the approach iAutometricsto
empirically modeling the returns to education.

4 Empirical Application: Returnsto Education

A natural application of the non-linear algorithm is retsita education. The literature is replete with em-
pirical studies: sednter alia, Garen (1984), Harmon and Walker (1995) and Altonji and D(1r996).
We focus on a one-factor model, where education is sumnthage single measure defined by years of
schooling, in keeping with the homogeneous returns liteeadf Griliches (1977) and Card (1999). We
do not allow for unobserved heterogeneity, capturing logimeity through the conditioning variables,
following Dearden (1999). There are a range of estimatiaecguures commonly used, including instru-
mental variables, control functions and matching methede Blundell, Dearden and Sianesi, 2005, for
an overview), all of which have been developed to mitigatetitases induced by least-squares estima-
tion. There are 3 sources of biases in a least-squares segred wage on schooling:

(i) the ability bias, where there is a correlation betweenléngth of schooling and an individual’s in-
herent, but unobserved, ability;

(ii) the returns bias, where the marginal return is coreslatith the length of schooling; and

(iif) measurement-error bias due to incorrect measuremwiethie schooling variable.

In our simple one-factor model, these biases are likely tgrhall, and Card (1999) argues that there
is some evidence that the biases balance out, resultingaincomsistent OLS estimates of the returns’
coefficient. In order to reduce the biases it is importanhtiude many control variables that can capture
omitted factors. Since the functional forms cannot be deddmm theory in this context, a non-linear
model must be postulated and so an automatic selectiontalgas a natural tool to use.

We use data from the 1980 US census, based on a random dra@18&6 0f the population of US
males in employment, resulting &173 observations. Wage income has been top codeki@at000,
resulting in204 observations that are truncated. Figure 1 records the tgemsd distribution of log
wages {v;) with their Gaussian reference counterparts. Normalistrisngly rejected fow asy? (2) =
1018.0**, with substantial skewness in the left tail. Many studiegeheonsidered alternative distribu-
tions to the log-normal including the Pareto, Champernoaminverse Gaussian: see Staehle (1943),
Lehergott (1959), Harrison (1981) and Ahmed (2007). Irdste@ge apply 1S as outlined in section 3.4.
Table 1 records summary statistics for wages and the cosaria

Density i} 10 Distribution
0.75{—w| —
0.50" sl
0.25- :
0
T R . niEFRERRRRIINRRRERNRAN! I T I S TS A S SO S R A S N S
0.0 25 5.0 7.5 10.0 0.0 25 5.0 7.5 10.0

Figure 1: Distribution of log wages
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Variable Label Definition Mean Variance Min Max

Wage w logs 5.58 0.59 -1.24  9.47
Experience exp Age—years education6 18.24 181.25 -3 57
Education edu Grade completed (21 categories) 12.64 9.67 0 20
Usual hours worked  hrs Log ave. hours worked in 1979 3.70 0.11 0 4.60
Metropolitan status met City/rural (5 categories) 2.27 1.56 0 4
Race race (9 categories) 1.19 0.50 1 7
State state  FIPS code (62 categories) 28.52 242.77 1 56
No. of own children child  in household 1.01 1.69 0 9
Marital status mar (6 categories) 2.42 4.52 1 6
Educational attainment attain (9 categories) 6.97 3.12 1 9

Table 1: Potential explanatory variables

4.1 Fitting the theory model
The standard reduced-form model of returns to educatidreigtincer regression (Mincer, 1958, 1974):
w; = By + Predu; + Prexp; + 53635}722 + u; (27)

where 3, measures the ‘rate of return to education’ which is assumédzt tthe same for all education
levels, ancE [u;|edu;, exp;] = 0. In practice, conditioning on additional covariates reztithe impact
of omitted variable bias. Here, the results for the augmieMimcer regression are:

w; = 2.85+ 0.067edu; + 0.045exp; — 0.0007 ewp? + 0.003attain; + 0.408 hrs;
(0.12)  (0.008) (0.003) (0.00006) (0.014) (0.029)
+0.043met; — 0.050race; — 0.002 state; + 0.019c¢hild; — 0.047mar; (28)
(0.007) (0.013) (0.0006) (0.009) (0.006)

R? = 0288 5 =0.651 x2(2) =1947.7 SC =1.997 N = 5173
Fhet (19,5142) = 4.59"*  Freqet (1,5161) = 4.64

In (28), R? is the squared multiple correlatios, is the residual standard deviatidBCis the Schwarz
criterion (see Schwarz, 1978), and coefficient standar®are shown in parentheses. The diagnostic
tests are of the forr;(k, 7" — ) which denotes an approximafetest against the alternative hypothesis
j for: heteroskedasticityF.;: see White, 1980) and the RESET tesi.{:: See Ramsey, 1969); and a
chi-square test for normality,(2): see Doornik and Hansen, 2008)and** denote rejection at 5%
and 1% respectively.

The model shows a positivex postaverage rate of return to education of 7% which is broadljnia |
with the Mincer regression results in Heckman, Lochner anddT{2006, Table 2) although these are
slightly higher at 10-13% as they consider separate regresfor blacks and whites, whereas we take a
random sample of the population and condition on a raceblarthat includes 9 separate categories. We
also condition on a further 6 additional explanatory vdaalkio control for omitted variable bias. The
economic theory leads to a relatively poor fity( = 29%), and does not capture well the behavior of the
observed data as the model fails mis-specification testsdionality, heteroskedasticity and the RESET
test for functional form. Despite poor model specificatithrg elasticity signs are ‘correct’, with positive
returns to education and experience and an earnings pradilast concave with a significant negative
estimated coefficient for experience squared,¢ = —11).
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4.2 Theory equation with 11S

Given the poor performance of the theory model, and the ¥igigihificant non-normality test statistic,
we next introduce 1S into the specification, using a 0.0@nhificance level. The resulting model is:

w; = 3.58 + 0.063edu; + 0.039exp; — 0.0006 ea:p? — 0.007attain; + 0.268 hrs;
(0.097)  (0.006) (0.002) (0.00004) (0.010) (0.023)
+0.039met; — 0.048race; — 0.001 state; + 0.013child; — 0.039mar; + 301 indicators
(0.005) (0.009) (0.0004) (0.006) (0.004)
R? = 0670 6 =0457 x*(2) =194.2"* SC =1.725 N =5173 (29)

Fhet (19,4852) = 5.439"  Feset (1,4860) = 0.945

IIS does not remove the heteroskedasticity found in (28g(tiwat the test for heteroskedasticity excludes
the indicators from the variable set), which suggests thaitternative functional form should be sought.
The RESET test indicates that there is no functional formspicification, although the RESET test
including squares and cubics rejects at the 5% significaae® Feset23 (2, 4859) = 4.29[0.014]*); we
will see if we can improve on the functional-form specifioatin section 4.3. The normality test still
fails, but the statistic value is vastly reduced. At a sigaifice level of 0.1%, withh173 observations,

5 variables will be retained on average under the null, statistics of approximately 3.3 or greater
would be retained under normality. Autometrics fir3dd indicators (less than 6% of observations) and
this greatly reduces non-normality (excluding the cotasathe test for normality after I1S ig? (2) =
77.17°*). The test is only an indication, as there is a mass at zeracdine indicators, although Hendry
and Santos (2005) show that forming indexes of the indisatan avoid this problem. Figure 2 records
the density and QQ plot of log wages once the indicators haea Included: there is some deviation
from the normal distribution in the tails with the distribort falling outside the pointwise asymptotic
95% standard error bands.

We also applied IS atv = 0.05% anda = 0.01%, which would imply that under the null of no
outliers we would retain 2.5 and 0.5 of an indicator on averaghe resulting Mincer regressions are
similar to (29) with 58 and 17 indicators retained.

Density QQ plot
,\ —— wafter IS — N(O,l)\ \— w after [1ISx normal

2.5-

0.50-

0.0

0.25-

Figure 2: Log wages adjusted for extreme observations

p-values shown in brackets.
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4.3 Non-linear models

In this section, we extend the Mincer regression in (27) imaafor non-linearities that may enter other
than through the experience squared term. We apply theinearlalgorithm presented in section 2, first
without 11S and then with IS to assess the importance of rgngpoutliers.

4.3.1 Testing non-linearity

The first stage of the algorithm is to test for non-linearigmg the test proposed by Castle and Hendry
(2009). Herex; = {exp, edu, hrs;, met, race;, state, child;, mar;, attain; }, so the regressors are a com-
bination of discrete and continuous variables with verfed#nt ranges, but principal components stan-
dardize the linear combinations. We apply 1IS to the lineadet in which we fix the linear regressors
in the model, i.e. do not select over them, and apply modetseh to the impulse-indicators, which is
equivalent to applying IIS to the residuals after conditignon the linear regressors. We retais- 316
indicators £(316,4847) = 19.09[0.00]**). We then compute the non-linearity test (10) based on (9).
The test statistidr (18, 4829) = 20.15[0.00]**, strongly rejects the null hypothesis of linearity. Givaa t
strong evidence for a squared experience term in (28) andtt#test may seem redundant, but we wish
to illustrate the general approach in action. In many appbos, theory does not provide such a direct
non-linear functional-form specification, so there is eain confirming the need for a non-linear speci-
fication in advance of model selection to avoid over-paranmhg the GUM with non-linear functions
when they are not required.

4.3.2 Modeling non-linearity without 11S

We form the non-linear GUM given by (6), but excluding the inge indicators, which results in 220
regressors (we also exclude ratios and inverses as highigeas, and as some variables are discrete
with realizations of 0, resulting in numerical problems: REA naturally excludes such ratios and
inverses). The resulting model nests the Mincer regreg@8nh All functions are double de-meaned
as in section 3.2. The GUM equation standard err@ds s = 0.631. Selection is undertaken using
Autometricsat the 0.1% significance level, and equation (30) reportséfected model.

w; = 248 4 0.076edu; + 0.018exp; — 0.0008 exp? + 0.382hrs;
(0.219)  (0.004) (0.001) (0.00007) (0.056)
+0.134met; + 0.083child; + 48 non-linear variables
(0.018) (0.013)
R? = 0.334 6=0632 x?(2) =1820.6" SC =2003 N =5173 (30)

Fhet (103,5014) = 1.356* Freset (1,5117) = 10.09**

Education, experience and experience squared are retaitiedhe correct signs and are highly sig-

nificant, although the coefficient on experience is smaller th additional non-linear functions of ex-

perience that are retained. There is a small improvement gofipared to (28) from aR? of 29%

to 33%, but again the model fails the diagnostic tests aretBeh using critical values based on the
normal distribution is clearly violated. Further, 48 aduhial non-linear variables are retained, possibly
representing the problem of over-fitting when outliers aseaccounted for, which could lead to poor

predictions. We next consider a model that includes botmtmelinear functions and IIS.
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4.3.3 Modeling non-linearity with I1S

The previous regressions demonstrate that both augmehgniglincer regression with additional non-
linear functions and applying 1IS to account for outliere aecessary but insufficient steps on their own
in developing a theory-consistent model that also capttimeskey characteristics of the data. Instead
of applying both jointly, we add a preliminary step in whidl$ lis first applied by itself to the linear
model (7) to eliminate the most extreme observations: freotien 4.3.1 we find- = 316 indicators.
Johansen and Nielsen (2009) show that under the null, irepoticator saturation can be applied to
any asymmetric distribution as long as the first four momentst, and the distribution satisfies some
smoothness properties. The reason for this preliminagests opposed to the simultaneous application
of IIS and selection of non-linear functions (as recommerat®ve to overcome the problem of extreme
observations), is that by obtaining a reasonable first agmation to normality, conventional critical
values are then applicable throughout the selection pspedsich perforce includes both expanding as
well as the usual contracting searches as all variablesotdenincluded in the GUM from the outset.
By selecting over the indicators again in the non-linear GUthé problem of extreme observations is
overcome, and this second stage can be undertaken at logsigicance levels as the procedure will
involve fewer variables than observations.

Augmenting the GUM in section 4.3.2 with the 316 impulse @addrs results in 536 regressors in
the initial GUM. The GUM equation standard errordigyas = 0.431, which is only slightly smaller
than (29), although ah-test of the reduction to (29) (excluding indicators) ieotgd £ (209, 4637) =
2.601[0.00]**). Selection is undertaken usikgitometricsat the 0.1% significance level, and equation
(31) reports the selected model, with figure 3 recording ¢éisédual density and residual QQ plot.

@ = 3.19 + 0.059edy + 0.015exp — 0.0008 exg + 0. 000014expf + 0 342hrs,
(0.10) ~ (0.002) (0.001) (0.00006) 0.0000) (0.023)
+0.127met — 0.032mef — 0.032mef — 0.142race; + 0. 025racg2
(0.012) (0.005) (0.004) (0.023) (0.0
+0.041child; — 0. 013chlld2 — 0.003 mar; — 0.006 (hrs* x stat@
(0.008) (0.003) (0.0004) (0.0009)
+0.069 (hrs® x child), + 242 indicators. (31)

R? = 0.667 7 =0.457 x%,(2) = 193.63** SC=1.646 N = 5173.
Fhet (25,4905) = 0.913 Feser(1,4914) = 3.349

15 explanatory variables are retained from #26 candidates, all witlrvalues greater than 4.6. Also
242 indicators are retained, picking up most of the left-tadwkess. The model passes all diagnostics
except for normality, partly due to the large number of iatlics putting a mass at the origin, and partly
due to some residual skewness in the tails: Fig. 3b recoed®@plot with 95% pointwise standard error
bands around the normal and there are significant deviatiotige tails. Experience enters as a level,
guadratic and cubic, indicating strong non-linearity, asgnauthors have found when including age and
age-squared terms. Characteristics such as usual houkedyoace, metropolitan area, and the number
of children also help explain wages, with some strong imtwas and non-linear terms. Some effects
enter with opposite signs on the level and quadratic terngesting concave functions. The equation
standard error is similar to the GUM: the parsimonious eruasaing test of the specific model against
the GUM isF(278,4637) = 0.998, so a valid reduction has been undertaken.

16



Density 5.0 QQ plot
L[— residuav —— N(0[1)] ' :\—residuaiwx normal
I 0.0
0.25- i
-2.5-
L L L cl B R S B
-4 -2 0 2 4 6 -3 -2 - 0 1 2 3

Figure 3: Non-linear wage model with 1IS: residual densitg aesidual QQ plot.

Double de-meaning was important: the correlation betvesgandexp’ was 0.974, but after double
de-meaning the correlation was reduced to -0.327. Impalfieator saturation was also needed to obtain
near-normality for selection and inference. Finally, tigiynificance levels were vital to prevent excess
retention of irrelevant variables.

Although we do not have a substantive functional form speation deduced from a prior theory
to test as an encompassing reduction here, the logic thexdairly clear. Adding such a functional
form to (31) should eliminate many of the selected non-lirteems in favor of the theory-based form,
thereby delivering a more robust, identified, interpretadohd parsimonious form that does not impugn
the congruence of the model or its parsimonious encomgassithe initial GUM, and indeed could
even improve the fit while reducing the number of paramet&dgually, such a theory-based function
might not remove all the non-linearity, so simply imposib§om the outset would have led to a poorer
final model.

5 Conclusion

This chapter develops a strategy for the selection of nwal models, designed to be embedded within
the automatic model selection algorithmAaftometrics First, a GUM is formulated in which all poten-
tial variables that are thought to explain the phenomenadntefest are included and a test of linearity
is applied to that approximation. If the null is acceptednsfard selection procedures are applied to the
linear GUM. If the null is rejected, a non-linear functioriaim is generated using polynomial transfor-
mations of the regressors in which all functions are doubleng@aned prior to inclusion in the GUM to
remove one potential collinearity. A set 6f impulse indicators is also generated for a sample of size
N, and included in the GUM to remove outliers and data contatiin concurrently with selection of
the specific model. Above, because normality was so stramgeted, a preliminary stage was applied
with impulse-indicator saturation alone, to ensure mogg@griate initial inferences. Selection is then
performed using the techniques developed to handle moiables than observations.

The chapter has shown that in order to achieve a succesghilitaim, it is important to jointly
implement all the developments discussed above, namely:
testing for the need to select a non-linear model when therenany candidates;
transformations to a near-orthogonal representation;
impulse-indicator saturation to remove extreme obseymafi

17



tight significance levels to avoid excess retention of @vaht non-linear functions;

handling more variables than observations.

Removing any one of these ingredients would be deleterimgelection, and hence to the quality of the
resulting model.

An empirical study of returns to education demonstratedah@icability of the approach. Fitting
theory-based models such as the Mincer equation withouhgajtention to the data characteristics by
addressing evidence of mis-specification and outliers,reanlt in poor models. Further, many previ-
ous empirical studies did not address the implications @ficed collinearity by including age and age
squared (or experience) without prior de-meaning. The Boabiapplication is large in dimension, with
over 5000 observations and many linear covariates, leading to a lawgeber of candidate non-linear
functions as well as indicators. Fortunately, advancesiforaatic model selection mean that problems
of this scale are now tractable; and the analyses and siongah recent research demonstrate the high
success rates of such an approach.
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