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Chapter 1

Introduction

Conceptual learning in the human cognitive system never occurs inside a
single modality, but in terms of associations between representations in mul-
tiple perceptual modalities and motor outputs. As the events in our envi-
ronment often provide information through multiple modalities, learning can
also occur through co-occurrences of structured activities at different modal
dimensions. In this context, pattern discovery in one modality is basically
only data segmentation or clustering and the created clusters are meaning-
less without grounding through multimodal associations. [tBC07] [YBA05]
[MD09]

Furthermore, the same principles can be applied to the so called Big Data
problem in modern society. Discovery of statistically significant patterns from
data and learning of associative links between qualitatively different data
streams can bring more understanding of the underlying principles governing
the processes. These can be anything from industrial manufacturing and fault
detection to customer behavior.

The main purpose of this thesis, at a highly conceptual level, is to develop
general methodology to analyze, discover, and model associations between
two qualitatively different sequential data streams. The problem is mod-
eled as an unsupervised pattern discovery problem which is converted into
a self-supervised learning process. Here, the self-supervised learning process
involves first automatically deriving representations in one modality and and
then using them to aid discovery of patterns in an another modality.

The term modality generally refers to human physiology and sensation,
but in machine learning discipline it could basically be any measurement
data. The two “modalities” used in the current work are spoken English ut-
terances and textual representations corresponding to the utterance contents
but with all white spaces and special characters removed. The removal of
these characters results a representation that mimics continuous speech. It

1



CHAPTER 1. INTRODUCTION 2

is practically impossible to recognize individual words from a totally unfa-
miliar or the very first language due to absence of acoustic hints for word
boundaries.

Speech and text are chosen as the data types for this study due to the
fact that despite their strong mutual interdependency, they are clearly qual-
itatively different, have different temporal characteristics, but the results of
the associative pattern discovery are still easy to evaluate. Most importantly,
the basic units in text (i.e., letters) do not have direct correspondence to any
units of speech that could be defined purely based on the raw acoustic signal
and the pronunciation of the letters depends on the lexical context so that
each letter becomes realized in various acoustic forms. For example, consider
the pronunciation of the letter c in the words ocean and cat.

In general, one can hypothesize that the statistical connection between
structure of speech and text is most significant at the level of word-like pat-
terns of speech and text instead of the low-level feature/letter representations
of the modalities. In order to learn the dependencies between the modalities,
one has also to learn these temporally spanning patterns first. Although only
text and speech are used in this study, the same proposed concept should
be applicable also to other pairs of sequential data streams that model the
same phenomena or are hypothesized to have high correlation for some other
reason.

The quality of the current approach is evaluated as its capability to tran-
scribe speech to text and it resembles an automatic speech recognition (ASR)
or a speech-to-text (STT) system [RJ93]. However, creating such a system
is not the goal per se, but only a way to prove the concept. It is in con-
trast to the ASR systems that rely heavily on linguistics and on recognition
of phonemes or their combinations. These linguistically motivated units are
recognized mostly without any semantic component or associations to other
modalities or information sources. To make a clear difference to such sys-
tems, it should be emphasized that the approach that will be presented in
this thesis is based merely on the signal statistics within and between the
two different data streams, and not based on any prior phonetic or linguistic
expert knowledge. Similarly, a child learning multimodal association does
not have this kind of expert knowledge and is still able to learn to speak and
to understand spoken messages. Some domain expertise is used only in the
selection of suitable machine learning algorithms for every given sub-problem.

The basic objective of this thesis is to solve the generic problem of find-
ing the statistical relationship between two low-level unlabeled asynchronous
signals. In practice it is a task of maximizing the predictability of one sig-
nal when the other is given and in the end optimizing the parameters of
algorithms chosen for the methodology. As shall be seen, there are a lot of
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parameters that could be fine tuned and many more could be applied. The
proposed methodology is not claimed to be optimal as far as the parame-
ters are considered, but rather sub-optimal when some of the parameters are
fixed. The aim is to give a proof that the methodology is sensible, robust
and potentially beneficial.

The structure of this thesis is as follows: first, in the next chapter the
concepts of machine learning and pattern recognition that are important in
terms of this thesis are presented along with a brief literature review. Ad-
ditionally, the terminology is defined. It is important because the machine
learning as a discipline itself is juvenile compared to basic sciences and there-
fore the terminology is wide and very variable. There are various possible
ways and terms to describe a given methodology , and inversely, some of the
terms might mean different things to different people. The literature review
remains short because similar studies are hard to find due to freshness of
the given approach and due to already mentioned variability in terminology.
Second, in chapter 3 the associative learner algorithm is presented. Then, in
chapter 4 the experiments and the results are presented. Finally, chapter 5
concludes this thesis with discussion of the results and potential future work.



Chapter 2

Background

This chapter presents the theoretical aspects and basics of machine learning
in the scope that is required to understand the self-supervised machine learn-
ing methodology that will be presented later in this thesis. These aspects
include, among others, the general process of pattern discovery and recogni-
tion. Examples of every step of the process are given, emphasizing mostly on
methods used to build cross-modal associative learner presented in chapter 3.
Along the way the terminology is fixed since it is not universally agreed inside
the machine learning discipline. Additionally, some specific applications are
reviewed that are either relevant to the general research area or semantically
close to machine learning problem presented in this thesis.

The terms machine learning and pattern recognition refer to algorithms
that learn from data. Generally the goal of a machine learning algorithm
is to either learn to recognize and label previously unseen data or predict
upcoming values of measurements. The recognition or prediction ability is
acquired through making generalizations of seen data. Once the model is
generated, recognition and labeling of patterns from previously unseen data
is possible. [Bis06]

A pattern is a discernible regularity in the data. In other words, the
elements in the pattern repeat in a predictable manner. The patterns having
mutually resembling regularity belong to the same pattern class and are given
a common class label. A model for a pattern class describes the regularity
it in such a way that it captures the statistical variability of the patterns
belonging under the same class label and discriminates them from other
patterns belonging under different labels.

The generalization capability of a model is important. With some learning
algorithms it is possible to train a classifier so that it reaches very high, or
even 100%, recognition accuracy in the training set, but fails miserably in
classification of new, unseen data. This is called overtraining or overfitting

4



CHAPTER 2. BACKGROUND 5

[Bis06], in which the classifier is trained to recognize patterns that are too
similar to those noisy exemplars found in the training set.

The learning, or generation of the models, can be categorized in to batch
and online modes according how the data is processed and stored. In batch
processing, the models are first created from a training dataset and then
validated with another, usually disjointed dataset. Some learning algorithms
working in batch mode involve iteration to fit the model parameters [SW96]
and therefore storing or ”remembering” all the data is required, while others
[RLA09] do single pass execution on the data, after which the data can be
forgotten. In online learning the models are created and updated on the go,
as new data arrive.

Machine learning algorithms are categorized among the contents and the
quality of the training data. At the opposite ends are supervised and unsu-
pervised learning according to the availability of labeling. The term weakly
supervised learning in classification problem is used in cases where the ex-
emplars are not exact or the labeling is noisy. In this thesis it is used to
denote a situation when a learner is given a label and a training vector (ac-
tually a sequence of symbols), that is known to contain the corresponding
pattern and some extra irrelevant information. The training vector could be
significantly longer than the actual pattern and therefore the whereabouts
(the first and the last indices) of the actual pattern (or sub-sequence) is un-
known. Examples of each types of learning algorithms are given later in this
chapter.

There are machine learning methods for many types of data, ordered
and unordered, annotated and un-annotated. In this study order of data is
significant. Sequence is formally an ordered list of symbols or objects, for
example notes, characters or nucleic acid sequence in DNA. Changing the
order of any of them in a sequence results in a different melody, word or
genome.

A time-series is a sequence of data points usually resulting from sampling
or measuring a random variable at uniform time intervals. The measured
random variable can be anything from sound pressure, temperature, and
stock value to body weight. A multivariate time-series is high dimensional
version of uni-variate time-series: it is a sequence of vectors, or a matrix if
you will.

A general pattern recognition process is illustrated in figure 2.1. The
pattern recognition is a process of assigning label(s) to input, which might
be a single value, a sequence or a time-series. The labels are references to
patterns. The recognition process involves following steps:

1. (possible) preprocessing
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2. feature extraction

3. classification

Figure 2.1: Block diagram of pattern recognition

In figure 2.1 the input is speech audio. The speech audio is a uni-variate
time-series representing perceived instantaneous sound pressure. The la-
bels representing patterns could be anything: textual representations of the
speech, speaker identification, or emotion recognition. First, the input signal
might be preprocessed for easier handling of the signal. The prepocessing can
involve something like down or up sampling, segmenting etc. Then, selected
features are extracted from the preprocessed signal. Usually, at least at some
point, multiple features are extracted from the signal. The extraction thus
produces a series of feature vectors, which can be continuous valued or sym-
bolic in nature. The multivariate feature vectors could also be processed
further depending on the classifier. Finally, the classifier makes classification
decisions based on a prebuilt model and assigns labels to feature vectors.

The patterns are here defined to be top level concepts that might even
be called abstractions. Once created or discovered they are constant. De-
pending on data, instances of a single pattern might be variable. At the level
of raw data these instances of the same pattern can differ in content and
in length. Considering speech audio, words, phrases and utterances sound
different between different speakers (e.g. male and female speakers). The
variance can even be high with a single speaker. The prosody changes whith,
for example, the emotional state or health (sarcasm or flu) of the speaker.
Actually, the waveform of the speech is practically never exactly the same
even with a single speaker in a controlled environment. For these reasons the
raw data by itself is not good for discovery and recognition purposes. In this
case the recognition is based on some structure or features extracted from
the raw data.

Before pattern recognition is possible, a classifier has to be build and
adequate features for the classifier selected.
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The case where desired output values and corresponding exact exemplars
are given to the algorithm is called supervised learning. If the input and
output values are discrete or symbolic, they are also called labels. The out-
put of the training is a function called a classifier or regression for discrete
and continuous valued output respectively. The function should be able to
produce correct output values for input data.

At the opposite end of this classification of learning algorithms is unsu-
pervised learning. The problem is quite different since there are no desired
output values or labels to pass to the algorithm. Instead of training with
labels the task is to find structure from unlabeled data. The lack of labeling
makes the evaluation of learning results harder than in supervised algorithms.
There is no straightforward way of determining the validity of the inferred
structure, unless labeling exists for development purposes.

The classification of a machine learning method to supervised or unsuper-
vised is generally also perceived to refer to the amount of human intervention
and manual labor needed. The unsupervised methods are often perceived as
automatic. All machine learning algorithms cannot be classified strictly to
either of these two classes. Some of the algorithms fall somewhere in be-
tween. These kind of methods could be referred as semi-automatic when
hand-editing is done along with the training or as weakly supervised when
the training exemplars are not exact instances of jointly given labels.

2.1 Feature extraction

A very important part of machine learning application design is feature ex-
traction. Feature extraction involves the selection of the quality and the
quantity of the features. Since there is no general theory that would indicate
the optimal set of features, the selection is based mostly on varying combi-
nation of domain expertise, intuition, and trial-and-error. Feature selection
is such a complex problem that it is an active research topic alone. The
problem of feature selection is reviewed for example in [BL97].

The features depend on the application and purpose of the machine learn-
ing algorithm. The features should carry relevant information about the data
they were extracted from in order to make the desired task easier, therefore
the overall quality of a classifier is the result of a good match between ap-
propriate features and the classifier.

Usually the amount of available training data limits the feasible number
of features. In the cases where there is too little data compared to the amount
of training data, all the data appears to be sparse. This leads also to high
risk of over fitting to the training data. Pattern discovery often relies on
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finding groups of similar feature vectors. This means that the developed
model describes the training data, but makes poor generalization to unseen,
future data, thus the predictive power of the machine learning algorithm
is reduced. Therefore the amount of training needed to get reliable results
grows exponentially along the dimensionality of features. This phenomenon
is called the curse of dimensionality [Bel72].

It is often impractical or impossible to operate with and recognize the pure
raw data itself due to its variability. The expressions of the same pattern
might look different when looking only at the raw data or in the case of speech
its acoustic waveform. Some extractable and descriptive features of the data
are therefore more distinguishable. Speech is known to have high variability
already with one single speaker not to mention between two speakers. The
problem is to extract features that can capture variant expressions of constant
models of a pattern.

2.1.1 MFCC

One of the most used features in ASR is Mel-frequency ceptsral coefficients
(MFCCs) [RS07]. It was originally formulated in [DM80]. MFCCs are used
as features for example in speaker recognition [GFK05] and music genre
classification [M0̈7]. Speech can be considered a piecewise quasi-stationary
process, so reliable spectral information of small time frames can be used
in feature extraction for pattern discovery and recognition. This is also the
idea behind in extraction of MFCCs. They constitute a short term power
spectrum of sound.

The features are extracted from short, partially overlapping, excerpts of
the series. These excerpts are called windows. The window size in the case of
audio is usually around few tens of milliseconds and the step size around ten
milliseconds. The step size is also the time interval of the resulting feature
vectors.

The process of extracting the MFCC features from a single window of
time series is presented in figure 2.2. First, an analysis windowing function is
applied in order to dampen the time series values at the edges of the window
and discrete Fourier transformation (DFT), or fast Fourier transformation
(FFT) in practical applications running on computers, is used to convert the
time-series to frequency domain:

Xi[k] =
N−1
∑

n=0

yi[n]h[n]e
−i2πk n

N , 0 ≤ k ≤ K − 1 (2.1)

where yi[n] is the excerpt of the time-series of N samples and h[n] analysis
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window with the same length. K is the length of DFT. Xi is the obtained fre-
quency spectrum of yi[n]. Subindex i just denotes the operation is performed
on i:th window of the time-series.

Taking absolute value and raising to the second power each term of the
obtained spectrum gives the corresponding power spectrum:

Pi[k] = |Xi[k]|
2 , 1 ≤ k ≤ K − 1 (2.2)

A Mel-scale filter bank is applied to the power spectrum to mimic human
hearing properties. It is a collection of M triangular band pass filters, whose
center frequencies and bandwidths increase logarithmically. The power in
each band is calculated by summing the power spectra over the bands. This
results in Mel spectrum MS, a vector of M values.

Finally, taking a logarithm of MS and applying discrete cosine transfor-
mation (DCT) results the MFCC feature vectors:

MFCCi[m] =
M−1
∑

m=0

log10(MSi[m])cos

[

k(m+
1

2
)
π

M

]

, 1 ≤ k ≤ M − 1

(2.3)
In the equation above the indexing of k starts from 1, not 0, because the first
(DC-)component of DCT is omitted here.

DFT ||   || log_10(  ) DCTf

Figure 2.2: Block diagram of extracting Mel-frequency cepstral coefficients
from an excerpt of a time-series. 1. Hamming windowing, 2. Discrete
Fourier transformation, 3. Power spectrum, 4. Mel-filtering, 5. Logarithm,
6 Discrete cosine transformation.

2.2 Unsupervised learning

The objective in unsupervised learning is to find structure from previously
unknown unlabeled data. The concept is closely related and partially over-
lapping to data mining and statistics due to fact that it is applied to many
types of data and applications like: finding market segments from customer
databases (facebook, google, retail marketers), word discovery from continu-
ous speech, grammatical inference and so on.

The unsupervised learning is called dimensionality reduction when high
dimensional data is projected to lower dimension for visualisation purposes or
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to find the most relevant features. Examples of such techniques are principal
component analysis [Hot33], diffusion maps [CL06] and random projection
[RK89]. In the case of density estimation, the aim is to find how data is
distributed. In clustering, the target is to form groups of observations, or
clusters, so that members of a cluster are more similar or related to each
other than the rest of the observations.

Unsupervised learning methods can be used in the pre-processing of the
data before the actual discovery or training. Such applications of unsuper-
vised learning includes, but not limited to, dimensionality reduction before
clustering and/or clustering before training.

A few unsupervised learning methods that are important in this thesis
are outlined in the following subsections: a centroid based and a hierarchi-
cal/agglomerative clustering methods. An example of both can be seen in
figures 2.3 and 2.4.

Figure 2.3: An example of k-means-clustering. In the left plane is a group of
datapoints and in the right is a result of k-means clustering with 3 clusters
common Euclidean distance as selection criterion. The shape and the color
of the markers denote the assignment to each cluster. The large solid dots
denote the computational cluster centroids at the end of the iteration of the
algorithm (convergence).

2.2.1 Clustering

Clustering is divided in to hard and soft clustering according to which degree
a single observation can belong to a cluster. Each observation either belongs
to a cluster or not in the hard clustering as opposed to the soft clustering,
where each observation belongs to every cluster with an individual degree.
When the number of clusters, to which an observation can belong to, is
limited to one, the clustering method is called strictly partitioning clustering.
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Figure 2.4: Hierarchical clustering. The clustered data does not necessarily
have to be sequential as in this example. It can be composed of practically
any ordered or unordered entities like customer segmentation criteria.

Probably the most widely used hard clustering algorithm for multivariate
data is the k-means clustering algorithm. It is hard, strictly partitioning,
clustering method. The k-means is based on assigning observations to the
nearest mean, called a cluster centroid. It is a simple iterative algorithm
with guaranteed convergence, not necessarily to globally optimal but some
suboptimal solution [Mac67].

The partitioning a set of observations to k clusters k-means algorithm is
iterated as follows:

1. initialize centroids by for example randomly selecting k observations

2. assign every observation to its closest centroid

3. compute the mean of each cluster and move the centroids to corre-
sponding means

4. continue from step 2, unless none of the centroids is moved in step 3 or
pre-defined number of iteration rounds is reached

The categorization of future observations is straightforward, assign new
observations to their closest centroid.

2.2.2 Grammatical inference

Grammatical inference, also referred as syntactic pattern recognition [Sch92],
is a machine learning process that induces a formal grammar from observa-
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tions. The formal grammar is usually presented in the form of production or
re-write rules.

A grammar for given observations can be induced with several methods
falling mainly in to three different categories: trial-and-error [DHS00], genetic
algorithms [CK10] and greedy algorithms [Sol64] or their combinations using
for example handcrafting to support otherwise automatic greedy algorithm
[WMS01].

Here, the focus is on the greedy methods, because in the methodology
presented in this thesis the formation of a formal grammar—the source of
labeling— is based on greedy agglomeration. The greedy algorithms are
data driven, iterative and deterministic. At every iteration the grammar is
optimally either extended or modified. The definition of optimality depends
on assigned selected objective criterion. Since the idea behind in the pro-
posed methods is to look for statistical dependencies inside and across two
sequential data streams that both are known to have temporal dependencies,
straightforward greedy inference methods serve the purpose well because they
are easy to assign and evaluate a mathematical function as the objective cri-
terion.

In the following examples of inferring a context free grammar (CFG)
the iteration means strictly appending of a production rule to the grammar.
The selection of the symbol pair for the rule is based on different statistical
measures.

A CFG is generally defined by two finite sets of symbols, terminals Σ and
non-terminals V , a finite set of production rules R from V to (Σ ∪ V )∗ and
a starting symbol S. Here, the production rules include only symbol pairs
V → [Σ ∪ V ][Σ ∪ V ], meaning replacement of a non-terminal symbol with a
pair of symbols, where both symbols can be either terminal or non-terminal
independently from each other. A production rule is written in terms of
symbols as:

αi → akal, (2.4)

where i is the number of iteration and sub-indices k, l refer to position in the
sets of terminals and non-terminals, not the observations. Indices below or
equal to the cardinality of the set of non-terminals denote that the symbol
is a terminal symbol and indices greater than those denote that the symbol
is a non-terminal symbol.

2.2.2.1 Iteration of the inference

One iteration round in the inference of a CFG consists of two parts: selection
of the symbol pair for the production rule and using the selected rule in
the opposite direction, that is compressing the sequence of observations by
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agglomeration. The first and the most straightforward idea is to select the
symbol pair with the highest number of occurrences F (ak, al), resulting in
maximal local compression [Sol64]. However, maximal local compression does
not necessarily lead to a grammar that is optimal for pattern recognition
purposes. The mutual information (MI), on the other hand, is based on the
statistical dependencies between the discrete elements in the data. Mutual
information of a symbol pair akal in the observations is expressed as

MI(ak, al) = P (ak, al)log2
P (ak, al)

P (ak)P (al)
. (2.5)

In equation 2.5 P (ak, al) is the probability of the symbol pair, where the
symbol ak is followed by the symbol al, and P (al) and P (ak) are the proba-
bilities of individual symbols. In place of the probabilities their estimates—
frequencies of occurrences—are used. For example for symbol pair ak, al
the estimate is defined as P̂ (ak, al) =

F (ak,al)
N−1

, where N is the length of the
sequence. There are always N − 1 symbol pairs in N symbol long sequence.

Wu and Su have pointed out that MI is prone to estimation errors es-
pecially when the number of occurrences of both symbols are low [WS93].
Wong et al. have proposed that information gain (IG), as presented in equa-
tion 2.6, could alleviate this problem. It measures the amount of information
in bits about one symbol that is obtained by the knowledge of existence or
absence of the other symbol:

IG(ak, al) = P (ak, al)log
P (ak, al)

P (ak)P (al)
+ P (ak, āl)log

P (ak, āl)

P (ak)P (āl)

+P (āk, al)log
P (āk, al)

P (āk)P (al)
+ P (āk, āl)log

P (āk, āl)

P (āk)P (āl)
(2.6)

In the equation P (ak, āl) =
Freq(ak)−Freq(ak,al)

N−1
and P (āk, āl) = 1−P (ak, āl)−

P (āk, al)
Recently Laine has proposed that the inference of the grammar could be

driven by entropy rate (h). When recurring structures are removed from
observation sequences through agglomeration, the sequences appear more
random and the entropy rate increases. Selecting the symbol pair causing
the largest ∆h for the agglomeration/new production rule is the core idea
behind the hybrid model learner (HML) [Lai11].

2.2.2.2 Stopping criteria

To be a truly unsupervised learning mechanism, the inference of grammar or
any other iterative algorithm needs an automatic stopping criterion. Again,
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there are plenty of choices.
In the case of grammars, their coverage can be used as the stopping cri-

terion. The coverage is here defined as the percentage of terminal symbols
in the training data set that are captured in the grammar. For pattern
recognition purposes a more natural way is to consider for example the rel-
ative growth of the coverage. It is based more on statistics and requires less
knowledge about the training set. Setting too high a coverage threshold for
stopping criterion without any knowledge about the variability of the training
set has a risk of serious overfitting. The relative growth as stopping criterion
was used in grammar induction by Wong, et al. [WMS01].

A very simple stopping criterion would be a lower limit for the maximal
number of occurrences of any symbol pair in the compressed sequence. Also,
when the increase of entropy rate drops it is an indication that there are less
recurring structures to be found. In subsection 2.2.2.1 it was implied that the
reliability of statistical estimators decreases along the number of occurrences
of corresponding symbols. This leads to the idea that the inference could be
stopped when this reliability falls too low. The low reliability could indicate
that the grammar is starting to overfit in to the training data. Lesne et al.
defines the reliability as good statistics and put it in mathematical form as
condition [LBP09]:

max P (ai, aj)Neff ≫ 1, (2.7)

where Neff is the effective length of the actual length N of the symbol se-
quence after |V | iterations. It is written open in equation 2.8:

Neff =
Nh

ln |K|
, (2.8)

where N is the actual length of the compressed sequence, h the entropy rate,
and K the number of the unique symbols in the compressed sequence.

When grammatical inference is used solely for data compression purposes
the stopping criterion is naturally the description length. The description
length is the total sum of bits needed to fully describe the original data, i.e.
compressed data plus compression rules in bits. The compression (and the
inference of the grammar) is stopped when the total amount of bits needed
for decoding the compressed sequence and the inferred grammar would start
to grow. The minimum description length (MDL) would be the method and
the optimal stopping point giving best possible compression [Ris78]. It is a
formalization of Occam’s razor principle and states that best hypothesis for
a given set of data leads to the best possible compression of the data.
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2.2.3 Pattern discovery from time series

Previously discussed grammatical methods do not suit directly to a time
series without quantization. Park and Glass have proposed a truly unsu-
pervised method for finding patterns from speech. They used their own
modification of dynamic time warping (DTW) to find similar sub-sequences
from pairs of spoken utterances. The sub-sequences were then clustered by
presenting them as adjacency graphs. In their experiments the found speech
patterns were shown to correspond to words and phrases relevant to the audio
streams they were extracted from. [PG08]

DTW was originally used as a way to compare two spoken instances of a
word. As stated earlier these instances are practically never the same. The
DTW can be used to alleviate problems especially originating from different
talking speeds which mathematically equal to different lengths of the vectors
representing the instances. The comparison is based on the accumulated
distortion along an optimal alignment of exemplars. Two words, X and
Y, can be presented as time series of feature vectors, for example MFCCs,
(x1, . . . ,xNx

) and (y1, . . . ,yNy
) respectively. The alignment is a mapping

from X to Y with constraints. Mathematically the alignment, or the warp
path φ, is a sequence of ordered pairs:

φ = (ik, jk) k = 1, . . . , T (2.9)

The globally optimal alignment is the one that minimizes

Dφ =
T
∑

k=1

d(xik ,yjk), (2.10)

where d(·, ·) is a distance function between two vectors.
In the most basic DTW for word comparison the start and end points of

warp paths are the start and end points of the time series under comparison:
(i1, j1) = (1, 1) and (ik, jk) = (Nx, Ny). The segmental DTW does not in-
clude this restriction and allows different starting and ending points, but it
has more restrictions for the shape of the warp path. The segmental DTW
thus produces a family of warp paths by varying the start and end points.
The warp paths are refined by discarding portions with high distortions. Set-
ting an appropriate lower limit for the warp path length meaningful similar
segments from an utterance pair can be extracted. The extracted informa-
tion from the utterance pair is two time intervals and associated distortion
measure for the two segments.

From similar segment pairs an adjacency graph that represents distortions
(or the similarities) between all the discovered segments is constructed. The
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common segments from two pairs are recognized through time alignment. For
example if similar segments are found in utterance pairs (A,B) and (A,C),
they are recognized to be the same if the segments in A are aligned in time.
In the constructed graph, nodes are time intervals in the particular utterance
and edges are the distortion measures between the corresponding segments.
An example of a clustering result is illustrated in figure 2.5. The clusters
found in the graph are the discovered patterns. More on graph clustering
can be found in the survey made by Schaeffer [Sch07]. Park and Glass used
greedy bottom up clustering proposed by Newman [New04] in their work.

Figure 2.5: An example of adjacency graph and clustering in it. The nodes
represent exemplars and edges denote the similarity between those exemplars.
The nodes are colored according to group membership.

Finding patterns from speech and segmenting it in an unsupervised man-
ner is possible without storing every exact actual exemplar or internal repre-
sentation of discovered patterns. Discovery and segmentation can be achieved
by merely building models of patterns relying on special statistics of atomic
acoustic events. By using such statistics, the self-learning concept matri-
ces (SLCM) algorithm is capable of acquiring representations of recurring
word-like units from speech without any a priori knowledge. The ability to
segment novel utterances in to word-like units is an inherent property of the
algorithm. [Rä10]

The SLCM algorithm is based on the concept matrix (CM) algorithm
[RLA09], which is slightly modified and appended with novelty detection to
guide the process to create a new model or to update an existing one. The
actual CM algorithm is described in more detail in section 2.4.1.

Oates has introduced the PERUSE algorithm [Oat02], which can discover
frequently occurring patterns from multivariate time-series. The mean and
variance of exemplars of patterns are used in model creation and recogni-
tion. PERUSE iteratively finds the number of frequently occurring unique
patterns, their positions and lengths. It works in batch mode. All training
material is expected to be available to it at all times. In addition to the main
unsupervised learning task being iterative, the supervised parameter estima-
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tion subproblem is using the expectation-maximization (EM) algorithm.
These two properties can be considered as downsides. It is not reasonable to
store large amounts of data and the algorithm becomes slow as the amount
of data increases.

2.3 Supervised learning

Because a speech signal can be approximated as a piecewise stationary pro-
cess, it can be modelled as a Markov process. A Markov process is a process
that satisfies the Markov assumption: the next state of a system depends on
only the current state, not the history of states. The state zn+1 is condition-
ally independent on states z1, . . . , zn−1 given the state zn. In some pattern
recognition tasks like ASR the actual states are not observed directly but
deducted from observations that are depended on the states. These kind of
formalizations are called hidden Markov models (HMMs) [RS07]. In fig-
ure 2.6 a HMM is presented as a graphical model, which corresponds to the
factorization presented in equation 2.11a. In the figure z1, . . . , zn are the
hidden or the latent variables. In a m-state system each of these variables
represent one of the m states: z1, . . . , zn ∈ {1, . . . ,m}. The state transi-
tions are defined by the m×m sized transition probability matrix T, where
the individual transition probabilities T (i, j) = P (zk+1 = j|zk = i) satisfy
0 ≤ T (i, j) ≤ 1 and

∑m
j=1 T (i, j) = 1. In ASR systems generally T (i, j) are

large (close to 1) when i = j and small (close to 0) when i 6= j, i.e. staying
in the same state is more probable than changing the state. Each state i
is characterized by the related emission probability ǫi, which captures the
statistical properties of feature vectors (x) within the state. It is usually a
Gaussian mixture distribution.

p(x1, . . . ,xn, z1, . . . , zn) = P (z1)P (x1|z1)
n
∏

k=2

P (zk|zk−1)P (xk|zk) (2.11a)

= π(z1)ǫz1(x1)
n
∏

k=2

T (zk, zk−1)ǫzk(xk) (2.11b)

A HMM periodically updates its state according to the state governing
transition probabilities and on every update it emits an output, a feature
vector, which is then observed. In ASR systems, the states are usually sub-
word or sub-phoneme units. The feature vectors are some kind of spectral
representation, e.g. MFCCs, of the frame. In the recognition the task is
to find the most probable sequence of states (phonemes) that generated the
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z1 z2 zn

x1 x2 xn

ǫz1 ǫz2 ǫzn

T (z1, z2) T (z2, z3) T (zn−1, zn)

Figure 2.6: A hidden Markov model

sequence of feature vectors. Before the recognition is possible the HMM has
to be trained. The training means estimating the three sets of parameters:
the state transition probabilities T (i, j), the emission probabilities ǫi and the
initial state distribution π1. Now the HMM in figure 2.6 can be formalized
as the factorization in equation 2.11b.

A HMM for ASR can be trained in a fully supervised manner, but it is
often very laborious since it basically means annotation and segmenting the
speech samples by hand. After this data preparation, the transition probabil-
ity and the initial distribution estimates are calculated from the annotation.
The estimates of emission probability distributions are collected from speech
segments corresponding to each state. In the case of a mixture of Gaus-
sian distributions it means computing the mixture weights, mean vectors
and covariance matrices for each mixture. Parameters for HMMs can also
be trained also iteratively using the EM algorithm or modifications of it, for
example [SW96].

With a very large training corpus the segmentation by hand is impos-
sible due to time or financial constraints. There are algorithms that can
optimize the alignment between the states and the feature vectors. The two
most popular are the forward-backward algorithm [BPSW70] and the Viterbi
algorithm [For73].

To be noted, a HMM can be trained also in an unsupervised manner (see
e.g. [hSGC+14] and accompanying references).

2.4 Weakly supervised pattern discovery

All machine learning algorithms cannot be categorized strictly as supervised
or unsupervised. Various terms like weakly supervised, semi-automatic, and
self-supervised learning have been used to describe the methods falling out-
side the strict categorization. The usage of those terms is loose and they are
used as both synonyms and to differentiate learning algorithms. In grammar
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induction, for example, minor hand-editing between some iterations in an
otherwise fully supervised learning algorithm could improve the quality of
the grammar [WMS01].

The term weakly supervised learning is used to denote learning situations
where training is not exact due to noisiness of labeling or the training exem-
plars. The training exemplars could contain extra information not related
to jointly given labeling. Methods that can be considered as weakly super-
vised pattern discovery include but are not limited to non-negative matrix
factorization (NMF) [LS01], acoustic dynamic programming ngrams (DP-
ngrams) [Aim09], and the concept matrix(CM) [RLA09] algorithms. In the
following subsections, NMF and DP-ngram’s are briefly described whereas
the CM algorithm is explained more closely because it is at the core of the
methodology used in this thesis.

2.4.1 The concept matrix algorithm

The CM algorithm learns to recognize patterns from quantized time series
without exact training in the traditional sense of supervised learning. In
training it takes discrete symbolic data sequences and related context labels.
It is called weakly supervised because the input sequences are known only to
contain segment(s) that are instances of jointly given label(s). The lengths
and positions of the instances are not known a priori. Through multiple
training exemplars the excess portions of input sequences, not related to
the label, average each other out and the future instances of patterns are
recognized through their statistical properties.

The CM algorithm learns associations between discrete sequential data
and categorical contexts related to the data. Once trained, the CM algorithm
gives instantaneous probabilities of existence, or activation levels, of learned
contexts for future untrained data. These training and recognition phases
are defined in more detail in this subsection.

2.4.1.1 Training

The CM algorithm takes as input a set of discrete sequences si = [si,1, si,2, . . . , si,Ni
]

and subsets of context labels ci ⊆ C, ci = {ci,1, ci,2, . . . , ci,Mi
} related to

the sequences. N is the length of an discrete sequence and M is the size of
a set. Typically N ≫ M for sequence-label-pairs.

To be noted that in basic CM algorithm ci is a set. In a set the order of
elements does not matter. Two set constituting of the same distinct elements
are essentially the same. Additionally, sets cannot have duplicates.
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From the sequences the algorithm collects frequencies of occurrences of
element pairs with lags k = {k1, k2, ..., kK} and stores them in frequency
matrices Fk,c. The training thus produces KNC matrices of size NsxNs, one
for each label c ∈ C with every lag k. K is the number of different used lags,
NC is the number of all labels, and NS size of the alphabet of the discrete
sequences S.

The indexing of the symbols in the used alphabet can be used in the place
of actual symbols. For example in the English alphabet:

s1 = a = 1

s2 = b = 2

...

s26 = z = 26

This offers a convenient way of using them directly as indexes of matrices.
Therefore, an element in a frequency matrix Fk,c(si, sj) is the frequency of
occurrences of element pair si, sj separated by k−1 elements in all sequences
related to label c.

Next step in training is the normalization of the frequency matrices to
activation matrices Qk,c. First, transition probabilities from each element to
every element with every lag are computed:

PS
k,cn(sj|si) =

Fk,cn(si, sj)
∑NS

j=1 Fk,cn(si, sj)
(2.12)

which is the probability of element sj of being k:th element after element si in
all label cn related sequences when intermediate elements are not considered.

The second step in normalization is the computation of conditional tran-
sition probabilities P (si, sj ∈ cn | k) to activation matrix:

PC
k,cn(sj|si) =

PS
k,cn

(sj|si)
∑NC

m=1 P
S
k,cm

(sj|si)
, (2.13)

which is the probability of transition from si to sj occurring with lag k in the
presence of label cn instead of the same transition occurring in the presence
of any other label.

Equation 2.13 already gives the maximum likelihood estimate for context
label c given transition from si to sj. Normalization is taken one step further
and is finalized by subtracting 1

NC
from conditional probabilities to force the

sum of activations of all possible labels c to zero at all times:

Qk,c = PC
k,c −

1

NC

(2.14)
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The reasoning behind this idea is that if the sequences S are generated by
an independent and identically distributed random process, all the activation
levels would equal this value. Therefore all activation levels below 1

NC
are

considered meaningless.

2.4.1.2 Recognition

For an input sequence the CM algorithm gives instantaneous activation levels
for every trained context. The element pairs with different lags in input
sequences are used as pointers to previously created activation matrices Qk,c.
The activation level of a context cn at time t is the sum of the normalized
activation values at all learned lags:

A(cn, t) =
1

K

K
∑

m=1

Qkm(st|st−km , cn) (2.15)

The context having highest activation level at a certain time instance is
considered the context that most likely generated the present input. Usually
it is convenient to examine temporally longer windows if contexts are known
to be distributed in time.

2.4.2 Non-negative matrix factorization

NMF algorithm can also be used in weakly supervised learning framework
for training of word models for speech recognition [VH08]. In the NMF, a
matrix V of size n × t is approximated as a product of matrices W and H

of sizes n× r and r × t respectively:

V ≈ WH, (2.16)

where V is multivariate n-dimensional data with t observations. As the
equation suggests the i:th column of V is the linear combination of column,
or basis, vectors in W with multiplying coefficients, or model activations in
corresponding i:th column vector in H.

The name for the NMF comes from the constraint that all elements of
all matrices in the factorization have to be strictly zero or positive. V Some
computationally effective methods to solve matrices W and H in equation
2.16 are presented in [LS01].

Usually r is chosen so that (n+t)r < nt, which enforces the reconstructed
matrix V to lower dimensionality. When r << t a high quality approxima-
tion is achieved only when latent structure is discovered from the data. In
Van Hamme’s experiments the latent structure is the limited vocabulary of
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a large corpus of t utterances, namely the TIDIGIT [Leo84] corpus [VH08]
[Van08]. For the use of NMF utterances have to be presented with constant
dimension feature vectors. These vectors are the t column vectors of V in
equation 2.16. r is set to slightly greater value than the number of words in
the training corpus to allow training or discovery of silence or noise.

2.4.2.1 Training

A NMF in its basic form as presented in equation 2.16 operates in unsuper-
vised manner [SDVh08]. Weak supervision can be included to training by
extending equation 2.16 by information matrix G [VH08]:

[

G

V

]

=

[

Wg

Wv

]

H (2.17)

V is a collection of non-negative fixed-length representations of utter-
ances, which can be constructed for example from phone lattice transition
probabilities. G is a m× t matrix, where an element with index i, j denotes
how many times i:th word is contained in the j:th utterance. This weak su-
pervision is conceptually similar to the labeling done in the training of basic
CM algorithm. The actual training equals to the computation of factoriza-
tion in equation 2.17. The outcome is collection of model vectors as latent
variables for acoustic and information data: Wv and Wg.

2.4.2.2 Recognition

The recognition on unseen data is performed first by computing Ĥ from
V ≈ WgĤ with Wv obtained from training. Second, the word activations
in this unseen data are estimated with following equation:

Ĝ = WgĤ, (2.18)

where column vector of Ĝ expresses to which extent each learned word is
found in corresponding test utterance.

2.4.3 Acoustic DP-ngram

Aimetti has proposed a weakly supervised method for learning keywords from
utterances [Aim09]. It is a modification from DP-ngram method originally
developed to find similar segments of DNA sequences [SK83] and hence called
acoustic DP-ngram.

The segmentation of utterances to extract keyword instances is based
on finding optimal alignments between pairs of utterances and is similar
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to the DTW described in the subsection 2.2.3. Instead of comparing every
utterance to every other utterance a soft labeling is used to force the discovery
of the local alignments. The optimal local alignments are obtained only
from the utterance pairs sharing the same keyword label. This allows the
method either to build full list of obtained word exemplars or to calculate
’centroid’ exemplars/prototype models for every keyword. The recognition,
or the keyword detection from utterances, is reported to perform better with
the full lists of exemplars than with the ’centroids’. In the experiments it
seems that the ’centroids’ based methods cannot handle the variability of
acoustic speech signal and the word detection capability starts to decline
when ’too many’ utterances are observed.

2.5 Multimodal pattern recognition

The definition and the use of the word multimodal varies along different re-
searchers and studies. The multimodality of data brings both challenges and
opportunities. The expectation is the possible leverage to machine learn-
ing tasks that could be obtained from extra information provided by extra
modalities. In many cases it is not feasible or even possible to fuse data
together to multivariate data and use traditional techniques. This could be
due to a few reasons: the nature of the data streams are so different that
same recognition/discovery method cannot be used or the streams could be
temporally and/or spatially asynchronous. For example in industry fault di-
agnostics there could be strong association between two sensors of different
kinds at different parts of the process, but with variable delay.

2.5.1 Statistical machine translation

A statistical machine translation (SMT) is a machine learning algorithm that
learns to translate from one natural language to another. Usually a SMT
algorithm is trained by giving samples of human-produced translations—
parallel corpus—for example official documents from the European Union
[Koe05]. The SMT algorithm seeks for patterns from these large amounts
texts. Based on the learned patterns and their statistics it makes intelligent
guess what the appropriate translation could be. [Lop08]

The two main problems that a SMT algorithm has to solve are the ambi-
guity of word translation and the differing word ordering between the source
and the target languages. Some words can be translated without loss of
meaning to different morphological variants of the same word, while some
other words have translations with totally different meanings. The source
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and the target language could have typically different syntactic structure, so
some sort of reordering has to be applied. [Lop08]

The development of a SMT system generally contains the following steps:

1. construction of a translational equivalence model

2. parametrization

3. parameter estimation

4. decoding

Formally the task of a machine translation system is to transform a se-
quence of words from a source language to a sequence of words in the target
language. The goal is to find a translationally equivalent I words long se-
quence eI1 ∈ VE

I for a given J words long input sequence fJ
1 ∈ VF

J . The
translational equivalence models are not capable of providing single unam-
biguous sequences. A parametrization is assigned to the model in order
to resolve the ambiguity, allowing the rating of source and target sequence
pairs. The parameters in parametrization are estimated by means of machine
learning methods. The final step is the actual translation, also called decod-
ing, which equals the search for the highest rating target sequence according
to the model. [Lop08] More on the parameter estimation can be found in
[BPPM93].

Translational equivalence models are important since they reduce the
search space in which translations are searched for in the decoding phase. One
of the two most used translational equivalence models is synchronous context
free-grammar (SCFG), which is a generalization of a CFG [Lop08]. Instead
of producing one output string it produces two output strings and defines
an alignment between them. Co-indexed nonterminals are used to define
correspondence between strings. When two nonterminals share the same
co-index, they are aligned. Below is a section of a SCFG. Each production
produces two outputs, one for each language. Here they are separated by a
slash (/).

Table 2.1: A section of a SCFG for English and Japanese

S10 → NP11VP12 / NP11VP12

VP12 → V13NP14 / V13NP14

NP11 → i / watashi wa
NP14 → the box / hako wo

V13 → open / akemasu
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Applying production rules to any aligned nonterminals until there is not
any nonterminals left produces English and Japanese strings which are trans-
lations of each other (i open the box / watashi wa hako wo akemasu). [Chi06]

A way to approach SMT is generative and probability models through
the chain and the Bayes’ rules:

P (e|f) =
P (e, f)

P (f)
=

P (f |e)P (e)

P (f)
(2.19)

In SMT P (e) is called the language model and P (f |e) the translation
model. Applying the translation equivalence model to this decomposition
reduces the search space. Additionally, the maximization problem of the
conditional probability P (e|f) is independent of language model P (f). With
these two modifications the following decomposition is obtained:

P (e,d|f) ∝ P (f ,d|e)P (e) (2.20)

Further assumptions have to be made to make the search for the most
probable estimate êI more tractable. These include, for example, assuming
that a word in either language is conditionally dependent only a certain
amount of words before it. Moreover, the approaches are not limited to
generative models. More details on SMT can be found for example in [Lop08].

Loosely speaking the source and target languages can be considered two
modalities of the same higher level meaning, which is considered when SMT
is resolving the translational equivalence. The need for reordering is the main
feature that differentiates SMT algorithms from the method later presented
in this thesis.

Two popular examples of freely available web services based on SMT are
Google Translate [Goo12] and Microsoft Translator [Mic12].

2.5.2 Other multimodal learning paradigms

Probably the most obvious example of a multimodal data stream is multime-
dia, which can be a combination of video, audio, text, and still images. Much
of the multimodal research is done around segmentation of such data, which
is also called scene boundary detection. These segmentation methods get
leverage from the existence of multiple modalities. For example Xie proposes
methods in her dissertation that are able to find patterns that reside across
multiple modalities. Her methods were aimed at detecting dense structures
from multimedia. In the experiments the methods were able to discover
different semantic segments, like “play” and “break” of soccer and baseball
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games using both visual and acoustic cues. Furthermore, news broadcasts
were segmented with additional textual modality. [Xie05]

In Xie’s approach, the recurring events in video are modelled as HMMs,
and the higher level transitions between the events as another level of a
Markov chain. This structure creates a hierarchical hidden Markov model
(HHMM). In the experiments the higher level HMM corresponds to semantic
events, like ’play’ and ’break’ in a soccer game, and the lower level corre-
sponds to the occurring variations within the same event. Together with au-
tomatic feature and complexity selection this unsupervised method achieved
comparable or even better results when compared to both supervised and
unsupervised HMMs. [Xie05]

Ballard and Yu proposed a method [BY03] for word acquisition that
makes use of raw multimodal data. In their experiments users explained
actions they were performing, for example “Stapling the paper”. Through
phoneme recognition the utterances are transcribed to phoneme strings. In
conjunction with spoken utterances, data was collected from multiple user
mounted sensors. The sensors captured body movements and gaze fixa-
tions. From the additional sensor data two contextual data streams were
constructed: actions and attentional objects. Different actions and objects
are used as soft labeling for co-occurring phoneme strings. From any pair of
phoneme strings that share the same label, similar sub-strings are extracted
and clustered together. Under the same label multiple clusters are formed,
because a phoneme string can contain multiple labels (e.g. an object and the
action on the object). Each cluster represents a hypothesized lexical item
for the label. Finally, the expectation-maximization (EM) algorithm is used
to find the most probable lexical item given the label. [BY03] The method
proposed by Ballard and Yu is an unsupervised word learning and grounding
method. It does not provide predictions of the outcome of one modality from
another or in other words transcription ability.

Ridge et. al. proposed an unsupervised learning method that builds an
internal representation between basic objects and their affordance [RSL10].
The term affordance characterises the action possibilities that an environment
offers an agent acting in the environment [Gib86]. The algorithm is evaluated
in experiments with a robotic arm that interacts with household objects on a
table. The two modalities used in the experiments are still images taken prior
to the interaction and video after a pushing action of the arm. The input
features describe the image of the object and the output features describe
the movement of the object. The proposed algorithm learns to classify novel
objects in to affordance classes. The approach is somewhat similar to the
method proposed in this thesis: the found structure in one modality together
with the co-occurrence information, are used in the labeling of supervised
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construction of a classifier in the other modality. Ridge et. al. use a cross-
modal neural network that has two layers of codebook vectors fully connected
via a Hebbian weight mapping. The layers are trained trough Kohonen’s self-
organizing maps and a variant of learning vector quantization algorithms
[Koh97]. The co-occurrence is exploited in the training of the Hebbian map.
The Hebbian links between the best matching unit nodes in the two layers are
updated every time a new feature vector pair is introduced to the system.



Chapter 3

Cross-modal statistical learning

In this chapter the methodology for automatic self-supervised learning of
associations is proposed. The process is described in the light of the given
task of maximizing the predictability of the textual representation when the
learner is given corresponding speech audio. Part of this work can also be
seen in a paper published in the conference proceedings of the Interspeech
2013 [KRL13].

The individual algorithms for each given sub-task in the learner are se-
lected using domain expertise. The selected algorithms are proven to be
effective in their domains. The main novelty aspect here are how they are
combined and that information on the ordering and the length of patterns
in textual modality is used to segment feature representation of speech. The
learner acquires the transcription ability only from speech to text, because
some of the key algorithms are not generative.

First, an overview of the whole algorithm is given and continued by defin-
ing the research problem in precise mathematical form. Throughout the re-
mainder of this thesis, the same notation is used at different stages of the
whole algorithm

3.1 The overview

As mentioned in chapter 1, patterns are first discovered in one modality
and then used as labels in the training in the other modality. The selection
of the CM algorithm for pattern recognition in speech audio guides further
algorithm selections. The CM algorithm needs labels in the training phase
and the textual representations of the speech audio is a good source for
labeling, since it is noiseless in the sense that instances of the same patterns
are always the same, assuming the used corpus is free from typographical

28
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errors.
The CM is selected for pattern recognition from audio, because it has

proven to be effective in real keyword discovery when experimenting with
the same CAREGIVER [AtBA+10] corpus used in this thesis [RL12]. The
novelty value of this thesis is that keywords are not known a priori and
utterances are evaluated as a whole. The CAREGIVER corpus is presented
later in this chapter.

Since the textual modality is basically strings of concatenated charac-
ters, the actual words that constitute each utterance are not know a priori.
The approach is to apply statistical inference to the collection of utterances
presented as continuous text to create an applicable grammar. The created
grammar is used to extract patterns, or word-like units of text, from each
utterance. These patterns are then used as labels in the CM algorithm. For
building the grammar a variant of HML is used.

With the CM algorithm, labeled patterns can be recognized from speech
audio. These ordered sets of labels are transcribed back to their textual rep-
resentations and then concatenated. This text string is a hypothesis, which is
evaluated by comparing it to the ground truth, the corresponding reference
text string. The fidelity of the hypothesis is evaluated with edit distance.
Generally edit distance refers to a string metric called the Levenshtein dis-
tance [Lev65], which measures the difference between two symbolic sequences.

3.2 The research material - CAREGIVER cor-

pus

The signal pairs used in the experiments are derived from CAREGIVER
corpus [AtBA+10]. It is composed of infant directed speech as high quality
speech audio utterances accompanied by their orthographical transcripts.
The whole corpus is multilingual, but only the English portion of it is used.
The original purpose of the corpus is to study keyword learning from speech.
It contains utterances with 1-4 keywords placed in a carrier sentence. The
keywords are statistically balanced, which produces grammatically correct
sentences that are not necessarily semantically plausible. Since there should
not be strong word-to-word dependencies between the keywords, the fact
could be used in the evaluation of the stopping criterion in the grammar
induction for continuous text. The iteration should self terminate before
the algorithm starts form such production rules that lead to text strings
containing two keywords.

In the recordings of the utterances 10 speakers were used: four main
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speakers and six additional speakers. Each of the four main speakers have
2397 utterances and the additional speakers 600 utterances each. The corpus
also contains single productions of keywords. In these experiments one main
talker was used.

3.3 Problem formulation

The discovery of the associations between two sequential data streams that
are hypothesized to contain mutual dependencies is studied. These depen-
dencies are very weak at the level of raw data due to their nature. Instead,
the strong dependencies are assumed to exist only between higher-level pat-
terns extracted from both data streams. The data is represented as a set of
pairs of signals {sT ,wT} from training sets S and W , denoting speech audio
and string of characters respectively. The sub-index T denotes the number
of utterance T ∈ [1, 2, . . . , N ], where N is the total number of utterances.

After being given these N pairs for training, the learning agent is expected
to acquire the ability to produce estimates for w when given a novel spoken
utterance s.

3.4 Pre-processing of the speech audio

For the use of the CM algorithm the speech signal is transformed into a dis-
crete signal that represents the atomic acoustic events. The discrete signal is
the result from computation and clustering of MFCCs [DM80]. In the exper-
iments for this thesis 12 MFCCs from 32-ms long windows are extracted at
10-ms intervals. These 12-dimensional continuous value vectors are clustered
to NA = 128 clusters with k-means and the vectors are replaced by their cor-
responding cluster IDs. This gives us the vector quantized (VQ) symbolic
speech sequence with alphabet size of NA at 100 Hz symbolrate (see chapter
2). A similar pre-processor consisting of MFCC vectors and clustering is used
in many other speech processing related studies [Rä11] [Van08].

3.5 Pattern discovery from continuous text us-

ing greedy agglomeration

To discover patterns and use them for labeling in the CM algorithm, gram-
matical inference is used. The textual representations of training utterances
are concatenated, and all the special characters—including white spaces—are
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removed. This long continuous text string is then compressed by agglomer-
ation and a CFG built as explained in section 2.2.2. The set of labels are
the word-like sequences of text corresponding to the non-terminal symbols
in the compressed sequence. The labels and the discovered patterns to be
associated with each individual VQ speech utterance are the ones recognized
by the induced grammar. Each utterance is compressed using the agglomera-
tion rules in the same order they were selected in the induction phase. When
there are no more possible agglomeration rules to be used, the patterns are
the word-like sequences corresponding the non-terminal symbols.

3.6 Segmenting VQ speech sequences

In this study the contextual labels c are the text patterns that are recognized
from the continuous text with the previously acquired CFG. As stated in
[RL12], these contexts could be used as either an unordered or ordered set
in the input for the CM algorithm. Since the two streams (speech and text)
are different representations of the same phenomenon, a priori knowledge is
exploited in that the patterns are in the same order in both representations.
VQ representations can be segmented in order to discard the VQ elements
that are almost surely not related to the text pattern.

A reasonable constraining assumption is that the pattern boundaries are
approximately in the same relative positions in the both representations. Due
to the nature of the English language and the existence of silence periods
in speech, it cannot be guaranteed that all the relevant VQ elements are
between the boundaries suggested by the corresponding text pattern (the
dashed vertical lines in figure 3.2). For this reason the length of VQ speech
sequences used in the training, together with a text pattern is extended by an
experimental factor of 1.4 . For example if a VQ speech segment suggested
by the text pattern is vivi+1 . . . vi+n−1, where v is a VQ element and n is
the length of the segment, then the extended segment is vi−0.7n . . . vi+1.7n−1

(the highlighted portion of the sliced bar representing VQ speech sequence
in figure 3.2).

For example, if a pattern ci is found in signal wT , its relative length in
that utterance is |ci|

|wT |
. Since the two signals, wT and sT , are more or less

asynchronous, relatively longer segments of sT are taken to be associated to
context tag ci. An extension factor of 1 is used to both ends of the pattern
in the results presented here. So, relative length of the associated segment
of sT is up to three times as long as the relative length of ci.
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3.7 the concept matrix (CM) algorithm

After acquiring the VQ segment-label pairs, they are used to train CMs as
described in section 2.4.1.

3.7.1 Recognition

The recognition is done in two phases. The idea is to look for patterns that
have high activation on short and long temporal intervals. In other words,
two requirements have to be met for a pattern to be included in to the
hypothesis. First, it has to have high integral of activation values across the
whole sequence, and second, it also has to be the most probable candidate
across some much shorter temporal interval. The formation of a hypothesis
goes as follows.

First, a short-term sliding window is used to accumulate CM activation
value outputs A(c, t) into local pattern probability estimates. The integral
of activation values for pattern c at time t with window length T is:

Atot(c, t) =

t+T/2
∑

t−T/2

A(c, t) (3.1)

The pattern that has the highest integral across the window is selected for
the hypothesis for this short time interval. Application of the sliding window
to activation values A(c, t) with step size TS results in an ordered sequence
of pattern hypotheses c̃ of length |A(c,t)|−T

TS
+ 1. Second, an unordered set

of pattern hypotheses c̃τ is formed by measuring the overall activation of
all patterns across the entire utterance and then retaining the patterns that
exceed a pre-defined activation threshold τ .

By taking an intersection c̃ ∩ c̃τ , preserving the order of the hypothesized
patterns, and merging consecutive duplicates of detected patterns, the final
hypothesis of most likely textual representation w̃T is obtained by converting
the hypothesized text patterns into their textual representations according
to the production rules in the induced CFG.

3.8 Evaluation the quality of the hypothesized

sequences

In the evaluation of the fidelity of a single hypothesized utterance, a variant
of common Levenshtein distance [Lev65] is used. The Levenshtein distance
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measures dissimilarity of two strings in the form of the minimum amount
of single character edits (deletions, insertions and substitutions) needed to
convert a string to another string, here corresponding to the hypothesized
utterance and the corresponding reference. Here, the variant is referred as
edit distance and in it deletion and insertion have equal weights (1) and sub-
stitution twice that weight (2). For example, edit distance between bargain
and jargon is 5, resulting from two substitutions and one deletion (See table
3.1 for more detailed computation). Furthermore, the edit distance is zero for
a hypothesis matching the reference exactly. The goodness of one individual
edit distance measure depends naturally on the length of the reference. In
order to compare edit distances of utterances of different lengths, individ-
ual edit distances are normalized with the corresponding reference utterance
length. The resulting measure is referred as relative edit distance (RED).

Edit distance between two strings a, b can be computed using Wagner-
Fischer algorithm [WF74]. It is computed recursively using equation 3.2 and
given by leva,b(|a|, |b|), where

leva,b(i, j) =















max(i, j)) if min(i, j) = 0,

min







leva,b(i− 1, j) + 1
leva,b(i, j − 1) + 1

leva,b(i− 1, j − 1) + 2 ∗ [ai 6= bj]
otherwise

(3.2)
The first element in the min-part of equation 3.2 corresponds to deletion
from a, the second insertion, and the last substitution in the case of character
mismatch. The recursion visually corresponds filling a (|a| + 1) × (|b| + 1)
sized matrix element-by-element. The computation of edit distance for words
bargain and jargon is illustrated in Table 3.1.

In the experiments, the optimization task is to maximize the predictabil-
ity of the textual representations for a set of spoken utterances. That corre-
sponds to minimizing the sum of individual edit distances of the hypotheses
in the set, which is referred to as the sum of edit distances (SED).
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Table 3.1: Edit distance computation example using equation 3.2 recursively.
The performed single character operations are listed on the right side of the
matrix and corresponding cumulated edit distance values are emphasized and
underlined in the matrix.

j a r g o n

0 1 2 3 4 5 6
b 1 2 3 4 5 6 7 substitute b → j

a 2 3 2 3 4 5 6 match a = a

r 3 4 3 2 3 4 5 match r = r

g 4 5 4 3 2 3 4 match g = g

a 5 6 5 4 3 4 5 substitute a → o

i 6 7 6 5 4 5 6 delete i

n 7 8 7 6 5 6 5 match n = n
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Figure 3.1: Overview of the whole process of pre-processing, training, and
recognition. The process starts with pre-processing utterances from high qual-
ity wav-audio signals to vector quatized sequences and inducing grammar from
corresponding utterences in textual representation. The training set of vector
quantized sequences are segmented using the induced grammar. The CMs are
trained with terminals (labels) and corresponding segments. Using the CMs,
the hypotheses for textual representations of VQ speech test sequences are
formed by recognizing labels inside each VQ speech sequence. Finally, calcu-
lating the edit distance between hypothesis and corresponding reference gives
the quality of recognition
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Figure 3.2: The text patterns are recognized from the root nodes (the C’s)
of CFG bottom up parse trees. The CM is trained with longer segments of
VQ representation than text the pattern suggests. The segment is extended
70 percents from both ends.



Chapter 4

Experiments

The proposed methodological framework was developed and tested in the
MATLAB environment. In the conducted experiments, the learning algo-
rithm is given a training set of utterances with the textual and VQ speech
representations in order to build the statistical association across the two
representations. The measure of the success of pattern discovery and asso-
ciative learning is the fidelity of the textual representations that are derived
from the given VQ representation of speech from a disjoint test set.

4.1 The material

The material used in the experiments is taken from the CAREGIVER cor-
pus [AtBA+10]. The corpus contains infant directed spoken utterances in
multiple languages and speakers. Along the high quality speech signals there
are corresponding orthographic transcripts of each utterance. From the Y2-
version of the corpus 2397 utterances of a single English speaker are used
in the experiments. Each of these utterances contains from one to multiple
words. The utterances are constructed from a list of 50 keywords and ac-
companying carrier phrases. The keywords are statistically balanced which
causes some of the utterances to be logically absurd but still every utterance
is grammatically correct.

4.1.1 Data preparation

The utterances are rearranged in to a random order. After the rearrangement
the first 2000 utterances are used for parameter evaluation and training. The
remaining 397 utterances are used as the test set. For consistency, throughout
the experiments both the order of the utterances, as well as the division to

37
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training, evaluation and test sets are kept the same.

4.1.2 Extraction of label - VQ sequence pairs for the

CM algorithm

The textual representations of utterances in the training set are concate-
nated, and the grammatical inference—described in the subsection 2.2.2—
run until the stopping criterion in the equation (2.7) is met. The resulting
CFG is used in bottom up parsing of individual utterances. The root nodes
representing the word-like units of text are then used as labels in the CM
algorithm. The information about the portions that the recognized patterns
occupy in the textual representations is used in extracting segments from the
corresponding VQ representations. The label recognition and segmentation
of VQ representation is illustrated in figure 3.2. Since the two vectors in
different modalities are known to contain the same information, it is reason-
able to assume that the length of VQ speech segment is proportional to the
length of the label. The lack of direct correlation is taken into account by
pairing a 1.4 times longer segment of VQ speech than corresponding label
length would suggest. This guarantees that the VQ speech segment (almost
surely) contains the actual VQ speech representation of the label, but still
some excess VQ speech is dropped out. The extraction is performed in all
training utterances and with all the discovered labels. The CM matrices are
trained with resulting label-VQ segment pairs using lags: k ∈ {1, . . . , 13}.

In testing, the hypothesized textual representations of utterances are de-
rived from the activation graphs, which are the resulting output from the
CM algorithm when given a VQ speech sequence. These representations are
compared against corresponding reference strings to evaluate the fidelity of
the hypotheses, i.e. predictability.

4.2 The results

The experiments were run with three different CFG variants. The variants
are the result of different selection criteria of symbol pairs in the inference of
CFG. These variants are Freq, MI and IG as presented in section 2.2.2.1.

The success of the estimation with each variant is evaluated by comparing
the estimated parameters to the optimal ones. The variants are compared to
each other with the SED measure.

The parameter values for sliding window length T and for the step size
Ts to be used in the final testing on the independent test set are estimated
from the training set using a 5-fold evaluation procedure. In each fold, 1600
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(a) Heat map for parameter estimation.

Estimates T = 47 and TS = 1 samples

correspond the minimum SED of the map.

(b) Heat map of SEDs in the test set. The

SED with estimated parameter values is

3144. The optimized SED is 3044 and is

given by T = 48 and TS = 7 samples.

Figure 4.1: Freq heat maps. Each tile’s color represents the SED with corre-
sponding sliding window size T and step size TS.

utterances are used for training and 400 utterances for evaluation of the
text reconstruction performance. The parameter values are varied and for
each combination of values the SED is computed and averaged over the folds.
The parameters’ value estimates are the ones that gives the minimum average
SED within the evaluation sets. Similarly, for the test set of 397 utterances
the SED measures are computed for the same parameter value combinations.
These computation results for Freq, MI, and IG variants are visualized as
heat maps in figures 4.1, 4.2, and 4.3 respectively. Since here the task is to
minimize, colder (bluer) is better. In the figures (a)-tiles are the averaged
heat maps from the 5-fold evaluation and (b)-tiles heat maps representing
SEDs with different parameter values in the test set.

The results extracted from the heat maps are summarized in table 4.1. All
the estimated parameter values and the corresponding SEDs are compared
to the corresponding optimized values. In all variants the parameter values
are quite reliably estimated since the SEDs given by those estimated values
differ only 2.4%-5.1% from the optima. In terms of SED the IG variant
outperforms the MI variant by 8.7% and the Freq variant by 40.6%.

The individual edit distances with the estimated parameter values of the
best performing—the IG variant—are examined in more detail. 106 (26,7%)
of the hypothesized utterances produced by the variant were correct. The
whole test of 397 utterances is composed of 7786 characters. The SED being
1868 means that 76% from all the hypothesized characters were correct in
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(a) Heat map for parameter estimation.

Estimates T = 48 and TS = 14 samples

correspond the minimum SED of the map.

(b) Heat map of SEDs in the test set. The

SED with estimated parameter values is

2045. The optimized SED is 1942 and is

given by T = 47 and TS = 17 samples.

Figure 4.2: MI heat maps. Each tile’s color represents the SED with corre-
sponding step and sliding window sizes.

(a) Heat map for parameter estimation.

Estimates T = 48 and TS = 17 samples

correspond the minimum SED of the map.

(b) Heat map of SEDs in the test set. The

SED with estimated parameter values is

1868. The optimized SED is 1826 and is

given by T = 46 and TS = 17 samples.

Figure 4.3: IG heat maps. Each tile’s color represents the SED with corre-
sponding step and sliding window sizes.
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Table 4.1: Summarized results with the three variants. The table includes the
parameter value estimates from the 5-fold evaluation and the corresponding
SED in the test set. For comparison the optimized parameter values for the
test set and corresponding SED are also presented

window size step size SED of the test set
Freq estimated 47 1 3144
Freq optimized 48 7 3044
MI estimated 48 14 2045
MI optimized 47 17 1942
IG estimated 48 17 1868
IG optimized 46 17 1826

the test set. In utterances that are not hypothesized perfectly, on the average
62% of the characters were correct.

The effect of the length of the reference utterance to the edit distance
is also studied. The Pearson’s linear correlation coefficient for reference ut-
terance length and edit distance in the whole test set is 0.2634, which can
be regarded as low. In figure 4.4 the REDs are ordered in ascending order
by the reference utterance length. From the figure can be seen the effect
of the length of the utterance to the prediction accuracy. The variation in
the recognition of single word utterances is large. Many of the hypotheses
are correct and some are way off. In general the length of the multi-word
utterances do not have a remarkable effect on the prediction accuracy. This
is illustrated in the figure by moving median of 30 samples (bold dashed line)
and the median over the whole test set (0.182, solid straight line).

Since the variants produce such different prediction accuracies, the in-
ferred CFGs are compared in the table 4.2. The correlation between the
grammar size, the coverage and the prediction accuracy can be seen. The
used stopping criterion of the inference seems to work better for IG and MI
variants than for Freq variants.

For a reliable comparison, the three variants are compared with the same
coverage. The grammatical inferences in IG and Freq variants are continued
until the resulting grammars reach the coverage of MI variant (≥ 0.9939) in
the previous experiment.

The coverage of MI variant (≥ 0.9939) in the previous experiment is
used as the stopping criterion of the inference in the IG and Freq variants.
The results are presented in table 4.3. The order of the variants remains
the same, but Freq variant improves significantly. Also IG variant improved
slightly as the result of improved coverage. These results imply two things.
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Figure 4.4: Relative edit distances (REDs) ordered by the corresponding ref-
erence utterance lengths. The individual edit distances are plotted with a thin
blue line. The bold dashed line is median filtered smoothing with a 30 sample
long window. The straight line is the median of relative edit distances in the
test set. Note that x-axis is not linear, the tick labels denote the length of the
reference utterance in that index.

First, the coverage is potentially a better stopping criterion than the one
used in this study. The usage of the coverage as stopping criterion requires
a priori knowledge on the quality of the data it is applied to. Second, the
usage of IG in the place of MI in the iterative grammar induction results a
grammar that is more suitable for recognition purposes, as was suggested in
[WMS01].

Figure 4.5 illustrates the optimal SED as a function of grammar size.
Generally it is safe to state the order of the variants is IG, MI, and Freq in
terms of relative performance.

For the record, it should be stated that the MDL was briefly tested as

Table 4.2: Comparison of CFGs inferred from the training set. Grammar
size is the number of production rules. Patterns is the number of distinct non-
terminals in fully compressed sequence. Coverage is the portion of original
sequence that the non-terminals in the compressed sequence correspond.

Grammar size Patterns Coverage weighted mean of
pattern length

IG 190 103 0.992 5.17
MI 180 99 0.994 4.93
Freq 100 79 0.868 3.72
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Table 4.3: The comparison of the three variants’ parameters and performance
with their CFGs are reaching approximately the same coverage in the training
set.

Coverage Window size Step size Optimum SED
IG 0.9944 55 16 1777
MI 0.9939 47 17 1942
Freq 0.9942 56 16 2033

Figure 4.5: The effect of the grammar size to quality of recognition of the
test set. The sum of edit distances (SED) as function of grammar size are
plotted for IG, MI and Freq variants with bold solid, dashed and thin solid
lines respectively. The optima, marked with solid circles, for each variant are
reached as follows: IG: 1649 with grammar size 198, MI: 1774 with grammar
size 197, Freq: 1937 with grammar size 186

the stopping criterion for the inference of CFG. It clearly took the inference
too far and started to form too long patterns. That caused them to be too
sparse. The sparseness of labels diminishes the training material and causes
some of the trained labels to be non-existent in the test set.

In table 4.4 some examples of perfectly recognized sequences, averagely
recognized sequences and worst cases are given. The errors in the average
examples are results from missing words or letters like a, the, n or blue. In
the worst cases, in the middle of the hypothesized sequences can be seen
many patterns that only exist at the beginning of sequences in the training
set.



CHAPTER 4. EXPERIMENTS 44

Table 4.4: Examples of hypothesized sequences from recognition process and
corresponding references with their mutual edit distance. These are taken
from the best performing variant IG. Three classes recognition results are
presented in the table below: perfectly recognized sequences, sequences with
average error and the most poorly recognized sequences. Erroneous hypothe-
ses with edit distance 4 or 5 are the most common ones with 50 and 42
occurrences respectively.

Five examples of perfect recognitions

’yellow’
’whereistheroundapple’

’daddylooksatasmallairplane’
’doyouseethecleantoy’

’hereisabigdirtytruckandatelephone’

Five examples of average recognitions

hypothesis reference edit distance

’daddygivesacleanbottle’ ’daddygivesthecleanbottle’ 4
’cryingbabyseesaanimal’ ’thecryingbabyseesananimal’ 4

’doyouseethedoll’ ’doyouseethebluedoll’ 4
’happywomanlikebottle’ ’thehappywomanlikesabottle’ 5

’ogdaddylooksatthebottle’ ’saddaddylooksatthebottle’ 5

Five worst recognitions

hypothesis reference edit

distance

’takewhereistheanimal’ ’shetakesasquareanimal’ 17
’mummycryingcleancar’ ’mummylooksatacleancow’ 18

’thereisahereisastheediblecarballporsche’ ’thereisaroundediblecarandaporsche’ 20
’hereihereisadirtydoyouliketruckseesaeagle’ ’hereisadirtyedibletruckandaneagle’ 22

’hereisabigedibledoyoulikedoyouhaveaneagle’ ’hereisabigediblebananaandaneagle’ 25



Chapter 5

Conclusions and Discussion

The purpose of this thesis was to develop general methodology for discover-
ing associations between two co-occurring and qualitatively different sequen-
tial data streams. A novel method for discovering associations between two
co-occurring and qualitatively different sequential data streams (VQ speech
and text) was presented. The self-supervised method is based on first discov-
ering patterns with grammatical inference from textual representation and
then using them as labels in weakly supervised learning in the vector quan-
tized speech representation. The method was shown to acquire promising
predictability of the textual representation when given the corresponding
VQ speech signal. The proposed methodology and the results were recog-
nized at Interspeech 2013 conference in peer reviewed conference proceedings
[KRL13].

The CM algorithm was selected as the core of the presented self-supervised
learning system for two reasons: it has already been proven effective in real
keyword discovery from utterances and for the urge to push its limits with
the same CAREGIVER research material. The generality of the presented
system was higher than the previously introduced studies. This was accom-
plished by reducing a priori knowledge on the data sequences where the labels
were derived from. In contrast to previous studies the labeling was automatic
and the knowledge on the order of labels in textual representation was uti-
lized in the segmentation of vector quantized (VQ) speech in the training
phase.

Selecting a greedy agglomeration algorithm for discovery of labeling for
the weakly supervised learning brought significant restrictions and loss of
generality. One of the sequential data streams has to be noiseless, in the
sense that all of the instances of the same pattern in the labeling have to be
identical.

The associations are found only to one direction since the system learns
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only to detect instances of trained labels but not to produce them. In given
speech-text context the learning agent is mute but sensing, so to speak.

The presented method works only in batch mode, which can be considered
as a weakness. With the current setup a learning agent can recognize only
what has been previously introduced to it. There is no built in novelty /
anomaly detection. If an instance of a truly novel or a anomalous label would
be presented to it in the recognition, it is forced to select something from its
learned set of labels as an output/recognition result. As the amount of data
and the amount sensors increase in everywhere in both modern business and
leisure life, the batch processing is started to be considered as old school.
The need for online incremental learning methods is increasing. There is no
time and/or capability to both store vast amounts of data and someone to
analyze it later.

The nature of the corpus was potentially beneficial, because the vocabu-
lary is statistically balanced. The utterances are grammatically correct but
not necessarily sensible or logical. Since there are less word-to-word depen-
dencies, it is more likely that the grammatical inference first discovers the
text patterns matching real words and then joins them, rather than discov-
ering text patterns spanning over two incomplete words. Additionally the
corpus has the utterances two times. Double utterances have the same con-
tent, but different recordings. This fact was not taken into account in any
way.

If the presented methodology would have been treated more like an ASR,
a statistical language model could have been created for the recognition,
which would include estimated conditional probabilities of the text patterns
given the previous pattern. The usage of a language model would allow
the creation of multiple hypothesized text pattern sequences and selecting
the most probable. For example, in the recognition results there are some
cases where two text patterns, that both exist only as the first sub-strings
of utterances in training, are hypothesized to the beginning of an utterance:
“hereihereisa. . . ”. At least these kind of errors would be eliminated, since
P (“hereisa′′|“herei′′) = 0. Creation of a language model was not tried be-
cause the domain expertise was kept to minimum and the methodology as
general as possible.

Based on the results from the conducted experiments presented in the
previous chapter and after the restrictions and shortcomings listed above it
is still safe to say, that learning of associations between two qualitatively
different data streams is possible, at least up to some level. The presented
methodology could work with variety of different other data stream pairs as
long as the requirements are met natively or through pre-processing. One of
these situations, not far from the presented one, could be phonetic transcrip-
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tion in the place of text.
Some sort of real world application for the presented methodology could

be in industrial (manufacturing) process. Measurements can be made on the
same process but from temporally different phases. In training of the models
for patterns, these data streams can be aligned if the mutual delays are
known accurately enough. This kind of configuration could help in gaining
knowledge on the governing processes of a production system or assist in
early fault detection / system health monitoring.

Some domain expertise was used to hand pick the appropriate algorithms
to each given sub task. If both of the data streams would be noisy, the algo-
rithms would naturally be different. That situation would also be a natural
and intriguing topic of research as a continuation: inferring structure from
noisy data stream and using that as labeling in weakly supervised learning
for the other noisy stream of data.

There are a few other things that would be interesting and worth try-
ing in the presented learning problem with noiseless-noisy signal pairs. For
example, DTW might be helpful in improving the extraction of VQ speech
segment corresponding to given label. The usage of DTW could work espe-
cially in the presented batch mode, where all the training data is stored as it
is. Also, an interesting topic of discussion is using greedy agglomeration for
the VQ speech signal. It is not really intuitive whether agglomeration of VQ
speech leads to feasible results, as the agglomeration produces new indices,
that are sparser, but more definitive. Also the CM matrices would become
larger and sparser.
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