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Abstract—This paper presents a method for automatic sensor 
placement for model-based robot vision. In such a vision system, 
the sensor often needs to be moved from one pose to another 
around the object to observe all features of interest. This allows 
multiple 3D images to be taken from different vantage 
viewpoints. The task involves determination of the optimal 
sensor placements and a shortest path through these viewpoints. 
During the sensor planning, object features are resampled as 
individual points attached with surface normals. The optimal 
sensor placement graph is achieved by a genetic algorithm in 
which a min-max criterion is used for the evaluation. A shortest 
path is determined by Christofides algorithm. 

A Viewpoint Planner is developed to generate the sensor 
placement plan. It includes many functions, such as 3D 
animation of the object geometry, sensor specification, 
initialization of the viewpoint number and their distribution, 
viewpoint evolution, shortest path computation, scene simulation 
of a specific viewpoint, parameter amendment. Experiments are 
also carried out on a real robot vision system to demonstrate the 
effectiveness of the proposed method. 
 

Index Terms--Sensor placement, Viewpoints, Robot vision, 
Hierarchical genetic algorithm, Christofides algorithm. 
 

I. INTRODUCTION 

With the rapid growth of automation in manufacturing 
industry, computer vision now plays an important role in 
product inspection, assembly, and design in reverse 
engineering, etc. Since a vision sensor can only sample a 
portion of an object from a single viewpoint, multiple 3D 
images need to be taken and integrated from different vantage 
points to enable all features of interest to be measured. Sensor 
placement which determines the viewpoints and viewing 
strategy thus becomes critically important for achieving full 
automation and high efficiency in such a process. 

Sensor placement has been an active area of research in 
recent years. The relevant work can be classified into two 
application categories: model based and non-model based. 
Typical non-model based applications include 3D object 
reconstruction and modeling. Model based applications are 
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widely used in product assembly, inspection, object 
recognition, dimension measurement, etc. where the object's 
geometry and a rough estimate of its pose are known. 
Previous approaches to sensor placement mainly focused on 
modeling of sensor constraints and calculating a "good" 
viewpoint to observe one or several features on the object. 
Little consideration is given to the overall efficiency of a 
generated plan with a sequence of viewpoints. The early work 
on sensor placement focused mainly on the analysis of 
placement constraints, such as resolution, focus, field of view, 
visibility, and conditions for light source placement in 2-D 
space [1]. More extensive surveys of the early work can be 
found in [2-5]. 

Sensor placement applying in object modeling was 
addressed for deciding the portion of the viewing volume to 
be scanned [6-8]. Hutchinson and Kak [9] planned the 
sensing strategies by a hypothesis and assessing method. 
Allen et al. extended their earlier sensor planning work [3, 10] 
to urban scene planning [11]. Comparing with an octree 
representation of a 3D scene [12], Banta and Abidi used 
uniformly sized voxels to represent the viewing volume [13]. 
The next best view (NBV) [14, 15] was identified as the one 
that would sample the most nonempty voxels and achieve 
maximum information gain in the object model.  

Varying the view parameters will cause the observed 
features to undergo measurable local transformations which 
can be used to simplify and constrain the computation of 
unknown scene parameters. Kutulakos and Dyer [16] 
exploited the differential properties of smooth surfaces to 
model local changes in the appearance of an occluding 
contour due to camera motion. This knowledge enabled them 
to position the camera, first to extract occluding contours 
from an edge map, and then to use the extracted contours to 
sweep out the complete 3D shape. Arbel and Ferrie [17] 
showed how entropy maps can be used to guide an active 
observer along an optimal trajectory and how a gaze-planning 
strategy can be formulated by using entropy minimization as 
a basis for choosing a next best view. 

Sensor planning for autonomous navigation [18-22] and 
active object recognition [23-26] has also been actively 
studied recently. For active 3-D object recognition, the system 
is an iterative active perception system that executes the 
acquisition of several views of the object, builds a stochastic 
3D model of the object, and takes a decision where the best 
next view is. In this aspect, Okamoto et al. [23] conducted 
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research based on entropy measurement. 
For model-based applications, attempt was made in 

determining an object’s manufacturing accuracy using range 
sensors [27] or intensity cameras [10]. Tarbox and 
Gottschlich [28] presented an Integrated Volumetric 
Inspection System (IVIS) and proposed three algorithms for 
inspection planning. Trucco et al [4] present a model-based 
approach to camera placement. Tarabanis et al [3] developed 
a model-based sensor planning system, the machine vision 
planner (MVP), which works with 2-D image obtained from a 
CCD camera. Compared with other sensor planning systems, 
the MVP system uses a synthesis rather than a generate-and-
test approach. A general automatic sensor planning system 
(GASP) was reported in [4] for computing optimal positions 
for inspection tasks using a known imaging sensor and 
feature-based object models. This exploits a feature inspection 
representation which outputs off-line an explicit solution for 
the sensor position problem. GASP computes visibility with 
an approximate model. The reliability of the inspection 
depends on the physical sensors used and the processing 
software. In order to obtain accurate 3-D measurements, 
Olague and Mohr [29, 30] proposed to use genetic algorithm 
to determine the optimal sensor placements. Prieto et al. also 
suggested to improve the accuracy by positioning the sensor's 
head according to a strategy for optimum 3D data acquisition 
[27], which guaranteed that the viewpoints satisfied the 
accuracy requirement in the scanning process. 

A critical problem is still not well solved in the sensor 
placement: the global optimization of sensor planning. When 
multiple features need to be observed and multiple viewpoints 
need to be planned, the minimum number of viewpoints 
needs to be determined. To achieve high efficiency and 
quality, the optimal spatial distribution of the viewpoints 
should be determined too. These are also related to the sensor 
configurations and environmental constraints. Furthermore, 
to make it flexible in practical applications, we need deal with 
arbitrary object models without assumptions on the object 
features. 

 
Fig. 1 Typical previous method to determine the 
admissible domain of viewpoints (after [3]) 

 
In model-based vision tasks, researchers have made efforts 

to find an admissible domain of viewpoints to place the 
sensor (Fig. 1) to look at one or several object features [1,3]. 

This method is difficult to be applied in a multi-feature-multi-
viewpoint problem as it can not determine the minimum 
number of viewpoints and their relative distribution. 

This paper is dedicated to developing a method for 
planning model-based vision tasks, e.g. inspection, with both 
optimal viewpoint distribution and sensing sequence. In such 
tasks, the procedure of plan generation includes the following: 

(a) Input the object's geometric information from a model 
database; 

(b) Give the specifications of the vision tasks and sensor 
configurations; 

(c) Generate a sensor placement graph with the fewest 
viewpoints; 

(d) Search a shortest path for robot; and 
(e) Output the sensing plan. 
Therefore, the problem of sensor placement for model-

based vision tasks is to search an optimal placement graph 
and a shortest path for achieving the sensing operations. In 
this paper, the geometric information of the object is loaded 
from a 3D CAD data file. A strategy is developed to 
automatically determine a group of viewpoints for a specified 
vision-sensor with several placement parameters such as 
position, orientation, and optical settings. Each viewpoint 
should satisfy multiple constraints due to the physical and 
optical properties of the sensor, scene occlusion, and robot 
reachability in the environment etc. The sensing plan is 
evaluated by a min-max criterion, which is achieved by a 
hierarchical genetic algorithm (HGA). The shortest path 
through the viewpoints is determined by Christofides 
algorithm. Combining the two algorithms results in a 
complete solution to the model-based sensor placement 
problem. 

 

II. SENSOR PLACEMENT FOR ROBOT VISION 

A. Vision Sensors 

This paper assumes that a stereo vision sensor is used for 
acquisition of the 3D surface information, whilst the method 
can be extended to other types of sensors. The stereo vision 
sensor has the following parameters (positional and optical): 

(a) three degrees of freedom of the sensor's position: (x, y, 
z); 

(b) three degrees of freedom of the sensor's orientation: the 
pan, tilt, and swing angles (α, β, γ); and 

(c) optical parameters including (d, f, a): the back principal 
point to image plane distance, d; the entrance pupil 
diameter, a of the lens; and the focal length f of the lens. 

We assume that the two cameras are parallel and the 
baseline (the distance between the cameras' centers) is fixed. 
Hence the sensor's state (viewpoint) is given as a vector: 

 
v = (x, y, z, α, β, γ, d, f, a). (1) 
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B. Viewpoint and Constraints 

All viewpoints must be planned in the nine-dimensional 
space (viewpoint space): 

 

V = {vi | vi ∈  {(x, y, z, α, β, γ, d, f, a)}}.  (2) 

 
A point in the above space is defined as a "generalized 
viewpoint" [31]. Moreover, an admissible viewpoint must 
satisfy multiple sensor placement constraints (Table 1), 
including the geometrical (G1, G2, G6), optical (G3, G5, G8), 
reconstructive (G4, G6), and environmental (G9) constraints. 
These common constraints are listed in the following table 
and each constraint condition needs to be satisfied in most 
vision tasks. 

 

TABLE 1  SENSOR PLACEMENT CONSTRAINTS 

Satisfaction Constraint 
G1 Visibility 
G2 Viewing angle 
G3 Field of view 
G4 Resolution constraint 
G5 In-focus or viewing distance 
G6 Overlap 
G7 Occlusion 
G8 Image contrast (affect (d, f, a) settings) 
G9 Kinematic reachability of sensor pose 

 
Denote A as a point on the object surface, n as its normal, S 

as the vision sensor, v as its pose, va as the viewing direction 
from S to A. We say that point A is visible if the dot product 
of its normal and the viewing direction is negative. That is 
 
G1:  avn ⋅  < 0,   (3) 

 

This means that the point is visible if the angle (θ) between 
its normal and the view direction is less than 90°. However, 
we should set a limit (θmax) for this angle as the sampling will 
not be reliable when it is close to 90°. According to the above 
equation, we have 

 

G2:  max
1

||||||||
cos θπθ <

×
⋅

−= −

a

a

vn

vn
.  (4) 

 
Most CCD cameras have a field-of-view limited by the size 

of the sensor area and the focal length of the lens [10]. A 
surface point beyond the sensor's field of view will be 
projected outside the sensor area and will not be detectable. 
The locus, which satisfies the field of view constraint for a set 
of surface features enclosed by a circumscribing sphere, is 
given by the following equation: 

 
G3:  avv ⋅  - |||||||| avv ⋅ cos(α/2) ≥ 0  (5) 

 
where α is the field-of-view angle of the sensor.  

The resolution constraint ensures that the object is sampled 
with a minimum accuracy requirement. Pixel resolution can 
be used to determine the minimum scene feature size 
resolvable by the vision system.  If considering the spatial 
resolution as the size each pixel represents in the real world, 
the following can be formulated: 

 

G4:  acceptableresol NNf

z σ
θ

σ <−=
cos

1
)

1
( , (mm/pixel)   (6) 

 
where z is the distance from the lens to object surface and N is 
the number of total pixels in an image's scanning line. 

If a point is imaged to a blur circle of a given size c, it is 
considered sufficiently in focus for a given application. The 
system is then focused for a range of depths from D1, the far 
limit of the depth of field, to D2, the near limit [10]. Assume 
that a digital image acquired by the vision sensor has a size of 
N×N and the blur radius is restricted in on-pixel length 
(c=2a/N). If the focus distance, d, is adjustable from dmin to 
dmax, the object can be placed between zmin and zmax: 

 
G5:  zmin < z < zmax ,   (7) 
where 

fNfNd

Nfd
z

2max

max
min +−

= , 
fNfNd

Nfd
z

2min

min
max −−

= , and 

f < dmin < dmax < 2f . 
 
During the reconstruction of a 3-D object surface, the 

overlap constraint ensures that the re-sampled part of the 
object is already seen. Because the registration algorithms [23, 
32] and many algorithms for integrating range data perform 
best when the range data overlaps, registration and 

Fig. 2  Some sensor placement constraints 
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integration impose an overlap constraint on the choice of the 
next best view. The size of overlapping area is dependent on 
the image-merging algorithm. Here we assume that a 
minimal width is required: 

 
G6:   w>wmin  (8) 
 

If vision sensor is mounted on a robot end-effector and the 
hand-eye system is calibrated in advance, wmin may be set to 
zero and the overlap constraint can be removed. 

Occlusion is an important scene attribute useful to the 
sensor planning process [33]. The target A is visible if no 
other entities are in front of it. Here the 'entity' means any 
geometrical element ej, such as line, surface, or solid object. 
Thus we have 
 

G7: 







=

= =
otherwiseoccluded

eLifvisible
A

n

j
jSA

:

)))(((:
1

φUI
,   (9) 

 
where  LSA is the straight line connecting the sensor center 
and point A, φ is an empty set of the entity intersection. 

Contrast is a criterion of image quality. It may affect the 
position and optimal settings of vision sensor, e.g. the 
diameter of the aperture of a CCD sensor. The kinematic 
reachability of a sensor pose and robot-environment collision 
constraint should also be considered in a real robot system. A 
sensor pose must be in the reachable space. 

Fig. 2 illustrates some sensor placement constraints (G1, G2, 
G3, G5, G7). Considering the 6 points (A - F) on the object 
surface, only point A satisfies all the 5 constraints, while all 
other points violated one or more of the constraints. 

III. COST EVALUATION OF A SENSOR PLACEMENT PLAN 

A. Previous Approaches 

The task of viewpoint planning for model-based vision is to 
find a set of admissible viewpoints in the viewpoint space, 
which satisfy all of the sensor placement constraints and can 
well finish the vision task. In most of the related work, the 
constraints in sensor placement are expressed as a cost 
function with the aim to achieve the minimum cost. This cost 
function should have a value approaching infinity associated 
to the direction of a pose that the sensor cannot assume and a 
unitary value associated to the direction of a pose that is 
possible for the sensor to assume [23]. 

The term "best-next-view" (BNV) was defined as the next 
sensor pose which would enable the greatest amount of 
previously unseen three-dimensional information to be 
acquired [13, 15]. [3] [34] chose to formulate the probing 
strategy as a function minimization problem. The 
optimization function is given as a weighted sum of several 
component criteria, each of which characterizes the quality of 

the solution with respect to an associated requirement 
separately. Thus the optimization function is written as: 

 
)max( 44332211 ggggh αααα +++=         (10) 

 
subject to gi≥0, to satisfy four constraints, i.e. the resolution, 
focus, field-of-view, and visibility.  

In [35], the strategy of viewpoint selection took into 
account three factors: 1) the new observed area volume 

)( 1+tG φ , 2) the cost function F in order to reduce the total 

camera displacement ),( 1+ttC φφ , and 3) constraints to avoid 

unreachable viewpoints and to avoid positions near the robot 
joint limits )(φB . The cost function Fnext to be minimized is 

defined as a weighted sum of the different measures: 
 

)(),()()()( 312111 φφφφφφ BaCagaAF tttt +++= +++ .  (11) 

 
[36] evaluated the suitability of all potential viewpoints of 

the NBV by using a rating function  
 

),(),(),(),( φθφθφθφθ εε ssoo fwfwfwf ++=          (12) 

 
where θ and φ are two parameters on the viewpoint sphere; fe, 
fo, fs are factor functions rating on some physical or heuristic 
constraints, and we, wo, ws are the weighting coefficients. The 
viewpoint with the largest value of f(θ,φ) will be chosen as the 
NBV. 

[37] considered the total cost via a function: 
 

∑
=

=
k

i
io ftFT

1

)(][                                            (13) 

 
where the cost to(f) gives the total time needed to manipulate 
the hardware to the status specified by f , to take a picture, to 
update the environment and register the space, and to run the 
recognition algorithm. The effort allocation F={f1, ..., fk} 
gives the ordered set of operations applied in the search. The 
probability of detecting the target by the allocation is: 

 

)(})](1[{...)(][
1

1
1 k

k

i
i fPfPfPFP ∏

−

=
−++=             (14) 

 
where P(f) is the probability of detecting the target. 

Then the next action is selected that maximizes the term 
 

)()(,
)(

)(
)( ftf

f

fP
fE oT

T

=∆
∆

= .               (15) 

 
Triggs et al [38] gave a method of function optimization 

technique to minimize their viewpoint evaluation function. 
They divided the search space into a set of local regions and 
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built a probabilistic function interpolation. These distributions 
can be used to choose which region to refine and where to 
subdivide it. The goal was to optimize the function, so that a 
sample only "succeeds" if it improves on the best currently 
known function value fbest. If the probability density for the 
function value at some point is p(f)df, the expected gain or 
improvement to fbest from a sample placed at that point is 

 

∫ ∞−
−>=< bestf

best dffpffgain )()(                       (16) 

 
In the previous work on sensor placement, the evaluation of 

a viewpoint is normally achieved by direct computation. Such 
an approach is normally formulated for a particular 
application and is therefore difficult to be applied to general 
tasks. In this paper, we also minimize the cost, but by 
evolutionary computing, so that it is applicable to different 
vision tasks. The object and sensor parameters can be given 
by the user at the beginning of computation. A shortest path 
for robot execution is also given based on graph theory. 

 

B. Lowest Travelling Cost 

In this paper, we assume a priori model of the object. The 
procedure for generating a sensor placement plan is 
summarized as follows: 

(a)  Generate a number of viewpoints. 
(b)  Reduce redundant viewpoints. 
(c)  If the placement constraints are not satisfied, increase 

the number of viewpoints. 
(d)  Construct a graph corresponding to the space 

distribution of the viewpoints.  
(e)  Find a shortest path to optimize robot operations. 
Generating a large number of viewpoints will most likely 

satisfy all constraints and finish the vision task, but it will 
also increase the cost. To achieve an optimal solution, we 
need eliminate all possible redundant viewpoints. Fig. 3 

shows that the 2nd viewpoint is redundant because it does not 
increase information on the object model. 

A plan of viewpoints is mapped onto a graph 
),),(),(( EG wGEGVG ψ=  with weight w on every edge E, 

where the vertices Vi represent viewpoints. Edge Eij 
represents a shortest collision-free path between viewpoint Vi 
and Vj, and weight wij represents the corresponding distance. 
Such a graph is termed as sensor placement graph G in this 
paper. 

Fig. 4 shows an example topology of a viewpoint plan. A 
practical solution to sensor placement problem must provide a 
number of viewpoints reachable by the robot and there must 
exist a collision free path between every two acceptable 
viewpoints. 

For a sensor placement graph G with n viewpoints, its 

order and size are o(G) = n, )1(
2

1
)( −=∂ nnG , respectively. 

The shortest path for taking all views is a Hamilton cycle 
which is a sequence of vertices: C=(x1, x2, …, xn, x1) where 

],1[),(, niGVxixjxi ∈∈≠ . The path length is  

 

)(,),(),(
1

1
11 GVxixxwxxwl

n

i
iinc ∈+= ∑

−

=
+ .             (17) 

 
The time consumed in generating a viewpoint plan 

includes: 
(a) n*t1 – the time needed to acquire a view and to transfer 

it to a 3D local model. This includes image digitalization, 
image preprocessing, 3D surface reconstruction, etc. 

(b) n*t2 – the time for fusion and registration, i.e. merging 
the local model with the previous partial model. 

(c) t3 – the time needed to perform the viewpoint planning. 
In doing this, a plan of viewpoints and optical settings of the 
sensor are determined and a path is generated for the robot to 
move to the next pose. 

(d) t4 – the time needed for the robot to perform the task of 
moving from one viewpoint to another. 

Here t3 is subject to the constraints listed in Table 1. If n 
viewpoints of image acquisition are needed to finish the task, 
the total needed time is [ 43*)21( ttntt +++ ]. Since there 

exists a priori model of the object, the planning strategy may 
run offline and t3 is eliminated from the above equation. 
Assuming that t1 and t2 are constants and t4 is proportional to 
the path length, the task time becomes 

κct lnTTT ++= *)21(cos . 

It is obvious that reducing the number of viewpoints will 
improve the vision perception performance. Therefore, the 
objective here is to achieve the lowest traveling cost Tcost 
through the planned viewpoints. In fact, if both the object 
model and the robot environment are specified, the length of 
the shortest path for taking the views will not vary much and 
the traveling cost will be proportional to the number of 

  Fig. 3  A redundant viewpoint 
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viewpoints. Hence the objective becomes minimizing the 
number of viewpoints. An optimal solution of the sensor 

placement contains the fewest number of viewpoints and the 
corresponding graph has a lowest order. This will be 
determined by HGA in the next section. 

In this paper, our goal is to minimize the sensing cost, but 
not by a combined function as in a traditional approach. We 
will achieve it by (1) minimizing the number of viewpoints 
subject to task completion, (2) optimizing the viewpoint 
distribution, and (3) finding a shortest travelling path. 

IV. OPTIMAL SENSOR PLACEMENT GRAPH 

A. HGA Representation 

In this paper, we use a hierarchical GA to determine the 
optimal topology in the sensor placements which will contain 
minimum number of viewpoints with the highest accuracy 
while satisfying all the constraints. The hierarchical 
chromosome can be regarded as the DNA that consists of the 
parametric genes and control genes. In this work, parametric 
genes (Vi) mean the sensor poses and optical settings and 
control genes (ci) mean the topology of viewpoints. To show 
the activation of the control gene, an integer “1” is assigned 
to each control gene being enabled whereas “0” indicates a 
state of turning off. When “1” is signaled, the associated 
parameter genes associated with that particular active control 
gene are activated in the lower level structure. However, the 
inactive genes always exist within the chromosome even 
when “0” appears. 

For the sensor placement problem, a chromosome in GA 
represents a group of viewpoints with a specific topology. Fig. 
5 illustrates the structure of the hierarchical chromosome 
corresponding to the plan of viewpoints. 
Here ),,,,,,,,( dfazyxVi γβα=  represents a variable 

viewpoint, where Rzyx ∈,, , ],[,, ππγβα −∈ , 

],[ maxmin aaa ∈ , ],[ maxmin fff ∈ , and ],[ maxmin ddd ∈ , and 

the corresponding }1,0{=ic  represents a control gene which 

is a binary variable. 

B. Min-Max Objective and Fitness Evaluation 

In this paper, a plan of sensor placements is evaluated by a 
min-max criterion, which includes three objectives and a 
fitness evaluation formula.  

The order of a graph G is equivalent to the number of 
occurrences of “1” in the control level genes. To plan a group 
of viewpoints with minimum order in the sensor placement 
graph, the first objective is given as:  

 

Objective 1: minimize ∑
=

=
max

1

)(
n

i
icGo .           (18) 

 

Assume that the accuracy of vision inspection is 
proportional to the surface resolution of the vision sensor and 

consider m features to be acquired. The second objective is to 
improve the average accuracy via 

 

Objective 2: maximize ∑
=

=
m

j j

imagej

l

w

m
F

1

,1
)(η     (19) 

where wimage is the size of a feature on the sensor image and lj 
is its actual length. 

On the other hand, an admissible viewpoint is subject to 9 
constraints in the sensor placement space, i.e. resolution, in-
focus, field of view, visibility, viewing angle, overlap, 
occlusion, contrast, and reachability. We set up a penalty 
scheme to handle these constraints such that invalid 
chromosomes become low performers in the population. The 
constrained problem is then transformed to an unconstrained 
condition by associating the penalty with all the constraint 
violations. We use a vector of penalty coefficients to combine 
the nine constraints: 
 
Κ  = ),,,,,,,,( 987654321 δδδδδδδδδ .  (20) 

 
where δi  is constant weight representing the importance of 
that constraint. If the constraint does not need to be satisfied 
(e.g. G6-overlap), the weight will be set to zero. 

 
Define a binary function 
 





=
 violatedis constraint  theif

satisfied is constraint  theif

1

0

,

,
iϕ                

 
and construct another vector of constraints: 

 
Q(l, V)= ),,,,,,,,( 987654321 ϕϕϕϕϕϕϕϕϕ ,         (21) 

 
where l is an object feature and V is a viewpoint. 

Therefore the third objective is to minimize the total 
penalties for the constraints: 

 

Objective 3: minimize TQKpenalty ⋅= .    (22) 

 
If there are m features and n viewpoints, the average 

penalty for a viewpoint topology is: 
 

∑
=

=⋅=
m

i

T
ji njVlQK

m
penalty

1

],...,2,1|),(min[
1

.  (23) 

 

c1 c2 … … cnmax V1 V2 … … Vnmax 
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Finally, we combine the penalty scheme with the two 
objective functions to derive the fitness function: 

 
Fitness: f(G)= |)|( maxmax Kban ++ l  

                         TQK
F

b
Gao ⋅−−−

)(
)(

η
,  (24) 

where ∑
=

=
m

i
iK

1

|| δ , |)|( maxmax Kban ++ l  is the maximum 

possible value that produces positive fitness, maxl is the 

maximum possible resolution, and a and b are two adjustable 
scaling factors. 

C. Evolutionary Computing 

According to the characteristics of the sensor placement 
problem, the following genetic parameters and operations are 
adopted: 

(a) Chromosome length:  
2n, where n is the maximum viewpoints and determined 
according to the object size and sensor configurations,  

(b) Crossover method:  
control level genes: one-point crossover if n<10, two-
point crossover if n>=10; probability of crossover 

25.0=cp ; 

parametric level genes: Heuristic crossover with 
ratio=0.8. Here the parameters of sensor pose and 
optical settings are real numbers. 

(c) Mutation method: 
control level genes: bit-flip mutation; probability of 
mutation 01.0=mp . 

parametric level genes: ),( σµφ+= gg  where φ is 

Gaussian distribution function, µ and σ are the mean 
and variance, respectively. 

(d) Selection method: Roulette-Wheel selection method; 
(e) Replacement: Steady State without duplicates; 
(f) Population size: 30-100, based on the length of 

chromosome; 
(g) Initial population: randomly generated on a sphere 

around the object. 

V. DETERMINATION OF A SHORTEST PATH 

A. The Viewpoint Distance 

For a sensor placement graph, there may exist more than 
one path with the shortest (or approximately shortest) length. 

To determine a shortest path through all these viewpoints, we 
firstly need compute the distance between each pair of 
viewpoints (Vi and Vj), called pose distance ),( ji VVw . With 

different types of robots and different control modes, the 
distance should be computed in different ways 
correspondingly: 
1) Tool Level Control 

To achieve robot-independent representation of the location 
of the robot tool or hand, the control program often defines 
the locations in terms of a Cartesian reference frame fixed to 
the base of the robot or workspace. If the robot moves at a 
constant speed, the execution time is proportional to the 3-D 
position difference (Euclidean distance) or 3-axis orientation 
difference, i.e. 

 
),( ji VVw = max( )(Inp j

xyz
i

xyz VV − /µ, )(Inp ji VV αβγαβγ − /ν), (25) 

 
where µ and ν represent the translational speed and rotational 
speed respectively, Vxyz  and Vαβγ  are the three position and 
orientation components of V, respectively. Inp(•) represents 
the function of vector inner product. 

 
2) Asynchronous Joint Control 

If the robot is controlled in joint space to change its pose, 
the distance is computed by 

 

),( ji VVw  = ∑ −
dofn

t
j

t
i

t VV )(tµ    (26) 

 
where ndof is the robot's DOF number, µt is the execution 
speed of joint t, and Vt  is the joint location at pose V. 

 
3) Synchronous Joint Control 

When the robot is controlled in joint space with all joints 
moved simultaneously, the distance is determined by the 
maximum one 

 
),( ji VVw  = max ]},1[|)({ t dofj

t
i

t ntVV ∈−µ .  (27) 

 
If the sensor's optical settings (e.g. zoom, focus, Iris, etc.) 

are under motorized control, it will also take time to change 
the sensor configuration from one viewpoint to another. Then 
the viewpoint distance should be the larger of this distance 
(time equivalent) and the above robot pose distance. 

control genes - topology parametric genes - viewpoints 

Fig. 5  Hierarchical chromosome structure for sensor placement 
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With n viewpoints obtained by generic algorithm, a 
symmetrical distance matrix can be generated by computing 
each pair of the viewpoints: W = {wij}, which will be used to 
determine the shortest path. 

B. Determination of a shortest path 

We may assume that the robot should resume its initial 
state after completing the vision task (since it needs be ready 
for inspection of the next workpiece). Given a specified graph, 
now another fundamental task is to find an optimal closed 
chain that is the shortest (or approximately shortest) one of 
all the possible chains. 

Obviously a sensor placement graph satisfies the triangle 
inequality, i.e. 

 
},{\)(),,(),(),( jikjkkiji VVGVVVVwVVwVVw ∈∀+≤ ,  (29) 

 
where the “=” holds if the position of Vk is on the path lij and 
the orientation of Vk is the middle angle between Ωi and Ωj. 

Because a sensor placement graph G is finite, connected, 
and complete, the optimal closed chain is the optimal 
Hamilton cycle. Furthermore a complete graph must contain 
Hamilton cycles, i.e. there exist cycles which contain all the 
vertices once. In graph theory, it has been proved that if G is 
complete and satisfies the triangle inequality, the optimal 
chain C” in a connected and weighted graph G” corresponds 
to an optimal cycle C in its complete and weighted graph G. 
That is, )()"(" CwCwandCC =↔ , where )(Xw  is the 

length of chain or cycle X. 
To plan a sequence of robot operations or to find an 

optimal Hamilton cycle, we have to decompose Gn into the 
union of some edge-disjoint Hamilton cycles. There are total 

n vertices and )1(
2

1
)( −=∂ nnG  edges in the graph Gn. A 

Hamilton cycle C must contain n edges too. Let a Hamilton 
cycle be a sequence of vertices: C=(x1, x2, …, xn) where 

],1[),(, niGVxixjxi ∈∈≠ . The problem might be solved by 

enumerating all possible Hamilton cycles Ci in the graph, by 
comparing their summed weighs w(Ci), and then finding out 
the smallest one cost=min[w(Ci)]. However, there are totally 

)!1(
2

1
)( −= nCo  Hamilton cycles. When n is large, this will 

give unacceptable computations, e.g. 16106)( ×=Co  when 

n=20. This is a non-deterministic polynomial complete (NPC) 
problem in graph theory and must be solved by an 
approximation algorithm. 

Here we use an approximation algorithm developed by 
Christofides. The procedures of this algorithm for finding an 
optimal Hamilton cycle is described as: 

 
Step 1. Construct the distance matrix W from graph (G, w). 
Step 2. Find the smallest tree T in W using Prim algorithm 
Step 3. Find the odd degree set V in T and calculate the 

perfect matching M of the smallest weighs in G[V] 
using Edmonds-Johnson algorithm. 

Step 4. Find an Euler circuit C0=(x1, x2, x3, …, xn) in 
G*=T+M using Fleury algorithm. 

Step 5. Start from x1 and go along C0, remove each multi-
occurrence vertex from C0 except for the last x1 and 
finally form a Hamilton cycle C of graph G. This gives 
the approximated optimal cycle. 

 
The resulting Hamilton cycle is an approximate solution. It 

has been proven that the error ratio does not exceed 0.5 even 
in the worst case. If L0 is the optimal solution (sum of weighs) 
and L is the approximate solution by Christofides algorithm, 
we have 5.1/1 0 ≤≤ LL . In this algorithm, the total 

computation cost is O(n3). In contrast, using direct search 
method takes O(n!). 

VI. IMPLEMENTATION CONSIDERATIONS 

A. Geometry Scripts 

The object model is usually extracted from CAD file. 
However, directly using these data may result in prohibitive 
computation for planning the sensor placements. For example, 
Prieto et al. [27] chose to import the CAD model with IGES 
format, which contains the NURBS representation of object 
surfaces. This data format must be converted to 3-D voxels so 
that they could search for a viewpoints set. However, even 
with a very simple object, a large number of 3-D voxels will 
result, making the computation too costly. 

In this paper, we define a format of "Geometry Scripts" 
(GS) in which the whole object is constructed with some 
geometric primitives, such as surfaces, solid boxes, cylinders, 
spheres, etc. These primitives are used to build higher-level 
geometries by CSG (Constructive Solid Geometry) operations, 
such as AND ("*"), OR ("+"), and SUB ("-"). Using geometry 
scripts has two advantages: (1) it is intuitive and easy to 
understand. Users may directly write (instead of import from 
CAD file) the scripts to describe what needs to be inspected. 
(2) The more important advantage is that it is very convenient 
for computing the sensor placements. A point can be checked 
if it satisfies the placement constraints within a short period 
of time. 

B. Inspection Features 

In this research, any geometry elements/entities, such as 
cylinders, freeform surfaces, curves, and individual points, 
can be specified as the features which need be inspected in the 
vision task. However, for computation simplicity, all these 
features will firstly be converted into individual points. In our 
system, this is accomplished by a re-sampling method and 
usually the normal of each point can also be determined 
automatically. Fig. 6 illustrates an object sampled as about 
one thousand points. The sampling rate was determined 
automatically according the sensor configuration and surface 
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size. 
 

 
Fig. 6  Sampling of inspection features 

 

C. Sensor Structure 

For a stereo sensor composed of two cameras, the sensor 
placement constraints should be met by each individual 
camera. To reduce the computation complexity, we may 
rebuild an equivalent 3-D sensor to the stereo sensor.  

Fig. 7 illustrates a stereo with a small angle between the 
two cameras. It is equivalent to a camera placed at Oeh and 
with effective field of angle Foveh= Fov+θr. More 
conveniently, it is equivalent to be placed at Oe with FOV: 
 

Fove= )]tan()1[(tan2 1
rFov

d

h θ+−−  

= ]
)cos(22

)[tan(tan2 1

r
r Fovd

b

d

b
Fov

θ
θ

+
−−+−

  (30) 

where θr is the relative angle between the two cameras, b is 
the baseline length, and d is the viewing distance. 
 

D. Constraints 

In principle every constraint has to be satisfied for a 
viewpoint in a plan. If the viewpoint violates any of the 
constraints, it should be rejected (during the evolution it may 
also be kept according to the overall fitness). The calculation 
order of the constraints is important for improving the 
computation efficiency. This paper uses the following 
computation order: visibility, field of view, viewing angle, in-
focus, occlusion, and others. When one of them is violated, all 
other constraints will not be checked. Of all sensor placement 
constraints, the visibility has the lowest computation, just 
involving the calculation of Ni•Vi < 0. It is thus checked as 
the first constraint. 

The occlusion constraint is the most complex one and takes 
most of the computation time. To test if a point is occluded by 
other geometry elements, we need to check if the line segment 
between the point and the sensor intersects with these 
elements. For some regular geometry elements, such as ball, 
circle, square, box, etc., this can be tested in a simpler way. 
Take the example of squares, this can be achieved via the 
following steps: 
1) Assume:  

object point Q = (xq, yq, zq), with normal N = (lq, mq, nq); 
sensor position S = (xs, ys, zs), orientation T = (ls, ms, ns); 
square vertex Pi, i=1, 2, 3, 4. 

2) Translate the coordinate system to origin Q: 
Q' = 0 
S' = S - Q 
Pi' = Pi -Q (i=1,,4) 

3) Transform the z-axis to point it along QS: 
VQS = S' / || S'|| = (a, b, c). 
Pi'' = RPi' ,  

where  

R = 



















−−−
−−−−

cba

cacb

ccbccac

01/1/

11/1/
22

222

.  (31) 

4) Check the occlusion: 
bocc = (ρ12 ρ34 >0) AND (ρ23 ρ41 >0),  (32) 

where ρij = Pi''(x) Pj''(y) - Pi''(y) Pj''(x). 
 
For freeform geometries, the occlusion has to be 

determined by "object projection" with "depth test" or 
"bounding volume test", which will be computationally 
expensive. 

Right camera Left camera 

)
2

tan(
2

Fovb
h r −−= θπ  

b O2 
O1 

Oeh 

Optical axes 

Effective FOV: 
Foveh= Fov+θr 

Fov 

Oe 

Equivalent Fove 

Area in FOVs 

Relative angle θr 

h 

Fig. 7  Equivalent sensor's field of view 
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E. Viewpoint initialization 

A good initial population will improve the efficiency of the 
evolutionary computing. In this paper, the initial guess of the 
maximum number of viewpoints and their space distribution 
is made via the following two steps. 
1) Estimation of viewpoint number 

We first compute the object's geometric center and find a 
sphere to surround it. The maximum number of viewpoints is 
estimated by: 

 

N = 
view

object

S

S2
 = 

)
2

(tan

2

22

42

Fov
d

Rπ
  (33) 

 
where Sobj is the object surface area, Sview is a single view size, 
R is the sphere radius, d is the average viewing distance. 
2) Uniform distribution on a sphere 

Since a uniform distribution of an arbitrary number of 
viewpoints on a sphere cannot be described by a general 
mathematical formula, it needs to be handled by a special 
method. Here we adopt an artificial physics method to solve 
this problem. Take the viewpoints as particles with the same 
electric charge and randomly sprinkle them on the sphere. 
Each particle will repel every other particle. The system will 
lead to a stable (minimum energy) configuration where each 
particle is equidistant from all the others and each particle is 
maximally separated from its closest neighbors by the electric 
repulsive forces. 

The sensor orientation is set to look inward to the sphere 
center, which is described by two parameters, θ and ϕ based 
on the sphere coordinate system. They can be expressed as a 
unit direction vector: 

 









=
=
=

=
ϕ

θϕ
θϕ

sin

sincos

coscos

   where),,,(

z

y

x

zyxPd kji
vvvv

.  (34) 

 
Fig. 8 illustrates an example of the initial distribution of 

viewpoints on a sphere. The maximum number is determined 
according the object and sensor configuration. The 
distribution is uniform (with similar minimum distance) on 
the sphere, but the positions are still random. 

 
Fig. 8 Initial viewpoint distribution 

 

VII. EXPERIMENTS 

A. The Viewpoint Planner 

We developed a 3D animation system, called Viewpoint 
Planner, which includes the following functions: 
* 3-D geometry input: using specially defined scripts with 

CSG logic operations; 
* Selective display of object, lighting effect, 3D grids, 

sampled inspection features, viewpoint distribution, etc.; 
* Illustration of the shortest path through the viewpoints; 
* Simulation of an arbitrary viewpoint look through; 
* Acquisition of the 3D map of the current view (simulation 

of scene depth map); 
* Configuration of sensor specifications; 
* Configurable scene apparent effects: with lighting, texture, 

or color rendering; 
* Amendment of the parameters of a specific viewpoint 
* Initial estimation of the maximum number of viewpoints for 

an object (according to the object size and sensor 
configuration); 

* Uniform generation of the initial viewpoints on a sphere 
around the object; 

* Evolutionary Computation of optimal sensor placement 
graph; 

* Determination of a shortest path through the viewpoints; 
* Viewpoint sequence export to a file. 

 

B. Examples of Planning Results 

This section presents three examples of sensor placements 
which were carried out by the Viewpoint Planner. In 
operations, the user only needs to give the object model 
scripts and sensor configurations. The system will 
automatically generate the initial guess, perform the 
evolutionary computation of optimal sensor placements, and 
give a shortest path. 

The first two examples have the same sensor configurations, 
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but different object models and inspection tasks. The second 
and third examples have the same object model, but with 
different sensor settings and inspection tasks. 

The planning results are given below and illustrated in Fig. 
9-11. The naive path length is an arbitrary path length not 
optimized for comparison with the shortest path found by the 
proposed method. We obtained these results on a PC with 
750MHz CPU, 128MB RAM, using Windows 2000 

 
1) Example one 

 
Fig. 9  View planning for object 1: the viewpoint distribution 

and a shortest path 
 
Input: 

Object size: 325×254×183 (mm) 
Inspection task: full observation of all surfaces except 

for the bottom; 
Sensor configuration: 25mm lens, 26.5602mm focal 

length, 2/3" sensor, F2.8, 11.66° Fov, 393.5-
460.2mm field depth; 

Planning result:  
Initialization: 118 viewpoints,  
Finial optimized sensor placement plan: 50 viewpoints, 
Naive path length: 425.604993, 
The shortest path: 129.499801, 
 

 

2) Example Two 

 
Fig. 10  View planning for object 2: the viewpoint 

distribution and a shortest path 
 
Input: 

Object size: 300×150×180 (mm) 
Inspection task: all surfaces except for the bottom; 
Sensor configuration: 25mm lens, 26.5602mm focal 

length, 2/3" sensor, F2.8, 11.66° Fov, 393.5-
460.2mm field depth; 

Planning result:  
Initialization: 80 viewpoints,  
Finial optimized sensor placement plan: 44 viewpoints, 
Naive path length: 165.889252, 
The shortest path: 72.510986, 
 

 
3) Example Three 

 

 
Fig. 11  View planning for object 3 (with lighting effect) : 

the viewpoint distribution and a shortest path 
 
Input: 

Object size: 300×150×180 (mm) 
Inspection task: all surfaces, except for the bottom, the 

left side, and the back side; 

7 18 

44 
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Sensor configuration: 16mm lens, 16.5mm focal length, 
2/3" sensor, F2.8, 18.63° Fov, 488.2-570.9mm field 
depth; 

Planning result:  
Initialization: 20 viewpoints,  
Finial optimized sensor placement plan: 12 viewpoints, 
Naive path length: 66.705595, 
The shortest path: 43.698211, 
 
The computation time for finding the optimal view plan 

in Example 1, 2, and 3 was 15 hours, 9 hours, and 45 
minutes respectively, whereas the time taken for finding 
the shortest path was 9 minutes, 5 minutes, and 1 second 
respectively. The above computation time (averaged by 
multiple runs) is for reference only since the software was 
running in a debug mode. The actual speed should be much 
higher. However, as our plan was generated off-line, this 
computation cost is not important here. 
 

4) Viewpoint Observation 
 
With the Viewpoint Planner, after evolutionary computing 

we may check what can be seen from an individual viewpoint. 
Fig. 12 shows the simulated scene observed from viewpoint 
No. 44 (in Fig. 9), with the specified sensor configurations 
(especially the field of angle). The views from point No. 7 
and No. 18 are given in Fig. 14 and Fig. 16, respectively. 
Every viewpoint can be observed and the corresponding 3-D 
depth map can also be generated for comparison with real 
situations. 

 

 
Fig. 12  View from Viewpoint No. 44 (in example one) 

 

C. Examples of Implementation with a Real Robot 

We also conducted experiments on a real robot to verify the 
planning results. Fig. 13 illustrates our experiment setup. It 
includes a 6DOF robot (STAUBLI RX-90B) with ±0.02mm 
repeatability, a high-speed vision system, the object (with its 
model illustrated in Fig. 9), a light source, and a stereo head. 
The stereo was composed of two identical cameras (Pulnix 

TM-765, 756×581 resolution, 2/3" CCD), with the baseline of 
160mm and a small relative angle 9 degrees. We used two 
sets of lens, 25mm (for examples one and two) and 16mm 
(for example three). When using the 25mm lens, the 
equivalent field of angle is about 11.5 degrees. When using 
the 16mm lens, the equivalent field of angle is about 18 
degrees.  

Assume that the sensor placement graph has been 
generated at the offline stage by the Viewpoint Planner. In 
this stage, the robot is controlled to move to the specified 
viewpoints and the scene images are captured by the vision 
sensor. 

 

 
Fig. 13  Testing with a real robot 

 
Here we give the results of two typical viewpoints (No. 7 and 
No. 18 in Fig. 9) in example one. Fig. 14 illustrates what can 
be seen at viewpoint No. 7 with the Viewpoint Planner. Fig. 
15 illustrates two images captured by the left and right 
cameras. Here masked illumination was used to facilitate 
finding the correspondences. The overlapped area will be 
used for 3-D reconstruction. Fig. 16 and Fig. 17 shows 
another example at viewpoint No. 18. 

 

 
Fig. 14  The scene at viewpoint No. 7 

 
 



 

 
13 

 
 
 
 
 
 
 
 
 

   
Fig. 15  The left and right images captured by the stereo 

vision  
 

 
Fig. 16  Expected view at viewpoint No. 18 

 
 
 

 

   
Fig. 17  Scene captured by the stereo vision 

 
The experiments show that the results in real 

implementation match the simulation results well. Hence the 
sensor placement plan generated by the Viewpoint Planner 
and performed by the robot demonstrated satisfactory 
performance in real operations. However, the planning results 
may be not the best plan. Here the results are considered 
acceptable or satisfactory if the viewpoints in the plan do not 
violate any sensor placement constraints and the redundant 
viewpoint number is sufficiently small. To achieve a more 

optimal plan with even a slight improvement in the result, 
much longer time would be needed in the evolutionary 
computation. This may not pay off in practical 
implementations.  

VII. CONCLUSIONS 

This paper proposed a method for automatic sensor 
placement including the optimal sensor placements and the 
shortest path through these viewpoints. The plan in the sensor 
placements is evaluated with three conditions: low order, high 
precision, and satisfying all constraints. 

Using the conventional methods, it is difficult to achieve an 
optimal sensor placement graph because of the complex, large 
scale, highly nonlinear characteristics of the problem. As a 
numerical optimizer, HGA generates the solutions that are 
not mathematically oriented, but possesses an intrinsic 
flexibility and the freedom for choosing desirable optima 
according to task specifications. The search for the shortest 
path through a number of viewpoints is an NP-Complete 
problem and an approximation algorithm has to be used for 
determining the viewing sequence. The Christofides 
algorithm is an effective one that can guarantee minimum 
error even in the worst case. 

Compared with the previous approaches, our method can 
deal with complex objects with multiple inspection features 
and viewpoints, generate minimum number of viewpoints, 
and lead to global optimization. It provides a stable and 
complete solution for model-based vision tasks, including 
viewpoint decision, constraint satisfaction, optimization of 
viewpoint distribution, planning of robot operation sequence. 
All these techniques are integrated into the software, the 
Viewpoint Planner, to make it useful in practical applications. 
The experimental results show that the real situations match 
the planned results well. 
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