Automatic Service Composition and Synthesis. the Roman Model

Diego Calvanese
Faculty of Computer Science, Free University of Bozen-Bok, Italy
cal vanese@nf . unibz.it

Giuseppe De Giacomo, Maurizio Lenzerini, Massimo Mecé&&hio Patrizi
Dipartimento di Informatica e SistemisticadSENzA — Universita di Roma, Italy
lastnameli s. uni romal. it

Abstract

The promise of Web Service Computing is to use Web servidesi@amental elements for realizing
distributed applications/solutions. When no available/ge satisfies a desired specification, one might
check whether (parts of) available services can be compasaddorchestrated in order to realize the
specification. The problem of automatic composition besoaspecially interesting in the presence of
conversational services. Among the various frameworkpgsed in the literature, here we concentrate
on the so called “Roman Model”, where: (i) each service igfiatly specified as a transition system that
captures its possible conversations with a generic cliéntthe desired specification is a target service,
described itself as a transition system; (iii) the aim is yothesize an orchestrator realizing the target
service by exploiting execution fragments of availableises. The Roman Model well exemplifies what
can be achieved by composing conversational services dsul,uncovers relationships with automated
synthesis of reactive processes in Verification and Al Rtann

1 Introduction

Web services, or simply services, are modular applicatibascan be described, published, located, invoked,
and composed over a variety of networks (including the h@gr any piece of code and any application com-
ponent deployed on a system can be wrapped and transforitoea metwork-available service, by using stan-
dard (XML-based) languages and protocols (e.g., WSDL, S@#&d). One of the interesting aspects is that
this wrapping allows each program to export a simplified dpson of itself, which abstracts from irrelevant
programming details. The promise of Web services is to en#i® composition of new distributed appli-
cations/solutions: when no available service can satisfliemt request, (parts of) available services can be
composed and orchestrated in order to satisfy the requett it

The work on services has by now largely resolved the basérdperability problems for service compo-
sition (e.g., standards such as WS-BPEL and WS-CDL existaaadvidely supported in order to compose
services), and designing programs, called orchestratioas,execute compositions by coordinating available
services according to their exported description is thadband butter of the service programmer [1].

Copyright 2008 IEEE. Personal use of this material is petedit However, permission to reprint/republish this makfor
advertising or promotional purposes or for creating newledlive works for resale or redistribution to servers ottdisor to reuse any
copyrighted component of this work in other works must bainbd from the IEEE.

Bulletin of the [EEE Computer Society Technical Committee on Data Engineering




The availability of abstract descriptions of services, Ib@sn instrumental to devising automatic techniques
for synthesizing service compositions and orchestra®eseral research lines have been opened to investigate
this issue. Some works have concentrated on data-orieeteteas, by binding service composition to the work
on data integration [21]. Other works have looked at procesnted services, in which operations executed
by the service have explicit effects on the system. Amongédlapproaches, several considiatelesqa.k.a.,
atomic) services, in which the operations that can be inydke the client do not depend on the history of
interactions, as services do not retain any informatiorudbte state of such interactions. Much of this work
relies on the literature on Planning in Al [30, 10, 12]. Otheonsiderstatefulservices which impose some
constraints on the possible sequences of operations .(ackraversations) that a client can engage with the
service. Composing stateful services poses additiondlecigges, as the composite service should be correct
w.r.t. the possible conversations allowed by the componast. Moreover, when dealing with composition,
data (that typically are sent back and forward in the opanativocations and are manipulated by the service)
usually play an important role. This work relies on researafried out in different areas, including research
on Reasoning about Actions and Planning in Al, and researoltaverification and Synthesis in Computer
Science [11, 25, 18, 20].

In this paper, we focus on composition of process-orientatefil services, in particular we consider the
framework for service composition adopted in [5, 7, 8, 22,23, sometimes referred to as the “Roman Model”
[19]. In the Roman Model, services are represented as ti@msiystems (i.e., focusing on their dynamic behav-
ior) and the composition aims at obtaining, given a (viftdafget service specifying a desired interaction with
the client, an actual composite service that preservesauafteraction.

The Roman Model well exemplifies what can be achieved by ceimpgostateful services, and allows to
uncover relationships with automated synthesis of reagiiecesses in Verification and Planning in Al.

2 TheRoman Moddl

Services in the Roman Model represent software moduledt@apbperforming operations. They astateful a
service, at each step, offers to its clients a choice of djpasit can perform, based upon its own state; the client
chooses one of the offered operations, and the service teseitLichanging its state accordingly. Formally, a
serviceis a transition syster§ = (0, S, 5%, S7, o), where: () O is the set of possibleperationsthat the service
recognizes;i{) S is the finite set of service'states (jii) s € S is theinitial state; (iv) Sf C S is the set ofinal
statesi.e., those states where the interaction with the senacebe legally terminated by the client (though she
does not need to)yf ¢ C S x O x S is the service'sransition relation which accounts for its state changes.
When (s, 0,5') € p, we say thatransitions -~ s’ is in S. Given a states € S, if there exists a transition

s - s in S, then operatiom is said to beexecutablein s. A transitions -~ s’ in S denotes that’ is

a possible successor statespfwhen operatior is executed ins. Notice that we allow fomondeterministic
services, that is, several transitions can take place wkecuéng a given operation in a given state. So, when
choosing the operation to execute next, the client of theimrcannot be certain of which choices will be
available later on, this depending on which transition altyutakes place. In other words, nondeterministic
services are onlyartially controllable We say that a servic§ is deterministiciff there are no two distinct
transitionss —— s’ ands — s” such thats’ # s”. Notice that given a deterministic service’s state and an
executable operation in that stateiquenext service’s state is always known. That is, determmisgéirvices
are indeedully controllableby just selecting the operation to perform next.

A community of available servicgs= (Si,...,S,,) consists ofn nondeterministic available services that
share the same operatiof¥s A target servicds a desiredleterministicservice that shares the operationgin
The requirement of being deterministic is due to the fadt Wewant such a service to be fully controllable by
its clients. The goal of the composition in the Roman Moddbisnaintain with the client the same, possibly
infinite, interaction that she would have with the (virtu@jget service, by suitably orchestrating the (concrete)



available services. Aarchestratoris a system component able to activate, stop, and resumd #mg available
services, and to instruct them to execute an operation arhmsg executable in their current state. Essentially,
the orchestrator, at each step, will consider the operatmsen by the client (according to the target service)
and delegate it to one of the services for which the operadtiaxecutable, on so on, possibly at infinitum.
The aim of the orchestrator is to maintain the interactiothwhe client, as if it was interacting with the target
service, without ever failing to be able to delegate an dfmrachosen by the client to one of the available
services. We assume here that the orchestratdiuliadservabilityon the available services, that is, it can keep
track (at runtime) of their current states. Although othieoices are possible, full observability is the natural
one in this context, since the available services, modd&emigh finite transition systems as above, are already
suitable abstractions factualmodules: if details have to be hidden, this can be done tiireqthin the abstract
behaviors exposed by services, possibly exploiting nandehism.

Formally, an orchestrator isfanctionfrom (i) the history of the whole system (which includes the state
trajectories of all available services and the trace of fherations chosen by the client, and executed by the
services), andii() the operationcurrently chosen by the client, to the indéxf the serviceS; to which the
operation has to be delegated. Intuitively, the orchemtratlizesa target service if and only if, at every step,
given the current history of the system, it is able to delegatery operation executable by the target to one of
the available services.

3 Composition techniques

The goal of service composition is to synthesize an orcatstthat realizes the target service by exploiting
available services. Such problem is related to synthesisagtive processes [27], where an environment (in our
case, the available service community) is to be controliedrbautomatically-generated controller (in our case,
the orchestrator), so that a desired specification (in osm,aaimicking the target service) is fulfilled.

The specific composition problem has been tackled with mdiffetechniques: at first by exploiting a reduc-
tion to Satisfiability in a well known logic of programs, nam@DL [5, 7, 4, 16]. Notably, Logics of Programs
are tightly related to Description Logics, for which highdptimized satisfiability checkers exist (e.g., RacerPro,
Pellet, FACT, etc.). More recently [23], the problem hasrbtsckled by directly appealing to techniques for
Linear Time Logic (LTL) synthesis [26], based on model chieglof game structures for the so callsdfety-
gamegsee also ATL [3, 2]). Another approach recently proposdshised on directly computing compositions
by exploiting (variants of) the formal notion of simulatif®, 29, 23]. The two latter approaches promise both a
high level of scalability, since in practice they can be ldame symbolic model checking technologies. Here we
concentrate on the simulation-based approach.

Let C = (Si1,...,S,) be a community of available services asyd a target service, wher§; =
(S;, 89, Slf, 0:), fori € {t,1...,n}. An ND-simulation relatiorof S; by C is arelationR C S; x Sy X ... %X Sy,
such that(s;, sy, ...,s,) € Rimplies that ifs, € S/ thens; € Sif, fori € {1,...,n}, and for each € O,
there exists & € {1,...,n} such that for all transitions; —*~ s} in S; we have that:ij there exists a transition
Sk —— s In Sg; (ii) for all sy — s, in Sy, it holds that(s}, s1,...,s},...,s,) € R. An ND-simulation is
essentially a simulation betwee&h and the asynchronous product of the serviSem C. However, differently
from the usual notion of simulation, we need to take into aot@vailable services’ nondeterminism. To this
end, we require that)(for each target service’s operation an available serkican be selected to perform the
operation andii) all its successor stateare still included in the ND-simulation.

A states; is ND-simulated by(sq, ..., s,), denoteds; < (s1,...,sy), if and only if there exists an ND-
simulationR of S; by C such that(s;, s1, ..., s,) € R. Observe that this is eoinductive definitionAs a result,
the relation= is itself an ND-simulation, and is in fact th&rgest ND-simulation relation.e., all ND-simulation
relations are contained id. It can be shown that there exists a compositions if and drijy & (s9,...,s0).

ren

Synthesizing composition using simulation has a very @stng property: the maximal simulatief con-



tains enough information to allow for extracting every plolescomposition, through a suitable choice function.
This allows for devising compositions in a “just-in-timedshion: we compute the maximal simulation then,
based on it, we start executing the composition, choosiagnéxt step according to criteria that can depend
on information available at run-time (actual availabildf/services, network communication problems or cost,
etc.), so that simulation is preserved. This, also, openth@gossibility of having failure resistant composi-

tions that reactively or parsimoniously adjust to failuedsvailable services, avoiding recomputing the whole
composition from scratch [29].

4 Conclusion

Several extensions and variants of the model presentechgesbeen studied, e.g.: forms of target service’s
loose specifications [6], lookahead [14], trust aware sewvi13], distributed orchestrators [28], shared envi-
ronments or other infrastructure for communication amagises [16, 15], data-aware services [4]. Also, the
approach described in this paper is related to composiigedon planning [25], where the crucial difference is
the desired specification to realize: in the compositiorpléaning, this is a desired state of affair to be reached
after some interactions while, in our case, it amounts tefindely maintain the specified interaction itself.

We conclude by stressing out tltaling with datds certainly one of the most critical and difficult issues we
currently face in service composition and, more generailgrocess verification. Indeed, current verification
and synthesis techniques apply to finite state systemselid presence of data typically results in infinite
states. Therefore, suitable meansdbstractionfrom infinite to finite states are needed, and indeed virguall
results on combining data with processes are directly araody based on such a notion [4, 17, 24].

Acknowledgements. This work has been partly supported by the IST projects TONEEEanticGOV, SM4All, the Italian
FIRB project TOCALit and the IBM 2008 Faculty Award.

References

[1] G. Alonso, F. Casati, H. Kuno, and V. MachirajWeb ServicesSpringer, 2004.

[2] R. Alur, T. A. Henzinger, and O. Kupferman. Alternatitigne temporal logic. Journal of the ACM
49(5):672-713, 2002.

[3] R. Alur, T. A. Henzinger, F. Y. C. Mang, S. Qadeer, S. K. &apni, and S. Tasiran. MOCHA: Modularity
in model checking. IfProc. of CAV 1998

[4] D. Berardi, D. Calvanese, G. De Giacomo, R. Hull, and Mdgl&a. Automatic composition of transition-
based semantic web services with messagindprae. of VLDB 2005

[5] D. Berardi, D. Calvanese, G. De Giacomo, M. Lenzerinigd &h. Mecella. Automatic composition of
e-Services that export their behavior.Rroc. of ICSOC 2003

[6] D. Berardi, D. Calvanese, G. De Giacomo, M. Lenzerinig &h. Mecella. Synthesis of underspecified
composite e-Services based on automated reasonirfiyoén of ICSOC 2004

[7] D. Berardi, D. Calvanese, G. De Giacomo, M. Lenzering & Mecella. Automatic service composition
based on behavioural descriptiofisternational Journal of Cooperative Information Systed¥y4), 2005.

[8] D. Berardi, D. Calvanese, G. De Giacomo, and M. Mecellam@osition of services with nondeterministic
observable behavior. IAroc. of ICSOC 2005

[9] D. Berardi, F. Cheikh, G. De Giacomo, and F. Patrizi. Aun#dic service composition via simulatiomt.
J. Found. Comput. S¢i19(2):429-451, 2008.



[10] J. Blythe and J. L. Ambite, editorg?roc. of ICAPS 2004 Workshop on Planning and Scheduling &y W
and Grid Services2004.

[11] T. Bultan, X. Fu, R. Hull, and J. Su. Conversation speaifon: a new approach to design and analysis of
e-service compaosition. IRroc. of WWW 2003

[12] J. Cardoso and A. Sheth. Introduction to semantic weliges and web process composition.Aroc. of
the 1st Int. Workshop on Semantic Web Services and Web BiGoesposition (SWSWPC 2004)

[13] F. Cheikh, G. De Giacomo, and M. Mecella. Automatic webs/&es composition in trustaware commu-
nities. InProc. of SWS 2006

[14] Z. Dang, O. H. Ibarra, and J. Su. On composition and lbeka delegation of e-services modeled by
automata.Theor. Comput. S¢i341(1-3):344-363, 2005.

[15] G. De Giacomo, M. de Leoni, M. Mecella, and F. Patrizi. tdmatic workflows composition of mobile
services. IrProc. of ICWS 2007

[16] G.De Giacomo and S. Sardina. Automatic synthesis oftevaviors from a library of available behaviors.
In Proc. of IJCAI 2007

[17] A.Deutsch, L. Sui, and V. Vianu. Specification and vesgfion of data-driven web applicationk.Comput.
Syst. Scj.73(3):442-474, 2007.

[18] C. Gerede, R. Hull, O. H. Ibarra, and J. Su. Automated pusition of e-services: Lookaheads. Rroc.
of ICSOC 2004

[19] R. Hull. Web services composition: A story of modelstamata, and logics. IRroc. of ICWS 2005

[20] S. A. Mcllraith and T. C. Son. Adapting Golog for compiomn of semantic web services. Froc. of
KR 2002

[21] M. Michalowski, J. L. Ambite, C. A. Knoblock, S. Mintorg. Thakkar, and R. Tuchinda. Retrieving and
semantically integrating heterogeneous data from the VietEE Intelligent System4.9(3):72—-79, 2004.

[22] A. Muscholl and I. Walukiewicz. A lower bound on web semss composition. IfProc. of FoSSaCS 2007
2007.

[23] F. Patrizi. Simulation-based Techniques for Automated Service CatigmosPhD thesis, S8PIENZA —
Universita di Roma, Dipartimento di Informatica e Siststitia, 2008. To appear.

[24] M. Pistore, A. Marconi, P. Bertoli, and P. Traverso. éumated composition of web services by planning
at the knowledge level. IRroc. of IJCAI 2005

[25] M. Pistore, P. Traverso, and P. Bertoli. Automated cosiion of web services by planning in asyn-
chronous domains. IRroc. of ICAPS 2005

[26] N. Piterman, A. Pnueli, and Y. Sa’ar. Synthesis of rvaatiesigns. IiProc. of VMCAI 2006
[27] A. Pnueli and R. Rosner. On the synthesis of a reactivduieo InProc. of POPL’'89

[28] S. Sardina, F. Patrizi, and G. De Giacomo. Automatitsgsis of a global behavior from multiple dis-
tributed behaviors. IProc. of AAAI 2007

[29] S. Sardina, F. Patrizi, and G. De Giacomo. Behavior amsitipn in the presence of failure. Froc. of
KR 2008

[30] D. Wu, B. Parsia, E. Sirin, J. Hendler, and D. Nau. AuttingaDAML-S web services composition using
SHOP2. InProc. of ISWC 2003



