
Automatic Set Instance Extraction using the Web

Richard C. Wang
Language Technologies Institute

Carnegie Mellon University
Pittsburgh, PA 15213 USA

rcwang@cs.cmu.edu

William W. Cohen
Machine Learning Department

Carnegie Mellon University
Pittsburgh, PA 15213 USA

wcohen@cs.cmu.edu

ABSTRACT
An important and well-studied problem is the production
of semantic lexicons from a large corpus. In this paper,
we present a system named ASIE (Automatic Set Instance
Extractor), which takes in the name of a semantic class as
input (e.g., fruits) and automatically outputs its instances
(e.g., orange, apple). ASIE is based on recent advances
in set expansion - the problem of finding all instances of
a set given a small number of “seed” instances. This ap-
proach effectively exploits web resources and can be eas-
ily adapted to different languages. In brief, our approach
works by using simple language-dependent hyponym pat-
terns to find a noisy set of initial seeds, and then using
a state-of-the-art language-independent set expansion sys-
tem to extend and rank these initial seeds. The proposed
approach matches or outperforms prior systems on three
English-language benchmarks. It also shows excellent per-
formance on three dozen additional benchmark problems in
English, Chinese and Japanese.

1. INTRODUCTION
An important and well-studied problem is the production

of semantic lexicons for semantic classes of interest - i.e.,
generation of all instances of a set (e.g., apple, banana, or-
ange, etc.) given a description of that set (e.g., fruits). This
task is often addressed by analysis of large corpora [2, 4, 1,
8, 9].

In this paper, we evaluate a novel approach to this prob-
lem by using a system called ASIE1 (Automatic Set Instance
Extractor), which takes in a semantic class name as input
(e.g., fruits) and automatically outputs its instances (e.g.,
apple, banana, orange, etc.). This system is based on re-
cent advances in set expansion - the problem of finding all
instances of a set given a small number of example (seed) in-
stances. In recent work, we have developed a set expansion
system called SEAL [11], which is a language-independent
web-based system that performed extremely well on a large
number of benchmark sets. Given three correct seeds, SEAL
obtained average MAP scores in the high 90’s for 36 bench-
mark problems, including a dozen test problems each for
English, Chinese and Japanese. SEAL works well in part be-
cause it can very efficiently find and process semi-structured
web documents containing instances of the set being ex-

1http://rcwang.com/asie

Copyright is held by the author/owner(s).
WWW2009, April 20-24, 2009, Madrid, Spain.
.

Figure 1: Examples of SEAL’s input and output.
English entities are reality TV shows, Chinese enti-
ties are popular Taiwanese foods, and Japanese en-
tities are famous cartoon characters.

panded. Figure 1 shows some examples of SEAL’s input
and output.

In more recent work, SEAL has been extended to be ro-
bust to errors in its initial set of seeds [13] and to bootstrap
performance by using only two initial seeds [12]. These ex-
tensions suggest the following approach to extract instances
of sets from the Web. First, given a semantic class name
(e.g., fruits), use simple language-dependent hyponym pat-
terns (e.g., fruits such as blah) to find a large but noisy set
of seed instances. Second, use the extended version of SEAL
to expand and bootstrap this noisy set of seeds.

This approach has two advantages. First, it is nearly
language-independent: all that is needed to support a new
target language is a new set of hyponym patterns for that
language. In this paper, we present experimental results
for Chinese and Japanese, as well as English. Second, the
system performs extremely well experimentally. In our eval-
uation we focus on the 36 benchmarks used in SEAL, which
are relatively small closed sets (e.g., countries, constella-
tions, NBA teams) that are fairly well-represented on the
Web. Using these sets enables rigorous evaluation of both
the recall and precision of the system, and we show that
for these benchmarks, SEAL has excellent performance for
both recall and precision. We also compare directly the
recent work of Kozareva, Riloff, and Hovy [4] on three ad-
ditional English-language benchmark problems (US states,
countries, and common fish) and show comparable or better
performance on each of these problems.

Section 2 of this paper describes our proposed approach
that ASIE is based on. Section 3 presents the details of the
experimental setting. Experimental results are presented in
Section 4, and related work is discussed in Section 5. The

paper concludes in Section 6 with a discussion of planned
future work.

2. PROPOSED APPROACH
ASIE is composed of three main components: Noisy In-

stance Generator, Reranker, and Bootstrapper. The Noisy
Instance Generator extracts a set of candidate instances
given a semantic class name, and ranks the instances by
using a simple ranking model. The Reranker re-ranks the in-
stances using evidence from semi-structured web documents
such that noisy (irrelevant) ones are ranked lower in the list.
The Bootstrapper enhances the quality and completeness of
the ranked list by using an unsupervised iterative technique.
Note that the Reranker and Bootstrapper rely on SEAL to
accomplish their goals. In this section, we describe the Gen-
erator, the Set Expander (SEAL), the Reranker, and finally,
the Bootstrapper.

2.1 Noisy Instance Generator
Noisy Instance Generator extracts candidate instances us-

ing the methods presented in Hearst’s early work [2]. Hearst
exploited several patterns for identifying hyponymy rela-
tion (e.g., such author as Shakespeare) that many current
state-of-the-art systems [4, 8, 1, 9] are using. However, un-
like all of those systems, ASIE does not use any NLP tool
(e.g., parts-of-speech tagger, parser) or rely on capitaliza-
tion for extracting candidates (since we wanted ASIE to be
as language-independent as possible).

The Generator first constructs a few queries of hyponym
phrase by using a semantic class name and a set of pre-
defined hyponym patterns. For every query, the Generator
retrieves a hundred snippets from the search engine, and
splits each snippet into multiple excerpts (a snippet often
contains multiple excerpts from its web page). For each ex-
cerpt, the Generator extracts all chunks of characters that
would then be used as candidate instances. Here, we define
a chunk as a sequence of characters bounded by punctua-
tion marks or the beginning and end of an excerpt. Lastly,
the Generator ranks each candidate instance x based on its
weight assigned by the simple ranking model presented be-
low:

P (x|P) =
sf(x|S)

|S| × ef(x|E)

|E| × wcf(x|E)

|C|
where P is the set of hyponym patterns, S is the set of
snippets, and E is the set of excerpts. sf(x|S) is the snippet
frequency of x (i.e. the number of snippets containing x)
and ef(x|E) is the excerpt frequency of x. Furthermore,
wcf(x|E) is the weighted chunk frequency of x, which is
defined as follows:

wcf(x|E) =
∑

e∈E

∑
x∈e

1

dist(x|e) + 1

where dist(x|e) is the number of characters between x and
the hyponym phrase in excerpt e. This model weights every
occurrence of x based on the assumption that chunks closer
to a hyponym phrase are usually more important than those
further away. We want to emphasize that we are not trying
to present a state-of-the-art model for ranking candidates,
since the Reranker will be reranking those candidates. Any
other similar instance-ranking model can be used in this
step.

Figure 2: Hyponym patterns in English, Chinese,
and Japanese. In each pattern, <C> is a placeholder
for the semantic class name and <I> is a placeholder
for its instances.

Figure 2 shows the hyponym patterns we use for English,
Chinese, and Japanese. There are two types of hyponym
patterns: The first type are the ones that require the class
name C to precede its instance I (e.g., C such as I), and
the second type are those that require the class name to fol-
low its instance (e.g., I and other C). In order to reduce
irrelevant chunks, when excerpts were extracted, the Gener-
ator drops all characters preceding the hyponym phrase in
excerpts that contain the first type. Similarly, it drops all
characters following the hyponym phrase in excerpts con-
taining the second type. Occasionally, for some semantic
class name (e.g., “cmu buildings”), there are no web doc-
uments containing any of the hyponym phrases that were
constructed using the name. In this case, the Generator
turns to a back-off strategy which simply treats the seman-
tic class name as the hyponym phrase and extracts/ranks
all chunks co-occurring with the phrase in the excerpts.

2.2 Set Expander - SEAL
In this paper, we rely on a set expansion system named

SEAL2 [11], which stands for Set Expander for Any Lan-
guage. The system accepts input element seeds of some tar-
get set S (e.g., fruits) and automatically finds other probable
instances (e.g., apple, banana, orange) of S in web docu-
ments. As its name implies, SEAL is independent of doc-
ument languages: both the written (e.g., English) and the
markup language (e.g., HTML). SEAL is a research system
that has shown good performance in previously published re-
sults [11, 13, 12]. Figure 1 shows some examples of SEAL’s
input and output.

In more detail, SEAL also contains three major compo-
nents: the Fetcher, Extractor, and Ranker. The Fetcher
is responsible for fetching web documents, and the URLs
of the documents come from top results retrieved from the
search engine using the concatenation of all seeds as the
query. This ensures that every fetched web page contains
all seeds. The Extractor automatically constructs “wrap-
pers” (i.e. page-specific extraction rules) for each page that
contains the seeds. Every wrapper comprises two charac-
ter strings that specify the left and right contexts necessary
for extracting candidate instances. These contextual strings
are maximally-long contexts that bracket at least one oc-
currence of every seed string on a page. All other candidate
instances bracketed by these contextual strings derived from
a particular page are extracted from the same page.

2http://rcwang.com/seal

Figure 3: An example graph constructed by SEAL.
Every edge from node x to y actually has an inverse
relation edge from node y to x that is not shown
here (e.g., m1 is extracted by w1).

In practice, the Extractor often extracts most of its candi-
date instances from semi-structured data pages found on the
web. The character-level heuristics used to find “wrappers”
often find candidate instances in parts of a web page that
are not even easily visible to the end user (e.g., in pull-down
menus of an HTML form).

After the candidates are extracted, the Ranker constructs
a graph that models all the relations between documents,
wrappers, and candidate instances. Figure 3 shows an ex-
ample graph where each node di represents a document, wi

a wrapper, and mi a candidate instance. The Ranker per-
forms Random Walk with Restart [10] on this graph (where
the initial “restart” set is the set of seeds) until all node
weights converge, and then ranks nodes by their final score;
thus nodes are weighted higher if they are connected by
many short, low fan-out paths in the graph to many seed
nodes. The final expanded set contains all candidate in-
stance nodes, ranked by their weights in the graph.

2.3 Reranker
Previous work [13] illustrated that it is feasible to per-

form set expansion on noisy input seeds. The paper showed
that the noisy output of any Question Answering system
for list questions can be improved by using a noise-resistant
version of SEAL (An example of a list question is “Who
were the husbands of Heddy Lamar?”). Since the candi-
date instances obtained using Hearst’s method are noisy,
the Reranker ranks the candidates by applying the noise-
resistant SEAL, which pushes irrelevant candidates lower
in the ranked list by adding more relevant candidates and
raising existing relevant candidates higher in the list.

There are three main differences between the original SEAL
(described in previous section) and the noise-resistant SEAL.
The first difference is the Fetcher. In the original SEAL, the
Fetcher concatenates all seeds and sends them as one query
to the search engine. However, when the seeds are noisy,
the documents fetched are restricted by the irrelevant seeds,
which decreases the chance of retrieving relevant documents.
The Fetcher in noise-resistant SEAL overcomes this prob-
lem by sending a two-seed query for every possible pair of
seeds to the search engine. Thus, if there are n input seeds,
then the total number of queries sent would be

(
n
2

)
. This

increases the chance of composing queries containing only
relevant seeds; however, it also increases the number of hits

to the search engine.
The second difference is the Extractor. In the original

SEAL, the extractor requires the longest common contexts
to bracket at least one instance of every seed per web doc-
ument. However, when seeds are noisy, such common con-
texts usually do not exist or are too short to be useful. The
Extractor in noise-resistant SEAL solves this problem by
requiring the contexts to bracket at least one instance of
a minimum of two seeds, rather than every seed. This in-
creases the chance of finding longest common contexts that
bracket only relevant seeds.

The third difference is the use of hint words when querying
search engine. In the original SEAL, if the seeds are George
Washington, John Adams, and Thomas Jefferson, then it
would output a mixture of founding fathers and presidents
of the United States. The noise-resistant SEAL allows hint
words (e.g., founding fathers, presidents) to be appended to
every query that is sent to the search engine. This increases
the chance of retrieving documents that contain our desired
set of answers.

Here, we want to make a distinction between page seeds
and wrapper seeds. The first one is a set of seeds used as
query for retrieving web documents from the search engine,
and the latter one is for constructing wrappers from web
documents. In previous published work [13], the same set of
seeds (i.e. top four candidates) have been used for both page
and wrapper seeds. However, we observed that the candi-
date instances extracted by the Noisy Instance Generator
are extremely noisy; thus, we decide to increase the size of
wrapper seeds to 15. We refrain from increasing the size of
page seeds since it will significantly increase the number of
hits to the search engine (we have limited quota per day).

2.4 Bootstrapper
Bootstrapping is an (unsupervised) iterative process in

which a system continuously consumes its own outputs to
improve its own performance [1, 3, 5]. The advantage of
bootstrapping is that, if successful, the performance of a
system can be greatly improved with minimal supervision.
Previous work [12] showed that it is feasible to bootstrap
the results of set expansion to improve the quality of a list.
The paper introduces an iterative version of SEAL, which
expands a list in multiple iterations. In each iteration, it-
erative SEAL expands top-ranked candidates extracted in
previous iterations and aggregates statistics by growing the
graph. The Bootstrapper utilizes this iterative SEAL to fur-
ther improve the quality of the list ranked by the Reranker.

The Bootstrapper requires only two initial seeds, which
are used to trigger the first expansion of the iterative pro-
cess above. For every ith expansion, it expands min(4, i+1)
unsupervised seeds (i.e. highly ranked items obtained in pre-
vious iterations) while aggregating statistics from iteration
to iteration. We set the maximum number of seeds to four
because it has been shown to maximize the set expansion
performance [1, 5, 12]. The pseudo-code for this strategy is
presented below:

used ← ø
for i = 1 to M do

if i = 1 then
seeds ← select2(E)

else
m = min(3, |used|)
seeds ← selectm(used) ∪ top1(ranked list)

end if
used ← used ∪ seeds
ranked list ← expand(seeds)

end for

where M is the total number of iterations (inclusively), E
is a set containing initial seeds, selectn(S) randomly selects
n different seeds from the set S, top1(ranked list) returns
a new candidate that has the highest weight in ranked list,
and expand(seeds) expands the selected seeds and produces
a ranked list of candidates.

3. EXPERIMENTAL SETTING

3.1 Datasets
We evaluate the quality of the extracted instances using

an updated version3 of the datasets presented in Wang and
Cohen [11]. The original version consists of 36 manually
constructed lists across three different languages: English,
Chinese, and Japanese (12 lists per language). Each list
contains all instances of a particular semantic class in a cer-
tain language, and each instance is represented by a set
of synonyms (e.g., USA, America). The updated version
includes more synonyms plus an additional English list of
common fish names obtained from the Wikipedia. In this
dataset of 37 lists, there are a total of 3637 instances and
6080 synonyms, with an average of 98 entities per class and
1.7 synonyms per instance. Figure 4 shows the datasets and
their corresponding semantic class names used in our exper-
iments.

3.2 Evaluation Metric
Since the output of ASIE is a ranked list of extracted in-

stances, we choose mean average precision (MAP) as our
evaluation metric. MAP is commonly used in the field of
Information Retrieval for evaluating ranked lists because it
is sensitive to the entire ranking and it contains both re-
call and precision-oriented aspects. The MAP for multiple
ranked lists is simply the mean value of average precisions
calculated separately for each ranked list. We define the
average precision of a single ranked list as:

AvgPrec(L) =

|L|∑
r=1

Prec(r)× isFresh(r)

Total # of Correct Instances

where L is a ranked list of extracted instances, r is the rank
ranging from 1 to |L|, Prec(r) is the precision at rank r,
or the percentage of correct synonyms above rank r (inclu-
sively). isFresh(r) is a binary function for ensuring that, if
a list contains multiple synonyms of the same instance, we
do not evaluate that instance more than once. More specifi-
cally, the function returns 1 if a) the synonym at r is correct,
and b) it is the highest-ranked synonym of its instance in
the list; it returns 0 otherwise.

3.3 Evaluation Method
In our experiments, we use Yahoo! as the search engine

for querying web documents. For each semantic class in
our dataset, the Noisy Instance Generator first produces

3Available at http://rcwang.com/papers/dataset/
seal-data2.zip

Figure 5: MAP of extracted instances in English,
Chinese, and Japanese. Note that the MAP at iter-
ation 0 is the performance of Noisy Instance Genera-
tor, at 1 and 2 are the performance of the Reranker,
and the rest of the 20 iterations are the performance
of the Bootstrapper.

a noisy list of candidate instances using the corresponding
class name shown in Figure 4. The Reranker then re-ranks
this noisy list twice to maximize the quality of the top-
ranked candidates. For the first re-ranking, the Reranker
retrieves one hundred web documents using the semantic
class name as the only query to the search engine, and re-
ranks the noisy list using those documents. For the sec-
ond re-ranking, the Reranker sends a two-seed query to
the search engine for every possible pair of top four can-
didates in the noisy list (thus, a total of six queries). For
each query, the Reranker retrieves only ten web documents
(thus, a total of 60 documents for all queries). In the sec-
ond re-ranking, the semantic class name of the candidates
were used as hint words to increase the chance of finding
relevant documents. The Bootstrapper then conducts 20 it-
erations of bootstrapping using the top two candidates from
the output of the Reranker as initial seeds. In each of the 20
iterations, the Bootstrapper retrieves, again, only ten web
documents (thus, a total of 200 documents). Note that for
each semantic class, ASIE utilizes a maximum of only 360
(100+60+200) web documents.

4. EXPERIMENTAL RESULTS
Figure 5 shows the MAP of the set instances extracted by

our system ASIE. The result shown at the initial iteration is
the performance of the Noisy Instance Generator, followed
by the performance of the Reranker (for two iterations),
which is then followed by the performance of the Boot-
strapper (for 20 iterations). As illustrated, the Reranker
substantially improves the quality of the initial noisy list
of candidate instances, and the Bootstrapper then improves
the quality of this list even more.

Table 1 shows a more detailed view of this graph. As
shown, the Reranker improves the performance of the Gen-
erator from 35% to 72% for English, 24% to 69% for Chinese,
and 10% to 60% for Japanese. The Bootstrapper then fur-
ther improves the performance of the Reranker from 72% to

Figure 4: Semantic class names used in our experiments.

English NIG RR BS Chinese NIG RR BS Japanese NIG RR BS

classic-disney 20.9 74.1 84.6 classic-disney 10.3 72.2 85.3 classic-disney 19.2 36.1 70.0
constellations 30.9 98.5 100.0 constellations 11.3 81.5 90.2 constellations 18.4 26.2 100.0

countries 58.7 95.4 97.9 countries 32.3 41.3 77.7 countries 18.0 89.8 95.7
mlb-teams 63.3 100.0 100.0 mlb-teams* 4.9 98.8 100.0 mlb-teams* 0.3 6.2 8.0
nba-teams 53.1 100.0 100.0 nba-teams 19.0 62.6 96.8 nba-teams* 1.0 0.0 0.1
nfl-teams 54.6 100.0 100.0 nfl-teams* 0.0 0.0 0.1 nfl-teams* 0.9 63.7 73.7

popular-car-makers 37.6 95.6 97.4 popular-car-makers 12.4 43.3 96.4 popular-car-makers 21.4 64.1 86.8
us-presidents 40.3 100.0 100.0 us-presidents 17.8 77.4 91.5 us-presidents 7.8 88.5 89.9

us-states 79.5 96.0 100.0 us-states 68.8 98.9 100.0 us-states 4.8 99.8 100.0
cmu-buildings* 0.0 0.0 0.0 china-dynasties 8.3 53.5 57.2 japan-emperors 3.0 48.9 93.0

common-diseases 11.8 33.4 42.0 china-provinces 48.8 96.6 100.0 japan-prime-ministers 10.3 99.7 99.8
periodic-comets 1.3 2.0 0.7 taiwan-cities 57.7 99.7 100.0 japan-provinces 15.4 100.0 100.0

common-fish 4.0 37.2 93.4
Average 35.1 71.7 78.2 Average 24.3 68.8 82.9 Average 10.0 60.3 76.4

Table 1: Performance of set instance extraction for each dataset measured in MAP (%). NIG is the Noisy
Instance Generator, RR is the Reranker, and BS is the Bootstrapper. The candidate instances for datasets
marked with * were extracted using the back-off strategy since no web documents containing their hyponym
phrases could be found.

78% for English, 69% to 83% for Chinese, and 60% to 76%
for Japanese. In addition, the simple back-off strategy seems
to be effective as well. There are six datasets (marked with
*) of which their hyponym phrases return zero web doc-
uments. For those datasets, ASIE automatically uses the
back-off strategy described in Section 2.1. Considering only
those six datasets, the Reranker, on average, improves the
performance of the Generator from 1.2% to 28.1% and the
Bootstrapper then improves it to 30.3%.

Table 2 shows a comparison of our extraction performance
to that of Kozareva et al [4]. The size of their datasets for
US states, countries, and fish are 50, 194, and 1102 respec-
tively; whereas, in our datasets, they are 50, 200, and 1120
respectively. The results show that the quality of our ex-
tracted instances is comparable to theirs. Note that the in-
put to their system is a semantic class name plus one seed in-
stance; whereas the input to ASIE is only the class name. In
terms of system runtime, for each semantic class, Kozareva
et al reported that their extraction process usually finished
overnight; whereas ASIE usually finished within 3 minutes.

We also compare our results to Pasca [7] as shown in Ta-
ble 3. There are 197 countries in his evaluation dataset,
and the input to his system is a set of seed named enti-
ties. As illustrated, ASIE outperforms his system in terms

of extracting country names using the semantic class name
“countries” as the only input to our system.

5. RELATED WORK
There has been a significant amount of research done in

the area of semantic class learning (aka lexical acquisition,
lexicon induction, hyponym extraction, or open-domain in-
formation extraction). However, to the best of our knowl-
edge, there is not a system that can perform set instance
extraction in multiple languages given only the name of the
set.

Pantel et al [8] presented an algorithm for automatically
inducing names for semantic classes and for finding their
instances by using concept signatures. Pasca [9] presented a
method for acquiring named entities in arbitrary categories
using lexico-syntatic extraction patterns. Etzioni et al [1]
presented the KnowItAll system that also utilizes hyponym
patterns to extract class instances from the Web. Note that
all the systems mentioned require the use of parts-of-speech
tagger and/or parser.

Hearst [2] presented an approach that utilizes hyponym
patterns for extracting candidate instances given the name
of a semantic set. The approach presented in Section 2.1 is
based on this work, except that we extended it to other lan-

N Kozareva ASIE
US States

25 100% (25) 100% (25)
50 100% (50) 100% (50)
64 78% (50) 78% (50)

Countries

50 100% (50) 100% (50)
100 100% (100) 99% (99)
150 100% (150) 99% (149)
200 90% (180) 93% (186)
300 61% (183) 66% (198)
323 57% (184) 62% (200)

Common Fish

10 100% (10) 100% (10)
25 100% (25) 100% (25)
50 100% (50) 100% (50)
75 93% (70) 97% (73)
100 84% (84) 97% (97)
116 80% (93) 97% (113)

Table 2: Set instance extraction performance com-
parison. At various rank N , we report the precision
(and the number of correct instances above N).

N Pasca ASIE
Countries

25 100% (25) 100% (25)
50 98% (49) 98% (49)
100 95% (95) 99% (99)
150 82% (123) 93% (140)
250 60% (150) 66% (165)

Table 3: Set instance extraction performance com-
parison. At various rank N , we report the precision
(and the number of correct instances above N).

guages: Chinese and Japanese. Kozareva et al [4] illustrated
an approach that uses a single hyponym pattern combined
with graph structures to learn semantic class from the Web.
As mentioned earlier, their system requires the name of the
semantic set and an additional seed instance. Pasca [7, 6] il-
lustrated an set expansion approach that extracts instances
from Web search queries given a set of input seed instances,
which is similar in flavor to our system SEAL but different
from the task addressed in this paper: the user provides
no seeds, but instead provides the name of the set being
expanded.

In our own prior work, we used a noise-resistant version
of SEAL to improve a Question Answering system for list
questions [13]. Here, the input to SEAL was a set of noisy
seeds provided by a Question Answering system. We have
also separately explored the issue of using SEAL for set ex-
pansion in an iterative, bootstrapping manner, using a small
number of clean seeds [12].

6. CONCLUSIONS
The results in Table 2 show that ASIE, a SEAL-based

set instance extraction system, performs comparably to the
method of Kozareva et al on two problems: US states and
countries, with slightly higher precision being obtained on
the larger “countries” problems. The SEAL-based system

also obtains much better performance on the “common fish”
task, obtaining a precision of 97% at rank 116, versus 80%
for the Kozareva et al system. We note that the Kozareva
et al system also has somewhat more information available
than our system, as it assumes the user provides a class
name and a single initial seed.

ASIE is also quite efficient, requiring only a few min-
utes of computation per problem and a small number of
queries to an appropriate search engine API. Perhaps most
importantly, the system we describe also obtains compara-
ble results on 36 additional benchmark problems in three
languages (Chinese and Japanese as well as English). The
ability to construct semantic lexicons in diverse languages
has obvious applications in machine translation. At the end
of this paper, we have included some real example inputs
and outputs of ASIE in Table 4 for English and in Figure 6
for Chinese and Japanese.

In further work we plan to explore other aspects of this
language-independence. For instance, we wish to explore
whether lexicons can be constructed using only the “back-
off method” for hyponym extraction (in which the initial set
of “noisy seeds” are just “chunks” retrieved from a query
consisting the semantic class name itself). The advantage
of this more restrictive approach is that it is completely lan-
guage independent. We also wish to explore whether per-
formance can be improved by simultaneously finding class
instances in multiple languages (e.g., Chinese and English)
while simultaneously learning translations between the ex-
tracted instances.

7. ACKNOWLEDGMENTS
This work was supported in part by the Google Research

Awards program.

8. REFERENCES
[1] O. Etzioni, M. J. Cafarella, D. Downey, A.-M.

Popescu, T. Shaked, S. Soderland, D. S. Weld, and
A. Yates. Unsupervised named-entity extraction from
the web: An experimental study. Artif. Intell.,
165(1):91–134, 2005.

[2] M. A. Hearst. Automatic acquisition of hyponyms
from large text corpora. In In Proceedings of the 14th
International Conference on Computational
Linguistics, pages 539–545, 1992.

[3] Z. Kozareva. Bootstrapping named entity recognition
with automatically generated gazetteer lists. In EACL.
The Association for Computer Linguistics, 2006.

[4] Z. Kozareva, E. Riloff, and E. Hovy. Semantic class
learning from the web with hyponym pattern linkage
graphs. In Proceedings of ACL-08: HLT, pages
1048–1056, Columbus, Ohio, June 2008. Association
for Computational Linguistics.

[5] D. Nadeau, P. D. Turney, and S. Matwin.
Unsupervised named-entity recognition: Generating
gazetteers and resolving ambiguity. In L. Lamontagne
and M. Marchand, editors, Canadian Conference on
AI, volume 4013 of Lecture Notes in Computer
Science, pages 266–277. Springer, 2006.

[6] M. Paşca. Organizing and searching the world wide
web of facts – step two: harnessing the wisdom of the
crowds. In WWW ’07: Proceedings of the 16th

international conference on World Wide Web, pages
101–110, New York, NY, USA, 2007. ACM.

[7] M. Paşca. Weakly-supervised discovery of named
entities using web search queries. In CIKM ’07:
Proceedings of the sixteenth ACM conference on
Conference on information and knowledge
management, pages 683–690, New York, NY, USA,
2007. ACM.

[8] P. Pantel and D. Ravichandran. Automatically
labeling semantic classes. In D. M. Susan Dumais and
S. Roukos, editors, HLT-NAACL 2004: Main
Proceedings, pages 321–328, Boston, Massachusetts,
USA, May 2 - May 7 2004. Association for
Computational Linguistics.

[9] M. Pasca. Acquisition of categorized named entities
for web search. In CIKM ’04: Proceedings of the
thirteenth ACM international conference on
Information and knowledge management, pages
137–145, New York, NY, USA, 2004. ACM.

[10] H. Tong, C. Faloutsos, and J.-Y. Pan. Fast random
walk with restart and its applications. In ICDM, pages
613–622. IEEE Computer Society, 2006.

[11] R. C. Wang and W. W. Cohen. Language-independent
set expansion of named entities using the web. In
ICDM, pages 342–350. IEEE Computer Society, 2007.

[12] R. C. Wang and W. W. Cohen. Iterative set expansion
of named entities using the web. To appear in the
Proceedings of 8th IEEE International Conference on
Data Mining, December 2008.

[13] R. C. Wang, N. Schlaefer, W. W. Cohen, and
E. Nyberg. Automatic set expansion for list question
answering. In Proceedings of the 2008 Conference on
Empirical Methods in Natural Language Processing,
pages 947–954, Honolulu, Hawaii, October 2008.
Association for Computational Linguistics.

Simpsons Characters Time Travel Movies Nobel Prize Winners Tropical Fruits Natural Disasters
marge simpson the time machine nelson mandela mango earthquakes
krusty the clown back to the future woodrow wilson papaya tornadoes
bart simpson time bandits albert schweitzer pineapple volcanoes
lisa simpson somewhere in time mother teresa jackfruit hurricanes
homer simpson peggy sue got married elie wiesel mangosteen floods
ralph wiggum time after time mikhail gorbachev guava tsunamis
ned flanders millennium jimmy carter coconut landslides
maggie simpson frequency desmond tutu rambutan wildfires
comic book guy the final countdown linus pauling durian avalanches
waylon smithers timeline theodore roosevelt banana tsunami
kent brockman donnie darko willy brandt lychee blizzards
apu nahasapeemapetilon the terminator aung san suu kyi longan fires
carl carlson the philadelphia experiment amnesty international pomegranate earthquake
chief wiggum terminator elihu root breadfruit storms
milhouse van houten planet of the apes yitzhak rabin tamarind weather
nelson muntz lost in space menachem begin soursop volcano
groundskeeper willie groundhog day henry kissinger avocado hurricane
barney gumble kate and leopold shimon peres jujube lightning
montgomery burns flight of the navigator cordell hull pomelo tornado
sideshow bob timecop shirin ebadi watermelon droughts
lenny leonard butterfly effect frank b. kellogg langsat flooding
hans moleman happy accidents andrei sakharov passionfruit forest fires
moe szyslak army of darkness fridtjof nansen tangerine volcanic eruptions

Table 4: Real examples of ASIE’s inputs and outputs in English.

Figure 6: Real examples of ASIE’s inputs and outputs in Chinese and Japanese.

