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Abstract

This paper presents an automatic collision avoidance algorithm for ships using a deep reinforcement learning (DRL) in con-

tinuous action spaces. Obstacle zone by target (OZT) is used to compute an area where a collision will happen in the future 

based on dynamic information of ships. Agents of DRL detects the approach of multiple ships using a virtual sensor called 

the grid sensor. Agents learned collision avoidance maneuvering through Imazu problem, which is a scenario set of ship 

encounter situations. In this study, we propose a new approach for collision avoidance with a longer safe passing distance 

using DRL. We develop a novel method named inside OZT that expands OZT to improve the consistency of learning. We 

redesign the network using the long short-term memory (LSTM) cell and carried out training in continuous action spaces 

to train a model with longer safe distance than the previous study. The bow cross range in collision detection proposed in 

this paper is effective to COLREGs-compliant collision avoidance. The trained model has passed all scenarios of Imazu 

problem. The model is also validated by a test scenario which includes more ships than each scenario of Imazu problem.

Keywords Collision avoidance · Multiple ships · Reinforcement learning · OZT

1 Introduction

In recent years, there has been a lot of research and devel-

opment on automated ships. The regulation of Maritime 

Automatic Surface Ship (MASS) is under discussion at the 

International Maritime Organization (IMO) [1]. For automa-

tion of maritime transportation, it is important to improve 

the safety of navigation. It is reported that collision accidents 

of ships were mainly caused by human errors such as[2]. By 

supporting human or automating operations, the number of 

collision accidents can be decreased.

Automatic collision avoidance has been studied for a long 

time, and a number of algorithms have been proposed [3]. In 

1980s, Imazu and Koyama utilized a dynamic programming 

[4–6]. In this method, the ship’s speed and heading angle 

are defined in a discrete action space, and collision avoid-

ance is performed by selecting the optimal action with an 

evaluation function based on the International Regulations 

for Preventing Collisions at Sea (COLREGs) and rules of 

collision risk assessment. Kouzuki and Hasegawa developed 

an fuzzy controller for collision avoidance [7]. They defined 

collision risk (CR) calculated from the distance to a clos-

est point of approach (DCPA) and time to a closest point 

of approach (TCPA). CR is used to determine the timing to 

steer for collision avoidance navigation. Hu et al. studied a 

COLREGs-compliant path planning approach using parti-

cle swarm optimization (PSO) [8]. Kuwata et al. proposed 

an automatic collision avoidance method using velocity 

obstacles (VO) [9]. In this method, a collision is prevented 

by calculating a safe heading based on VOs which is cal-

culated from velocity vectors of an own ship and a target 

ship. As a method without explicit implementation of the 

COLREGs, the Nagasawa model, which uses an evaluation 

function defined on the steering space with rudder angle and 

speed, has also been studied [10, 11]. Woerner et al. imple-

mented the rule-based algorithm based on the COLREGs 

for evaluation of autonomous vessels [12]. In recent years, 

since techniques of machine learning are developing rapidly, 

reinforcement learning, which is one of the machine learn-

ing, is begun to be applied to automatic collision avoidance. 

There are research which used Q-learning which is one of the 

reinforcement learning algorithms [13–15]. In the last few 

years, collision avoidance methods using DRL have also been 
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proposed. Shen et al. [16] used Deep Q-Network (DQN) for 

collision avoidance of multiple ships. DQN is one of the DRL 

algorithms. They tested trained model for encounters with up 

to three target ships. One of the authors also proposed an 

automatic collision avoidance algorithm using proximal pol-

icy optimization (PPO) and a novel virtual sensor [17]. PPO 

is also one of the DRL algorithms and is used in not only 

playing video games but also controlling robots. The trained 

model can avoid all encounter situations of up to three target 

ships and arrive at a given waypoint in simulations.

In the previous study [17], one of the authors used obsta-

cle zone by target (OZT) [18] for collision risk assessment. 

OZT represents an area where a collision will happen in the 

future based on dynamic information of ships. The radius of 

OZT is defined as the safe passing distance. The previous 

method was able to avoid collision in complex scenarios 

called Imazu problem [19] . Imazu problem is a scenario set 

including basic situations of 2-ship encounters and rather 

difficult situations of 3–4-ship encounters. There was a limit 

to the safe passing distance which could be set for learning 

using the previous method. In the previous study, the model 

learned collision avoidance maneuvering at a safe passing 

distance of 0.3 NM, but in actual ship operation, ships are 

required to have a longer safe passing distance from target 

ships. Besides, in some cases of Imazu problem, the own 

ship had passed the front of other ships. This kind of maneu-

ver is dangerous. In fact, as three basic encounter situations 

shown in Fig. 1 stipulated in the COLREGs article, ships 

do not perform avoidance maneuvers across in the front of 

other ships.

In this paper, the maneuverability of ships used in sim-

ulation is not changed in comparison with the previous 

studies, but the safe passing distance of an OZT is set to 

a larger value to accommodate a wider range of sizes of 

ships and improve collision avoidance maneuver of new 

trained models. There is no standard way to determine the 

safe passing distance for OZT. On the other hand, several 

methods for detection of ship collision were proposed. One 

of them is a bumper model [20]. Figure 2 shows the bumper 

model. Bumper model is an area surrounding a ship and 

gives the minimum of safe passing distance between ships. 

Ships navigate to keep other ships out of their bumpers. The 

lengths L1 and L2 in Fig. 2 are usually taken as 6.4L and 

1.6L, respectively, where L is the ship’s length. According 

to Inoue [21], for international ships, the lengths L1 and L2 

of bumper model are taken about twice as long as as recent 

ships become larger and faster. Thus, in this paper, we deter-

mine the safe passing distance for ships up to around 300 

m in length and the distance is set at 0.5 NM as about twice 

the distance of 1.6L. This is that L1 = 0.5 NM, which cor-

responds to the length of the bumper model for a ship with 

exactly 289.375 m length.

The purpose of this study is to construct a new trained 

model which performs automatic collision avoidance with 

a longer safe passing distance at 0.5 NM. One possible rea-

son why learning does not progress when the safe passing 

distance is increased is that the ship has to turn around too 

much due to the longer safe passing distance to avoid col-

lisions and may lose the course to the given waypoint. To 

solve this problem, we introduce a recurrent neural networks 

(RNN) in continuous action spaces. The learning environ-

ment was implemented according to the OpenAI Gym [22], 

which is one of the standard environmental frameworks used 

in deep reinforcement learning research in recent years. This 

environment provides a flexible simulation environment of 

numerical simulation in various scenarios. The performance 

of the training model is verified by numerical simulations 

for the Imazu problem and a test scenario.

This paper is organized as follows: in the next section, 

we explain OZT and introduced a novel method named the 

inside OZT and the bow crossing distance to expand OZT. 

In Sect. 3, we explain algorithm to detect OZT and DRL, 

followed by a learning method and the environment of DRL 

in Sect. 4. The scenario used for training using DRL is also 

described in this section. We describe the results and evalu-

ation of collision avoidance simulation using trained models 

Fig. 1  Basic encounter situations and actions to avoid collision as 

specified in the COLREGs

Fig. 2  Bumper model [20]
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for Imazu problem and a test scenario in Sect. 5. Section 6 is 

devoted to discussion. Finally, we conclude the paper.

2  OZT

2.1  Computation of OZT

In this study, OZT is used for collision risk assessment. In 

actual operation, a ship’s operator usually makes a decision 

to avoid collision based on the distance to a target ship and 

the change in azimuth of the target ship from the own ship. 

In addition, the closest point of approach (CPA) analysis is 

also used for collision avoidance. The time margin to colli-

sion is expressed by time to CPA (TCPA) and the distance to 

collision by the distance to CPA (DCPA). If DCPA is short, 

a ship officer will steer the ship to avoid other ships. The 

timing of steering will be determined by TCPA. Informa-

tion obtained by CPA analysis is useful for safety naviga-

tion. However, results of CPA analysis do not tell which 

directions are safe. It is necessary for the operator to check 

whether a sufficient distance can be secured by actually 

changing the course of the own ship. This is the same for 

the automatic collision avoidance problem using TCPA and 

DCPA. To avoid a collision, it is necessary to predict the rel-

ative motion of the target ship and the possibility of a colli-

sion in the future. Then, we use OZT which is an area where 

a collision will happen in the future based on dynamic infor-

mation of ships. The dynamic information including each 

target ship’s position, speed and heading angle is assumed 

to be obtained from automatic identification system (AIS). 

There are several versions of OZT. In this study, an OZT is 

defined as a capsule-shaped area calculated using collision 

courses C
O
 as shown in Fig. 3. The collision course C

O
 of the 

own ship that may collide with the target ship in the future 

is calculated by Eq. (1) [23].

where � = arcsin
(

r
s
∕d

)

 . r
s
 is the safe passing distance and 

d is the distance between the own ship and the target ship. 

V
O
 is the own ship’s speed and V

T
 is the target ship’s speed. 

Az is the azimuth of the target ship’s position from the own 

ship and C
T
 is the course of the target ship. Relative motion 

is computed when the own ship takes the collision courses 

C
O
 as follows.

where V
R
 and C

R
 are the relative speed and course of a target 

ship against C
O
 , respectively. Then, DCPA and TCPA for 

each C
O
 can be obtained as follows.

2.2  Inside OZT

We introduce Inside OZT, which expands the scope of the 

original OZT. OZT is an evaluation method originally intro-

duced to determine the behavior of avoidance maneuvering 

in advance, and it is an indicator to be used when avoiding 

a collision. According to Eq. 1, to calculate the collision 

course, it is necessary for the distance between the own ship 

and the target ship to be more than the safe passing dis-

tance, and if not, OZT cannot be calculated. As a result, it 

is not possible to assess the risk of collision with the target 

ship when the ship is unavoidably close to the specified safe 

passing distance in congested water areas. To extend the 

safe passing distance, this problem should be solved. It is 

noted here that this characteristic is not a practical problem 

in usual use, especially in the case of human-operated ships. 

However, when OZT is used as a decision-making of colli-

sion avoidance, it is not possible to make a correct decision 

depending on OZT when the ship is extremely close to the 

target ship. To avoid this, it is necessary to supplement OZT 

when the distance to the target ship is less than the set safe 

(1)

CO =

⎧
⎪⎨⎪⎩

Az ± � − arcsin

�
VT

VO

sin
�
Az ± � − CT

��
,

Az ± � − � + arcsin

�
VT

VO

sin
�
Az ± � − CT

��
,
�
VT > VO

�

(2)
ΔX = VT sin CT − VO sin CO,

ΔY = VT cos CT − VO cos CO,

(3)

VR =

√

ΔX2 + ΔY2,

CR = arctan
ΔX

ΔY
,

(4)DCPA =d
|
|
|
sin

(
C

R
− Az + �

)|
|
|

(5)TCPA =

d cos
(

C
R
− Az + �

)

V
R

.

Fig. 3  Computation of OZT
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passing distance. In this study, we develop a method to com-

pute the supplementary OZT in a simple way. We call it the 

inside OZT and distinguish it from original OZT. The inside 

OZT is defined as that an OZT with TCPA when the distance 

between the ship and the target ship is less than or equal to 

the safe passage distance, d ≤ r
s
 , an area of distance r

s
 or 

less centered on the line segment that the target ship moves 

from at TCPA = 0 to TCPA = r
s
∕|V

O
− V

T
| on the heading 

direction of the target ship. The red area in Fig. 4 represents 

the inside OZT. The orange area in Fig. 4 shows a normal 

OZT (Sect. 2.1). If the speed of the own ship and the target 

ship are the same, the inside OZT extends to infinity farther 

on the target ship’s heading direction. In the process of the 

simulation using deep reinforcement learning, when OZT of 

the target ship is not displayed, it is difficult to distinguish 

between “the case where there are no target ships around 

that may collide” and “the case where OZT is not displayed 

because the distance to the target ship is less than the safe 

passing distance”. In some of the DRL algorithms, the 

value of an observed state is expressed as a value function. 

A vector of an observed state includes information of OZT 

distributions. The learning curve may be adversely affected 

because the value of the loss function for value functions 

may not decrease as the learning progresses. The value of 

loss function corresponds to the error between prediction 

by the network and actual data. Figure 5 is a comparison of 

the loss function during learning with and without the inside 

OZT. In the figures, each blue solid line shows the moving 

average of the loss function and the light blue area shows the 

standard deviation of the loss function for each iteration. By 

introducing the inside OZT, the value of the loss function of 

the value function decreases stably because the association 

between the reward obtained in collision and the state vector 

containing the OZT detection result can be consistent, then 

the learning becomes more stable as shown in Fig. 5. 

2.3  Bow crossing range

During actual maneuvering on the sea, it is usually avoided 

to pass in front of a target ship. However, if the distance 

between the own ship and the target ship is sufficient large, 

it may be possible to pass in the front of the target ship. Basi-

cally, it is known statistically that it is natural and safe for a 

Fig. 4  Inside OZT (the red area is an inside OZT of TargetShip1. 

An OZT is shown as an orange area. Each circle surrounding a ship 

shows the safe passing distance set to compute OZT and the inside 

OZT) (colour figure online)

Fig. 5  Comparison of changes of the loss function for value network during learning with/without inside OZT (left: not using inside OZT, right: 

using inside OZT)
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ship to have a longer distance ahead of it than in other direc-

tions such as both sides and stern of the ship, as represented 

by methods such as the bumper model, the ship domain 

and effective domain [24]. There are two possible ways to 

introduce the bow crossing range into OZT: first, there is a 

virtual ship that goes ahead of the target ship at the same 

speed and its distance is equal to the bow crossing range 

minus the safe passing distance. Then, the original OZT is 

extended by the TCPA of the collision course calculated by 

this virtual ship. As a simpler way, it is also possible to cor-

respond by extending the area of OZT by subtracting the safe 

passing distance from the bow crossing range. In this study, 

we adopt the latter simple method because of the simplicity 

of the implementation. To perform detection of collision 

corresponding to OZT distribution with the bow crossing 

range, we additionally defined a region like the ship domain 

for collision detection with the bow range corresponding to 

the definition of OZT as the area enclosed by the solid line 

in Fig. 6. A collision is judged when the own ship enters 

this domain of target ships. As shown in Fig. 6, this area is 

a capsule-shaped region with a radius of the safe passing 

distance and the bow crossing range is set to 1.0 NM.

3  Algorithm

3.1  Detection of OZT

To process information of OZT, we use a virtual sensor 

called the grid sensor [17]. It is required to detect OZT and 

convert it into a form that can be easily used as an input of 

deep neural networks used in DRL. Because, networks in 

reinforcement learning only accept vectors, the dimension 

of which is fixed. However, to avoid multiple ships, the auto-

matic collision avoidance system should track more than one 

OZT simultaneously and the number of ships maybe change 

during navigation. In addition, it also needs to be able to 

detect OZT with a high resolution over a wide area of sev-

eral nautical miles. Ships at sea avoid a collision according 

to the COLREGs. The rule 8 of the COLREGs states that 

action to avoid a collision should be positive and made in 

ample time. It is necessary to observe the situation from an 

ample distance and choose an appropriate action in ample 

time. For this reason, one of the authors designed the grid 

sensor. The schematic diagram of detection of OZTs using 

a grid sensor is shown in Fig. 7. The grid sensor is a virtual 

sensor that extends from the center of the own ship and is 

separated by evenly spaced intervals of the angle direction 

and the radius direction in a concentric circle grid. When 

a grid cell overlaps with an OZT, it is judged detecting the 

OZT on each grid cell of the grid sensor. After detection, the 

grid sensor returns a state vector, the dimension of which is 

equal to the number of its grid cells. Each component of the 

state vector by the grid sensor is set to 1 if the corresponding 

grid cell detects OZT, 0 otherwise. In this way, the collision 

avoidance system recognizes OZTs as a vector with a fixed 

dimension regardless of the changes of OZT distribution.

3.2  Deep reinforcement learning algorithm

The proposed collision avoidance algorithm is based on 

DRL. DRL is a kind of machine learning, and a combina-

tion of reinforcement learning (RL) and deep learning. 

RL algorithm uses an environment and agents. Agents 

and the environment interact with each other to promote 

learning. Agents receive information from the environ-

ment called the state and take an action. Then, each agent 

receives a reward for its action and a new state of envi-

ronment. Agents learn in the environment to maximize 

the cumulative reward. In collision avoidance tasks, an 

agent corresponds to the own ship and an environment 

consists of some components such as target ships and way-

points. There is a wide variety of DRL algorithms. The 

Fig. 6  Domain for collision detection

Fig. 7  Detection of OZT by the grid sensor (the unit of radius is nau-

tical mile and size of ships’ plots is 4 times of full scale)
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differences in these DRL algorithms depend on how the 

agent learns and how it chooses its actions. For some kinds 

of algorithms such as on-policy Actor-Critic method, 

probability distributions of actions is given by a policy 

function (Actor) and the value of the action is represented 

by the value function (Critic). In DRL, these functions are 

represented as deep neural networks. It is called the func-

tion approximation, which is approximation of a policy 

function or a value function with parameterized functions. 

Using expressive power of deep learning, DRL algorithms 

can control an agent based on high-dimensional inputs like 

images and the grid sensor.

As mentioned above, there are many kinds of DRL algo-

rithms depending on processes such as update policy/value 

functions, evaluation of a state and determination of action. 

In this paper, we used proximal policy optimization algo-

rithm (PPO) [25] because PPO outperforms other algorithms 

such as DQN and is applied to tasks in real world includ-

ing robotic locomotion. The code of PPO in this paper was 

implemented using DRL library machina coded by PyTorch 

[26] which is a deep learning framework for Python. PPO is 

an algorithm that has its origins in reinforcement learning of 

two Actor-Critic methods: Trust Region Policy Optimization 

(TRPO) [27], which restricts policy updates according to the 

Kullback–Leibler divergence of the probability distribution 

before and after the update, and Asynchronous Advantage 

Actor-Critic (A3C) [28], which uses distributed learning 

and the advantage to update the probability distribution. 

Actor-critic method uses two networks basically. One is a 

policy function �(a
t
|s

t
;�) which is formulated in the form 

of a posterior probability distribution for a given state vec-

tor to determine a next action. The other is a value function 

V(s
t
;�

v
) to evaluate a state of an environment, where a

t
 is 

an action and s
t
 is a state at step t. A policy function and a 

value function are parameterized by � and �
v
 , respectively. 

In our implementation, these two networks are independ-

ent and do not share any part of them. An update using the 

advantage, if without using the state-action value func-

tion directly, performs via ∇
�

log�
�

(
a

t
|s

t
;�
)
Â
(
s

t
, a

t
;�, �

v

)
 

obtained from an estimate of the advantage given by 

Â
�

s
t
, a

t
;�, �

v

�

=
∑k−1

i=0
� ir

t+i
+ �kV

�

s
t+k

;�
v

�

− V(s
t
;�

v
) , where 

k can vary from a state to a state and is upper-bounded by 

max step of each episode. In the implementation of machina, 

a set of estimates of the advantage in a batch is normalized 

with its variance and mean. The distinctive feature of PPO 

is to use the modified objective function after the idea of 

TRPO to update policy with the simple implementation. A 

primary variant of PPO called PPO-clip stabilizes policy 

update by Eq. 6.

Here, objective function L is given by

(6)�
t+1 = argmax

�
E

s,a∼�
�t

[

L
(

s, a, �
t
, �
)]

.

where r
t
(�

t
, �) = �(a

t
|s

t
;�)∕�(a

t
|s

t
;�

t
) , � is a hyperparameter 

and Â
t
(s, a) is an estimate of advantage at the step t. For 

updates of the value function, the Monte-Carlo method is 

adopted. Specifically, the Monte-Carlo method minimizes 

the mean squared error between the cumulative discounted 

reward GT

t
= r

t+1
+ �r

t+2
+⋯ + �

T−1
r

T
 and the current value 

function V(s
t
|�

v
).

4  Learning method

4.1  Environment for learning of collision avoidance

The environment consists of target ships, a waypoint and 

a target area. In this paper, it was assumed that the target 

area was an open sea with no obstacles such as coast lines, 

buoys. A waypoint was set as a destination of the own ship 

which was a controllable agent. The own ship must go to a 

waypoint while avoiding target ships. Target ships were set 

in the target area according to a set of encounter situations. 

The motion of ships was calculated by Nomoto’s equation 

[29] for the heading and a primary delay equation for the 

rudder motion as Eq. 8 and the coordinate system of ship 

motion is shown in Fig. 8.

 where � is a heading angle. r is a rate of turn. � is a rudder 

angle of a ship and �
C
 is a command rudder angle. T and T

E
 

are time coefficients of heading and rudder motion. K is a 

gain. All of own and target ships had the same parameter 

for motion calculation assuming a kind of cargo ships. The 

own ship and target ships cannot change their speed. The 

Runge–Kutta method was used to integral motion equations. 

(7)

L
(

s, a, �
t
, �
)

= min
(

r
t

(

�
t
, �,

)

Â
t
, clip(r

t

(

�
t
, �
)

, 1 − �, 1 + �)Â
t
(s, a)

)

,
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Fig. 8  Coordinate system of ship motion
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In this study, two types of control methods are used to train 

model in the continuous action spaces: a rudder control 

model that outputs the command rudder angle and an auto-

pilot model that outputs the command heading angle. For the 

model of rudder angle control, the command rudder angle is 

determined based on the current policy in the range of − 10 ° 

to +10°. The autopilot model selects a change of the heading 

angle of autopilot in the range of − 10 ° to +10° based on the 

current policy at each time step. Table 1 shows a summary 

of the vessels used in this calculation. These are the same for 

all ships in the simulation, whether their own or target ships.

The policy and value networks of PPO get a state vector 

from environment. A state vector consist of as follows: (1) 

OZT information by a grid sensor detection results, (2) 

normalized values of a heading angle, a rate of turn, a 

speed and a rudder angle of the own ship and (3) normal-

ized values of an azimuth angle and a distance to a way-

point and a command rudder angle from autopilot toward a 

waypoint. In this algorithm, dynamic information of target 

ships is grasped only from a detection result of a gird sen-

sor. Thereby, it is a feature of the proposed algorithm that 

the dynamic information of the target ships and position 

information of the own ship are not handled directory. To 

reduce the computational complexity, detection of a grid 

sensor and updating of a command rudder angle were car-

ried out every 10 s in the simulation time, and for the 

motion calculation, the interval of the integration was set 

to 1 s. The setting of other learning environments is shown 

in Table 2. A grid sensor is assumed to use information 

provided by AIS. The practical range of shipborne AIS 

communication is about 12 NM [30]. We determined the 

radius of the grid sensor based on this. In this study, we 

implemented the environment using Python with OpenAI 

Gym which is used as a standard platform for development 

and evaluation for RL algorithms. By this implementa-

tion, it is easy to apply any other DRL algorithms to this 

environment.  

4.2  Design of rewards

The rewards are designed by dividing them into two kinds 

of rewards: basic rewards, which are added at each step, 

and achievement rewards, which are given at the end of 

each episode. An episode is defined as a sequence from 

a start of a simulation to a termination of the simulation 

by satisfying terminal conditions. The terminal conditions 

of an episode are that the distance to a waypoint becomes 

less than or equal to a specified distance, or the simulation 

reaches the set maximum steps. The basic rewards Costs 

are defined as shown in Eqs. 9–12. The Costswp calculated 

by Eq. 10 is a positive reward that is given more as the 

own ship approaches a given waypoint. For compliance 

with the COLREGs, a small positive reward is given as 

Costs
starboard

 to encourage the own ship to pass through 

the area on the right side of the line connecting the initial 

position of the own ship with a given waypoint, so that an 

agent basically learns to avoid toward the starboard side. 

Costs
stable

 is defined to stabilize heading control by trained 

models. In this study, an additional reward of − 5 is given 

instead of terminating the episode at the step where the 

collision was judged.

where d
wp

 and Azwp are the distance and the azimuth to a 

given waypoint from the own ship. Results are set according 

to the end condition of each episode: − 50 for deviation from 

the target area, − 50 for a collision, and + 50 for reaching 

within the specified distance from a given waypoint without 

collisions. The scale of achievement rewards is determined 

based on the result of the preliminary learning carried out 

beforehand as the scale for that the effect of Costs
starboard

 with 

a small value does not disappear, while encouraging the own 

ship to avoid collision.

(9)Costs =Costswp + Costsstarboard + Costsstable,

(10)Costswp =0.9 tanh(1∕dwp),

(11)Costsstarboard =

{

0.05, Azwp ≥ 0

0.0, Azwp < 0,

(12)Costsstable = − 0.01|r∕�|,

Table 1  Subjects of ships for learning

K (1/s) 0.05

T (s) 50.0

T
E
 (s) 2.5

Ship’s speed, U (kt) 12.0, 8.4 (for 

ships over-taken 

only)

Ship length between perpendiculars, L
PP

 (m) 106.0

Ship breadth, B (m) 16.2

Table 2  Configurations of environment

Subjects Value

Safe passing distance (NM) 0.5

Grid sensor

  Angle of detection (°) 360

 Grid space on angular direction (°) 2.0

 Radius of sensor (NM) 12.0

 Grid space on radius direction (NM) 0.2

 Detection intervals (s) 10.0
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4.3  Structure of networks and update method

The policy and value function used in PPO are represented 

by deep neural networks. In the present study, we set a safe 

distance of 0.5 NM in the discrete action space in advance, 

but the trained model by previous approach [17] did not 

reach the sufficient performance. One of the possible reasons 

is that networks consist of only convolutional layers and full-

connected layers (FC) cannot store historical information of 

the environment. We introduced the recurrent neural network 

(RNN), which can deal with time series data. Specifically, 

we used the long short-term memory (LSTM), which is a 

kind of RNN. Among the input states, the detection result 

of the grid sensor and the dynamic information of the own 

ship and information of the waypoint are different in nature, 

and the results of the grid sensor needs to be processed by 

the convolutional layer used in image learning. On the other 

hand, real numerical data, such as dynamic information and 

information of waypoint, can be processed in the layer of 

all joins because of its small number of dimensions. For 

this reason, as shown in Fig. 9, we divided the state vectors 

of the grid sensor and the state vectors of other numerical 

information and input them separately in the convolutional 

layer and the full-connected layer in the input layer, respec-

tively, and finally combined the results of each output into 

one network. To learn in a continuous action spaces, we 

introduce a network structure as shown in Fig. 9, which has 

different output layers from those for the discrete action 

spaces. In this network, the LSTM cell is placed before the 

output layer. In our implementation, the two networks have 

no shared parts. Here, the rudder control model, the net-

work of policy has two convolutional layers, and the value 

function has only one convolutional layer. We used Adam 

[31] to update the network. The hyperparameters for PPO 

in continuous action spaces are provided in Table 3. The 

hyperparameters of the previous model in discrete action 

spaces are described in [17].

4.4  Scenario

The encounter situations used during learning affect the 

quality of the collision avoidance model. It is suitable that 

the set of situations includes from easy one like 1 on 1 

encounters to difficult one like encounters of many ships. 

There is a scenario set for collision avoidance tests. Woerner 

et al. proposed the scenario set [32]. This scenario has six 

situations of ship encounters. Cai and Hasegawa proposed 

an evaluation method of performance of automatic collision 

avoidance systems [33]. In this method, they used Imazu 

problem [19] as a benchmark which is a set of ship encoun-

ter situations as shown in Fig. 10. Imazu problem consists 

of basic ship encounters of 1 on 1 and difficult situations 

of multiple ships. In this paper, we used Imazu problem as 

scenario for learning. In Fig. 10, numbers on the top left in 

each of boxes indicate the number of cases of Imazu prob-

lem. Each of short bars from triangles (the own ship) or cir-

cles (target ships) is a velocity vector of each ship. Accord-

ing to the report by Cai and Hasegawa, the problem may 

become easier by the elimination of the collision risk when 

the avoidance maneuvering by a target ship is permitted. In 

this paper, target ships are able to only go straight without 

making any changes to their course by waypoint navigation 

Fig. 9  Structures of networks used in PPO (top: network for continu-

ous action space with rudder control, middle: network for continuous 

action space with autopilot, bottom: network for discrete action space 

in [17]) Fig. 10  Imazu problem [19]
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or avoidance maneuvering. In addition, to improve the gen-

eralization performance of the learned model, one random 

case that 3 ships are randomly arranged is prepared, and the 

learning was carried out under the problem of total 23 cases 

including 22 cases of the Imazu problem and a random case. 

The position and course of each ship for every case were set 

so as to collide at the origin of the space fixed coordinates. 

In learning, 1 case out of 23 case was chosen randomly when 

it was initialized in each episode start, and target ship was 

arranged according to the configurations of each case. For 

the initial position and heading angle of target ships in each 

case in Imazu problem, see Appendix 1. Each target ship is 

positioned at the speed so that the TCPA is 30 mins. The 

own ship is positioned at (X [NM], Y [NM]) = (− 6.0 , 0.0) 

and its heading angle is randomly set in the range of − 5 ° to 

+ 5° for every episode for generalizability.

5  Results

In this section, we describe the results of automatic col-

lision avoidance using the trained model by the proposed 

approach. First, we show the results for all scenarios of 

Imazu problem using the two trained models of continuous 

action spaces and the previous trained models used in the 

previous study [17]. This previous model is trained at the 

safe passing distance of 0.3 NM and OZT is not extended 

to the bow crossing distance in learning and this valida-

tion. Using these models, a total of 22 cases of the Imazu 

problem were simulated to verify the performance of col-

lision avoidance. In all scenarios, the waypoints are placed 

at (X (NM), Y (NM)) = (6.0, 0.0). Trajectories by the three 

trained models in all 22 cases of Imazu problem are shown 

in Figs. 11, 12 and 13. The corresponding bar graphs of 

the minimum passing distance in each case of the two 

continuous action space models and the discrete action 

spaces model are shown in Fig. 14. In the case of the dis-

crete action spaces model, the safe passage distance during 

learning was set to 0.3 NM, which results in monotonous 

trajectories with small heading angle changes overall. On 

the other hand, the two models of continuous action spaces 

learned at a safe distance of 0.5 NM have been learned to 

take a longer distance to the target ships than the previ-

ous model. From the point of view on the COLREGs, the 

discrete action spaces model cannot find a path to avoid 

ship according to the COLREGs in some cases such as 

case 6. The model of continuous action spaces with rud-

der control found paths to avoid target ships by starboard 

turning, which is appropriate avoidance maneuvering for 

almost cases. In the almost results in Figs. 11 and 12, the 

own ship passed behind the target ships. This can be due 

to the setting of bow crossing range of OZT and collision 

detection. However, the autopilot model may maneuver 

from the initial OZT such as case 12 and case 17, which 

deflects the course significantly at the beginning, and the 

minimum safe passing range is also large. For all cases of 

Imazu problem, the minimum passing distance of autopilot 

model tends to be larger than that of the rudder control 

model. Moreover, it can be inferred from the trajectories in 

Fig. 12 that the effect of Costs
stable

 is longer for the autopi-

lot model than for the rudder control model. On the other 

hand, the rudder control model has mastered advanced 

control such as turning to the destination as shown in 

Fig. 15. Such a drastic change of course was not observed 

in the trained model of discrete action spaces at all. This is 

a major feature of the continuous action space model. This 

Fig. 11  Trajectories through 

Imazu problem using the con-

tinuous action space model with 

rudder control
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may be due to the reward design that there is no negative 

reward for the elapsed time, so there is a less need to hurry 

to arrive at the waypoint. Nevertheless, it is necessary to 

design the reward so that the model can be constructed in a 

time-efficient manner while retaining this flexible control, 

since it is necessary to consider the economy in actual ship 

operation.

Fig. 12  Trajectories through 

Imazu problem using the con-

tinuous action space model with 

autopilot

Fig. 13  Trajectories through 

Imazu problems using the dis-

crete action space model with 

rudder control [17] (the safe 

passing distance is 0.3 NM)

Fig. 14  Minimum passing dis-

tance of trained models (the safe 

passing distance for the trained 

models in continuous action 

spaces is 0.5 NM, and it for the 

trained model in discrete action 

spaces is 0.3 NM [17])
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For validation of the rudder control model, we have pre-

pared a test scenario shown in Fig. 16. In the test scenario, 

there are five target ships at different speed from 12.0 to 

15.0 kt. The waypoint of the own ship is set at (X [NM], Y 

[NM]) = (0.0, 10.0). From the initial OZT distribution, one 

of the desirable paths to arrive at the waypoint is way on the 

starboard of the own ship through the gaps of OZTs. The 

trajectory in Fig. 17 shows the trained model with rudder 

control learned such desirable way to avoid collision and 

arrive at the waypoint. The minimum passing distance of 

this scenario is 0.753 NM. Although the own ship’s speed 

is lower than the target ships 2 and 3, the trained model 

avoided them. As shown in this test, the trained model with 

rudder control in continuous action spaces learned general-

ized maneuvering to avoid ships and arrive at the waypoint 

with the longer safe passing distance is 0.5 NM. 

6  Discussion

By introducing negative rewards for the collision detection 

with the bow crossing range and the small positive rewards 

of the right-handed rewards Costs
starboard

 , the trained model 

of rudder control is able to learn to control the own ship in 

a way that does not violate the three rules of the COLREGs 

described in the Introduction. For instance, the previous 

trained model of discrete action spaces had crossed the front 

of the target ships in some cases of Imazu problem such as 

case Nos. 4, 6 and 12. Conversely, these results indicate 

that there is the possibility that the basic collision avoidance 

behavior for head-on, crossing and overtaking situations 

defined by the COLREGs can be composed of the principle 

for securing the bow crossing range and passing on the right 

side of the original course to the waypoint. Several studies 

by Imazu [4–6], Hu et al. [8], and Woerner et al. [12] defined 

detailed functions to evaluate the legality for the COLREGs. 

In contrast, our method shows that only OZT with the bow 

crossing range (and the cost term Costs
starboard

 of rewards) 

is enough for COLREGs-compliant collision avoidance for 

Fig. 15  Turning behavior in case 4 of Imazu problem in Fig. 11

Fig. 16  Initial position and OZT distributions of the test scenario

Fig. 17  Trajectory by the continuous action space model with rudder 

control for the test scenario
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multiple ships navigation problems. This also means we can 

improve methods of collision avoidance by modifying not 

only functions but also representations of collision detection 

based on the statistical models such as the bumper model. 

Imazu problem is a set of short-term scenarios that are easy 

to maneuver in response to the COLREGs, but in the test 

scenario prepared this time, if the ship tries to proceed in the 

one of the shortest path, the course that passes in the front 

of target ships is selected. The question here is whether the 

trajectory generated by the trained model which takes action 

in compliance with the COLREGs in short-term scenarios is 

acceptable in practice. The choice of such a course is deter-

mined by various factors such as the degree of congestion 

of the sea, the shape of the navigable area, and the distance 

to the waypoint. One of the future research agendas is to 

examine whether the trajectory from the trained model is 

realistic using more complex scenarios and real traffic data, 

while at the same time investigating the essential elements 

needed to bridge the difference with real ship operations in 

the DRL framework.

A characteristic of DRL for ship control problems is that 

the two control methods, rudder control and autopilot, show 

significant differences in the same reward design. These 

models differ in the number of convolutional layers in the 

network structure, but the presence or absence of this effect 

is unknown. Nevertheless, the linear trajectory inherent in 

the results by the model of autopilot indicates that the reward 

design may need to be determined according to how the 

vessel is controlled. The reason why the trained model of 

autopilot could not learn in the same network as the trained 

model of rudder control in continuous action spaces is that 

the deviation from the original course is too large for colli-

sion avoidance maneuvers, which corresponds to the reason 

why the discrete model could not learn. From the learning 

process of these two models, we consider that it is neces-

sary to design state vectors and rewards that limit the devia-

tion from the course to learn collision avoidance maneuvers 

while maintaining the performance of waypoint navigation. 

In the future research, we will design learning algorithms 

that take these factors into account.

7  Conclusion

In this study, we proposed a novel approach of automatic 

collision avoidance using DRL in continuous action spaces 

with the longer safe passing distance at 0.5 NM. By our pre-

vious approach, when the safe passing distance was set to 0.5 

NM, the learning did not progress and the performance of 

the trained model was not satisfying. The proposed method 

solves this problem by developing new OZT representa-

tions, changing the network structure, and learning in con-

tinuous action spaces. We extend OZT by introducing the 

inside OZT and the bow crossing range. The inside OZT 

promotes the reduction of the loss of the value function dur-

ing learning using DRL. We continued to investigate the 

combination of OZT detection by grid sensors and deep 

reinforcement learning as a method to perform collision 

avoidance and waypoint navigation of multiple ships at the 

same time. Using OZT and collision detection with the bow 

crossing range, the model learned safer maneuvering that 

the ship is less likely to cross the front of the target ships. 

This result shows the bow crossing range in collision detec-

tion is effectual for realizing safe and COLREGs-compliant 

maneuvering in a simple way. By introducing the LSTM 

cell in the continuous action spaces into network of PPO, 

the new trained model shows that it can make complex deci-

sions such as giving up collision avoidance and returning 

to a waypoint in the midst of operation, which has not been 

seen in behaviors by trained model learned in the discrete 

action spaces. The trained model has found an appropriate 

course to weave its way through OZTs even in unknown test 

scenarios and has learned collision avoidance maneuvering 

with generalization performance.

On the other hand, the trained model of the continuous 

action spaces tends to have low course stability. As a result, 

the ship’s operation may cause anxiety to the other ship. 

In the next stage of this research, we would like to build 

a model with more course stability by various approach 

including a review of the structure of state vectors and net-

works, as well as reward design. In addition, it is future work 

to build the automatic collision avoidance model which can 

deal with ship encounters including changes of ships’ speeds 

and courses.
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Appendix 1: Learning settings of PPO

The hyperparameters of the neural network structure and 

learning used in the learning of continuous action spaces in 

this study are shown in Table 3. As for the learning rate, it 

does not decay and is fixed during learning. In this study, we 

used Pytorch to perform operations around neural networks 

on a GPU using CUDA 9.0 to shorten the learning time. 

Computations of the environment, including ship motion 

calculations and grid sensor detection, were performed on 

CPU. For the calculations, we used a Windows 10 desktop 

machine (core i7 8700K, NVIDIA GeForce 1060 6GB). 

Note that machina used in this study officially supports only 

Ubuntu as an OS, and Windows is not officially supported. 

For this reason, some of the implementations of multiproc-

essing and log output for Pytorch and Python in parallel were 

changed for Windows and the machina code was modified.

Settings of Imazu problem

Imazu problem proposed in [19] has two group of encoun-

ter scenarios. Group 1 includes relative difficult situation 

Table 4 shows the initial settings of the Imazu problem used 

in learning and test of the model. The coordinates in Table 4 

are the spatial fixed coordinates. Numbers of target ships 

in Table 4 is not always corresponding to them used in the 

simulations of this paper. Figure 18 shows the initial condi-

tions for each case set in Table 4. However, to make the dis-

play of the ship easier to see, it is drawn at a size equivalent 

to 10 times the actual ship scale.

Table 3  Hyperparameters for PPO

Parameters Value

Optimizer Adam

Learning rate

 Actor 1.0 ⋅ 10
−4

 Critic 3.0 ⋅ 10
−4

Discount gamma 0.995

1st convolutional layer for grid sensor

 Number of output channel 256

 Kernel size 8

 Stride 4

 Padding 8

 The number of channels of output 32

2nd convolutional layer for grid sensor

 Number of output channel 128

 Kernel size 4

 Stride 2

 Padding 4

 The number of channels of output 32

LSTM cell

 Input size 1024

 Hidden size 512

Hidden units of fully connected layers for other state 

vector

256

Hidden units of fully connected layers for merged output 128

Size of clipping gradient norm 20.0

Nonlinearity ReLU

Number of processes to parallel sampling 6

Batch size 8

Number of epoch in a iteration 10
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Table 4  Settings of Imazu 

Problem (own ship starts from 

(X [NM], Y [NM]) = ( − 6.0 , 

0.0) with � = 0(°))

Ship Target ship 1 Target ship 2 Target ship 3

Case no. X (NM) Y (NM) � (°) X (NM) Y (NM) � (°) X (NM) Y (NM) � (°)

1 6.000 0.000 180.0 – – – – – –

2 0.000 6.000 – 90.0 – – – – – –

3 − 4.200 0.000 0.0 – – – – – –

4 − 4.243 − 4.243 45.0 – – – – – –

5 6.000 0.000 180.0 0.000 6.000 − 90.0 – – –

6 − 5.909 1.042 − 10.0 − 4.243 4.243 − 45.0 – – –

7 − 4.200 0.000 0.0 − 4.243 4.243 − 45.0 – – –

8 6.000 0.000 180.0 0.000 6.000 − 90.0 – – –

9 − 5.196 3.000 − 30.0 0.000 6.000 − 90.0 – – –

10 0.000 6.000 − 90.0 − 5.796 − 1.553 15.0 – – –

11 0.000 − 6.000 90.0 − 5.196 3.000 − 30.0 – – –

12 − 4.243 4.243 − 45.0 − 5.909 1.042 − 10.0 – – –

13 6.000 0.000 180.0 − 5.909 − 1.042 10.0 − 4.243 − 4.243 45.0

14 − 5.909 1.042 − 10.0 − 4.243 4.243 − 45.0 0.000 6.000 − 90.0

15 − 4.200 0.000 0.0 − 4.243 4.243 − 45.0 0.000 6.000 − 90.0

16 − 2.970 − 2.970 45.0 0.000 − 6.000 90.0 0.000 6.000 − 90.0

17 − 4.200 0.000 0.0 − 5.909 − 1.042 10.0 − 4.243 4.243 − 45.0

18 4.243 4.243 − 135.0 − 5.796 1.553 − 15.0 − 5.196 3.000 − 30.0

19 − 5.796 − 1.553 15.0 − 5.796 1.553 − 15.0 4.243 4.243 − 135.0

20 − 4.200 0.000 0.0 − 5.796 1.553 − 15.0 0.000 6.000 − 90.0

21 − 5.796 1.553 − 15.0 − 5.796 − 1.553 15.0 0.000 6.000 − 90.0

22 − 4.200 0.000 0.0 − 4.243 4.243 − 45.0 0.000 6.000 − 90.0
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Fig. 18  The initial state of Imazu problem and OZT detection by the grid sensor (the safe passing distance of OZT is 0.5 NM)
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