
(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 9, No. 10, 2018

397 | P a g e

www.ijacsa.thesai.org

Automatic Short Answer Scoring based on Paragraph

Embeddings

Sarah Hassan
1
, Aly A. Fahmy

2
, Mohammad El-Ramly

3

Computer Science Department

Faculty of Computers and Information, Cairo University

Cairo, Egypt

Abstract—Automatic scoring systems for students’ short

answers can eliminate from instructors the burden of grading

large number of test questions and facilitate performing even

more assessments during lectures especially when number of

students is large. This paper presents a supervised learning

approach for short answer automatic scoring based on

paragraph embeddings. We review significant deep learning

based models for generating paragraph embeddings and present

a detailed empirical study of how the choice of paragraph

embedding model influences accuracy in the task of automatic

scoring.

Keywords—Automatic scoring; short answer; Pearson

correlation coefficient; RMSE; deep learning

I. INTRODUCTION

Improving the quality of education is always a desired goal
in educational institutions. In higher education institutions,
many courses are given in large classrooms where number of
attending students is large. Such large learning environments
present special challenges on instructors and one of these
challenges is students’ assessments. One technology solution
for this problem is automatic scoring of students’ answers.
Automatic short answer scoring is the task of “assessing short
natural language responses to objective questions using
computational methods” [1]. This eliminates from instructors
the burden of grading large number of test questions and
facilitates performing even more assessments during lectures.
Different types of questions are used in assessments such as
multiple choice questions, true/false questions, numeric answer
questions, short answers questions, and essay questions. Short
answer and essay answer questions require more complicated
work related to text processing and analysis; while automatic
scoring of other types can be easy and direct task. This paper is
concerned with automatic scoring of short answers. An answer
is considered short answer if its length approximately ranges
from one phrase to one paragraph [1].

The proposed model employs deep learning method named
paragraph embedding on students’ answers and reference
answers to generate vector representation of answers. Cosine
similarity measure between vectors of students’ answers and
reference answer is used as a feature vector to train regression
classifier for predicting students’ scores.

Paragraph embedding - also referred to as Paragraph
vectors [2], sentence encoders [3] - is the method of generating
numeric fixed-length vector representations for variable length
pieces of texts [2].

There are two general types for paragraph embedding
models. The first one is based on applying mathematical
operations (e.g. sum, average) on retrieved word vectors for all
words in a given paragraph in order to generate the paragraph
vector. The second approach is training a model to infer the
paragraph vector for a given sentence. We compared different
state-of-the-art techniques from the two types by employing
them to solve automatic short answer scoring problem. The
objective of this study is to apply a comprehensive evaluation
of multiple state-of-the-art paragraph embedding models by
applying them to the task of short answer automatic scoring.
And consequently, fill the present gap in the literature for this
regard.

This paper is organized as follows:

 Section II presents related work of automatic short
answer scoring algorithms.

 Section III briefly explains the proposed methods used
for text modeling and text similarity.

 Section IV presents the used Dataset.

 Section V describes the models used in this research.

 Section VI shows experiments results and discussion.

 Section VII presents conclusion and future work.

II. RELATED WORK

Different approaches are used to solve automatic short
answering problem. The first approach is based on using
unsupervised techniques that combine text-text similarity
measures to compare student answer and reference answer and
predict score based on similarity value.

Survey [4] presents 3 types of text-text similarity measures.
The first type is string based similarity measures which work
on string sequences (term-based similarity) or character
composition (character-based similarity). The second type is
corpus based similarity measures which are semantic measures
that find similarity between words according to information
gained from large corpora. The third type is knowledge based
similarity measures which are also semantic similarity
measures that are based on semantic networks.

Reference [5] compared number of knowledge-based and
corpus-based measures of semantic similarity. These measures
were applied on different domain specific corpuses with
different sizes to examine the effect of domain and corpus size.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 9, No. 10, 2018

398 | P a g e

www.ijacsa.thesai.org

The researchers also introduced a method to feedback model
with students’ answers to solve the problem of correct student
answers that are not similar to the reference answer. The best
achieved correlation coefficient value was obtained using LSA
corpus based similarity applied on domain-specific corpus built
on Wikipedia along with feedback from students answers.
Correlation coefficient value is 0.5099 measured by comparing
grade assigned to every student answer with actual grade; and
0.6735 measured by comparing total student scores with actual
totals of grades per student.

Reference [6] tested different text-text similarity measures
and combined measures that gave best results to get overall
similarity. The different measures were tested on student
answers dataset provided at [7], the highest correlation
coefficient achieved when comparing students’ answers with
reference answers was 0.504. This result was achieved by
combining N-gram character based similarity with DISCO [8]
first order corpus based similarity applied using Wikipedia data
packets.

A second approach is training machine learning algorithms
to predict scores given set of calculated features.

Reference [9] presents two supervised learning models. The
first model is a regression model trained to predict students’
scores. The second model is a multi-class classifier trained to
predict the labels of student’ answers (e.g. correct, incorrect, or
contradictory). The models were trained on eight calculated
features. The first three features are based on text similarity
between student answer and reference answer calculated in
three different methods. The second three features are the same
three text similarity measures but calculated after removing
question text words from both reference answer and student
answer. The seventh feature is calculated after applying term
weighting based on variant of tf-idf. The final feature is the
ratio of number of words in student answer to that in reference
answer. The first model is trained on student answers dataset
provided at [7] and the second model is trained on SemEval-
2013 task [10]. The regression model achieved correlation
coefficient of 0.592 and RMSE of 0.887 when tested on out-of-
domain data. The model achieved 0.63 correlation coefficient
value and .85 RMSE when tested on in-domain data. The
classification model achieved F1 score of 0.550.

A third approach is employing deep learning architectures
that enable multi-level automatic feature representation
learning. These architectures are increasingly used in the past
years as they showed superior results in various NLP tasks
[11].

Several paragraph embedding models are built based on
deep learning architectures and now became the state-of-the-art
methods for NLP problems. Reference [11] provides a review
of different significant deep learning models applied in NLP
tasks. For the task of paragraph embedding, multiple models
were presented. Convolution Neural Networks (CNN) which
proved their effectiveness in many computer vision tasks had
become the natural choice in NLP tasks with the need for
models that can extract high level features form sequences of
words. Recurrent Neural Networks (RNN) is another type of

deep learning models that become widely used in NLP tasks.
Its advantage comes from its nature of memorizing previous
computations and using them in current processing. In the
context of word sequences, this allows it to capture the inherent
sequential nature present in language. A third type of deep
learning models is Recursive Neural Networks that is based on
the argument that language exhibits a natural recursive
structure. I.e. words and sub-phrases are combined into phrases
in a tree structure manner. A forth type is Deep
Reinforcement Learning models which are applied in NLP
problems related to language generation. A fifth type that
gained some interest recently is based on merging neural
networks with a form of memory that the model can interact
with. This type is called Memory Augmented Networks. Word
Embeddings trained on large unlabeled corpora provide
distributional vector representation of words. These
representations have the advantage that they capture semantic
meanings of words. The semantic similarities between words
can then be measured with simple methods such as cosine
similarity. Word embeddings are often used as the input layer
for deep learning models. [11]. In this paper, some state-of-the-
art deep learning based models trained for NLP tasks are
presented and evaluated in the context automatic short answer
scoring problem.

III. VECTOR REPRESENTATION AND TEXT SIMILARITY

MEASURES

In this paper, the focus is on two approaches that can be
used to generate vector representations of short answers, i.e.
paragraph embeddings. The first approach is generating the
paragraph vector of an answer by calculating the sum of word
vectors for words in the answer. The second approach is
training a deep learning model to directly infer the paragraph
vector of a given answer.

A. Words Embeddings

Word embeddings are techniques for learning vector
representations for words. Word embedding models are usually
trained on large unlabeled corpora in order to exploit their
benefits [12]. Multiple models for word embeddings trained on
large corpus of data are publically available. These pre-trained
models have the advantage of storing semantic relationship
between words. In this paper, we tested 4 different pre-trained
word vector models for generating paragraph vectors and
applied results in task of automatic short answering.

The method is: given a short answer (student answer or
reference answer); the objective is to generate the paragraph
vector of the answer. First, the answer is tokenized to get a list
of its words and any necessary text processing is applied (e.g.
removing punctuation marks). Second, given word vector
model, the corresponding word vector for each word is
retrieved. Finally, to get the paragraph vector, sum operation
(which is commonly used in all reviewed literature) is applied
on all word vectors to get a single vector representing the
paragraph vector. Fig.1 demonstrates this method.

Below we introduce word embedding methods chosen for
this study.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 9, No. 10, 2018

399 | P a g e

www.ijacsa.thesai.org

Fig. 1. Generating Paragraph Vectors from Pre-Trained Word Vector Models.

1) Word2Vec: The word2vec model [2] is based on neural

network trained to predict a word given the context of

surrounding words. One of the features of this model is that

after training, words with similar meanings are mapped to

similar positions in vector space. Also, some semantic

relationships between words can be inferred by applying

simple mathematical calculations. For example: “King” -

“man” +“woman” = “Queen”. Google
1

 provides 300-

dimensional pre-trained word2vec model. The model was

trained on part of Google News dataset (approximately 100

billion words). The model provides word vectors for 3 million

words and phrases.

2) GloVe
2
: GloVe (Global Vectors) [13] is a word

embedding model that combines features from two major

models for generating word vectors: global matrix

factorization and local context window (word2vec is an

example of local context window model). This combination of

features from the two models’ types allows taking advantages

from both models as well as overcoming some of their

drawbacks. We used 300-dimensional pre-trained word

vectors trained on a combination of Gigaword5 and 2014

dump of English Wikipedia. The model provides word vectors

for 400,000 tokens.

3) Fasttext
3
: Fasttext model [12] is based on skip-gram

model where each word is represented as a bag of its character

n-grams. A vector representation is associated to each

character n-gram; and word vector is computed as the sum of

the n-gram vector representations. We used 300-dimensional

pre-trained word vectors model that provides 2 million word

vectors trained on Common Crawl.

1 https://code.google.com/archive/p/word2vec/
2 https://nlp.stanford.edu/projects/glove/
3 https://github.com/facebookresearch/fastText

4) Elmo
4
: Elmo (Embeddings from Language Models)

[14] is a deep contextualized word representation that models

(1) word syntax and semantics and (2) word uses across

different linguistic contexts (polysemy). The learned word

vectors are function of the internal state of deep bidirectional

language model (biLM) rather than just using that top LSTM

layer. We used 1024-dimensional word vectors pre-trained on

1 billion word benchmark5.

B. Paragraph Embeddings

In paragraph embedding models, deep learning model is
trained on sequences of text to directly learn and infer vector
representation of variable-size sequence. Fig.2 demonstrates
this method.

Fig. 2. Generating Paragraph Vectors from Paragraph Embedding Models.

Below we introduce paragraph embedding methods chosen
for this study.

1) Doc2vec: With this model, a neural network classifier

with stochastic gradient descent algorithm is trained on a

fixed-width sliding window over words of paragraphs.

Paragraph vectors are learned along with word vectors so the

trained model can be used to infer paragraph vectors or word

vectors [2] [15].

Gensim Doc2vec [16] is a python library that provides an
implementation of paragraph vectors model. It is designed to
model word sequences ranging from n-gram sentence,
paragraph, or document. We trained 300-dimensional doc2vec
model on our benchmark dataset used for addressing automatic
short answering problem.

2) InferSent
6
: InferSent [3]is a sentence encoder model for

learning universal representation of sentences. The encoder

model is based on bidirectional LSTM architecture with max

pooling trained on the supervised data of the Stanford Natural

Language Inference datasets (SNLI). We used two 4096-

dimensional pre-trained models, one uses fasttext pre-trained

word vectors for representing words in sentences and the

second uses GloVe pre-trained word vectors.

4 https://allennlp.org/elmo
5 http://www.statmt.org/lm-benchmark/
6 https://github.com/facebookresearch/InferSent

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 9, No. 10, 2018

400 | P a g e

www.ijacsa.thesai.org

3) Skip-Thoughts
7

: Skip-thoughts model is an

unsupervised learning model for sentence encoding, i.e.

mapping a sentence composed of words to sentence vector.

The model is trained to generate sentence vectors using an

approach similar to skip-gram model [17] but works on

sentence level instead of word level. So given a training

corpus of contiguous text, the model is trained to predict

surrounding context sentences of a given sentence. The model

also provides a vocabulary expansion method to encode new

words that were not seen in the training phase [18]. We used

2400-dimensional pre-trained skip-thought model where

sentence vectors were trained on BookCorpus dataset [19].

C. Text Similarity Measure

For similarity between paragraph vectors, cosine similarity
method is used. Cosine similarity of vectors is the cosine of the
angle between vectors in inner-product space [20]. This value
has the property of being 1.0 for identical vectors and 0.0 for
orthogonal vectors. Cosine similarity can also be calculated by
applying the inner-product between vectors of unit length.

IV. THE DATASET

The benchmark dataset used is short answer grading dataset
V2.0

8
. This dataset consists of ten assignments between four to

seven questions each and two exams with ten questions each.
Total number of questions is 87; six of them are not short
answer questions so they were excluded from the authors’
published work. The experiments in this paper also were
applied only on the 81 short answer questions. The number of
students’ answers per question ranges from 24 to 31 with
average of 28 answers and the total number of short answers is
2273.

These assignments/exams were provided at an introductory
computer science class at the University of North Texas.
Elements of the dataset are questions’ texts, the reference
answer for each question, and students’ answers. The answers
were graded by two different graders; both grades of grader1
and grader 2 along with the average grade of the two graders
are provided for each answer. All three types of grades are in
range 0 to 5 [7]. This research works on average of grades
following other researchers [7, 9, 6].

TABLE I. SAMPLE QUESTION, REFERENCE ANSWER AND STUDENTS’

ANSWERS

Question What is typically included in a class definition?

Reference Answer Data members (attributes) and member functions

Students Answers And Average Grades

Student 1 Answer Data members and member functions 5

Student 2 Answer

the keyword class followed by they class
name, on the inside you declare public

and private declarations of your class

3.5

Student 2 Answer
Class name, two curly prenthesis, public
and private

2

7 https://github.com/ryankiros/skip-thoughts
8 http://lit.csci.unt.edu/index.php/Downloads

Table I shows sample question with its reference answer
and 3 samples of students’ answers with their average grades.
Prior to feeding students answers and reference answers for the
different paragraph embedding models explained in section III,
primitive sentence pre-processing techniques were applied to
extract tokens after removing punctuation marks and stop
words.

V. METHODS

In order to compare the accuracy of the various models
listed in section III; these models are tested for the task of
automatic short answer scoring. Steps are as follow (applied
separately for each paragraph embedding model):

A. Generate Paragraph Vector

For each answer (student answer and reference answer), the
paragraph vector is retrieved using each of the models listed in
section III. In the case of using sum of pre-trained word
embeddings, the first step is to load a pre-trained file
containing dictionary of words with their word vectors into
memory. Then, words of the answer are matched with words in
dictionary to get list of word vectors for found words. This is
the case with GloVe, Google word2vec, and fasttext
embeddings. For Elmo embeddings, a tensorflow hub

9
 is used

to load online trained model.

For the case of using direct training of paragraph
embedding model, settings vary based on the model. We
trained doc2vec directly on tokenized students answers and
reference answers on order to learn vector representation of
them. InferSent provides a pre-trained sentence encoder model
that can be used directly to infer paragraph vector of a given
sentence. As the training phase requires word vectors to be
used as input layer of the deep learning model, the pre-trained
model comes with two versions, one trained with Glove word
vectors and the second trained with fasttext word vectors. Skip
thoughts also provides pre-trained model sentence encoder.
The pre-trained model comes with multiple files that can be
loaded and used directly to encode sentences to paragraph
vectors.

Tables II and III shows the different file sizes of pre-trained
embedding models used from the two types.

TABLE II. DISK CONSUMPTION OF PRE-TRAINED WORD VECTOR MODELS

Word Embedding Model Pre-trained Word Vectors File size

GloVe 989 MB

Google word2vec 3.39 GB

Fasttext 4.20 GB

TABLE III. DISK CONSUMPTION OF PRE-TRAINED PARAGRAPH

EMBEDDING MODELS

Paragraph Embedding Model Pre-trained Model File size

Doc2vec Didn’t use saved models

InferSent 146 MB

Skip thoughts
Multiple files with total size of 5.25
GB

9 https://tfhub.dev/google/elmo/2

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 9, No. 10, 2018

401 | P a g e

www.ijacsa.thesai.org

B. Calculate Cosine Similarity

For each student answer-reference answer pair, we
calculate cosine similarity of their corresponding paragraph
vectors.

C. Train Regression Classifier

We used cosine similarity measure as a feature vector to
train Ridge regression classifier model for predicting students’
scores. A train/test split of 85% for training data and 25% for
testing data is used.

D. Measure Accuracy

Calculate Pearson Correlation Coefficient and RMSE for
predicted scores and actual grades.

VI. EXPERIMENTS AND DISCUSSION

Table IV shows the results of applied methods explained in
section V. The table shows that the best correlation coefficient
result is 0.569 and the best RMSE value is 0.797. Both values
were achieved by training doc2vec model only on sentences
from the dataset to generate their paragraph vector. But this
raises the question: will this model produce same results when
tested on new unseen data from same domain of questions?
Out of the other models, fasttext achieved best correlation
coefficient value (0.519) and Google word2vec achieved best
RMSE (0.821) value which requires further investigation as
trained paragraph embedding models claim to achieve best
state-of-the-art results. From memory consumption
perspective, GloVe based paragraph embedding model,
InfeSent model, and Doc2vec model provided best results with
least amount of memory needed to load pre-trained models.
Elmo model consumed the largest amount of memory and time
for running the model and yet didn't achieve the best results.

TABLE IV. RESULTS OF REGRESSION CLASSIFIER TRAINED ON

SIMILARITY BETWEEN PARAGRAPH VECTOR OF STUDENT ANSWERS AND

REFERENCE ANSWERS

Paragraph

Embedding

Method

Model Dim

Pearson

Correlation

Coefficient

RMSE

Sum of pre-

trained

word vector

model

GloVe 300 0.507 0.838

Google

word2vec
300 0.532 0.821

FastText 300 0.519 0.831

Elmo 1024 0.390 0.896

Training of

paragraph

vectors

model

doc2vec 300 0.569 0.797

InferSent
with Glove

word vectors

4096
0.506

0.843

InferSent

with fasttext
word vectors

4096 0.4597 0.862

Skip
thoughts

2400 0.468 0.861

Researches [6] and [9] tested their models on same dataset
and provided the same accuracy measures as ours. Research [6]
which apply direct text-text similarity between student answer
and reference answer to predict score achieved correlation
coefficient value of 0.504 compared to 0.569 reported in table
IV. We couldn’t compare with the RMSE value because it was
not included in the mentioned paper.

Research [9] presented result of 0.63 correlation coefficient
value and 0.85 RMSE by training a regression classification
model. All models tested in this paper shows comparable
results for RMSE but fewer results in the correlation
coefficient. We emphasize on that classification model in
reference [9] uses multiple feature vectors for classification
task including cosine similarity of off-the-shelf word
embeddings. Authors didn’t provide test measurements for the
effect of each feature vector separately .The classification task
in our model uses only one feature vector which is cosine
similarity of paragraph vectors.

VII. CONCLUSION AND FUTURE WORK

In this study, seven different models for embedding short
answer text were evaluated. 4 are based on sum of pre-trained
word vectors and 3 are based on trained deep learning model
for inferring paragraph vectors. The models were evaluated in
the context of the automatic short answer scoring task and the
study reveals that using pre-rained models achieved
comparable results for the task of automatic short answer
scoring.

A Forthcoming paper aims to apply the same methods to
other short answer scoring datasets to see if similar results will
be achieved. Also, to investigate the impact of word vectors
combination new operators (such as weighted sum) and
considering the additional use of non-embedding features on
the correlation and RMSE values.

REFERENCES

[1] S. Burrows, I. Gurevych and B. Stein, "The eras and trends of automatic
short answer grading," International Journal of Artificial Intelligence in
Education, vol. 15, no. 1, pp. 60-117, 2015.

[2] Q. Le and T. Mikolov, "Distributed representations of sentences and
documents," in In Proceedings of the 31st International Conference on
Machine Learning (ICML 2014), Beijing, China, 2014.

[3] D. K. H. S. B. B. Alexis Conneau, "Supervised learning of universal
sentence representations from natural language inference data," arXiv
preprint arXiv, vol. 1705, no. 02364, 2017.

[4] A. A. F. Wael H Gomaa, "A Survey of text similarity approaches,"
International Journal of Computer Applications68, pp. 13-18, 2013.

[5] M. Mohlerl and R. Mihalcea, "Text-to-text semantic similarity for
automatic short answer grading," in Proceedings of the 12th Conference
of the European Chapter of the Association for Computational
Linguistics, Athens, Greece, 2009.

[6] W. H. Gomaa and A. A. Fahmy, "Short Answer Grading Using String
Similarity And Corpus-Based Similarity," International Journal of
Advanced Computer Science and Applications(IJACSA), pp. 115-121,
2012.

[7] M. Mohler, R. Bunescu and R. Mihalcea, "Learning to Grade Short
Answer Questions using Semantic Similarity Measures and Dependency
Graph Alignments," in Proceedings of the 49th Annual Meeting of the
Association of Computational Linguistics - Human Language
Technologies (ACL HLT 2011), Portland, Oregon, 2011.

[8] P. Kolb, "DISCO: A Multilingual Database of Distributionally Similar
Words," In Proceedings of KONVENS-2008, 2008.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 9, No. 10, 2018

402 | P a g e

www.ijacsa.thesai.org

[9] S. M. Arafat, C. Salazar and T. Sumner, "Fast and easy short answer
grading with high accuracy.," in Proceedings of the 2016 Conference of
the North American Chapter of the Association for Computational
Linguistics: Human Language Technologies., San Diego, California,
2016.

[10] Dzikovska, M. O., R. D. Nielsen and C. Leacock, "The joint student
response analysis and recognizing textual entailment challenge: making
sense of student responses in educational applications.," Language
Resources and Evaluation, vol. 50, no. 1, pp. 67-93, 2016.

[11] D. H. S. P. E. C. Tom Youngy, "Recent trends in deep learning based
natural language processing," arXiv preprint arXiv:, vol. 1708, no. 02709,
2017.

[12] P. Bojanowski, E. Grave, A. Joulin and T. Mikolov, "Enriching word
vectors with subword information," arXiv preprint arXiv, vol. 1607, no.
04606 , 2016.

[13] Pennington, Jeffrey, R. Socher and C. Manning, "Glove: Global vectors
for word representation.," 2014.

[14] M. N. M. I. M. G. Matthew E. Petersy, "Deep contextualized word
representations," arXiv preprint arXiv, vol. 1802, no. 05365, 2018.

[15] J. H. Lau and T. Baldwin, "An empirical evaluation of doc2vec with
practical insights into document embedding generation," arXiv preprint
arXiv:1607.05368, 2016.

[16] R. Rehurek and P. Sojka, "Software Framework for Topic Modelling with
Large Corpora," in Proceedings of the LREC 2010 Workshop on New
Challenges for NLP Frameworks, Valletta, Malta, 2010.

[17] T. Mikolov, K. Chen, G. Corrado and J. Dean, "Efficient estimation of
word representations in vector space," arXiv preprint arXiv, vol. 1301,
no. 3781, 2013.

[18] K. Ryan, Y. Zhu, R. R. Salakhutdinov, R. Zemel, R. Urtasun, A. Torralba
and S. Fidler, "Skip-thought vectors," Advances in neural information
processing systems, pp. 3294-3302, 2015.

[19] R. K. R. Z. R. S. R. U. A. T. S. F. Yukun Zhu, "Aligning Books and
Movies: Towards Story-like Visual Explanations by Watching Movies
and Reading Books.," arXiv preprint arXiv, vol. 1506, no. 06724, 2015.

[20] A. Singhal, "Modern information retrieval: A brief overview.," IEEE
Data Eng. Bull., vol. 24(4), pp. 35-43, 2001.

