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Abstract—Automatic scoring systems for students’ short 

answers can eliminate from instructors the burden of grading 

large number of test questions and facilitate performing even 

more assessments during lectures especially when number of 

students is large. This paper presents a supervised learning 

approach for short answer automatic scoring based on 

paragraph embeddings. We review significant deep learning 

based models for generating paragraph embeddings and present 

a detailed empirical study of how the choice of paragraph 

embedding model influences accuracy in the task of automatic 

scoring. 
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I. INTRODUCTION 

Improving the quality of education is always a desired goal 
in educational institutions. In higher education institutions, 
many courses are given in large classrooms where number of 
attending students is large. Such large learning environments 
present special challenges on instructors and one of these 
challenges is students’ assessments. One technology solution 
for this problem is automatic scoring of students’ answers. 
Automatic short answer scoring is the task of “assessing short 
natural language responses to objective questions using 
computational methods” [1]. This eliminates from instructors 
the burden of grading large number of test questions and 
facilitates performing even more assessments during lectures. 
Different types of questions are used in assessments such as 
multiple choice questions, true/false questions, numeric answer 
questions, short answers questions, and essay questions. Short 
answer and essay answer questions require more complicated 
work related to text processing and analysis; while automatic 
scoring of other types can be easy and direct task. This paper is 
concerned with automatic scoring of short answers. An answer 
is considered short answer if its length approximately ranges 
from one phrase to one paragraph [1]. 

The proposed model employs deep learning method named 
paragraph embedding on students’ answers and reference 
answers to generate vector representation of answers. Cosine 
similarity measure between vectors of students’ answers and 
reference answer is used as a feature vector to train regression 
classifier for predicting students’ scores. 

Paragraph embedding - also referred to as Paragraph 
vectors [2], sentence encoders [3] - is the method of generating 
numeric fixed-length vector representations for variable length 
pieces of texts [2]. 

There are two general types for paragraph embedding 
models. The first one is based on applying mathematical 
operations (e.g. sum, average) on retrieved word vectors for all 
words in a given paragraph in order to generate the paragraph 
vector. The second approach is training a model to infer the 
paragraph vector for a given sentence. We compared different 
state-of-the-art techniques from the two types by employing 
them to solve automatic short answer scoring problem. The 
objective of this study is to apply a comprehensive evaluation 
of multiple state-of-the-art paragraph embedding models by 
applying them to the task of short answer automatic scoring. 
And consequently, fill the present gap in the literature for this 
regard. 

This paper is organized as follows: 

 Section II presents related work of automatic short 
answer scoring algorithms.  

 Section III briefly explains the proposed methods used 
for text modeling and text similarity. 

 Section IV presents the used Dataset. 

 Section V describes the models used in this research.  

 Section VI shows experiments results and discussion. 

 Section VII presents conclusion and future work. 

II. RELATED WORK 

Different approaches are used to solve automatic short 
answering problem. The first approach is based on using 
unsupervised techniques that combine text-text similarity 
measures to compare student answer and reference answer and 
predict score based on similarity value. 

Survey [4] presents 3 types of text-text similarity measures. 
The first type is string based similarity measures which work 
on string sequences (term-based similarity) or character 
composition (character-based similarity). The second type is 
corpus based similarity measures which are semantic measures 
that find similarity between words according to information 
gained from large corpora. The third type is knowledge based 
similarity measures which are also semantic similarity 
measures that are based on semantic networks. 

Reference [5] compared number of knowledge-based and 
corpus-based measures of semantic similarity. These measures 
were applied on different domain specific corpuses with 
different sizes to examine the effect of domain and corpus size. 
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The researchers also introduced a method to feedback model 
with students’ answers to solve the problem of correct student 
answers that are not similar to the reference answer. The best 
achieved correlation coefficient value was obtained using LSA 
corpus based similarity applied on domain-specific corpus built 
on Wikipedia along with feedback from students answers. 
Correlation coefficient value is 0.5099 measured by comparing 
grade assigned to every student answer with actual grade; and 
0.6735 measured by comparing total student scores with actual 
totals of grades per student. 

Reference [6] tested different text-text similarity measures 
and combined measures that gave best results to get overall 
similarity. The different measures were tested on student 
answers dataset provided at [7], the highest correlation 
coefficient achieved when comparing students’ answers with 
reference answers was 0.504. This result was achieved by 
combining N-gram character based similarity with DISCO [8] 
first order corpus based similarity applied using Wikipedia data 
packets. 

A second approach is training machine learning algorithms 
to predict scores given set of calculated features. 

Reference [9] presents two supervised learning models. The 
first model is a regression model trained to predict students’ 
scores. The second model is a multi-class classifier trained to 
predict the labels of student’ answers (e.g. correct, incorrect, or 
contradictory). The models were trained on eight calculated 
features. The first three features are based on text similarity 
between student answer and reference answer calculated in 
three different methods. The second three features are the same 
three text similarity measures but calculated after removing 
question text words from both reference answer and student 
answer. The seventh feature is calculated after applying term 
weighting based on variant of tf-idf. The final feature is the 
ratio of number of words in student answer to that in reference 
answer. The first model is trained on student answers dataset 
provided at [7] and the second model is trained on SemEval-
2013 task [10]. The regression model achieved correlation 
coefficient of 0.592 and RMSE of 0.887 when tested on out-of-
domain data. The model achieved 0.63 correlation coefficient 
value and .85 RMSE when tested on in-domain data. The 
classification model achieved F1 score of 0.550. 

A third approach is employing deep learning architectures 
that enable multi-level automatic feature representation 
learning. These architectures are increasingly used in the past 
years as they showed superior results in various NLP tasks 
[11]. 

Several paragraph embedding models are built based on 
deep learning architectures and now became the state-of-the-art 
methods for NLP problems. Reference [11] provides a review 
of different significant deep learning models applied in NLP 
tasks. For the task of paragraph embedding, multiple models 
were presented. Convolution Neural Networks (CNN) which 
proved their effectiveness in many computer vision tasks had 
become the natural choice in NLP tasks with the need for 
models that can extract high level features form sequences of 
words. Recurrent Neural Networks (RNN) is another type of 

deep learning models that become widely used in NLP tasks. 
Its advantage comes from its nature of memorizing previous 
computations and using them in current processing. In the 
context of word sequences, this allows it to capture the inherent 
sequential nature present in language. A third type of deep 
learning models is Recursive Neural Networks that is based on 
the argument that language exhibits a natural recursive 
structure. I.e. words and sub-phrases are combined into phrases 
in a tree structure manner. A forth type is Deep 
Reinforcement Learning models which are applied in NLP 
problems related to language generation. A fifth type that 
gained some interest recently is based on merging neural 
networks with a form of memory that the model can interact 
with. This type is called Memory Augmented Networks. Word 
Embeddings trained on large unlabeled corpora provide 
distributional vector representation of words. These 
representations have the advantage that they capture semantic 
meanings of words. The semantic similarities between words 
can then be measured with simple methods such as cosine 
similarity. Word embeddings are often used as the input layer 
for deep learning models. [11]. In this paper, some state-of-the-
art deep learning based models trained for NLP tasks are 
presented and evaluated in the context automatic short answer 
scoring problem. 

III. VECTOR REPRESENTATION AND TEXT SIMILARITY 

MEASURES 

In this paper, the focus is on two approaches that can be 
used to generate vector representations of short answers, i.e. 
paragraph embeddings. The first approach is generating the 
paragraph vector of an answer by calculating the sum of word 
vectors for words in the answer.  The second approach is 
training a deep learning model to directly infer the paragraph 
vector of a given answer. 

A. Words Embeddings 

Word embeddings are techniques for learning vector 
representations for words. Word embedding models are usually 
trained on large unlabeled corpora in order to exploit their 
benefits [12]. Multiple models for word embeddings trained on 
large corpus of data are publically available. These pre-trained 
models have the advantage of storing semantic relationship 
between words. In this paper, we tested 4 different pre-trained 
word vector models for generating paragraph vectors and 
applied results in task of automatic short answering. 

The method is: given a short answer (student answer or 
reference answer); the objective is to generate the paragraph 
vector of the answer. First, the answer is tokenized to get a list 
of its words and any necessary text processing is applied (e.g. 
removing punctuation marks). Second, given word vector 
model, the corresponding word vector for each word is 
retrieved. Finally, to get the paragraph vector, sum operation 
(which is commonly used in all reviewed literature) is applied 
on all word vectors to get a single vector representing the 
paragraph vector. Fig.1 demonstrates this method. 

Below we introduce word embedding methods chosen for 
this study. 
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Fig. 1. Generating Paragraph Vectors from Pre-Trained Word Vector Models. 

1) Word2Vec: The word2vec model [2] is based on neural 

network trained to predict a word given the context of 

surrounding words. One of the features of this model is that 

after training, words with similar meanings are mapped to 

similar positions in vector space. Also, some semantic 

relationships between words can be inferred by applying 

simple mathematical calculations. For example: “King” - 

“man” +“woman” = “Queen”. Google
1

 provides 300-

dimensional pre-trained word2vec model. The model was 

trained on part of Google News dataset (approximately 100 

billion words). The model provides word vectors for 3 million 

words and phrases. 

2) GloVe 
2
:  GloVe (Global Vectors) [13] is a word 

embedding model that combines features from two major 

models for generating word vectors: global matrix 

factorization and local context window (word2vec is an 

example of local context window model). This combination of 

features from the two models’ types allows taking advantages 

from both models as well as overcoming some of their 

drawbacks. We used 300-dimensional pre-trained word 

vectors trained on a combination of Gigaword5 and 2014 

dump of English Wikipedia. The model provides word vectors 

for 400,000 tokens. 

3) Fasttext
3
: Fasttext model [12] is based on skip-gram 

model where each word is represented as a bag of its character 

n-grams. A vector representation is associated to each 

character n-gram; and word vector is computed as the sum of 

the n-gram vector representations.  We used 300-dimensional 

pre-trained word vectors model that provides 2 million word 

vectors trained on Common Crawl. 

                                                           
1 https://code.google.com/archive/p/word2vec/  
2 https://nlp.stanford.edu/projects/glove/ 
3 https://github.com/facebookresearch/fastText  

4) Elmo
4
: Elmo (Embeddings from Language Models) 

[14] is a deep contextualized word representation that models 

(1) word syntax and semantics and (2) word uses across 

different linguistic contexts (polysemy). The learned word 

vectors are function of the internal state of deep bidirectional 

language model (biLM) rather than just using that top LSTM 

layer. We used 1024-dimensional word vectors pre-trained on 

1 billion word benchmark5. 

B. Paragraph Embeddings 

In paragraph embedding models, deep learning model is 
trained on sequences of text to directly learn and infer vector 
representation of variable-size sequence. Fig.2 demonstrates 
this method. 

 
Fig. 2. Generating Paragraph Vectors from Paragraph Embedding Models. 

Below we introduce paragraph embedding methods chosen 
for this study. 

1) Doc2vec: With this model, a neural network classifier 

with stochastic gradient descent algorithm is trained on a 

fixed-width sliding window over words of paragraphs. 

Paragraph vectors are learned along with word vectors so the 

trained model can be used to infer paragraph vectors or word 

vectors [2] [15]. 

Gensim Doc2vec  [16] is a python library that provides an 
implementation of paragraph vectors model. It is designed to 
model word sequences ranging from n-gram sentence, 
paragraph, or document. We trained 300-dimensional doc2vec 
model on our benchmark dataset used for addressing automatic 
short answering problem. 

2) InferSent
6
: InferSent [3]is a sentence encoder model for 

learning universal representation of sentences. The encoder 

model is based on bidirectional LSTM architecture with max 

pooling trained on the supervised data of the Stanford Natural 

Language Inference datasets (SNLI). We used two 4096-

dimensional pre-trained models, one uses fasttext pre-trained 

word vectors for representing words in sentences and the 

second uses GloVe pre-trained word vectors. 

                                                           
4 https://allennlp.org/elmo 
5 http://www.statmt.org/lm-benchmark/  
6 https://github.com/facebookresearch/InferSent  
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3) Skip-Thoughts
7

: Skip-thoughts model is an 

unsupervised learning model for sentence encoding, i.e. 

mapping a sentence composed of words to sentence vector. 

The model is trained to generate sentence vectors using an 

approach similar to skip-gram model [17] but works on 

sentence level instead of word level. So given a training 

corpus of contiguous text, the model is trained to predict 

surrounding context sentences of a given sentence. The model 

also provides a vocabulary expansion method to encode new 

words that were not seen in the training phase [18].  We used 

2400-dimensional pre-trained skip-thought model where 

sentence vectors were trained on BookCorpus dataset [19]. 

C. Text Similarity Measure 

For similarity between paragraph vectors, cosine similarity 
method is used. Cosine similarity of vectors is the cosine of the 
angle between vectors in inner-product space  [20]. This value 
has the property of being 1.0 for identical vectors and 0.0 for 
orthogonal vectors. Cosine similarity can also be calculated by 
applying the inner-product between vectors of unit length. 

IV. THE DATASET 

The benchmark dataset used is short answer grading dataset 
V2.0

8
. This dataset consists of ten assignments between four to 

seven questions each and two exams with ten questions each. 
Total number of questions is 87; six of them are not short 
answer questions so they were excluded from the authors’ 
published work. The experiments in this paper also were 
applied only on the 81 short answer questions. The number of 
students’ answers per question ranges from 24 to 31 with 
average of 28 answers and the total number of short answers is 
2273. 

These assignments/exams were provided at an introductory 
computer science class at the University of North Texas. 
Elements of the dataset are questions’ texts, the reference 
answer for each question, and students’ answers. The answers 
were graded by two different graders; both grades of grader1 
and grader 2 along with the average grade of the two graders 
are provided for each answer. All three types of grades are in 
range 0 to 5 [7]. This research works on average of grades 
following other researchers [7, 9, 6]. 

TABLE I.  SAMPLE QUESTION, REFERENCE ANSWER AND STUDENTS’ 

ANSWERS 

Question What is typically included in a class definition? 

Reference Answer Data members (attributes) and member functions 

Students Answers And Average Grades 

Student 1 Answer Data members and member functions 5 

Student 2 Answer 

the keyword class followed by they class 
name, on the inside you declare public 

and private declarations of your class 

3.5 

Student 2 Answer 
Class name, two curly prenthesis, public 
and private 

2 

                                                           
7 https://github.com/ryankiros/skip-thoughts  
8 http://lit.csci.unt.edu/index.php/Downloads  

Table I shows sample question with its reference answer 
and 3 samples of students’ answers with their average grades. 
Prior to feeding students answers and reference answers for the 
different paragraph embedding models explained in section III, 
primitive sentence pre-processing techniques were applied to 
extract tokens after removing punctuation marks and stop 
words. 

V. METHODS 

In order to compare the accuracy of the various models 
listed in section III; these models are tested for the task of 
automatic short answer scoring. Steps are as follow (applied 
separately for each paragraph embedding model): 

A. Generate Paragraph Vector 

For each answer (student answer and reference answer), the 
paragraph vector is retrieved using each of the models listed in 
section III. In the case of using sum of pre-trained word 
embeddings, the first step is to load a pre-trained file 
containing dictionary of words with their word vectors into 
memory. Then, words of the answer are matched with words in 
dictionary to get list of word vectors for found words. This is 
the case with GloVe, Google word2vec, and fasttext 
embeddings. For Elmo embeddings, a tensorflow hub

9
 is used 

to load online trained model. 

For the case of using direct training of paragraph 
embedding model, settings vary based on the model. We 
trained doc2vec directly on tokenized students answers and 
reference answers on order to learn vector representation of 
them. InferSent provides a pre-trained sentence encoder model 
that can be used directly to infer paragraph vector of a given 
sentence. As the training phase requires word vectors to be 
used as input layer of the deep learning model, the pre-trained 
model comes with two versions, one trained with Glove word 
vectors and the second trained with fasttext word vectors. Skip 
thoughts also provides pre-trained model sentence encoder. 
The pre-trained model comes with multiple files that can be 
loaded and used directly to encode sentences to paragraph 
vectors. 

Tables II and III shows the different file sizes of pre-trained 
embedding models used from the two types. 

TABLE II.  DISK CONSUMPTION OF PRE-TRAINED WORD VECTOR MODELS 

Word Embedding Model Pre-trained Word Vectors File size 

GloVe 989 MB 

Google word2vec 3.39 GB 

Fasttext 4.20 GB 

TABLE III.  DISK CONSUMPTION OF PRE-TRAINED PARAGRAPH 

EMBEDDING MODELS 

Paragraph Embedding Model Pre-trained Model File size 

Doc2vec Didn’t use saved models 

InferSent 146 MB  

Skip thoughts 
Multiple files with total size of 5.25 
GB  

                                                           
9 https://tfhub.dev/google/elmo/2  
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B. Calculate Cosine Similarity 

For each student answer-reference answer pair, we 
calculate cosine similarity of their corresponding paragraph 
vectors. 

C. Train Regression Classifier 

We used cosine similarity measure as a feature vector to 
train Ridge regression classifier model for predicting students’ 
scores. A train/test split of 85% for training data and 25% for 
testing data is used. 

D. Measure Accuracy 

Calculate Pearson Correlation Coefficient and RMSE for 
predicted scores and actual grades. 

VI. EXPERIMENTS AND DISCUSSION 

Table IV shows the results of applied methods explained in 
section V. The table shows that the best correlation coefficient 
result is 0.569 and the best RMSE value is 0.797. Both values 
were achieved by training doc2vec model only on sentences 
from the dataset to generate their paragraph vector. But this 
raises the question: will this model produce same results when 
tested on new unseen data from same domain of questions? 
Out of the other models, fasttext achieved best correlation 
coefficient value (0.519) and Google word2vec achieved best 
RMSE (0.821) value which requires further investigation as 
trained paragraph embedding models claim to achieve best 
state-of-the-art results. From memory consumption 
perspective, GloVe based paragraph embedding model, 
InfeSent model, and Doc2vec model provided best results with 
least amount of memory needed to load pre-trained models.  
Elmo model consumed the largest amount of memory and time 
for running the model and yet didn't achieve the best results. 

TABLE IV.  RESULTS OF REGRESSION CLASSIFIER TRAINED ON 

SIMILARITY BETWEEN PARAGRAPH VECTOR OF STUDENT ANSWERS AND 

REFERENCE ANSWERS 

Paragraph 

Embedding 

Method 

Model Dim 

Pearson 

Correlation 

Coefficient 

RMSE 

 

Sum of pre-

trained 

word vector 

model 

GloVe 300 0.507 0.838 

Google 

word2vec 
300 0.532 0.821 

FastText 300 0.519 0.831 

Elmo 1024 0.390 0.896 

 

Training of 

paragraph 

vectors 

model 

doc2vec 300 0.569 0.797 

InferSent 
with Glove 

word vectors 

4096 
0.506 

 

0.843 

 

InferSent 

with fasttext 
word vectors 

4096 0.4597 0.862 

Skip 
thoughts 

2400 0.468 0.861 

Researches [6] and [9] tested their models on same dataset 
and provided the same accuracy measures as ours. Research [6] 
which apply direct text-text similarity between student answer 
and reference answer to predict score achieved correlation 
coefficient value of 0.504 compared to 0.569 reported in table 
IV. We couldn’t compare with the RMSE value because it was 
not included in the mentioned paper. 

Research [9] presented result of 0.63 correlation coefficient 
value and 0.85 RMSE by training a regression classification 
model. All models tested in this paper shows comparable 
results for RMSE but fewer results in the correlation 
coefficient. We emphasize on that classification model in 
reference [9] uses multiple feature vectors for classification 
task including cosine similarity of off-the-shelf word 
embeddings. Authors didn’t provide test measurements for the 
effect of each feature vector separately .The classification task 
in our model uses only one feature vector which is cosine 
similarity of paragraph vectors. 

VII. CONCLUSION AND FUTURE WORK 

In this study, seven different models for embedding short 
answer text were evaluated. 4 are based on sum of pre-trained 
word vectors and 3 are based on trained deep learning model 
for inferring paragraph vectors. The models were evaluated in 
the context of the automatic short answer scoring task and the 
study reveals that using pre-rained models achieved 
comparable results for the task of automatic short answer 
scoring. 

A Forthcoming paper aims to apply the same methods to 
other short answer scoring datasets to see if similar results will 
be achieved. Also, to investigate the impact of word vectors 
combination new operators (such as weighted sum) and 
considering the additional use of non-embedding features on 
the correlation and RMSE values. 
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