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ABSTRACT:

For reasons of documentation, management and certification there is a high interest in efficient inventories of palm plantations on the

single plant level. Recent developments in unmanned aerial vehicle (UAV) technology facilitate spatial and temporal flexible acquisition

of high resolution 3D data. Common single tree detection approaches are based on Very High Resolution (VHR) satellite or Airborne

Laser Scanning (ALS) data. However, VHR data is often limited to clouds and does commonly not allow for height measurements.

VHR and in particualar ALS data are characterized by high relatively high acquisition costs. Sperlich et al. (2013) already demonstrated

the high potential of UAV-based photogrammetric point clouds for single tree detection using pouring algorithms. This approach was

adjusted and improved for an application on palm plantation. The 9.4ha test site on Tarawa, Kiribati, comprised densely scattered

growing palms, as well as abundant undergrowth and trees. Using a standard consumer grade camera mounted on an octocopter two

flight campaigns at 70m and 100m altitude were performed to evaluate the effect Ground Sampling Distance (GSD) and image overlap.

To avoid comission errors and improve the terrain interpolation the point clouds were classified based on the geometric characteristics

of the classes, i.e. (1) palm, (2) other vegetation (3) and ground. The mapping accuracy amounts for 86.1% for the entire study area

and 98.2% for dense growing palm stands. We conclude that this flexible and automatic approach has high capabilities for operational

use.

1. INTRODUCTION

1.1 Palm plantation in the global context

Rising global demands for natural ressources induce an increase

in intensive land use forms such as palm plantations (Mekhilef

et al. 2011, Koh & Wilcove 2007). The latter, e.g. oil or co-

conut plantations supply a wide variatey of products, ranging

from food, biofuels, construction timber, firewood, cosmetics or

textile fabric (Koh & Wilcove 2007; Ohler, 1999). For reasons

of planning and documentation there is a high interest in efficient

inventories on the individual tree level (Shafri et al. 2011). Fur-

thermore, due to rising concerns about sustainability and global

change industrial players and stakeholders aim for a traceable cer-

tification of the production (Basiron 2007). However, with re-

spect to the large extents of those plantations terrestrial inventory

methods are time consuming and therefore expensive.

1.2 Remote Sensing for Plantation Management

Thus, for plantation inventories remote sensing data and analy-

sis techniques are valuable tools. A few studies have used op-

tical very high resolution (VHR) satellite imagery to manually

count palms or automatically segment palms crowns based on

their spectral and textural characteristics (Shafri et al. 2011; Ko-

rom et al. 2014; Kamiran & Sarker 2014). These studies achieved

high classification accuracies (75-95%). However, VHR data is

characterized by relatively high acquisition costs, and data ac-

quisiton on a regular basis is often limited by cloud cover. Fur-

thermore, conventional VHR imagery does not allow for height

measurements of palm individuals or surrounding vegetation as

shrubs or trees. LIDAR offers precise and dense 3D data and

is therefore widely and commercially used in forest inventories

(Hyyppa et al. 2008). Shafri et al. (2012) analyzed the poten-

tial for airborne LIDAR and optical data for plantation planning

and inventory. Despite the highly accurate 3D and optical data

this technology is relatively expensive for inventories with a high

temporal resolution, especially with regard to plantations in re-

mote regions or islands.

Recent developments in Unmanned Aerial Vehicle (UAV) tech-

nology facilitate spatial and temporal flexible acquisition of high

resolution optical data. Costs and required expert knowledge are

constantly decreasing due to fast advancements in the develop-

ment of hard- and software (Colomina & Molina 2014). By ap-

plying photogrammetric processing techniques, such as structure

from motion algorithms, UAVs also allow for a hypertemporal

and hyperspatial data acquistion of 3D point clouds (Lucieer et

al. 2012).

With regard to automated inventories on the individual plant level

many point cloud based detection methods have been studied and

developed for Aerial Laser Scanning (ALS) data (Vauhkonen et

al. 2012, Kartinen et al. 2012). Sperlich et al. (2013) already

demonstrated the high potential of UAV-based photogrammetric

point clouds for an automatic single tree delineation in decid-

uous and coniferous forest stands. The applied pouring algo-

rithm, originally developed for ALS data, showed particularly

high detection accuraccies in the presence of distinct tree tops.

We thereby hypothesize that this 3-dimensional segmentation tech-

nique will provide high dectection accuraccies for palm individ-

uals and the measurement of their crown widths and heights. In

addition we aim to improve the individual detection by a pre-

processing of the data, to additionally prevent other vegetation

being classified as palms.
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2. METHODOLOGY

2.1 Study Site and UAV Data Acquisition

The test area is situated on Tarawa, an atoll in the Republic of

Kiribati, in the central Pacific Ocean. The test site, with a size of

approximately 470*200m, was chosen, since it comprises dense

and sparse coconut palm cover as well as abundant varieties of

undergrowth and other trees (see fig.1). Using this composition

we aim to evaluate the detection accuracy of the reference palms

as well as the robustness of palm detection in presence of other

vegetation.

As UAV-plattform an octocopter, MK Okto2 (Highsystems), was

chosen. In contrast to fixed-wing UAV-plattforms multicopters

allow for a high image overlaps and carriage of high quality cam-

eras. As sensor a consumer camera (Panasonic Lumix G3), with

a 20mm lens was mounted on the UAV using a gimbal. In or-

der to estimate the effects of ground sampling distance (GSD)

and image overlap, two flights were carried out at different alti-

tudes of 70m and 100m. The autonomous UAV-flights were pre-

configured using 4 parallel stripes. The camera direction was to

nadir, recording single frames (ISO 400, shutter speed 1/1200s) at

a frequency of 1.4Hz. The two data sets were acquired consecu-

tively to ensure nearly equal illumination and wind conditions. A

summary of the photogrammetric characteristics of the two data

sets is given in Table 2.

Alt. GSD forward overl. side overl. images

70 m 1.3 cm 89% 32% 519

100 m 1.9 cm 93% 58% 501

Table 1: Average ground sampling distance (GSD), forward and

side overlap as well as the total number of images for both data

sets.

2.2 Point Cloud Generation and Reference data Collection

The cleaned set of images was processed with a structure from

motion tool chain using VisualSFM (V0.5.24, Furukawa & Ponce

2010). In order to increase reconstruction completeness and qual-

ity we calculated the internal camera parameters using the cal-

ibration software 3DF Lapyx (3DFlow). Accordingly a fixed

camera calibration was used during the VisualSFM image match-

ing step. The 70m and 100m datasets were co-registered using

8 checker boards as artifical ground control points , which were

evenly spread within the study site during the flight campaigns.

To ensure the comparability of the two data sets the resulting

point clouds were clipped to a joint spatial extend.

In respect to the size of the test area, and in order to include

as many individuals as possible the reference data was collected

from the point clouds itself. Reference palm positions were iden-

tified visually aided by the respective image frames. This pro-

cedure also allowed to simultaneously check the local quality of

the reconstruction. In the rare case of incomplete reconstructions

the presence of apparent palm cast shadows and the single image

frames allowed for an accurate identification of the palm posi-

tion. Furthermore the height of each individual was measured

using the top elevation of the palm crown within a normalized

Digital Surface Model (nDSM, see chapter 3).

After Co-registration and reference data collection we decided to

reduce the point cloud density for further processing and analy-

sis. A voxel-grid filter with a minumum distance of 0.1m was

applied to both datasets (70m and 100m).

2.2.1 Thematic Point Cloud Classification

To exclude non-palm vegetation during the delineation process

the point cloud was classified into three classes: (1) Palm (2)

Figure 1: Orthophoto of the study site with a schematical rep-

resentation of the different compositions. A: Densely grow-

ing palms, B: Scattered and senile palms, C: Scattered palms

and abundant presence of shrubs and trees. The Orthophoto

was generated from the 100m nadir-images site (centered at Lat

1.367812, Long. 173.160384)

other vegetation including shrubs and trees and (3) ground in-

cluding bare soil and grass. Besides reducing comission errors

during the palm tree detection this approach is also meant to en-

able the mapping of undergrowth and other vegetation to evaluate

the accessibility and assist cultivation management. Furthermore

a segmentation of ground points is likely improve the interpola-

tion of a Digital Terrain Model (DTM), required for the applica-

tion of the pouring algorithm

The RGB information of the reconstructed point clouds did not

allow for an accurate separation of the desired classes on spec-

tral basis. Hence, we focused on the geometric characteristics of
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each class to separate the single points. The classification was

carried out using the multi-scale dimensionality criterion classi-

fication developed by Brodu & Lague (2012), which was origi-

nally designed for Terrestrial Laser Scanning (TLS) data. In brief,

the algorithm identifies the local dimensionality characteristics of

the point cloud using neighborhood balls at different scales, i.e.

search radii. On this basis a classifier is constructed, which de-

scribes the best combination of scales to separate the user-defined

categories on the basis of their geometric difference.

For the training of the classifiers we manually segmented 30 palm

individuals of the 3D-reconstruction and approximately 200m2 of

both other vegetation and bare ground. For both data sets training

and application of the classifiers was carried out separately.

The classifiers were trained using 43 different scale factors re-

spectively diameters between 0.1m - 6m. Initially the upper limit

of 6 m was set as the processing time exponentially increases

with larger scale factors. Accordingly we performed a step-wise

exclusion of the largest scales in order to evaluate the potential

accuracy gain of the latter.

2.3 Palm Individual Detection and Accuracy Assessment

The palm detection was performed using the software TreesVis

(Weinacker et al. 2004) through the implemented pouring algo-

rithm. First, on the basis of the processed point clouds DTM and

DSM were calculated in order to generate a nDSM, i.e. vegeta-

tion heights.

Then, using the pouring algorithm palm tops and the according

crown boundaries were estimated in the nDSM. Similar to a wa-

tershed algorithm the pouring algorithm calculates local maxima

of the nDSM aided by a gaussian filter. The maxima are the start-

ing point for a downhill directed sequence, searching for the min-

ima surrounding the maxima. However, as these minima do not

always correspond to the edge of the crown a ray algorithm ad-

justs the crown border for a more realistic delineation. Thereby

crown border points are corrected, if distances and angles of vir-

tual rays between the tree tops end the surrounding minima ex-

ceed predefined thresholds.

Different parameters, i.e. Gaussian Filter size, DSM and DTM

interpolation methods, as well as height constraints were adjusted

to palms on a heuristic basis.

For accuracy assessment and validation a 2m search radius was

applied to the reference tree positions. A modeled palm was con-

sidered as detected, if it was within the specified radius of a ref-

erence tree. As a primary quality criterion of the palm detection

we calculated the overall Mapping Accuracy (MA), based on de-

tected reference palms, non detected palms (omission error) and

falsely detected palms (comission error):

MA =
detected

detected + omission + comission
(1)

For further evaluation of the modeled palms, we measured the eu-

clidean distances between reference and modeled palm position

(x,y) as well as the height deviations (z) for each individual.

3. RESULTS

3.1 3D Reconstruction Quality

Bare ground and other vegetation show highest point densities

and completeness. Since the images were recorded in nadir-direction

most of the densely growing palms lack stem points due to occlu-

sion by the overlaying crown. The reconstructed palm crowns

of the 70m data set tend to be slightly less noisy. In contrast

the 100m data set shows a higher degree of reconstruction com-

pleteness in terms of crown representation and total number of

reconstructed palms. Out of 615 palms within the study area the

number of reconstructed palms sums up to 479 (77.9%) for the

70m data set and 597 (97.1%) for the 100m data set. Thereby a

palm was defined as not reconstructed, if only a few points of the

crown or only the parts of the stem were reconstructed.

3.2 Thematic Point Cloud Classification

The multi-scale dimensionality criterion classification produced

unexpectedly good results and allowed for a clear separation of

the point clouds into the three classes. Only negible portions of

the reconstructed palms were classified as other vegetation see

(see fig. 4). Very few points of other trees or tall growing shrubs

were classified as palms. We assumed that these few points would

either be ignored during DSM interpolation or would not meet the

geometric characteristics to be delineated as a palm during the

application of the pouring algorithm. Falsely classified ground

points were aggregated in relatively small patches. A subsequent

clustering of the ground point cloud allowed for a removal of

clusters with spatial extend lower than a manual selected thresh-

old (0.5 m).

The stepwise exclusion of the largest scales (see fig.2) revealed

that the classification accuracy of palms and other vegetation in-

creases with larger scales. The proportion of falsely classified

palm points decreases almost linear with larger scale factors. Falsely

classified shrub points show a significantly stronger decrease of

falsely classified points with larger scales. Both the shrub and

palm classification accuracy show a tendency to converge at scales

larger than 6m. Based on the described relationship we did not

expect major classification accuracy gains adding larger scales

(>6m), which would significantly increase computation dura-

tions. The classification of the ground class showed the overall

highest accuracy. For all scales the classification accuracy ex-

ceeds 95%.

Figure 2: Proportion of falsely classified palm and shrub points

(%) for different scale ranges. For each of the classifications a

step-wise exclusion of the largest scales was performed. For vi-

sual interpretation a loess fit was calculated for both the palm

and shrub classification results. The shown graph is based on the

100m dataset.

3.3 Tree detection

For the 70m and 100m dataset best performance was archived

using equal parameters for the pouring algorithm. The gaussian

filter size was set to 20 pixels (nDSM pixel size = 0.25 m). Since

the smallest reference tree was 3.9 m high the minimum height

contraint for the pouring algorithm was set to 3.5 m. As described
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in chapter 3 neither within the 70m nor the 100m point cloud all

reference trees were defined as reconstructed. Thus, we analyzed

the detection results based on all reference trees in order to in-

clude both the photogrammetric reconstruction and pouring al-

gorithm inaccuracies.

Corresponding to the total number of reconstructed palms the

overall mapping accuracy (MA) amounts for 68.6% for the 70m

and 86.1% for the 100m data set respectively (see table 2). In-

dicated by the high omission errors (27.6%) the low MA of the

70m data set is caused by its lower number of total reconstructed

palms.

Parameter data set

70m 100m

No. Palms 615 615

No. Palms reconstructed 479 597

No. Palms Modelled 499 589

No. Palms Detected 445 557

Omission Error (%) 27.6 9.4

Comission Error (%) 10.8 5.4

Mapping Accuracy (%) 68.6 86.1

Table 2: Palm Tree Detection results for the two datasets (70m

and 100m) based on all reference palms.

Each model included the estimated crown margins, the position

(x,y) and the height (z) of the palm (see fig.4). The averaged po-

sition and height deviations of the reference and modeled palms

are listed in table 3. Both deviations of the estimated parameters

are almost equal for both data sets. In general the heights are

underestimated due to the filtering of single vertically exposed

palm leaves (measured palm height) by the pouring algorithm.

Although most of the palms in the study area show a tilted growth

habit the average position deviation is clearly below the specified

tolerance radius of 2 m.

Parameter data set

70m 100m

mean ∆ height (m) -0.44 -0.52

mean ∆ position (m) 0.61 0.59

Table 3: Averaged height and position deviations between refer-

ence and modeled palms for both data sets (70m and 100m).

Reference trees and detection results were mapped in order to an-

alyze the detection accuracy spatially (see fig. 3). Fewest omis-

sion and comission errors are present in the dense palm areas,

where only 6 individuals could not be detected. The correspond-

ing MA in this area is 98.2%. More frequent omissions occur at

rather isolated palm individuals. Most comission errors occur in

the presence of abundant shrub and tree cover, where small frag-

ments of the point cloud remained after the classification process.

4. DISCUSSION

Within the present study we developed a work flow for an auto-

matic palm plantation inventory, based on UAV-based photogram-

metric point clouds. The processing of these point clouds in-

cludes a geometric classification in order to ensure the detection

of the target class, i.e. palm individuals. The following sections

will discuss the results and findings with regard to the compo-

nents of the presented methodology.

4.1 Data acquisition and 3D reconstruction

The results indicate that an increased forward and side-overlap (at

higher altitudes) improves the overall 3D reconstruction of the
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Figure 3: Mapped distribution of reference palms and detection

results (100m data set).

palm plantation in terms of reconstruction completeness. More

frequent overlaps increase the probability of 3D reconstruction of

detected features, such as palm leaves. This was even pronounced

within the present study, as palm leaves are easily displaced by

wind and gusts, which compounds the feature matching. Accord-

ingly the more frequent overlapping of the 100m data set raised

the chance of acquiring multiple images of a palm leave in the

same position. We assume that there are optimization capabilities

within the structure from motion processing. Accordingly differ-

ent matching and reconstruction parameters have to be adjusted

to palm vegetation. Further campaigns have to be conducted to

identify the best ratio of GSD and side-overlap. In general flight

campaigns should be performed in preferably calm wind condi-

tions.

Using an UAV-based LIDAR could most likely overcome effects

of wind and gusts. Yet, these systems are costlier and have a

shorter operating duration due to heavier weight of the payload.

4.2 Thematic Classification

The applied classification procedure, originally developed for TLS

data, was successfully applied to the photogrammetric point cloud.

First, a removal of non palm vegetation reduces commission er-

rors and therefore increases overall mapping accuracy of the palm

detection. Second, the classification allows to identify and quan-

tify undergrowth for managing purposes. By that a height model

would allow for an easy interpretation of vegetation presence and
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Figure 4: Transects (100m data set) of the point cloud with height color gradient (top); with classification results, palm = red, other

vegetation = blue, ground = green (center) and with modeled palms (bottom). Green shapes represent the convex hull of the crown,

vertically surrounded by crown margins (purple). Yellow cones represent the top (z) and the position (x,y).

intensity. The latter could ease cultivation activities such as regu-

lar clearances or for maintainance of the road network. Third, the

classification of ground pixels ensures that only the latter were in-

cluded during the DTM interpolation. We assume that especially

dense and extended shrubs would have impaired the interpolation

results.

As shown in figure 3, depending on the geometric characteris-

tics of the class, the classification accuracy strongly depends on

the value range of the scales. The overall highest accuracy of the

ground class is a result of the simple and distinct geometry, where

points adjoin in a relatively flat and almost 2D-plane. Therefore

larger search radii of the neighbourhood ball do strongly enhance

the classification results. In contrast the geometric characteris-

tics of palms and shrubs are explained and separated at a broader

range of scales. Hence, not only the geomtric structure of adja-

cent points is important, but also the overall form of leaves and

branches. We assume that the beginning of the classification ac-

curacy convergence (<4.5m) is linked with the diameter of the

palm crowns. At this scale also visual interpretation is most likely

to differentiate between the geometric pattern of shrubs and palm

crowns. Furthermore, larger neighbourhood balls and respec-

tively larger search radii, would include large proportions of both

shrub and palm points without explaining the geometric charac-

teristics of a single class.

Due to the overall unexpectedly robust classification results we

also expect a high potential of the multi-scale criterion classifica-

tion of UAV-based photogrammetric point clouds in other disci-

plines, such as archaeology, forestry or land-cover mapping.

4.3 Single Tree Detection

We demonstrated that the pouring algorithm is a sound method

for detecting palms and measuring geometric variables, such as

height or crown with. The marked-off crown top of palms enables

an accurate detection in densely vegetated areas. In general omis-

sion errors are a consequence of incomplete palm crown recon-

structions during the structure from motion processing. Accord-

ingly rather outlying palms, readily exposed to wind and gusts,
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featured a relatively high proportion of omission errors. Fritz

et al. (2013) presented a methodology using UAV derived pho-

togrammetric point clouds in which a RANSAC-based cylinder

fit is used to detect single tree stems. This will most likely feature

a valuable extension of the present approach, since the outlying

trees are also more likely to having their stems reproduced in the

point cloud.

As our study site comprises other vegetation, such as dense un-

dergrowth and abundant trees the results are not readily compa-

rable to other methods. However, with an overall MA of 86.1%

within the 100m data set the proposed methodology features a

high detection performance. With regard to the automatic proce-

dure the MA of 98.1% in dense growing palm stands is unexpect-

edly high.

The overall position of the modeled palm trees show a very high

correspondence with the reference trees. To a certain extend

height deviations are indispensable, since the absolute height of

an individual often relies on a single palm leaf. The general un-

derestimation of the palm tree height is caused by the filtering of

the pouring algorithm, which filters vertically protruding points,

e.g. single top leafs. Yet, we assume that a palm height measure-

ment is only possible to decimeter accuracy, since the defined

top palm leaf height can possibly fluctuate according to the wa-

ter status and therefore vigor. With an adjustment of the pouring

algorithm the measured heights will enable a valuable predictor

for classifying age classes or estimate biomass as well as carbon

stocks using available allometric functions (Asari et al. 2013).

5. CONCLUSION

Within this study we could confirm the a high potential of UAV-

based photogrammtric point clouds for single tree detection on

plantations. Overall, the proposed approach can be regarded as

a highly competitive remote sensing solution for palm planta-

tion inventories. The cost effective, flexible and mobile UAV-

technology and the highly automatized processing chain can be

considered as available for operational use.
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