

Cronfa - Swansea University Open Access Repository

This is an author produced version of a paper published in :

International Journal for Numerical Methods in Engineering

Cronfa URL for this paper:

http://cronfa.swan.ac.uk/Record/cronfa28878

Paper:

Chen, J., Xiao, Z., Zheng, Y., Zheng, J., Li, C. & Liang, K. (in press). Automatic Sizing Functions for Unstructured

Surface Mesh Generation. International Journal for Numerical Methods in Engineering

http://dx.doi.org/10.1002/nme.5298

This article is brought to you by Swansea University. Any person downloading material is agreeing to abide by the

terms of the repository licence. Authors are personally responsible for adhering to publisher restrictions or conditions.

When uploading content they are required to comply with their publisher agreement and the SHERPA RoMEO

database to judge whether or not it is copyright safe to add this version of the paper to this repository.

http://www.swansea.ac.uk/iss/researchsupport/cronfa-support/

http://cronfa.swan.ac.uk/Record/cronfa28878
http://dx.doi.org/10.1002/nme.5298
http://www.swansea.ac.uk/iss/researchsupport/cronfa-support/

Automatic Sizing Functions for Unstructured Surface Mesh

Generation

Jianjun Chen a*, Zhoufang Xiao a, Yao Zheng a, Kewei Liang b, Chenfeng Li c, Jianjing Zheng a

a Center for Engineering and Scientific Computation and School of Aeronautics and Astronautics, Zhejiang

University, Hangzhou 310027, China
b School of Mathematics, Zhejiang University, Hangzhou 310027, China

c Zienkiewicz Centre for Computational Engineering, and Energy Safety Research Institute, College of

Engineering, Swansea University, Swansea SA2 8PP, U.K.

Abstract. Accurate sizing functions are crucial for efficient generation of high-quality surface
meshes, but to define the sizing function is often the bottleneck in complicated mesh
generation tasks due to the tedious user interaction involved. We present a novel algorithm to
automatically create high-quality sizing functions. First, the tessellation of a CAD model is
taken as the background mesh and combined with user-specified parameters to define an
initial sizing function. Then, a convex nonlinear programming problem is formulated and
solved efficiently to obtain a smoothed sizing function that corresponds to a mesh satisfying
necessary gradient constraint conditions with a significantly reduced element number. Finally,
this sizing function is applied in an advancing front surface mesher. With the aid of a
parametric mesh and a walk-through algorithm, an efficient sizing-value query scheme is
developed for surface meshing. Meshing experiments of some very complicated geometry
models are presented to demonstrate that the proposed sizing-function approach enables
accurate and fully automatic surface mesh generation.

Key words. Mesh generation; Surface mesh; Sizing function; Adaptive; Background mesh

1. Introduction

In the field of computational aerodynamics, a great success of unstructured mesh technologies
has been witnessed in the past few decades due to its automatic and adaptive abilities for
complex geometry configurations [1]. Nowadays, many commercial and in-house codes can
generate unstructured meshes in a very reliable and computationally efficient manner [2-5].
However, preparing a suitable input for the unstructured meshing pipeline remains a major
performance bottleneck in many cases. In general, this input contains a geometry that defines
the meshing domain and a sizing function that defines the distribution of element scales over
the meshing domain. This study focuses only on the sizing function for unstructured surface
mesh generation, while it is noted that preparing high-quality geometry inputs is a very active
research topic in the community of mesh generation [6, 7].

A good sizing function should define smaller element scales in the region where
geometrical and physical characteristics exist and larger scales elsewhere. Moreover, the
gradient of element scales must be limited so that the quality of elements in gradation regions
is ensured. In computational aerodynamics, grid sources are popular tools employed by many
meshing codes to define sizing functions [8-12]. For simple configurations, the time cost of
defining the sources may be affordable if a user friendly graphic interface is available.
However, for complicated aerodynamics models, e.g. a fully loaded fighter, hundreds of grid
sources may be required, and the interactive process that defines these sources is error-prone
and time-consuming. By contrast, the subsequent automatic meshing pipeline may only
consume minutes of wall-clock time. For these complicated geometry models, without

* Corresponding author: Tel.: +86-571-87951883; Fax: +86-571-87953168.

E-mail: chenjj@zju.edu.cn

considering the geometry preparation step, the performance bottleneck for unstructured mesh
generation lies in the phase of defining sizing functions rather than the mesh generation itself.

For many years, solution-adaptive techniques have been expected to be able to remove the
dependence of analysis accuracy on initial mesh configurations. However, it was reported that
an adapted solution might be invalid if it originates from a poor-quality mesh [10]. In fact, a
good initial mesh can either eliminate the need for adaptive mesh refinement or enhance the
performance of many adaptation methods. Therefore, even configured with an adaptive solver,
a suitable sizing function is still indispensable for initial mesh generation.

In this study, a fully automatic algorithm that defines sizing functions for surface mesh
generation is proposed. Figure 1 illustrates the main steps of this algorithm using the F6 wing-
body-nacelle-pylon aircraft model (hereafter referred to as the F6 model) as the example.

(1) Creating the background mesh. A triangular mesh is output by tessellating the input
CAD model and used as the background mesh of the sizing function.

(2) Initialising the sizing function. Firstly, curvature and proximity features of the input
model are calculated. Next, element scales adapted to these features are defined at
background mesh nodes.

(3) Smoothing the sizing function. A convex nonlinear programming (NLP) is formulated
and efficiently solved to obtain a smoothed sizing function that corresponds to a mesh
with a reduced element number and satisfying necessary gradient constraint conditions.

(a) (b)

(c) (d)

Figure 1. An illustration for the proposed algorithm using an F6 aircraft model. (a) The input
CAD model. (b) The background mesh of the sizing function, which is output by tessellating
the input CAD model. (c) The initial sizing function adapted to local curvature and proximity
features. (d) The smoothed sizing function.

Step 3 is the key of the proposed algorithm. To limit the gradients of element scales over a
background triangular mesh, a gradient constraint equation is introduced with the nodal sizing
values as variables. Based on this equation, a convex NLP is formulated to constrain the
gradients of element scales over the entire meshing domain. The solution of this NLP
corresponds to a mesh with a reduced magnitude. Theoretical analysis reveals that this NLP is
always solvable and any local optimal solution is also its global optimal solution. An efficient
numerical scheme is also developed to solve this NLP.

Given a sizing function defined on an unstructured mesh, a challenging issue is how to
efficiently query the sizing value of a given point. Two techniques are proposed to resolve

this issue. It is noted that the input CAD model is composed of many parametric curves and
surfaces whose meshing procedures are conducted individually. Therefore, the concept of
parametric mesh is defined to limit sizing-value queries on the parametric space of a
particular surface or curve, and the involved elements only refer to those covering this surface
or curve. In addition, a fast walk-through algorithm is developed to search the background
element containing a given point (hereafter referred to as the base element) at the shortest
path.

The rest of the paper is organized as follows. In Section 2, the contribution of the proposed
approach is highlighted in the context of related literature. In Section 3, the convex NLP for
sizing-function smoothing is formulated and theoretically analyzed. Section 4 provides the
implementation details for the main steps of creating a geometry-based adaptive sizing
function with limited gradients of element scales, while Section 5 addresses the issue of
efficient query of sizing values. In Section 6, various numerical examples are presented to
demonstrate the effectiveness and efficiency of the new approach, after which concluding
remarks are summarized in Section 7.

2. The contributions

This contribution of this work mainly includes the background mesh for sizing functions, the
gradient-constraint algorithm and the size-query algorithms.

2.1. Using the tessellation of the input CAD model as the background mesh

A fundamental feature that can be used to classify the algorithms of specifying sizing
functions is the background mesh adopted [8-14]. The most prevailing one is the Cartesian
mesh, which is interiorly organized as a quadtree or octree and requires the tree-level
difference of neighboring cells to be less than one. Consequently, the refinement of a single
cell has to be propagated into its neighboring cells. Therefore, the Cartesian mesh based
scheme is expensive in terms of computing time and storage requirement [8-12].

Most CAD systems provide routines to tessellate a CAD model into a triangular mesh.
Compared with Cartesian meshes, triangular meshes have far better topological flexibility.
Thus, for models with similar geometric complexity, the triangular mesh required to define
suitable sizing functions can be coarser than the Cartesian mesh by one order or more [9-12].
Besides, unlike the Cartesian mesh where cells are cut through by geometry boundaries, the
triangular mesh is boundary conforming. This property is very helpful when developing
various sizing-function schemes. For instance, an extended B-rep can be setup after
tessellating the CAD model to connect the topological entities of the CAD model (face, curve
and point) and the mesh entities (facets, edges, nodes) occupying these topological entities.
The sizing-value query employed for surface meshing can be improved using this extended B-
rep as explained below:

(1) The meshing algorithm manages curves and surfaces individually, and therefore the
query employed in the meshing procedure of a single curve or surface only needs to
visit the set of background edges or facets classified on the curve or surface to find the
base element.

(2) By projecting these edges or facets into the parametric space of the curve or face, the
base-element search can be defined in the two-dimensional parametric space instead of
the original three-dimensional physical space.

Meanwhile, the mesh magnitude is a key index for evaluating the mesh quality, and can
therefore be applied to evaluate the quality of a sizing function. The boundary-conforming
property of the triangular background mesh makes it possible to predict the magnitude of the
mesh adapted to a given sizing function before conducting the meshing task (see Appendix A).

This property is undoubtedly useful for those algorithms that need to evaluate or compare the
quality of sizing functions.

2.2. The gradient limiting approach by the solution of an convex NLP

A few approaches have been proposed to limit the gradients of element scales by changing the
sizing values at background mesh nodes. Borouchaki et al. [15] presented a technique named
Hc-Correction to constrain the gradients of element scales along edges. Later, Pippa and
Caligiana [16] presented a new technique named GradH-Correction to constrain the gradients
of element scales over background element interiors. Although the GradH-Correction
algorithm ensures a gradient-limited sizing function over the entire meshing domain, it does
not attempt to minimize the change to the initial sizing function and therefore takes the risk to
get a locally over-refined sizing function. To overcome this drawback, Persson et al. [17]
proposed to smooth the sizing function by solving a Hamilton-Jacobi equation. However, it
remains an issue to extend this approach to smooth the sizing function defined on a
background mesh composed of many highly stretched elements. Based on previous
experience, such a mesh is not a qualified input for a PDE solver.

In [16], Pippa and Caligiana proposed an equation that must be met by a gradient-limited
sizing function over a triangular domain. Based on this equation, we propose a convex NLP to
smooth the sizing function. The solvability and convexity of this NLP is proved rigorously,
and an efficient numerical scheme that can balance solution quality and computing time is
developed. It is noted that the solution of this NLP is not only subject to the gradation-
limiting condition, but also aimed at minimizing the difference of the initial sizing function
and the smoothed one. Therefore, unlike the GradH-Correction algorithm, the proposed
approach will not result in a locally over-refined sizing-function. Moreover, because a
positive correlation exists between the minimization function adopted in the NLP and the goal
to minimize the mesh magnitude, the solution of this NLP usually corresponds to a mesh with
reduced magnitude.

2.3. The fast scheme of sizing-value query on an unstructured mesh

For a Cartesian background mesh, the time complexity of querying the sizing value of a point
is proportional to the depth of the tree. However, if the sizing function is defined on an
unstructured mesh, the time complexity of a brute-force implementation of this query is
proportional to the magnitude of the background mesh in its worst case. Therefore, although
the proposed approach requires less time and memory usage in preparing the sizing function
than the Cartesian mesh based approaches, it is necessary to improve sizing-value query on an
unstructured mesh in order to ensure a better overall efficiency.

In Section 2.1, it is proposed to limit sizing-value queries to the parametric space of a
particular surface or curve that contains the associated elements. However, if not improved
further, the computing efficiency of the size-query routine is still unacceptable, in particular
for a big surface on which thousands of background elements are classified.

Note that the base-element search is the most time consuming step of the sizing-value
query scheme. Starting from an initial guess of the base element, the walk-through algorithm
[18] attempts to find the base element through the shortest path with the aid of element
neighboring indices. Nevertheless, the efficiency of the walk-through algorithm highly
depends on the distance between the initial guess and the base element. Since the base
elements for two geometrically neighboring positions are usually located very closely (or
even the same), it is possible to start the walk-through algorithm from a very good guess of
the base element. For instance, in the advancing front meshing procedure, a new point is
needed to connect with the active front edge to form a new triangle. Since the new point is
usually in the neighborhood of the active front edge, the base elements enclosing the end

points of the edge can be selected as the starting point of the walk-through algorithm when
querying the sizing value at the new point.

The above sizing-value query scheme has been used in our in-house surface mesher.
Numerical experiments show that it visits less than ten background elements for each sizing-
value query. As a result, the sizing-value query scheme consumes less than 10% of the
meshing time. Here, the meshing time does not include the time consumed in preparing the
sizing function.

3. The proposed gradient constraint approach

3.1. Preliminary definitions

3.1.1 Unit mesh. Introduced in [15, 19, 20], a unit mesh refers to a mesh adapted to a sizing
function over a domain that has all edges of unit length with respect to the Riemannian
structure associated with the sizing function. The concept is demonstrated with a one-
dimensional mesh in Figure 2. Assuming that the sizing function over the edge is

() ([0,1])h t t and the length of the edge is l , the number of mesh segments in this edge is:

1

0

1

()
n l dt

h t
  . (1a)

For each segment of this edge,
1 1

1 (1,2, ,)
()

i

i

t

t
l dt i n

h t

  . (1b)

Given a metric 21/ ()h t   M defined in this edge, the length of this segment, in the space

defined by M , is

1 1

2

1 1
() 1 (1,2, ,)

() ()

i i

i i

t t

i
t t

l l ldt l dt i n
h t h t

        M
.

This indicates that an ideal mesh segment in the space defined by M has a unit length.
Correspondingly, we call this mesh a unit mesh [15, 19, 20].

3.1.2 Geometric progressive mesh. For the mesh shown in Figure 1, 1.0  , if

11

1

(1,2, , 1)
1/

i ii

i ii

l ll
i n

l ll








  
      

,

this mesh is called a geometric progressive mesh, and  the progressive factor.

3.1.3 The H-variation of an edge. It is supposed that the mesh shown in Figure 1 satisfies the
following assumptions:

(1) It is a unit mesh, i.e., the predefined sizing function is accurately respected;
(2) It is a geometric progressive mesh with the progressive factor  ;

(3) The size variation follows a linear function.

Let (=0,1,...,)ih i n denote the size value at point ia , without loss of generality, we assume

0nh h (0h and nh are the sizing values at two end points of the edge) and

1 / (1,2, , 1)i il l i n     .

Finally, the following relation can be obtained [15]:

0/ () / lnnh l h h l     . (2)

In [15], /h l is called the H-variation, denoted by 0()v nh a a , where 0a and
na are the end

points of the edge. When l approaches zero, the H-variation represents the gradient of the
sizing function at a point.

It can be derived from Equation 2 that, to limit the length ratio of neighboring mesh
segments below  , the H-variation of the edge must satisfy the following relation

0() / lnv nh a a h l    . (3)

Figure 2. Example of a unit mesh

3.1.4 The gradient of the linear sizing function over a triangular domain. To enable the

application to a triangular background mesh, it is necessary to extend the concept of H-

variation from an edge to a triangle. Assuming that T is the domain covered by a triangle

T and a linear sizing function is defined over
T , i.e.,

2

0

(,) (,) (,)
i i T

i

h x y w x y h x y


  ,

where (0 ~ 2)ih i  are the sizing values at three nodes of T , and (,)(0 ~ 2)iw x y i  are the

area coordinate functions. Given a progressive factor (1.0)   , we require the edge ended

with two arbitrary points enclosed by
T to satisfy Equation 3, i.e.,

1 2 2 1 1 2 1 2() () () / ln (,)v Th p p h p h p p p p p     ,

where 1 2()vh p p is the H-variation of the edge 1 2p p . When 2p approaches 1p , it represents

the direction derivative of the sizing function (,)h x y along 1 2p p . As 1 2p p can be an arbitrary

direction around 1p , the following relation holds,

2

1 1

1 2

() ln ()max
T

T

p

h
h p p

p p


 


    


 .

 The gradient of a linear function (,)h x y over
T is constant:

2 2

0 0

1

2

T

i i i i

i i

h const b h c h
A  

 
    

 
  ,

where A is the area of T ,

, (0 ~ 2; (1)mod3; (1)mod3)i j m i m jb y y c x x i j i m j         , (4)

and (,)(0 ~ 2)i ix y i  are the coordinates of the ending nodes of T .

Therefore, the sizing function over T needs to satisfy the following equation.
2 2ln ()T

h   H KH , (5)

where

0 1 2(, ,)T
h h hH

2
0 , 2[] ; () / (4)ij i j ij i j i jk k b b c c A   K .

Obviously, K is a symmetric matrix, and the principal diagonal elements are positive:

iΔl

1

1()

i

i





a

h

1Δl 2Δl 1iΔl 1nΔl nΔl

0

0

a

(h)
 1

1

a

(h)
 2

2()

a

h

()

i

i

a

h
 1

1()

i

i





a

h
 2

2()

n

n





a

h
 1

1()

n

n





a

h

()

n

n

a

h

il

2 2 2 2 2() / (4) / (4) 0ii i i ik b c A l A    .

where
il is the length of the edge opposite to the node i [16].

 For a triangle defined in a three-dimensional Cartesian coordinate system, a local
coordinate system is defined such that the plane containing the triangle as the XOY plane, and
the elements of the matrix K are then computed in the XOY space of this transformed
coordinate system.

3.2. The constrained optimisation problem

A triangular background mesh composed of m triangles and n nodes is denoted by

{ { | 1,2, , }, { | 1,2, , }}t i iM E e i m P p i n     ,

where E and P are the element set and node set, respectively. The sizing value at a node is
denoted by ()h p , and the gradient of the sizing function over an element is denoted by ()h e .

Given a progressive factor  , to limit the gradient of the sizing function defined on
tM ,

the following equation must be met:

2 2() lnih e   , for all

ie E .

If a sizing function does not satisfy the above condition, it can be corrected by solving the
following constrained optimization problem:

2
0

1

2 2

min 0

min (() ())

. . () ln () (=1,2,...,)

() () (=1,2,...,)

n

i i

i

T

i i i i

i i

h p h p

s t h e i m

h h p h p i n






  
 


H K H . (6)

Here, 0 ()ih p and ()ih p are the initial and corrected sizing values at a mesh node
ip . Note that

the initial sizing values are usually calculated from certain geometric or physical rules. The
corrected sizing value at a mesh node is also required to be less than its initial value because
setting larger values may degrade the mesh resolution and eventually affect the simulation

accuracy. Meanwhile, to avoid overly small sizing values, a user parameter minh is set to limit

the minimal sizing value. The goal is to minimize the change to the initial sizing values in the
least squares sense. As the sizing values are only allowed to be reduced, the optimal sizing
values must be as large as possible to achieve this target. Thus, the solution of NLP 6 will
result in a sizing function adapted by a mesh containing fewer elements.

3.3. Theoretical analysis of the optimisation model

Fort the sake of generality, a non-uniform sizing function is concerned in the following
discussions where 1.0  . If the preferred sizing function is a uniform one where 1.0  ,

the sizing value at each node should be the same, and the optimal solution of NLP 6 is
achieved when

0 1 0 2 0()= min((), (),..., ())i nh p h p h p h p .

Lemma 3.1 The feasible region of NLP 6 is a convex set.

Proof. Let 1 2((), (),..., ())nh p h p h pv be the solution of NLP 6, the feasible region of the

solution vector is: 1 2   , where
2

1 { | ln () for each background element (=1,2,...,)}T

i i i ie i m  v H K H

2 min 0{ | () () for each background node (=1,2,...,)}i i ih h p h p v i n   v .

 The constraint defined on a background element is

 * 2 2
0 1 2(, ,) 4 ln () 0 T

i i iF h h h A   H K H ,

where A is the area of the background element, 0 2~h h are the sizing values at the three

nodes of the background element, and
* 2

0 , 24 [] ; ()i i jk j k jk j k j kA k k b b c c
 

    K K .

In the above equation, j and k are indices of the nodes of the background element, and the

variables 0 2~b b and 0 2~c c are calculated by Equation 4.

The expression of 0 1 2(, ,)F h h h can be rewritten as,

0 1 20 11 2 0 2(, , ,1) (, , ,1)(, ,) T

ch h hF hh h hh h  M

where
2 2

0 0 0 1 0 1 0 2 0 2

2 2
0 1 0 1 1 1 1 2 1 2

20 , 2
0 2 0 2 1 2 1 2 2 2

2 2

3

0

0

0

0 0 0 4 ln

]

()

[
c jk j k

b c b b c c b b c c

b b c c b c b b c c

b b c c b b c c b c

A

a



 

   
 

   
   
   

M

is the coefficient matrix.

Since 0 1 2(, ,)F h h h is a quadratic function, the equation 0 1 2(, , 0)F h h h  defines a quadric

surface. To determine the type of the quadric surface, the invariants (1 4~I I) and semi-

invariants (1K and 2K) [21-23]† of this quadric surface are computed as follows:
2 2 2 2 2 2 2 2 2

1 00 11 22 0 0 1 1 2 2 0 1 2() () () 0I a a a b c b c b c l l l             ;

00 01 00 02 11 12 2 2 2
2 0 1 1 0 0 2 2 0 1 2 2 1

01 11 02 22 12 22

2 2 2 2

= () +() +()

 (2) (2) (2) 12 0

a a a a a a
I b c b c b c b c b c b c

a a a a a a

A A A A

     

    

;

2 2 2 2
1 1

00 01 02

01 12

2 2 1 2 1 2

2 2
0 1 0

01 1111 12

3 01 11 12 00 01 02

02 22 02 1212 22

02 1

1 0 1 0 1 2 2 0 2 0 2 1 2 1 2

2 22

2 2 2
0 0 = ()[()() ()]

 ()[()() ()()] +

 (

b c b c b b c c

b b c c b b

a a a
a a a aa a

I a a a a a a

c c b c b b c c b

a a a aa a
a a a

b c

b c c

  

   





  

  


2 2

0 2 0 2 0 1 0 1 1 2 1 2 0 2 0 2 1 1)[()() ()()]

 = 0

b b c c b b c c b b c c b b c c b c    

;

00 01 02 03

00 01 02

01 11 12 13

4 33 01 11 12 3

02 12 22 23

02 12 22

03 13

2 2

23 33

4 ln () 0

a a a a
a a a

a a a a
I a a a a I

a a a a
a a a

a a a a

A     ;

00 03 11 13 22 23

1 33 00 11 22 1

03 33 13 33 2 33

2

3

24 ln (()) 0
a a a a a a

K a a a a I
a a a a a

A
a

        ;

† Reference [21] is a Chinese translation of Reference [22].

00 01 03 00 02 03 11 12 13

2 01 11 13 02 22 23 12 22 23

03 13 33 03 23 33 13 23 33

00 01 00 02 11 12

33 2

01 11 02 22 12 2

2

2

24 ln (() 0)

a a a a a a a a a

K a a a a a a a a a

a a a a a a a a a

a a a a a a
a I

a a a a a
A

a


  

    

.

Here, 0 2~l l are the lengths of the three edges of the background element.

The values of the above invariants and semi-invariants indicate that the quadric surface

defined by the function 0 1 2(, , 0)F h h h  is an elliptical cylinder [21-23], and 0 1 2(, , 0)F h h h 

defines a convex set bounded by this elliptical cylinder. Since 1 is the intersection of a set

of such convex sets, it is also a convex set.

Meanwhile, 2 is a convex set because it is composed of a set of box constraints.

Therefore, 1 2   is a closed convex set. □

Theorem 3.1 NLP 6 is a convex programming problem, and any local optimal solution of this
problem is also its global optimal solution.

Proof. The objective function of NLP 6

2
0

1

() (() ())
n

i i

i

f h p h p


 v

is a least squares function. Its Hessian matrix is a positive definite matrix:
2 () 2H f M v I ,

where I is the unit matrix, and

0, ()T n

H    x M x x 0 x .

Therefore, the objective function is a convex function. Meanwhile, since the feasible region of
NLP 6 is a convex set (according to Lemma 3.1), NLP 6 is a convex programming problem.

Note that
minh is a user parameter. It can always be set by a value satisfying

 0 1 0 2 0min((), (),..., ())min nh h p h p h p .

Then, there exists a  satisfying

0 1 0 2 0min((), (),..., ())min nh h p h p h p  ,

let ()ih p  , 1.0  ,
2 2() 0 ln ()T

i i i ih e    H K H .

Hence, the vector 1 2((), (),..., ()) (, ,...,)nh p h p h p    v is a feasible solution of NLP 6. If

1.0  , this solution strictly satisfies the constraints, which means this solution is an interior

point of the feasible region of NLP 6.
Finally, it is known that, for a convex programming problem with at least one interior point

in its feasible region, any local optimal solution of this problem is also its global optimal
solution [24]. □

4. The generation of the sizing function

As illustrated in Figure 1, the process of creating a gradient-constrained sizing function takes
three steps. The implementation issues of these steps are detailed in the following subsections.

4.1. Creating the background mesh

Most CAD systems and kernels provide routines to tessellate a CAD model into a triangular
mesh. In this study, this mesh is used as the background mesh of the sizing function. After the
tessellation step, two additional data structures must be created, namely the hybrid surface B-

rep [7] and the parametric mesh.

4.1.1 The hybrid surface B-rep. The surface B-rep is illustrated in Figure 3, where the input
surface model includes three basic topology entities, i.e., face, curve and point. A loop is a
specific topology entity that refers to a set of curves and limits the valid region of a face.

As shown in Figure 1b, the background mesh is a triangular mesh representing the input
CAD model. This mesh is structured by three topology entities of different dimensions: facets,
edges and nodes.

To connect the input CAD model and the background mesh, three basic mappings between
the continuous topology entities and their discrete counterparts can be defined:

(1) The face-facet mapping. A face corresponds to a set of mesh facets.
(2) The curve-edge mapping. A curve corresponds to a set of mesh edges.
(3) The point-node mapping. A point corresponds to a mesh node.
Other mappings can be defined as well, e.g., between a curve and all nodes that lie on the

curve, or between a face and all edges that bound the face. As these additional mappings can
be derived from the basic mappings, and are not explicitly represented in the extended B-rep.

Here, we term the extended B-rep as the hybrid surface B-rep. In the standard B-rep, each
basic topology entity corresponds to a continuous geometry entity. However, in the hybrid
surface B-rep, each topology entity has two types of geometric representations in default. One
representation corresponds to geometry entities defined on the continuous model, while the
other representation describes a discrete model, such as a face defined by a set of triangles and
a curve defined by a set of linear segments.

The following definition is introduced to describe the above mappings.

Definition 1 (Classification) [7, 25]. Given a di-dimensional topology entity (di=0~2) id
M of

the discrete model, id
M is classified on a dj-dimensional topology entity (di≤dj ≤2) jd

G of
the B-rep if id

M lies on jd
G , denoted as ji

dd
M Gô . Namely, jd

G is the host entity of id
M .

Figure 3. Illustration for the surface B-rep.

4.1.2 The parametric mesh. The projection of the background mesh on the parametric space
of a curve or face is namely a parametric mesh. For a curve of the B-rep, the computation of
its parametric mesh takes the following steps.

(1) Obtain the list of nodes and edges classified on the curve, denoted as N and E. They
compose the physical mesh of the curve: Mcrv = {N, E}.

(2) Replace physical coordinates of the nodes belonging to N by their counterparts in the
parametric space of the curve. Define the new list of nodes as N′.

(3) Compose the parametric mesh of the curve as M′crv = {N′, E}.
Similarly, for a face of the B-rep, its parametric mesh needs to replace the physical

coordinates of nodes classified on the face by their counterparts in the parametric space of the
face.

The concept of parametric mesh is useful to speed up the meshing procedures for curves
and faces by limiting the sizing-value queries employed in these meshing procedures on the
parametric mesh of a particular surface or curve.

4.2. Initialising the sizing function

4.2.1 Computing sizing values adapted to curvatures. In highly curved regions, sizing

values must be very small to avoid large gaps between the mesh and the geometry.

Figure 4 illustrates the geometric meaning of the sizing value adapted to the local curvature

of a point S , denoted by ch . Here, sr refers to the curvature radius of S , ()tr refers to the

principal curvature line that S lies in, and O refers to a point along the normal vector of S

with sOS r . With O as the center, sr as the radius and S as the contact point, an inscribed

circle of ()tr is defined, and E is a point on the circle to make a central angle c SOE   .

Then ch equals the chord length between S and E , given by

2 sin(/ 2)c ch SE r   s .

For a mesh node classified on more than one face, the principal curvatures of this node on

all faces need to be computed. The value of sr is computed by using the principal curvature
having a maximal absolute value.

rs

r(t)
ch

O

E
S

Figure 4. Geometric meaning of the size value adapted to local curvatures.

4.2.2 Computing sizing values adapted to proximities. Elements of small scales are required
near narrow regions to avoid generating elements with high aspect ratios. However,
computing proximity distances in narrow regions is non-trivial. Cunha et al. [26] and Zhu et

al. [27] proposed to compute distances between all combinations of sampled entities, which
involve a large number of unstable geometry computations. Based on the Cartesian mesh, a
few more efficient algorithms were developed later, such as the wave propagation algorithm
by Quadros et al. [12], the geometry rasterisation algorithm by Deister et al. [11] and Voronoï
cell based algorithm by Luo et al [28]. However, as unstructured background meshes are
preferred in this study, an alternative scheme has to be developed.

In [29], we developed a general algorithm that calculates surface proximity distances using
an unstructured background mesh. The theoretical foundation supporting this algorithm is that
the lines connecting the circumcenters of neighboring elements of a Delaunay triangulation
are the discrete representation of the medial axis. This dual relation has a proof if the
boundary edges of the model are all contained in the Delaunay triangulation [30].

However, for those faces where the proximity distances are proximately equal everywhere,
a simpler algorithm can be applied to compute a global proximity distance for each face:

 2.0 /s s sd A l  ,

where
sA and

sl are the area and circumference of the face, respectively. For background

nodes classified on this face, their proximity-adapted sizing values are

1 /d s dh d  ,

where the user parameter
d defines the expected number of elements within the proximity

distance.
Apart from the proximity distance between boundary curves, another proximity feature

considered in this study is the curve length, i.e., the distance between the end points of a curve.
Because at least one mesh segment is required to be generated in a curve, the sizing values of
a background node classified on a curve must be less than the length of the curve. Assuming
that 0dh is the smallest length of the host curves of a background node, the final proximity-

adapted sizing value at this node is

1 0min(,)d d dh h h .

4.2.3 User options. The role of user expertise is irreplaceable in some meshing tasks. The
proposed algorithm provides the user with options to influence the element-sizing results via
the following parameters:

(1) Global user parameters c ,
d and  ;

(2) A local c value for any curve or face;

(3) Local
d and  values for any face;

(4) A predefined sizing value or function for any geometry point, curve or face.
Only the first group of parameters is mandatory and the other parameters are optional. In

most meshing tasks, including those to be demonstrated in Section 6, the user only needs to
set the mandatory parameters. The initial sizing value at a background node is computed by
combining the influence of geometry factors and user parameters:

min maxmax(,min(, , ,))a d c uh h h h h h ,

where
ch and

dh are the sizing values adapted to local curvature and proximity features,

respectively,
uh is the predefined sizing value by the user (if any); minh and maxh are the user

parameters that limit the minimal and maximal sizing values.

4.3. Smoothing the sizing function

The initial sizing function is smoothed by solving NLP 6. Among different numerical
schemes for the solution of NLPs, the interior point method (IPM) [31-33] is adopted because
of its good performance for problems with a large number of inequality constraints.

We first transform NLP 6 into a more general form, where the inequality constraints are

rewritten as equality constraints by introducing slack variables i , i and i :

2

min

0

ln () 0, where 0 (=1,2,...,)

()+ 0, where 0
 (=1,2,...,)

() ()+ 0, where 0

T

i i i i i

i i i

i i i i

i m

h h p
i n

h p h p

  
 
 

    


  
   

H K H

.

Let

1 2 3 1 1 1 1, , , (),..., (), ,..., , ,..., , ,...,n m n m n nx x x h p h p        x

be the extended solution vector, and

2

min

0

ln () 1 ,

() ()+ 1 ,

() ()+ 2 ,

T

i i i i

j i i

i i i

j m i j

c h h p m j m n i j m

h p h p m n j m n i j m n

 



     
       
        

H K H

x ,

NLP 6 can be reformulated to the new form as below,

min ()

. . () 0 {1,2, , 2 }

0 { 1, 2, ,3 }
j

i

f

s t c j J n m

x i I n n n m

   
     

x

x , (7)

where

2
0

1

() (() ())
n

i i

i

f h p h p


 x .

The solution of NLP 7 is reduced to a sequence of unconstrained optimization problems
with decreasing barrier parameters (0)   :

3

1

min (, ,) () () ln()
n m

i

i n

f x 


 

   x λ x λc x , (8)

where 2n mλ is the vector of Lagrangian multipliers, and ()c x is the vector of equality

constraints () 0 ()jc j J x . For a fixed  , the solution of NLP 8 can be reduced to the

calculation of the following perturbed Karush-Kuhn-Tucker (KKT) conditions [32, 33]:

() ()

(, ,) ()

f



   
   
  

x c x λ υ
F x λ υ c x 0

Xυ e

, (9)

where 1 3/ ,..., /n n mx x   υ is the dual vector, e is the vector of ones, and X is a

diagonal matrix with its diagonal elements occupied by the values of (+1 3 +)ix n i n m  .

Numerically, a tolerance parameter  is predefined to determine whether a solution satisfies
the perturbed KKT conditions:

* * *|| (, ,) || F x λ υ . (10)

Presently, the open source code IPOPT [32, 33] is adopted to accomplish the above
numerical solution process. It adopts the Newton’s method to compute Equation 9 iteratively,
and a linear system needs to be solved in each iteration step. To reduce the computing time,
IPOPT provides a parallel option for the solution of this linear system by using OpenMP.
More implementation details of IPOPT can be found in [32, 33].

For a general NLP, the above numerical procedure only returns a local optimal solution.
However, for the NLP 6, the returned local optimal solution is also the global optimal solution
according to Theorem 3.1. To be concise, the final solution that satisfies the perturbed KKT
conditions is called the optimal solution hereafter. Nevertheless, it is observed that, if
Equation 10 is used as the criterion to terminate the solution process of NLP 8, the computing
time may beyond the user’s expectation. To improve the computing time to an acceptable
level, a new criterion is introduced by checking the values of two indices:

(1) For each background triangle, given the sizing values at its three ending nodes, a real

progressive factor (real

i) can be computed by solving the following equation:
2ln () 0T real

i i i i H K H . (11)

Given a background mesh, the first index is the maximal value of real progressive

factors, denoted by max
real .

max max{ | 1,2, }real real

i i m   ,

where m is the number of elements contained in the mesh.

(2) The second index is the predicted value of the mesh magnitude
numE , which is the sum

of the computed number of elements for all background elements (see Appendix A). In

each iteration of solving NLP 8, a value of
numE is computed, denoted by k

numE , where

k is the index numbering the iteration step.
The new criterion is defined in Equation 12:

max max max

1|

() / 0.1

| / 1.0 3k k k

nu

real user us

m n

r

um num

e

E E E e

  




  

 



. (12)

It limits the difference of
numE computed in adjacent iteration steps and the difference of

max
real and the maximal progress factor predefined by the user (max

user). Note that the new

criterion no longer strictly limits max
real to be smaller than max

user .

5. The application of the sizing function

Once the sizing function is smoothed, it is ready for sizing-value queries by mesh generation
algorithms. The efficiency of this query heavily impacts the efficiency of meshing algorithms
because the number of such queries in a meshing procedure is usually several times larger
than the number of final mesh nodes. In this section, we introduce the application of the
proposed sizing-function in an advancing front surface mesher. The key contribution is the
development of two efficient routines of sizing-value query.

Like most of prevailing surface meshers, our mesher exploits the parametric representation
of input surfaces, and can be classified as mapping based [34]. Basically, the meshing
algorithm follows a bottom-up procedure, i.e., it first meshes the curves and then meshes the
faces individually. Meanwhile, the meshing procedures for both curves and faces are defined
in the parametric spaces of curves and faces. This feature makes it possible to speed up the
routines of sizing-value query employed in the meshing procedures for both curves and faces
by using the concept of parametric mesh introduced in Section 4.1.2.

The first routine inputs the index of a curve and the parametric value (up) of a point p at this
curve, and returns the sizing value at p by the following steps.

(1) Get the parametric mesh of the curve: M′crv = {N′, E}, where N′ and E are lists of
background nodes and edges classified on the curve.

(2) Visit E to find an edge ei containing p. Assuming the ending nodes of ei are pi and pi+1
and the parametric values of these two nodes are ui and ui+1 (ui<ui+1), there must be
ui≤up≤ui+1.

(3) The sizing value at p is a linear interpolation of the sizing values at pi and pi+1.
Following a similar flowchart, another routine is developed to query the sizing value at a

point p located on a face.
(1) Get the parametric mesh of the face: M′fac = {N′, E, T}, where N′, E and T are lists of

background nodes, edges and triangles classified on the face.
(2) Visit T to find a triangle ti containing p.
(3) The sizing value at p is a linear interpolation of the sizing values at the end nodes of ti.
With the aid of the concept of parametric mesh, the base-element search step (Step 2) of

both routines only visits the elements classified on a curve or a face, and moreover, the search
occurs in the parametric space of the curve or face instead of the physical space. However, if
the second routine is implemented as the above flowchart, it can be very time-consuming
because the parametric mesh of a large face may contain thousands of triangles. The timing

performance can be further improved by using the spatial locality, i.e. the fact that the base
elements for two geometrically neighboring positions are usually located very closely (or
even the same). A much faster base-element search procedure can be developed by employing
the walk-through algorithm to find the base element at the shortest path and inputting one
more parameter to the walk-through algorithm that refers to a good enough guess for the base
element. In the current implementation, a walk-through algorithm suggested by Shan et al. is
adopted to search the base element [18], which requires no auxiliary structures but the initial
guess for the base element and neighboring indices of candidate triangles.

The remaining issue is how to set a good initial guess for the base element. Taking the
advancing front surface mesher considered in this study as the example, it meshes a face by
repeating the advancing front step, where a front is first selected and a new node is then
created. Obviously, when querying the base element of the new node, either of the base
elements of the front nodes can be chosen as the initial guess.

6. Numerical results

The tests presented here are conducted on a personal computer (CPU: 3.5GHz; Memory:
24GB). Three CAD models are selected as inputs to analyze the performance of the proposed
algorithm. The original geometry files of these models are accessible through the Internet.
The London Tower Bridge (referred to as Bridge hereafter) [35] is the test case geometry
from the meshing contest session of the 23rd International Meshing Roundtable. The F6
aircraft model [36] is the test case geometry from the 2nd AIAA CFD Drag Prediction
Workshop. The F16 aircraft model (referred to as F16 hereafter) is obtained from GrabCAD
(www.grabcad.com). Figures 1, 5 and 6 show the input CAD models, the background meshes,
the initial sizing functions and their smoothed counterparts for the F6, F16 and Bridge models,
respectively. All of these sizing functions are initialised and smoothed by using the default

user parameters, i.e. 10c  , 2d  and 1.2  . Meanwhile, the parallel option of the

numerical scheme for sizing-function smoothing is enabled in the test cases and 4 computer
cores are employed to solve Equation 9. Figures 7~9 render the surface meshes of the three
models and some close up views. Table 1 lists the main statistics of these tests.

Table 1. The main performance statistics of the tests conducted in this study.

Index type Index name F6 F16 Bridge

Basic indices

#Geometry Curves 97 1,488 9,873
#Geometry Faces 35 604 3,014
#Background nodes 4,016 24,358 43,354
#Background elements 7,853 48,209 88,336
#Surface mesh nodes 24,107 103,209 695,827
#Surface mesh elements 47,819 205,066 1,393,282

Timing data
(unit: second)

Creating the sizing-function 13.6 78.6 303.0
Creating the background mesh 4.99 15.94 17.1
Initialising the sizing function 0.01 0.06 0.1
Smoothing the sizing function 8.6 62.6 285.8

Generating the surface mesh 9.1 42.9 233.3
Querying the sizing values 0.6 2.4 20.0

We used to configure grid sources to define the sizing function under the user interface of
our in-house pre-processing system [37]. The configurations adopted for the F6 and F16
models include 34 sources and 131 sources, respectively. The manual process of creating grid
sources are time consuming: half an hour of interaction time is required for the F6 case, while
this timing cost increases up to many hours for the F16 case. By contrast, the proposed

algorithm only consumed 13.6 and 78.6 seconds to generate the two sizing functions in a fully
automatic fashion, of which the step of sizing-function smoothing dominates, consuming 8.6
and 62.6 seconds for the F6 and F16 cases, respectively. For the Bridge case, although we
never attempt to control element scales by grid sources considering the possible huge amount
of interaction time, it is estimated that hundreds of grid sources are required to capture the
abundant geometry features of this model and to control the gradation of element scales. By
contrast, the proposed algorithm consumed about 5 minutes to create a high-quality sizing
function, of which the step of sizing-function smoothing consumes 285.6 seconds. It is
evident that the proposed algorithm substantially enhances the automation of element-sizing
specification over the method of using grid sources.

Apart from the timing data of sizing-function creation, Table 1 also lists the timing data of
surface mesh generation. The advancing front mesher consumed 9.1, 42.9 and 233.3 seconds
to handle the F6, F16 and Bridge models, respectively. The velocity values, referring to how
many elements the mesher can create per second, are 5,254, 4,780 and 5,972 respectively. It
varies within a reasonable range considering the timing performance of a surface mesher
always depends on the input CAD models to some extent.

The total timing data consumed by sizing-value queries are presented in Table 1 as well. In
the three test cases, these queries at most consume 8.6% of the meshing time, owing to the
improved strategies suggested in Section 5. The base-element search is the most time-
consuming step for sizing-value query of a surface point, and its timing performance is
improved remarkably by the proposed walk-through algorithm. In average, each calling of
this procedure visits about 8, 4 and 4 background triangles in the meshing processes of the F6,
F16 and Bridge models, respectively.

(a) (b)

(c) (d)

Figure 5. An illustration for the proposed algorithm using an F16 aircraft model. (a) The
input CAD model. (b) The background mesh. (c) The initial sizing function. (d) The
smoothed sizing function.

(a) (b)

(c) (d)

Figure 6. An illustration for the proposed algorithm using a London Tower bridge model. (a)
The input CAD model. (b) The background mesh. (c) The initial sizing function. (d) The
smoothed sizing function.

(a) (b)

Figure 7. The surface mesh of the F6 model. (a) The overall mesh. (b) The mesh details of
the engine intake lip. A very fine mesh resolution is observed in the engine intake lip because
high curvature features exist there.

(a) (b) (c)

Figure 8. The surface mesh of the F16 model. (a) The overall mesh. (b) The mesh details near
a missile. (c) The mesh details near the landing gear.

Figure 9. The surface mesh of the Bridge model and its local mesh details.

Another focus of the tests is on the mesh quality. Figure 10a draws the distributions of
interior angles of surface elements for the three surface meshes shown in Figures 7~9. Note
that the worst elements in a mesh have far more influence than the average elements in
numerical simulations. To evaluate those worst elements, a triangle is classified as a low-

quality element if its minimal angle is smaller than 24 degrees or as a bad element if its
minimal angle is smaller than 12 degrees. For the surface meshes shown in Figures 7~9, the
numbers of bad elements are 11, 41 and 5, respectively, and those of low-quality elements are
82, 1,283 and 3,121 respectively. The percentages of low quality elements are 0.17, 0.63 and
0.22, respectively, and the percentages of bad quality elements are even much smaller.

To verify the quality of the resulting surface mesh further, a tetrahedral mesh is generated
from the surface mesh of the Bridge model. Figure 10b draws the distribution of interior
angles of tetrahedral elements. The volume mesh contains 33,698,234 elements and is
generated in parallel on 32 computer cores [4, 38]. Therefore, elements generated on different
computer cores are painted in different colours in Figure 11. Owing to the input of a high-
quality surface mesh, the tetrahedral mesh is of high quality as well. The minimal and
maximal angles are 5.8° and 172.5°, respectively. The percentages of angles below 30° and
over 150° are only 0.76 and 0.003, respectively.

(a) (b)

Figure 10. Mesh quality statistics. (a) Distributions of the interior angles of the three surface
meshes. (b) Distributions of the interior angles of a volume mesh of the Bridge model.

Figure 11. The surface mesh and the volume mesh of the London Tower Bridge model. The
volume mesh is generated in parallel on 32 computer cores.

The final focus is on the performance of the proposed numerical scheme for sizing-function
smoothing. It is observed that this numerical scheme always converges to a global optimal
solution in the three test cases, i.e., a solution that meets Equation 10. However, the timing
costs to achieve the optimal solutions are very high. Note that the proposed numerical scheme
is composed of two-level loops. In the outer loop, the solution of NLP 7 is reduced to a
sequence of unconstrained optimization problems (NLP 8) with decreasing barrier parameters.
In the inner loop, NLP 8 is solved by computing Equation 9 iteratively. To evaluate the
convergence of the numerical scheme, the iteration steps computing Equation 9 are numbered
consecutively. For the F6, F16 and Bridge models, the numerical scheme converges after
2,002, 6,851, 1,7189 iteration steps, respectively, and the computing time is 40.9, 920.6 and
3023.7 seconds, respectively. After introducing the new termination criterion (Equation 12),
the numerical scheme stops after 617, 780, 1,759 iteration steps, respectively. Accordingly,
the timing costs reduces to 8.6, 62.6 and 285.8 seconds, respectively.

It is emphasized that the quality of the sub-optimal solutions corresponding to the new
termination criterion is comparable to the quality of the global optimal solutions. To
demonstrate this, the difference of sizing value at a background node is computed by the
following equation:

| | /diff opt sub opts s s s  ,

where opts and subs are the optimal and sub-optimal sizing values at this node, respectively.

To show more details of the difference of sizing function, the two norms ℓ2-norm and ℓ∞-norm
are calculated as below:

2
2

1

1
|| || ()

diff

n
i

diff

i

s s
n 

  ;

|| || max() (=1,2,...,)
diff

i

diffs s i n .

These two norms represent the average difference and the maximum difference, respectively.
Figure 12 presents the optimal sizing function of the Bridge model and the distribution of

the difference of this sizing function and the one shown in Figure 6b (the sub-optimal sizing

function). For this case, 2|| || 0.011diffs  , and || || 0.225diffs  . Further analysis reveals that the

number of nodes with 0.1diffs  is 108, accounting for only 0.23% of the total number of

background nodes. Because of the minor difference of the optimal and sub-optimal sizing-
functions of the Bridge model, the values of Enum adapted to these two sizing functions are
also very close: they are 1,383,884 and 1,356,807, respectively. Meanwhile, it is observed that
the value of Enum adapted to the sub-optimal sizing function is also very close to the number
of elements of the finally generated surface mesh shown in Figure 9, which is 1,393,282, as
reported in Table 1. It proves that the enhanced surface mesher is capable of respecting the
predefined sizing function very accurately.

(a) (b)

Figure 12. Comparison between the optimal and sub-optimal sizing functions for the Bridge
model. The sub-optimal sizing function is already rendered in Figure 6d, and (a) is the
optimal sizing function. (b) draws the distribution of the differences between the node values
that define the two sizing functions.

Meanwhile, Figures 13a~c detail the variations of max
real and numE with the iteration steps

(see Section 4.4 for the definitions of the two indices). For all three test cases, a stable

decrease of numE is observed. It means a positive correlation exists between the minimization

function used in NLP 6 and the goal to minimize the mesh magnitude. Section 3.2 explained

this correlation qualitatively. In Figures 13a~c, a rather stable decrease of max
real is also

observed, apart from a sharp increase occurred in the solution process of the Bridge case. This

explains why the new termination criterion (Equation 12) must also limit the value max
real .

Figure 13d presents the distributions of the real progressive factors (real

i , computed by

Equation 11 on each background element) in the finally smoothed sizing functions of the

three test cases. The accumulative ratio function () (1.0)r x x  refers to the percentage of

background elements whose real

i values are below x . It is shown that only a very small

fraction of background elements have progress factors above the user parameter  (1.2  in

the tests). If the background elements with 1.02real

i  and 1.1real

i  are classified as low-

gradation and high-gradation elements, respectively. It is observed that the background

meshes for the F6 and F16 models contain the highest percentage of low-gradation and high-

gradation elements, respectively. The percentage values are 23.6% and 75.9%, respectively.

Since the sizing functions considered in this study are mainly adapted to the geometric

features of the input CAD models, this observation reveals that the F6 model has fewer

geometry features than the F16 model.

(a) (b)

(c) (d)

Figure 13. (a)~(c) detail the variations of the indices max
real and

numE with the numbers of

iteration steps experienced in the sizing-function smoothing procedures. (d) draws the curves

of the accumulative ratio function () (1.0)r x x  , which refers to the percentage of

background elements with real

i values (computed by Equation 11) below x .

7. Conclusions

Surface mesh generation is a time-consuming step when complex aerodynamics models are
considered. A main performance bottleneck lies in the element-sizing specification procedure.
The conventional grid sources based scheme involves intensive manual labors. In this study,
an automatic scheme is proposed for the element-sizing specification of unstructured surface
mesh generation. Different with existing Cartesian mesh based schemes, the proposed
algorithm adopts unstructured triangular mesh as the background mesh. Experiments of
complicated aerodynamics configurations show that our algorithm can automatically produce
a suitable size map in minutes. By contrast, a conventional grid sources based scheme may
need many hours by a tedious manual interaction process.

Due to the topological flexibility of unstructured meshes, the proposed algorithm generates
a far coarser background mesh than existing Cartesian mesh based schemes for the problem of
unstructured surface mesh generation. Nevertheless, if volume meshing is considered, the
surface background mesh is not suitable any more. A possible approach is to use the surface
background mesh as inputs to construct a volume mesh. The convex NLP model set up for
surface problems (NLP 6) can be naturally extended for volume problems.

Meanwhile, a particular interest of our ongoing research is to extend NLP 6 for anisotropic
meshing problem by introducing the Riemannian metric.

Acknowledgments

The authors would like to thank the support from the National Natural Science Foundation of
China (Grant Nos. 11172267, 11432013, 10872182 and 11171305), Zhejiang Provincial
Natural Science Foundation of China (Grant No. Y1110038). The first author acknowledges
the joint support from Zhejiang University and China Scholarship Council and the host of
Professor Oubay Hassan and Professor Kenneth Morgan for his visiting research at Swansea
University, UK. A preliminary version of this paper was published in the 23th International
Meshing Roundtable conference [39]. The authors appreciate the valuable comments and
constructive suggestions from the anonymous reviewers who served that conference.

Appendix A

Given a triangle F with end nodes (0 ~ 2)ip i  , the sizing value of a point p inside F is:
2

0 1 0 0 1 1 0 1 2
0

(,) (1)
i i

i

h t t t h t h t h t t h


      ,

where (0 ~ 2)ih i  are the sizing values at nodes (0 ~ 2)ip i  , (0 ~ 2)it i  are the natural

coordinates of p :

Area() / Area() /i i it F F A A  .

If quadrilateral elements are generated inside F , the estimated element number is:

2
0 1

1

(,)F
Q

n d
h t t

  , (A1)

where
F is the region bounded by F . Equation (A1) can be written in the natural

coordinate system as:

11 1

0 120 0
0 1

1
2

(,)

t

Q F
n A dt dt

h t t


   . (A2)

Solving Equation (A2), the final expression of
Qn can be obtained as

2
0 0 1 2

01
0 1 1 22

1 0 1

2

0 1 2
00 1 2

/

2
(ln) , and

2
(ln)

Q

i i

i

A h h h h

hA
h h h h

n h h

A
h h h h



  
     

   
  



, (A3)

where 0 2 1h h   , 1 0 2h h   and 2 1 0h h   .

If triangular elements are desired, the estimated element number is:

2 Qn n  . (A4)

References

1. Baker TJ. Mesh generation: art or science? Progress in Aerospace Sciences 2005; 41:29-63.
2. Weatherill NP, Hassan O, Morgan K, Jones JW, Larwood BG, Sorenson K. Aerospace simulations on parallel computers

using unstructured grids. International Journal for Numerical Methods in Fluids 2002; 40:171–187.
3. Löhner R. Recent advances in parallel advancing front grid generation. Archives of Computational Methods in

Engineering 2014; 21:127-140.
4. Chen J, Zhao D, Huang Z, Zheng Y, Wang D. Improvements in the reliability and element quality of parallel tetrahedral

mesh generation. International Journal for Numerical Methods in Engineering 2012; 92: 671-693.

5. Zhao D, Chen J, Zheng Y, Huang Z, Zheng J (2014) Fine-grained parallel algorithm for unstructured surface mesh
generation. Computers & Structures, 2015; 154:177-191.

6. Shimada K. Current issues and trends in meshing and geometric processing for computational engineering analyses.
Journal of Computing and Information Science in Engineering 2011; 11:1 -13.

7. Chen J, Cao B, Zheng Y, Xie L, Li C, Xiao Z. Automatic surface repairing, defeaturing and meshing algorithms based
on an extended B-Rep. Advances in Engineering Software, 2015, 86:55-69.

8. Pirzadeh, SZ. Structured background grids for generation of unstructured grids by advancing-front method. AIAA

journal 1993; 31:257-265.
9. Kania LK, Pirzadeh, SZ. A geometrically-derived background function for automated unstructured mesh generation.

Proceedings of the 17th AIAA Computational Fluid Dynamics Conference, Toronto, Canada, 2005; AIAA 2005-5240.
10. Pirzadeh, SZ. Advanced unstructured grid generation for complex aerodynamic applications. AIAA Journal 2010;

48:904-915.
11. Deister F, Tremel U, Hassan O, Weatherill NP. Fully automatic and fast mesh size specification for unstructured mesh

generation. Engineering with Computers 2004; 20:237-248.
12. Quadros W, Vyas V, Brewer M, Owen SJ, Shimada K. A computational framework for automating generation of sizing

function in assembly meshing via disconnected skeletons. Engineering with Computers 2010; 26:231-247.
13. Zheng Y, Weatherill NP, Turner-Smith EA. Interactive geometry utility environment for multi-disciplinary

computational engineering. International Journal for Numerical Methods in Engineering 2002; 53:1277-1299.
14. Owen SJ, Saigal S. Neighborhood based element sizing control for finite element surface meshing. Proceedings of 6th

International Meshing Roundtable, 1997:143–154
15. Borouchaki H, Hecht F, Frey PJ. Mesh gradation control. International Journal for Numerical Methods in Engineering

1998; 43:1143-1165.
16. Pippa S, Caligiana G. GradH-Correction: guaranteed sizing gradation in multi-patch parametric surface meshing.

International Journal for Numerical Methods in Engineering 2005; 62:495-515.
17. Persson P-O. Mesh size functions for implicit geometries and PDE-based gradient limiting. Engineering with Computers,

2006; 22:95-109.
18. Shan J, Li Y, Guo Y, Guan Z. A robust backward search method based on walk-through for point location on a 3D

surface mesh. International Journal for Numerical Methods in Engineering 2008; 73:1061-1076.
19. Hecht F, Mohammadi B. Mesh adaption by metric control for multi-scale phenomena and turbulence. AIAA Paper, 97-

0859, 1997.
20. Alauzet F. Size gradation control of anisotropic meshes. Finite Elements in Analysis and Design, 2010; 46: 181-202.
21. Qiu G. Analytical geometry (Vol. 2). Beijing: Higher Education Press. 1957. pp. 201-204.
22. Делоне БН, Райков ДН, Аналитическая геометрия II, государственное издательство технико-теоретической

дитературы, 1949.
23. Polyanin AD, Chernoutsan AI. A concise handbook of mathematics, physics, and engineering sciences. London: CRC

Press. 2010. pp. 99-101.
24. Stephen B, Vandenberghe L. Convex optimization (Seventh printing with corrections). Cambridge: Cambridge

University Press. 2009.
25. Dey S, Shephard MS, Flaherty JE. Geometry representation issues associated with p-version finite element computations.

Computer Methods in Applied Mechanics and Engineering 1997; 150:39-55.
26. Cunha, A, Canann SA, Saigal S. Automatic boundary sizing for 2D and 3D meshes. Proceedings of the AMD Trends in

Unstructured Mesh Generation, ASME, Evanston, IL, USA, 1997; 65-72.
27. Zhu J, Blaker T, Smith R. Background overlay grid size functions. Proceedings of the 11th International Meshing

Roundtable, Ithaca, NY, USA, 2002; 65-74.
28. Luo X, Shephard MS, Yin L, O'Bara RM, Nastasia R, Beall MW. Construction of near optimal meshes for 3D curved

domains with thin sections and singularities for p-version method. Engineering with Computers 2010; 26:215-229.
29. Xie L, Chen J, Liang Y, Zheng Y. Geometry-based adaptive mesh generation for continuous and discrete parametric

surfaces. Journal of Information & Computational Science, 2012; 9:2327-2344.
30. Frey PJ, George PL. Mesh generation: application to finite elements. Oxford: HERMES Science Publishing. 2000.
31. Nesterov Y. Nemirovskii A, Ye Y. Interior-point polynomial algorithms in convex programming. Philadelphia: Society

for Industrial and Applied Mathematics. 1994.
32. Wächter, A. An Interior Point Algorithm for Large-Scale Nonlinear Optimization with Applications in Process

Engineering. PhD thesis, Carnegie Mellon University, Pittsburgh, PA, USA, January 2002.
33. Wächter A., Biegler L.T., On the implementation of a primal-dual interior point filter line search algorithm for large-

scale nonlinear programming, Mathematical Programming, 2006; 106:25-57.
34. Peirò J. Surface grid generation. In: Thompson JF, Soni BK, Weatherill NP (eds) Handbook of Grid Generation. CRC

Press, Inc., Boca Raton, FL, USA, Chapter 19, 1999.
35. Meshing Contest of the 23rd International Meshing Roundtable. Jun-16-2015. URL: http://imr.sandia.gov/

23imr/MeshingContest.html.
36. NASA DLR-F6 Geometry. Jun-16-2015. URL: http://aaac.larc.nasa.gov/tsab/cfdlarc/aiaa-dpw/Workshop2/DLR-F6-

geom.html.
37. Xie L, Zheng Y, Chen J, Zou J. Enabling technologies in the problem solving environment HEDP. Communications in

Computational Physics, 2008; 4:1170-1193.

38. Chen J, Zhao D, Huang Z, Zheng Y, Gao S. Three-dimensional constrained boundary recovery with an enhanced Steiner
point suppression procedure. Computers and Structures 2011; 89: 455-466.

39. Xiao Z, Chen J, Zheng Y, Zeng L, Zheng J. Automatic unstructured element-sizing specification algorithm for surface
mesh. Procedia Engineering, 2014; 82:240-252.

