

Automatic Software Clustering via Latent Semantic Analysis1

Jonathan I. Maletic, Naveen Valluri
The Department of Mathematical Sciences Division of Computer Science

The University of Memphis
Campus Box 526429 Memphis TN 38152

jmaletic@memphis.edu

1 This paper appears in the 14th IEEE ASE’99, Cocoa Beach FL, Oct. 12-15th, pp. 251-254

Abstract
The paper describes the initial results of applying Latent
Semantic Analysis (LSA) to program source code and
associated documentation. Latent Semantic Analysis is a
corpus-based statistical method for inducing and
representing aspects of the meanings of words and
passages (of natural language) reflective in their usage.
This methodology is assessed for application to the
domain of software components (i.e., source code and its
accompanying documentation). The intent of applying
Latent Semantic Analysis to software components is to
automatically induce a specific semantic meaning of a
given component. Here LSA is used as the basis to
cluster software components. Results of applying this
method to the LEDA library and MINIX operating system
are given. Applying Latent Semantic Analysis to the
domain of source code and internal documentation for
the support of software reuse is a new application of this
method and a departure from the normal application
domain of natural language.

1. Introduction

This work describes some of the initial findings of
applying Latent Semantic Analysis to software. Latent
Semantic Analysis (LSA) [1, 8] is a corpus-based
statistical method for inducing and representing aspects
of the meanings of words and passages (of natural
language) reflective in their usage. The method generates
a real valued vector description for documents of text.
This representation can be used to compare and index
documents using a variety of similarity measures. By
applying LSA to source code and its associated
documentation candidate components or descriptions can
be compared with respect to these similarity measures.
Here the vector description is used to cluster components
into semantically related groups.

Results have shown [1, 8] that LSA captures significant
portions of the meaning not only of individual words but
also of whole passages such as sentences, paragraphs and
short essays. Basically the central concept of LSA is that
the information about word contexts in which a particular

word appears or does not appear provides a set of mutual
constraints that determines the similarity of meaning of
sets of words to each other.

LSA relies on a Single Value Decomposition (SVD) [11,
10] of a matrix (word × context) derived from a corpus of
natural text that pertains to knowledge in the particular
domain of interest. SVD is a form of factor analysis and
acts as a method for reducing the dimensionality of a
feature space without serious loss of specificity.
Typically the word by context matrix is very large and
(quite often) sparse. SVD reduces the number of
dimensions without great loss of descriptiveness. Single
value decomposition is the underlying operation in a
number of applications including statistical principal
component analysis [6], text retrieval [1, 4], pattern
recognition and dimensionality reduction [3], and natural
language understanding [7, 8].

2. The LSA Model

Latent Semantic Analysis is comprised of four steps [2,
8]:

1. A large body of text is represented as an occurrence

matrix (i × j) in which rows stand for individual
word types, columns for meaning bearing passages
such as sentence or paragraphs (granularity is based
on problem or data), that is (word × context). Each
cell then contains the frequency with which a word
occurs in a passage.

2. Cell entries freqi,j are transformed to:

∑ ∑∑−
−−

−

+

j
j ji

ji

j ji

ji

ji

freq

freq

freq

freq

freq

1
1 ,

,

1 ,

,

,

log*

)1log(

a measure of the first order association of a word and
its context.

3. The matrix is then subject to Singular Value
Decomposition (SVD) [4, 6, 10, 11]:

[ij] = [ik] [kk] [jk]’

where [ij] is the occurrence matrix, [ik] and [jk]
have orthonormal columns, [kk] is a diagonal matrix
of singular value where k ≤ max(i,j). In SVD a
rectangular matrix is decomposed into the product of
three other matrices. One component matrix
describes the original row entities as vectors of
derived orthogonal factor values, another describes
the original column entities in the same way. The
third is a diagonal matrix containing scaling values
such that when the three components are matrix
multiplied, the original matrix is reconstructed.

4. Finally, all but the d largest singular values are set to
zero. Pre-multiplication of the right-hand matrices
produces a least squares best approximation to the
original matrix given the number of dimensions, d,
that are retained. The SVD with dimension
reduction constitutes a constraint satisfaction
induction process in that it predicts the original
observations on the basis of linear relations among
the abstracted representations of the data that it has
retained.

The result is that each word is represented as a vector of
length d. Performance depends strongly on the choice of
the number of dimensions. The optimal number is
typically around between 200 and 300 and may vary from
corpus to corpus, domain to domain. The similarity of
any two words, any two text passages, or any word and
any text passage, are computed by measures on their
vectors. Often the cosine of the contained angle between
the vectors in d-space is used as the degree of qualitative
similarity of meaning. The length of vectors is also
useful as a measure.

One of the criticisms of this method, when applied to
natural language texts is that it does not make use of
word order, syntactic relations, or morphology. But very
good representations and results are derived without this
information [1]. This characteristic is very well suited to
the domain of software, both source code and internal
documentation, because much of the informal abstraction
of the problem concept may be embodied in names of key
operators and operands of the implementation, word
ordering has little meaning. Source code is hardly
English prose, but through the use of selective naming
much of the high level meaning of the problem at hand is
conveyed to the reader (programmer/developer). Internal
documentation is also found to be commonly written in a
subset of English [5] that may also lend itself to the
methods utilized by LSA.

3. Clustering Software Assets

Experiments into how domain knowledge is embodied
within software are being investigated in an empirical

manner. The work presented here focuses on using the
vector representations to compare components and
classify them into clusters of semantically similar
concepts.

Two readily available software systems are being used as
data for the experimentation: LEDA [9] (Library for
Efficient Data structures and Algorithms) and MINIX
[12] (Operating System). LEDA is a library of the data
types and algorithms for combinatorial computing and
provides a sizable collection of data types and algorithms
in a form that allows them to be used by non-experts.
LEDA is composed of over 140 C++ classes. MINIX a
simple version of the UNIX operating system and widely
used in university level computer science OS courses. It
is written in C and consists of approximately 28,000 lines
of code.

A semantic space was generated for each of these
software systems using LSA software [1]. A
dimensionality of 250 is used for both spaces. This gave
a large reduction in dimensionality as both data sets have
vocabulary counts of around a couple thousand. The
granularity of the source code input to LSA is of interest
at this point. In the applications of LSA to natural
language corpuses, typically a paragraph or section is
used as the granularity of a document. Sentences tend to
be to small and chapters too large. In source code the
analogous concepts are module or function. Obviously,
statement granularity is too small and a file containing
multiple functions too large. Given that LEDA is written
in C++ using an object-oriented methodology the
granularity chosen is that of the class LEDA has 144
source code documents. For MINIX the function level is
used along with some whole files that are made up of
data structure definitions. This resulted in 498 source
code documents for MINIX.

For each of the systems a simple parsing of the source
code is done to break the source into the proper
granularity and remove any non-essential symbols.
Comment delimiters and many syntactical tokens are
removed as they add little or no semantic knowledge of
the problem domain. Also the LSA method inherently
will see such ubiquitous tokens such as a semi-colon as a
totally non-discriminating feature between to source code
components. That is, every meaningful C++ component
contains a semi-colon. Therefore the variance of this
feature is very low (most likely zero) thus if two
components have a semi-colon then nothing can be said
about their similarity.

A number of different types of experiments are being
conducted with these semantic spaces including:
clustering of components based on similarity; comparing

similarity between a component and
external documentation; and component
matching from natural language queries.
The focus here is on the clustering or
grouping of related software documents based on the
similarity measure produced by LSA.

To cluster the source code
documents they are
partitioned based on
similarity value λ with
respect to the other
documents in the semantic
space. A document is added
to a cluster if it is at least λ
similar to any one of the
other documents in the
cluster. This strategy
attempts to group as many
documents together within
the given similarity range.
The similarity measures are
computed by the cosine of
the two vector
representations of the source
code documents. The

similarity value therefore has a domain of [-1, 1], with the
value 1 being "exactly" similar.

Tables 1 and 2 give two
clusters generated by using a
similarity measure of 0.7
(approximately 45 degrees)
and above. This level of
similarity is first thought to
be a reasonable value,
though actually quite low,
and secondly found to be
reasonable through

qualitative examination of the grouped
classes.

Table 1 is a group of classes dealing with
linear lists. Each of the classes has much
in common with underlying semantics
and general domain. This is also one of
the bigger clusters generated for the
LEDA data set. Table 2 gives the classes
in a smaller, more typically sized cluster
that relates to a particular method. This
grouping is also much more obvious from
the naming of the classes/files.

Singleton clusters made up most of the clusters
uncovered. Figure 1 gives a break down of how many

clusters of each size in the data set. There are 87 classes
that are not within the similarity range to any other class
thus resulting in a cluster of size one. But 11 clusters
occurred with size greater then one.

The overview for the MINIX semantic space is given in
Figure 2. Here the number of none singleton clusters is
47 with many of them fairly small (size 2). It is
interesting to note that there are a couple of fairly large
clusters with sizes of 16, 20, and 25. A complete analysis
of the data generated for MINIX is still under way and
more qualitative analysis is needed to validate this work.

4. Discussion of Results

The clusters produced by LSA represent an abstraction of
the source code based on a semantic similarity. The
grouping produced in this automated fashion reflect the
reality. Pieces of source code that had large amounts of
semantic similarity were grouped together and modules
with no relation to others remained apart. The clusters in
the LEDA library seem to reflect class categories, that is
groups of related classes the function on similar concepts
or solve common types of problems. By grouping similar
classes (or components) together a broader understanding
of the software system may be achieved. Understanding
of one of the components in the cluster implies some
basic understanding of the others. In the MINIX system
the clusters are quite different due to the different
methodology and programming language utilized. In this
case the clusters seem to represent sets of documents that
represent a class or abstract data type. Basically, the
larger clusters are typically composed of one or two data
structure definitions and a number of functions that
utilize these data structures.

A large number of the software documents in each of the
systems are grouped by themselves as singleton clusters.

Cluster: Linear
Lists
_d_array.h
_dictionary.h
_p_queue.h
_prio.h
_sortseq.h
dictionary.h
f_sortseq.h
p_dictionary.h
p_queue.h
prio.h
sortseq.h

Table 1. An Example
Cluster in LEDA.

This cluster gives
grouping of all linear

lists.

Cluster:
Delaunay’s

Method
float_delaunay.h
rat_delaunay.h

Table 2. An Example
Cluster in LEDA.

This cluster gives a
grouping of Delaunay’s
triangulation method.

Figure 1. LEDA Cluster distribution. Number of clusters
with size greater then one: 11. Number of singleton
clusters: 87 (not shown).

0

1

2

3

4

5

6

7

2 6 8 1 1 1 4

C la s s e s p e r C lu s te r

N
o

. o
f

C
lu

st
er

s

Eighty-seven of the 144 documents in LEDA are
singletons and 311 out of 498 in MINIX. These represent
stand-alone components that have little semantic
relationship with the rest of the system. Given the fact
that both of these systems are products of good design
and programming practices the high percentage of stand-
alone documents is not surprising.

The next step in the research will be to expand the sets of
software systems being examined. It will most likely be
prudent to select some very orthogonal domains and
some closely inter related domains to assess the
application of LSA. Each domain must have a number of
example components with varying degrees of internal and
external documentation, which will give a good spectrum
of the particular domain and result in a valid
representation of the domain knowledge. Assessing the
relative quality and validity of the constructed semantic
spaces is the main goal of this research. The semantic
spaces will be used to locate and classify components in
the selected problem domains. This will support
searching large pieces of software for components that
match to any of the known domain types in the
knowledge base. Utilizing this similarity measure in
some way to produce a useful metric for cohesion is also
under investigation.

LSA is a powerful tool to assist in supporting many of the
activities of the software reuse process. The reuse
activities that can be directly supported by LSA are the
identification and locating reusable components;
classification and storage of
components; retrieval and
indexing; and understanding.
Research is underway to
assess LSA ability to support
these activities.

5. References

[1] Berry, M.W., Dumais,
S.T., O’Brien, G.W., “Using
Linear Algebra for Intelligent
Information Retrieval”,
SIAM: Review, 37(4), 1995,
pp. 573-595.
[2] Deerwester, S., Dumais,
S.T., Furnas, G.W.,
Landauer, T.K., Harshman,
R., “Indexing by Latent
Semantic Analysis”, Journal
of the American Society for
Information Science, 41,
1990, pp. 391-407.

[3] Duda, R.O., Hart, P.E., Pattern Classification and
Scene Analysis, Wiley, 1973.
[4] Dumais, S.T., "Latent Sematic Indexing (LSI) and
TREC-2" in Proceedings for The Second Text Retrieval
Conference (TREC-2), Harman, D.K. (Eds), March 1994,
pp. 105-115.
[5] Etzkorn, Letha H., Davis, Carl G., “Automatically
Identifying Reusable OO Legacy Code”, IEEE Computer,
30(10), October 1997, pp.66-72.
[6] Jolliffe, I.T., Principal Component Analysis,
Springer Verlag, 1986
[7] Landauer, T.K., Dumais, S. T. “A Solution to Plato’s
Problem: The Latent Semantic Analysis Theory of the
Acquisition, Induction, and Representation of
Knowledge”, Psychological Review, 104(2), 1997, pp.
211-240.
[8] Landauer, T.K., Laham, D., Rehder, B., Shreiner,
M.E., How Well Can Passage meaning Be Derived
without Using Word Order? A Comparison of Latent
Semantic Analysis and Humans”, Proceedings of the
Nineteenth Annual Conference of the Cognitive Science
Society, 1997, pp. 412--417.
[9] The LEDA Manual Version R-3.7, http://www.mpi-
sb.mpg.de/LEDA/index.html, Last accessed: 4/29/1999.
[10] Press, W.H., Teukolsky, S.A., Vetterling, W.T.,
Flannery, B.P., Numerical Recipes in C, The Art of
Scientific Computing, Cambridge University Press, 1996.
[11] Strang, G., Linear Algebra and its Applications 2nd
Edition, Academic Press, 1980.
[12] Tanenbaum, A., Woodhull, A., Operating Systems
Design and Implementation, Prentice Hall, 1997.

0

5

10

15

20

25

30

2 3 4 6 8 16 20 25

Cluster Size

N
u

m
b

er
 o

f
F

u
n

ct
io

n
s

Figure 2. Cluster distribution for MINIX.

Number of clusters with size greater than one: 47. Number of Singleton
clusters: 311 (not shown).

http://www.mpi-sb.mpg.de/LEDA/index.html
http://www.mpi-sb.mpg.de/LEDA/index.html

	1. Introduction
	
	2. The LSA Model

	3. Clustering Software Assets
	
	
	
	
	4. Discussion of Results

	5. References

