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Abstract 
The paper describes the initial results of applying Latent 
Semantic Analysis (LSA) to program source code and 
associated documentation.  Latent Semantic Analysis is a 
corpus-based statistical method for inducing and 
representing aspects of the meanings of words and 
passages (of natural language) reflective in their usage.  
This methodology is assessed for application to the 
domain of software components (i.e., source code and its 
accompanying documentation).  The intent of applying 
Latent Semantic Analysis to software components is to 
automatically induce a specific semantic meaning of a 
given component.  Here LSA is used as the basis to 
cluster software components.  Results of applying this 
method to the LEDA library and MINIX operating system 
are given. Applying Latent Semantic Analysis to the 
domain of source code and internal documentation for 
the support of software reuse is a new application of this 
method and a departure from the normal application 
domain of natural language. 
 
1. Introduction 
 
This work describes some of the initial findings of 
applying Latent Semantic Analysis to software.  Latent 
Semantic Analysis (LSA) [1, 8] is a corpus-based 
statistical method for inducing and representing aspects 
of the meanings of words and passages (of natural 
language) reflective in their usage.  The method generates 
a real valued vector description for documents of text.  
This representation can be used to compare and index 
documents using a variety of similarity measures.  By 
applying LSA to source code and its associated 
documentation candidate components or descriptions can 
be compared with respect to these similarity measures.  
Here the vector description is used to cluster components 
into semantically related groups. 
 
Results have shown [1, 8] that LSA captures significant 
portions of the meaning not only of individual words but 
also of whole passages such as sentences, paragraphs and 
short essays.  Basically the central concept of LSA is that 
the information about word contexts in which a particular 

word appears or does not appear provides a set of mutual 
constraints that determines the similarity of meaning of 
sets of words to each other. 
 
LSA relies on a Single Value Decomposition (SVD) [11, 
10] of a matrix (word × context) derived from a corpus of 
natural text that pertains to knowledge in the particular 
domain of interest.  SVD is a form of factor analysis and 
acts as a method for reducing the dimensionality of a 
feature space without serious loss of specificity.  
Typically the word by context matrix is very large and 
(quite often) sparse.  SVD reduces the number of 
dimensions without great loss of descriptiveness.  Single 
value decomposition is the underlying operation in a 
number of applications including statistical principal 
component analysis [6], text retrieval [1, 4], pattern 
recognition and dimensionality reduction [3], and natural 
language understanding [7, 8]. 
 
2. The LSA Model 
 
Latent Semantic Analysis is comprised of four steps [2, 
8]: 
 
1. A large body of text is represented as an occurrence 

matrix (i × j) in which rows stand for individual 
word types, columns for meaning bearing passages 
such as sentence or paragraphs (granularity is based 
on problem or data), that is (word × context).  Each 
cell then contains the frequency with which a word 
occurs in a passage. 

2. Cell entries freqi,j are transformed to:  
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a measure of the first order association of a word and 
its context. 

3. The matrix is then subject to Singular Value 
Decomposition (SVD) [4, 6, 10, 11]:  

[ij] = [ik] [kk] [jk]’ 



 

where [ij] is the occurrence matrix, [ik] and [jk] 
have orthonormal columns, [kk] is a diagonal matrix 
of singular value where k ≤ max(i,j).  In SVD a 
rectangular matrix is decomposed into the product of 
three other matrices.  One component matrix 
describes the original row entities as vectors of 
derived orthogonal factor values, another describes 
the original column entities in the same way.  The 
third is a diagonal matrix containing scaling values 
such that when the three components are matrix 
multiplied, the original matrix is reconstructed. 

4. Finally, all but the d largest singular values are set to 
zero.  Pre-multiplication of the right-hand matrices 
produces a least squares best approximation to the 
original matrix given the number of dimensions, d, 
that are retained.  The SVD with dimension 
reduction constitutes a constraint satisfaction 
induction process in that it predicts the original 
observations on the basis of linear relations among 
the abstracted representations of the data that it has 
retained. 

 
The result is that each word is represented as a vector of 
length d.  Performance depends strongly on the choice of 
the number of dimensions.  The optimal number is 
typically around between 200 and 300 and may vary from 
corpus to corpus, domain to domain.  The similarity of 
any two words, any two text passages, or any word and 
any text passage, are computed by measures on their 
vectors.  Often the cosine of the contained angle between 
the vectors in d-space is used as the degree of qualitative 
similarity of meaning.  The length of vectors is also 
useful as a measure. 
 
One of the criticisms of this method, when applied to 
natural language texts is that it does not make use of 
word order, syntactic relations, or morphology.  But very 
good representations and results are derived without this 
information [1].  This characteristic is very well suited to 
the domain of software, both source code and internal 
documentation, because much of the informal abstraction 
of the problem concept may be embodied in names of key 
operators and operands of the implementation, word 
ordering has little meaning.  Source code is hardly 
English prose, but through the use of selective naming 
much of the high level meaning of the problem at hand is 
conveyed to the reader (programmer/developer).  Internal 
documentation is also found to be commonly written in a 
subset of English [5] that may also lend itself to the 
methods utilized by LSA. 
 
3. Clustering Software Assets 
 
Experiments into how domain knowledge is embodied 
within software are being investigated in an empirical 

manner.  The work presented here focuses on using the 
vector representations to compare components and 
classify them into clusters of semantically similar 
concepts. 
 
Two readily available software systems are being used as 
data for the experimentation: LEDA [9] (Library for 
Efficient Data structures and Algorithms) and MINIX 
[12] (Operating System).  LEDA is a library of the data 
types and algorithms for combinatorial computing and 
provides a sizable collection of data types and algorithms 
in a form that allows them to be used by non-experts.  
LEDA is composed of over 140 C++ classes.  MINIX a 
simple version of the UNIX operating system and widely 
used in university level computer science OS courses.  It 
is written in C and consists of approximately 28,000 lines 
of code. 
 
A semantic space was generated for each of these 
software systems using LSA software [1].  A 
dimensionality of 250 is used for both spaces.  This gave 
a large reduction in dimensionality as both data sets have 
vocabulary counts of around a couple thousand.  The 
granularity of the source code input to LSA is of interest 
at this point.  In the applications of LSA to natural 
language corpuses, typically a paragraph or section is 
used as the granularity of a document.  Sentences tend to 
be to small and chapters too large.  In source code the 
analogous concepts are module or function.  Obviously, 
statement granularity is too small and a file containing 
multiple functions too large.  Given that LEDA is written 
in C++ using an object-oriented methodology the 
granularity chosen is that of the class LEDA has 144 
source code documents.  For MINIX the function level is 
used along with some whole files that are made up of 
data structure definitions.  This resulted in 498 source 
code documents for MINIX. 
 
For each of the systems a simple parsing of the source 
code is done to break the source into the proper 
granularity and remove any non-essential symbols.  
Comment delimiters and many syntactical tokens are 
removed as they add little or no semantic knowledge of 
the problem domain.  Also the LSA method inherently 
will see such ubiquitous tokens such as a semi-colon as a 
totally non-discriminating feature between to source code 
components.  That is, every meaningful C++ component 
contains a semi-colon.  Therefore the variance of this 
feature is very low (most likely zero) thus if two 
components have a semi-colon then nothing can be said 
about their similarity. 
 
A number of different types of experiments are being 
conducted with these semantic spaces including: 
clustering of components based on similarity; comparing 



 

similarity between a component and 
external documentation; and component 
matching from natural language queries.  
The focus here is on the clustering or 
grouping of related software documents based on the 
similarity measure produced by LSA. 

 
To cluster the source code 
documents they are 
partitioned based on 
similarity value λ with 
respect to the other 
documents in the semantic 
space.  A document is added 
to a cluster if it is at least λ 
similar to any one of the 
other documents in the 
cluster.  This strategy 
attempts to group as many 
documents together within 
the given similarity range.  
The similarity measures are 
computed by the cosine of 
the two vector 
representations of the source 
code documents.  The 

similarity value therefore has a domain of [-1, 1], with the 
value 1 being "exactly" similar. 

 
Tables 1 and 2 give two 
clusters generated by using a 
similarity measure of 0.7 
(approximately 45 degrees) 
and above.  This level of 
similarity is first thought to 
be a reasonable value, 
though actually quite low, 
and secondly found to be 
reasonable through 

qualitative examination of the grouped 
classes. 
 
Table 1 is a group of classes dealing with 
linear lists.  Each of the classes has much 
in common with underlying semantics 
and general domain.  This is also one of 
the bigger clusters generated for the 
LEDA data set.  Table 2 gives the classes 
in a smaller, more typically sized cluster 
that relates to a particular method.  This 
grouping is also much more obvious from 
the naming of the classes/files. 
 
Singleton clusters made up most of the clusters 
uncovered.  Figure 1 gives a break down of how many 

clusters of each size in the data set.  There are 87 classes 
that are not within the similarity range to any other class 
thus resulting in a cluster of size one.  But 11 clusters 
occurred with size greater then one. 
 
The overview for the MINIX semantic space is given in 
Figure 2.  Here the number of none singleton clusters is 
47 with many of them fairly small (size 2).  It is 
interesting to note that there are a couple of fairly large 
clusters with sizes of 16, 20, and 25.  A complete analysis 
of the data generated for MINIX is still under way and 
more qualitative analysis is needed to validate this work. 
 
4. Discussion of Results 
 
The clusters produced by LSA represent an abstraction of 
the source code based on a semantic similarity.  The 
grouping produced in this automated fashion reflect the 
reality.  Pieces of source code that had large amounts of 
semantic similarity were grouped together and modules 
with no relation to others remained apart.  The clusters in 
the LEDA library seem to reflect class categories, that is 
groups of related classes the function on similar concepts 
or solve common types of problems.  By grouping similar 
classes (or components) together a broader understanding 
of the software system may be achieved.  Understanding 
of one of the components in the cluster implies some 
basic understanding of the others.  In the MINIX system 
the clusters are quite different due to the different 
methodology and programming language utilized.  In this 
case the clusters seem to represent sets of documents that 
represent a class or abstract data type.  Basically, the 
larger clusters are typically composed of one or two data 
structure definitions and a number of functions that 
utilize these data structures. 
 

A large number of the software documents in each of the 
systems are grouped by themselves as singleton clusters.  

Cluster: Linear 
Lists 
_d_array.h 
_dictionary.h 
_p_queue.h 
_prio.h 
_sortseq.h 
dictionary.h 
f_sortseq.h 
p_dictionary.h 
p_queue.h 
prio.h 
sortseq.h 

Table 1. An Example 
Cluster in LEDA.  

This cluster gives 
grouping of all linear 

lists. 

Cluster: 
Delaunay’s 

Method 
float_delaunay.h 
rat_delaunay.h 

Table 2. An Example 
Cluster in LEDA.  

This cluster gives a 
grouping of Delaunay’s 
triangulation method. 

Figure 1. LEDA Cluster distribution.  Number of clusters 
with size greater then one: 11.  Number of singleton 
clusters: 87 (not shown). 
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Eighty-seven of the 144 documents in LEDA are 
singletons and 311 out of 498 in MINIX.  These represent 
stand-alone components that have little semantic 
relationship with the rest of the system.  Given the fact 
that both of these systems are products of good design 
and programming practices the high percentage of stand-
alone documents is not surprising. 
 
The next step in the research will be to expand the sets of 
software systems being examined.  It will most likely be 
prudent to select some very orthogonal domains and 
some closely inter related domains to assess the 
application of LSA.  Each domain must have a number of 
example components with varying degrees of internal and 
external documentation, which will give a good spectrum 
of the particular domain and result in a valid 
representation of the domain knowledge.  Assessing the 
relative quality and validity of the constructed semantic 
spaces is the main goal of this research.  The semantic 
spaces will be used to locate and classify components in 
the selected problem domains.  This will support 
searching large pieces of software for components that 
match to any of the known domain types in the 
knowledge base.  Utilizing this similarity measure in 
some way to produce a useful metric for cohesion is also 
under investigation. 
 
LSA is a powerful tool to assist in supporting many of the 
activities of the software reuse process.  The reuse 
activities that can be directly supported by LSA are the 
identification and locating reusable components; 
classification and storage of 
components; retrieval and 
indexing; and understanding.  
Research is underway to 
assess LSA ability to support 
these activities. 
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Figure 2. Cluster distribution for MINIX. 

Number of clusters with size greater than one: 47. Number of Singleton 
clusters: 311 (not shown). 
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