Automatic Software Fault Localization using Generic
Program Invariants

Rui Abreut Alberto Gonzalez'!

fEmbedded Software Lab

Delft University of Technology
The Netherlands

{r.f.abreu, p.zoeteweij, a.j.c.vangemund}@tudelft.nl

ABSTRACT

Despite extensive testing in the development phase, resid-
ual defects can be a great threat to dependability in the
operational phase. This paper studies the utility of low-
cost, generic invariants (“screeners”) in their capacity of
error detectors within a spectrum-based fault localization
(SFL) approach aimed to diagnose program defects in the
operational phase. The screeners considered are simple bit-
mask and range invariants that screen every load/store and
function argument/return program point. Their generic na-
ture allows them to be automatically instrumented with-
out any programmer-effort, while training is straightforward
given the test cases available in the development phase. Ex-
periments based on the Siemens program set demonstrate
diagnostic performance that is similar to the traditional,
development-time application of SFL based on the program
pass/fail information known before-hand. This diagnostic
performance is currently attained at an average 14% screener
execution time overhead, but this overhead can be reduced
at limited performance penalty.

Categories and Subject Descriptors

D.2.5 [Software engineering]: testing and debugging—
debugging aids, diagnostics

Keywords

Program spectra, fault localization, black box diagnosis, er-
ror detection, program invariants.

INTRODUCTION

Spectrum-based software fault localization (SFL [1]) is
a low-cost fault diagnosis approach that is used in several

1.

*This work has been carried out as part of the TRADER
project under the responsibility of the Embedded Systems
Institute. This project is partially supported by the Nether-
lands Ministry of Economic Affairs under the BSIK03021
program.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

SAC’08 March 16-20, 2008, Fortaleza, Ceara, Brazil

Copyright 2008 ACM 978-1-59593-753-7/08/0003 ...$5.00.

Peter Zoeteweijt

712

Arjan J.C. van Gemund*

*ETS de Ingenieria Informatica
Universidad de Valladolid
Spain
a.gonzalezsanchez@tudelft.nl

tools/techniques for automated diagnosis and debugging [4,
15, 23]. Essentially, SFL correlates execution activity of
parts of a program with the program’s pass/fail outcome.
The analysis yields a list of suspect program parts, ranked
in likelihood of containing the fault. Recent research activ-
ity has shown that SFL can pinpoint program faults up to
an accuracy such that on average less than 20 percent of the
program need be inspected [1, 2, 15].

Typically, SFL is used at the development phase, when a
number of (regression) test cases are executed. However, ap-
plication of fault diagnosis at the operational phase is gaining
importance as it is becoming clear that no economic design
process will deliver sufficiently dependable (embedded) soft-
ware, given current-day’s systems complexity [16, 20]. De-
spite extensive testing, residual defects may still cause fail-
ures, which also need to be detected, either as feedback to
development-time debugging, or as input to a run-time di-
agnosis and recovery procedure (collectively known as FDIR,
- fault detection, isolation, and recovery).

The accuracy of fault diagnosis is critically dependent on
the accuracy of the error detection (pass/fail information)
input. Since no testing oracle is available in the operational
phase, fault diagnosis is highly dependent on the error detec-
tors that are integrated within the program. Error detection
ranges from application-specific (e.g., a user-programmed in-
variant that checks if the argument to an sqrt() is non-
negative) to generic (e.g., a compiler-generated range check).
The latter category of detectors usually require training to
adapt to the application-specific program profile (e.g., the
actual range a variable is permitted to have). This training
is automatically performed during testing at development-
time.

This paper studies the utility of low-cost, generic error
detectors (“screeners”) as input to SFL in the operational
phase. The motivation for this study is the following. In [2]
it has been established that the diagnostic accuracy of SFL
is not very sensitive to error detection quality, provided
that the number of (test) runs (program execution profile
information) is not too small. As this insensitivity espe-
cially applies to the false negatives (a weak point of low-cost
screeners, as shown in the paper), low-cost screeners may al-
ready yield acceptable diagnostic accuracy. As low-cost and
generic error detectors would (1) avoid costly programmer
involvement, and (2) minimize run-time time/space over-
head, the combination screening-SFL seems an appealing
prospect in the context of dependable (embedded) software
development.

An advantage of using screeners to flag a run as passed

or failed is that we don’t rely on a reference output. While
this is typically available for regression testing at develop-
ment time, this is not the case in the operational phase (see
Figure 1). In this paper we “replace” the reference program
by screeners and investigate its influence on the diagnostic
accuracy of SFL.

Development phase

Faulty

program spectra SF
I program l
Reference
program compare

gcg
B8]

L

output pass / fail

dagnosis

Figure 1: Screener-SFL vs. reference-based SFL

Operational phase

test |
cases

gco
B8]

Faulty
program
& screener
(trained at dev-time)

program spectra,

error/no error

Screeners have also been used for direct fault localiza-
tion instead of just error detection, albeit with limited suc-
cess [21]. Also from this perspective, feeding their output
to a specific (spectrum-based) fault localization algorithm
increases diagnostic quality. To the best of our knowledge,
we are the first to study the combination of low-cost, generic
screeners with spectrum-based localization to achieve auto-
matic fault localization in the operational phase. In partic-
ular, the paper makes the following contributions:

e We evaluate the error detection performance of two
screeners, viz. the bitmask screener [11] and the range
screener [22] for the Siemens benchmark set of pro-
grams [13] while varying the amount of initial training.

We evaluate the diagnostic performance of SFL for the
Siemens set benchmarks using the error information as
provided by the screeners, and we compare this per-
formance with the SFL performance based on the in-
trinsic pass/fail information provided by the Siemens
benchmark tests itself.

We argue that the screener-SFL combination gives more
educated guesses to find the faulty locations than the
stand-alone screeners, such as in [21].

Our main findings show that although the error detection
quality of screeners is quite limited, the diagnostic quality
of SFL using range screeners in the operational phase can
match the quality of SFL based on test cases in the devel-
opment phase, provide sufficient test cases are available for
training (hundreds of runs).

The paper is organized as follows. In the next section we
present our approach to software error detection and fault
diagnosis. In Section 3 we describe our experimental setup.
In Section 4 the results of our experiments are presented. A
comparison to related work appears in Section 5. Section 6
concludes the paper.

2. BACKGROUND

As defined in [3], we use the following terminology. A fail-
ure is an event that occurs when delivered service deviates
from correct service. An error is the part of the total state
of the system that may cause a failure. A fault (bug) is the
cause of an error in the system.

713

To illustrate these concepts, consider the C function in
Figure 2, which is meant to return true if all elements in the
array are greater than, or equal to zero, and false otherwise.
There is a fault (bug) in the condition in line 6: the logic
operator < was mistakenly used instead of just < .

When 1st[i] equals zero an error occurs after the code
inside the conditional statement is executed. Such errors
can be temporary, and need not to induce a failure: if we
apply nonNegative to the sequence (0, —1,2), an error oc-
curs in line 7 as [st[0] equals 0. However, the error occurring
from 1st[0] is “obscured” by the evaluation of the second
element of the array, which is —1, and the function correctly
returns false. Faults do not automatically lead to errors ei-
ther: no error will ever occur if all elements in the array are
different from zero.

. bool nonNegative(int *1st, int n) {

2. int i;

3. int res = true;

5. for (i = 0; i < n; i++) {

6. if (1st[i] <= 0) { /* correct: < #/
7. res = false; }}

8. return res; }

Figure 2: A defective C function

The purpose of diagnosis is to locate the faults (defects)
that are the root cause of errors. As such, error detection is
a prerequisite for diagnosis. As a rudimentary form of error
detection, failure detection can be used (deciding whether
a program run failed or not by inspecting the actual pro-
gram output), but in software more powerful mechanisms
are available, such as checking program invariants, pointers
array bounds, deadlock, etc. In this paper, we will consider
invariant-based error detectors.

2.1 Invariant-based Error Detection

Program invariants are conditions that have to be met
by the state of the program for it to be correct. Although
many kinds of program invariants have been proposed in
the past [8, 9, 22], we will focus on bitmask invariants [11,
22] and dynamic range invariants [22], as they require min-
imal overhead (therefore, they lend themselves well for ap-
plication within resource-constrained environments, such as
embedded systems).

A bitmask invariant is composed of two fields: the first
observed value (fst) and a bitmask (msk) representing the
activated bits (initially all bits are set to 1). Every time the
invariant is used the bits (new) are checked according to:

(1)

where @ and A are the bitwise zor and and operators respec-
tively. If the violation is non-zero, an invariant violation is
reported. In error detection mode (operational phase) an
error is flagged. During training mode (development phase)
the invariant is updated according to:

violation = (new & fst) A msk

mask = —(new & fst) A msk

(2)

Although bitmask invariants were used with success by
Hangal and Lam [11], they have limitations. First of all,
their support for representing negative and floating point
numbers is limited. Finally, the upper bound representation
of an observed number is far from tight.

To overcome these problems, we also consider range in-
variants, e.g., used by Racunas et al. in their hardware per-
turbation screener [22]. In the context of our paper, range
invariants are used to represent the (integer or real) bounds
of a program point. Every time a new value is observed, it
is checked against the currently valid bounds. If the value
is outside the bounds, an error is flagged in error detection
mode (operational phase), while in training mode (develop-
ment phase) the range is extended to include the new value.

On the one hand, range invariants can handle those cases
bitmask invariants cannot. On the other hand, they learn
slower in the training phase, especially in the case of coun-
ters. Furthermore, range invariants are unable to represent
some conditions that bitmasks can, such as even/odd prop-
erties. Despite the above shortcomings, both screeners have
been proven to be useful error detectors while their sim-
plicity allows them to be implemented in hardware, thus
minimizing run-time overhead.

2.2 Spectrum-based Fault Localization

In SFL program runs are captured in terms of a spectrum.
A program spectrum [12] can be seen as a projection of
the execution trace that shows which parts (e.g., blocks,
statements, or even paths) of the program were active during
its execution. Diagnosis consists of analyzing which of the
parts’ activation patterns show the greatest correlation with
the error pattern of different executions.

Program spectra usually allocate a boolean for each pro-
gram part that signifies whether that part was executed (a
so-called “hit spectrum”). Every program run produces a
spectrum that constitutes a row in a binary matrix of M
rows (one per run) and N columns (one for each part). Next
to the spectra, a binary vector of size M is constructed using
the (pass/fail) error detection information of each of the M
runs (either obtained from our experimental screeners or by
comparing the program output with the output of a correct
reference version). For each column j of the matrix, its sim-
ilarity s; to the error vector is evaluated. The part whose
column has the highest similarity is considered most likely
to contain the fault. The degree of similarity between each
matrix column and the error vector, is calculated using sim-
ilarity coefficients taken from data clustering techniques [6,
14].

A similarity coefficient is a function using four counters:
ate, where t is either touched (1) or not (0) and e is either
failed (1) or passed (0). For example, a11(j) counts the
number of times part j was exercised in failed runs. Many
similarity coefficients exist. Known to be amongst the best
for SFL [1, 2], in this paper we consider the following three
similarity coefficients: Ochiai, Tarantula, and Jaccard. As
an example, the latter is defined as a11(5)/(a11(j) +ao1 () +
a10(j)) (the other coefficients are not defined due to space
limitations - for more information see [1]).

In this paper we consider a program part to be a state-
ment. Consequently, the output of the fault diagnosis tech-
nique is a ranked list of statements in order of likelihood to
be at fault. Given the simplicity of the algorithm the exe-
cution overhead of SFL is small (6% at the statement-level
instrumentation, derived from [2]).

3. EXPERIMENTAL SETUP

In this section we describe the benchmark set used in our
experiments and the workflow of the experiments.

714

Program Faulty Versions LOC Test Cases Description
print_tokens 7 539 4130 Lexical Analyzer
print_tokens2 10 489 4115 Lexical Analyzer

replace 32 507 5542 Pattern Recognition
schedule 9 397 2650 Priority Scheduler

schedule2 10
41

23

299 2710 Priority Scheduler
174

398

1608
1052

tcas
tot_info

Altitude Separation
Information Measure

Table 1: Set of programs used in the experiments

3.1 Benchmark Set

In our study, we used a set of test programs known as
the Siemens set [13]. The Siemens set is composed of seven
programs. Every single program has a correct version and
a set of faulty versions of the same program. Each faulty
version contains exactly one fault. Each program also has a
set of inputs that ensures full code coverage. Table 1 pro-
vides more information about the programs in the package
(for more detailed information refer to [13]). Although the
Siemens set was not assembled with the purpose of testing
fault diagnosis techniques, it is typically used by the research
community as the set of programs to test their techniques.

In total the Siemens set provides 132 programs. How-
ever, as no failures are observed in two of these programs,
namely version 9 of schedule2 and version 32 of replace,
are discarded. Besides, we also discard versions 4 and 6 of
print_tokens because the faults in this versions are in global
variables and the profiling tool used in our experiments does
not log the execution of these statements. In summary, we
discarded 4 versions out of 132 provided by the suite, using
128 versions in our experiments.

3.2 Workflow of Experiments

Our approach to study automatic fault diagnosis in the
operational phase comprises three stages. First, the target
program is instrumented to generate the statement spectra
and execute the invariants (see Figure 3). To prevent faulty
programs to corrupt the logged information, the program
invariants and spectra themselves are located in an external
component (“Screener”). The instrumentation process is
implemented as an optimization pass for the LLVM tool [17]
in C++ (for details on the instrumentation process see [10]).
The program points screened are all memory loads/stores,
and function argument and return values.

Compiing stage

Training stage
-

e
|‘

Figure 3: Workflow of experiments

Second, the program is run for those test cases for which
the program passes (its output equals that of the reference
version), in which the invariants are operated in training
mode. The set of test cases used to train the program in-
variants is of great importance to the performance of the
error detectors at the operational (detection) phase. In the
experiments the number of these so-called correct test cases
is varied between 10% and 100% of all correct cases (267 and
2666 cases on average, respectively) in order to evaluate the
effect of training.

Finally, we execute the program over all test cases (total
number of test cases per program are in Table 1), in which
the invariants are executed in detection mode. Both errors

and spectra are collected in data bases which are input to
the SFL component.

4. EXPERIMENTAL RESULTS

Before presenting our results, we first define our perfor-
mance metrics for error detection and fault diagnosis, re-
spectively.

4.1 Evaluation Metrics

Error detection Error detection techniques may either fail
to recognize a genuine error (false negative), or may flag an
error where there is none (false positive). Error detection
quality is measured in terms of the false negative rate f,
and the false positive rate f,, which measure the number
of false negatives divided by the checking set size and the
number of false positives divided by the training set size, re-
spectively. The checking set includes all test cases in the set
of test cases that failed to produce a correct output. In turn,
the training set is composed of those that passed, i.e., that
behave correctly (at this stage, failed /passed information is
obtained by comparing the output of the faulty program
with the reference program).

Fault diagnosis As spectrum-based fault localization cre-
ates a ranking of statements in order of likelihood to be at
fault, we can retrieve how many statements a software de-
veloper would have to inspect until he hits the faulty one.
If there are two or more statements ranking with the same
coefficient, we use the average ranking position for all of
them.

Let d € {1,..., N} be the index of the statement that we
know to contain the fault. For all j € {1,...,N}, let s;
denote the similarity coefficient calculated for statement j.
Then the ranking position is given by

- Wilsi >8d}|+|2{j|53' > sap[=1 3)

We define accuracy, or quality of the diagnosis as the ef-
fectiveness to pinpoint the faulty location. It is defined as

qa=(1- ﬁ) -100% (4)

This metric represents the percentage of statements that
need not be considered when searching for the fault by travers-
ing the ranking.

4.2 Results

Before evaluating the performance of the screener-SFL
combination, we first evaluate the error detection perfor-
mance of the screeners by comparing their output to the
pass/fail outcome over the entire benchmark set (all test
cases, a pass/fail is determined by comparing the output
of a program version to the output of the correct reference
version).

Figure 4 plots the percentage of f, and f, for both bit-
mask and range invariants for different percentage of (cor-
rect) test cases used to train the invariants, when instru-
menting all program points in the program under analysis.
The plots represent the average over all programs, which
has negligible variance (between 0 — 0.1% and 3 — 4%, for
fp and f, respectively). It can be seen that f, rapidly ap-
proaches zero, which means that the screeners are unlikely
to generate false alarms. On the other hand, f, rapidly in-

715

creases, meaning that even for minimal training many errors
are already tolerated. This is due to:

e Limited detection capabilities: only single upper/lower
bounds are screened, i.e., two simple, unary opera-
tions, in contrast to the host of invariants conceiv-
able, based on complex relationships between multiple
variables (typically found in application-specific invari-
ants)

e Limited training accuracy: although the plots indi-
cate that the quantity of training data is sufficient, the
quality of the data is inherently limited. As explained
earlier, an error need not cause a program failure. In
a number of cases a (faulty) program error did not
result in a failure (i.e., a different output than the cor-
rect reference program). Consequently, the screener is
trained to accept the error, thus limiting its detection
sensitivity.

Furthermore, the results also show that the range screener
outperforms the bitmask screener.

100%

20% —=— iTmas]
—%— Ranges fi
—6— Bitmask f,
—a R

0% 20% 40% 60% 80% 100%
Training %

Figure 4: False positives and negatives on average

We now proceed to evaluate the diagnostic performance of
the screener-SFL chain. Figure 5 plots g4 for the three simi-
larity coefficients presented in Section 2.2 versus the training
percentage as used in Figure 4 (for 10%-intervals). The first
point plotted is for 10% training, since if the invariants are
not trained at all, all the runs will be flagged as failed, which
will render all statements equally likely to be at fault (i.e.,
no information). As expected, given the results in Figure 4,
the range screener outperforms the bitmask screener. As for
higher training effort f, equals zero, it may be concluded
that the difference in gq is due to the lower f,, of the range
screener. Figure 5 also shows that ¢4 is relatively insensitive
to the amount of training as the f,, and f, trends tend to
cancel out.

The performance for the bitmask screener varies between
60% and 70%, for the range screener it varies 76% and 81%
(meaning that 30-40% and 19-24% of the code has to be
inspected on average to find the fault, respectively). Fur-
thermore, the g4 given by the similarity coefficients are very
similar, so preferring one over another yields marginal im-
provements. Comparing the screener-SFL performance with
SFL at development-time (84% on average [1]), we conclude
that the use of screeners in an operational context yields
comparable diagnostic accuracy to using pass/fail informa-
tion available in the development-time phase. This result is
mainly due to the fact that the quantity of error informa-
tion compensates the limited quality (in particular, the false
negative rate). Even for 10% training the results are com-
parable, which corresponds to an average input to SFL of

36 true positives (correctly detected errors), 2656 true neg-
atives, 45 false positives, and 179 false negatives. From [2]
we know that in the original (development-time) scenario
SFL only requires some 6 true failures to approach opti-
mal performance, being insensitive to false negatives once 6
true failures are captured. Furthermore, as 36 exceeds this
threshold, the damage of f, (45) is limited.

While SFL execution time overhead is limited (6%), the
large screening density (an average of 494 screeners for all
1d/st and arg/ret points) introduce a slowdown factor rang-
ing from 1.7 (for tcas) to 33.1 (for replace). However, these
numbers are due to our choice of implementation. As men-
tioned in Section 3, for experimentation/isolation purposes,
the target program and the screener are two components
running in different processes, and the communication be-
tween them is rather time consuming. Additional measure-
ments indicate that executing the screener code within the
target program would only result in an execution time over-
head of 14% on average (5% variance) for the Siemens set
(calculated by inserting dummy statements representing the
number of required statements to run the screener).

100%

Diagnostic quality qg

sk Tarantula —&—
Msk-Jaccard —B—
Msk-Ochiai —&—
Rng-Tarantula —e—
Rng-Jaccard —&—
Rng-Ochiai —>—

0%
10% 20% 30% 40% 50% 60% 70% 80% 90% 100%
Training %

Figure 5: Diagnostic quality ¢; on average

A way to reduce the overhead is to carefully select which
program points to instrument (e.g., currently we also store
invariants for constants, but they do not give any relevant
info - hence, they could be discarded). To obtain an indi-
cation of the potential improvement we have also varied the
number of range screeners by considering ld/st and arg/ret
points separately (as they outperform bitmasks we only con-
sider ranges).

Figure 6 shows ¢q based on screening either 1d/st points or
arg/ret points. For many training situations, the (average
393) 1d/st screeners approach achieves similar performance
to total screening, whereas the (average 101) arg/ret screen-
ers entail a drop in diagnostic performance. Due to space
limitations we do not include the f,/f, plots.

Table 2 summarizes the trade-off between diagnostic per-
formance and overhead, choosing the training percentage
that delivers the best results.

1d/st
393 £ 172
11.6 + 4.6
81% (50%)

arg/rot and 1d/st
494 t 203.6
14.3 £ 5.5
81% (50%)

arg/ret
101 £ 72.3
4.8 + 1.9
75% (10%)

Program Points
Overhead (%]
g4 (training)

Table 2: Range screener density vs. Performance

In previous work [11, 21], screeners were used to directly
pinpoint the faulty location. However, we observed that
program invariants violations can occur in other locations
than the faulty one, leading the developer to inspect code
that is neither the faulty line itself nor related to it (this
situation led to the conclusion that program invariants may
not be useful for debugging in [21]). The disadvantages of

716

stand-alone screeners over our screener-SFL approach are
therefore twofold: (1) the set of unrelated candidate state-
ments is much larger than for SFL, (2) the set is not ranked,
which further increases the probability of inspecting unnec-
essary code.

100%

Diagnostic quality qq

Rng(ld/st)-Tarantula —+—
Rng(ld/st)-Jaccard —%—
Rng(Id/st)-Ochiai —%—
Rng(a/r)-Tarantula —E—
Rng(a/r)-Jaccard —m—
Rng(a/r)-Ochial —6—

0%
10% 20% 30% 40% 50% 60% 70% 80% 90% 100%
Training %

Figure 6: Diagnostic quality ¢4 for only either func-
tion arguments/returns (a/r) or loads/stores (1d/st)

S. RELATED WORK

Dynamic program invariants have been subject of study
by many researchers [8, 9, 22]. However, conversely to the
work presented in this paper, they have never been used
as the error detection input for fault localization techniques
but focused in finding the root cause of the fault themselves.

Daikon [9] is a dynamic invariant detector for C, C++,
Java, Perl, and IOA. It stores program invariants for several
program points, such as call parameters, return values, and
relationship between variables. Carrot [21] is a lightweight
version of Daikon, as it uses a smaller set of invariants. Car-
rot tries to use program invariants to pinpoint the faulty lo-
cations directly. Similarly to our experiments, the Siemens
set is also used to test Carrot. Due to the negative results
reported, it has been hypothesized that potential program
invariants may not be suitable for debugging. DIDUCE [11],
on which the bitmask study in our paper is inspired, is an
dynamic invariant detector for Java programs. Essentially,
it stores program invariants for the same program points
as in this paper. It was tested on four real world appli-
cations with successful results. However, the error used in
the experiments was caused by a variable whose value was
constant throughout the training mode and that changed
in the operational phase (hence, easy to detect using the
bitmask screener). In [22] several screeners are evaluated
to detect hardware faults. Evaluated screeners include dy-
namic ranges, bitmasks, TLB misses, Bloom filter based
screener. The authors concluded that bitmask invariants
perform slightly better than range invariants. However, the
(hardware) errors used to test the screeners constitute ran-
dom bit errors which, although ideal for bitmask screeners,
hardly occur in program variables.

Our paper differs from the above work in that the screen-
ers are not directly used to (help) pinpoint the root cause of
a failure, but just to label an execution sequence as passed
or failed as input to subsequent, more accurate fault local-
ization.

Many fault localization tools exist, for example [5, 7, 15,
18, 23, 24]. In this paper we have used spectrum-based
fault localization because it is known to be among the best
techniques [15, 18]. However, none of the above work has
been based on automatic error detection.

6. CONCLUSIONS & FUTURE WORK

In this paper we have studied the utility of low-cost, generic
invariants (“screeners”) in their capacity of error detectors
within an SFL approach aimed at the operational phase,
rather than just the development phase. Experiments car-
ried out using the Siemens set show that, despite the sim-
plicity (and the resulting high error rates) of the screeners,
the diagnostic performance (measure in terms of gq) of SFL
is similar to the development-time situation. This implies
that fault diagnosis with an accuracy comparable to SFL is
indeed feasible at the operational phase with (1) no (human)
overhead during the development phase, and (2) reasonably
limited overhead during the operational phase (14% on av-
erage for the Siemens set). Furthermore, our results show
that the overhead can be further reduced at a reasonable
diagnostic performance penalty.

Future work includes the following. Although other screen-
ers are more time consuming, they might lead to better
diagnostic performance, and therefore worth investigating.
We plan to study alternative screeners, such as Bloom fil-
ters [22], also allowing more analysis on the impact of false
positives f, and negatives fn, on gq. Inspired by the fact
that only a limited number of (so-called collar) variables
are primarily responsible for program behavior [19], we also
plan to study the impact of (smartly) reducing the amount
of screened program points (overhead) on f, and f,, and
consequently on gg. Although earlier work has shown that
the current g4 metric is comparable to the more common
T-score [15, 23], we also plan to redo our study in terms of
the T-score, also allowing a direct comparison between the
use of stand-alone screeners and our screener-SFL approach.

7. ACKNOWLEDGMENTS

We gratefully acknowledge the fruitful discussions with
our TRADER project partners.

8. REFERENCES

[1] R. Abreu, P. Zoeteweij, and A. J. C. van Gemund. An
evaluation of similarity coefficients for software fault
localization. In Proc. PRDC 06, pages 39—-46, 2006.
R. Abreu, P. Zoeteweij, and A. J. C. van Gemund. On
the accuracy of spectrum-based fault localization. In
Proc. TAIC PART’07, Sep 2007.
A. Avizienis, J.-C. Laprie, B. Randell, and C. E.
Landwehr. Basic concepts and taxonomy of
dependable and secure computing. IEEE Trans.
Dependable Sec. Comput., 1(1):11-33, 2004.
M. Y. Chen, E. Kiciman, E. Fratkin, A. Fox, and
E. Brewer. Pinpoint: Problem determination in large,
dynamic internet services. In Proc. of DSN’02, pages
595-604. IEEE CS, 2002.
H. Cleve and A. Zeller. Locating causes of program
failures. In Proc. ICSE’05, Missouri, USA, 2005.
A. da Silva Meyer, A. A. Franco Farcia, and
A. Pereira de Souza. Comparison of similarity
coefficients used for cluster analysis with dominant
markers in maize (Zea mays L). Genetics and
Molecular Biology, 27(1):83-91, 2004.
V. Dallmeier, C. Lindig, and A. Zeller. Lightweight
defect localization for Java. In A. P. Black, editor,
Proc. ECOOP 2005, volume 3586 of LNCS, pages
528-550. Springer-Verlag, 2005.

2]

3]

(6]

(7l

717

[8] M. D. Ernst, J. Cockrell, W. G. Griswold, and

D. Notkin. Dynamically discovering likely program
invariants to support program evolution. In Proc.
ICSE’99, pages 213-224, 1999.

M. D. Ernst, J. H. Perkins, P. J. Guo, S. McCamant,
C. Pacheco, M. S. Tschantz, , and C. Xiao. The daikon
system for dynamic detection of likely invariants. In
Science of Computer Programming, 2007.

A. Gonzéilez. Automatic error detection techniques
based on dynamic invariants, Aug. 2007. Master’s
thesis.

[9]

(10]

[11] S. Hangal and M. S. Lam. Tracking down software
bugs using automatic anomaly detection. In Proc.
ICSE’02, May 2002.

M. J. Harrold, G. Rothermel, R. Wu, and L. Yi. An
empirical investigation of program spectra. ACM
SIGPLAN Notices, 33(7):83-90, 1998.

M. Hutchins, H. Foster, T. Goradia, and T. Ostrand.
Experiments of the effectiveness of dataflow- and
controlflow-based test adequacy criteria. In Proc.
ICSE’94, pages 191-200, Los Alamitos, CA, USA,
1994. IEEE CS Press.

A. K. Jain and R. C. Dubes. Algorithms for clustering
data. Prentice-Hall, Inc., 1988.

J. A. Jones and M. J. Harrold. Empirical evaluation of
the tarantula automatic fault-localization technique.
In Proc. ASE’05, pages 273282, NY, USA, 2005.

J. O. Kephart and D. M. Chess. The vision of
autonomic computing. Computer, 36(1):41-50,
January 2003.

C. Lattner and V. Adve. LLVM: A Compilation
Framework for Lifelong Program Analysis &
Transformation. In Proc. CGO’04, Palo Alto,
California, Mar 2004.

C. Liu, L. Fei, X. Yan, J. Han, and S. P. Midkiff.
Statistical debugging: A hypothesis testing-based
approach. IEEE Transactions on Software
Engineering, 32(10):831-848, 2006.

T. Menzies, D. Owen, and J. Richardson. The
strangest thing about software. Computer,
40(1):54-60, January 2007.

D. Patterson, A. Brown, P. Broadwell, G. Candea,
M. Chen, J. Cutler, P. Enriquez, A. Fox, E. Kiciman,
M. Merzbacher, D. Oppenheimer, N. Sastry,

W. Tetzlaff, J. Traupman, and N. Treuhaft. Recovery
Oriented Computing (ROC): Motivation, definition,
techniques, and case studies. Technical Report
UCB/CSD-02-1175, U.C. Berkeley, March 2002.

B. Pytlik, M. Renieris, S. Krishnamurthi, and

S. Reiss. Automated fault localization using potential
invariants. In Proc. AADEBUG’03, 2003.

P. Racunas, K. Constantinides, S. Manne, and

S. Mukherjee. Perturbation-based fault screening. In
Proc. HPCA’2007, pages 169-180, Feb. 2007.

M. Renieris and S. P. Reiss. Fault localization with
nearest neighbor queries. In Proc. ASE’03, Montreal,
Canada, October 2003. IEEE CS.

X. Zhang, H. He, N. Gupta, and R. Gupta.
Experimental evaluation of using dynamic slices for
fault location. In Proc. AADEBUG 05, pages 33-42,
Monterey, California, USA, 2005. ACM Press.

(12]

(13]

(14]

(15]

[16]

(17]

(18]

19]

[20]

21]

(22]

23]

(24]

