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Abstmct-Design of speaker identification schemes for a small num- 
ber of speakers (around 10) with a high degree of accuracy in a con- 
trolled environment is a practical proposition today. When the number 
of speakers is large (say, above 20 or 30), many of these schemes can- 
not be directly utilized as both recognition error and computation 
time increase monotonically with population size. A multistage classi- 
fication technique gives better results when the number of speakers 

is large. Such a scheme may be implemented as a decision tree classi- 
fier in which the final decision is made only after a predetermined 
number of stages. In the present paper, analysis and design of a two- 
stage pattern classifier is considered. At the first stage a large number 
of classes, to which the given pattern cannot belong, is rejected. This 

is to be done using a subset of the total feature set. Also, the accuracy 
of such a rejection process must be very high, consistent with the 
overall accuracy desired. This initial classification gives a subset of 
the total classes, which has to be carefully considered at the next 
stage utilizing the remaining features for an absolute identification 
of the class label (the speaker’s identity). The procedure is illustrated 

by designing and testing a two-stage classifier for speaker identification 
in a population of 30. 

I. INTRODUCTION 

PEAKER identification systems for a small number of S persons (say 5 or 10) have been successfully designed 
over the past few years [l], [2]. But when these systems 

have to be designed for a large number of persons, as is the 
case in any practical application, the classification schemes 

which work satisfactorily for a small population size often 
fail. First, the identification error increases monotonically 
with the number of speakers [ 3 ] ,  [4]. Second, the computa- 

tional complexity and the time taken to make a decision also 
increase proportionately. This is because, in a speaker recog- 

nition scheme, features extracted from a test pattern are 
compared with each of the stored reference feature vectors of 
all the speakers and then a decision is made. If classification 

is done on the basis of discriminant functions, then the dis- 

criminant functions for all the speakers have to be computed 
and compared with each other before a decision is made. 

Thus the computational time increases linearly with the number 

of speakers. When a large number of features are used, as must 

necessarily be the case when the number of speakers is large, 
this will be formidable. For other classification schemes such 
as the nearest neighbor scheme, the task will be still more 
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complicated as the number of distances that have to be com- 

puted is very large. For the nearest neighbor classification 

scheme, even the storage requirements increase exponentially 

with the number of speakers and the dimensionality of the 

feature vector [5]. The foregoing discussion applies to classifi- 

cation schemes, which may be called single-stage decision 

schemes in which all features are used in one step to make a 

decision. 
We can look at the problem of speaker identification as a 

multiclass pattern recognition problem and make use of the 
recent theoretical results available for such problems. A 

recent approach for such problems is to go in for multistage 
schemes in view of the several advantages of these schemes 

[6], [7]. One of the major advantages of these schemes is 
that a smaller number of features is used at each stage, thus 

simplifying computations. When the number of classes is 

large, as in a speaker recognition scheme for large population, 

multistage recognition seems to be the only solution. 
There are two approaches to multistage pattern recognition: 

1) the clustering approach, and 2) the sequential approach. 
In the clustering approach it is assumed that samples from 

the classes form a number of nonoverlapping clusters in a 

particular feature space (the feature is a subset from the 
available feature set and can be of more than one dimension), 
i.e., in this feature space we can find a subset of the total 

classes to which the given test sample belongs. For example, 

let w l ,  w 2 ,  - * * , wM be the M classes. Denote by S = {wl, 

wz , * * * , WM}. Let _X= (xl, x2, - * , XN) be the feature vec- 

tor. Then, there exists a subset of features_Y= (xp, * - , xq), 
in which space classes are clustered as 

~1 = { w ~ , w z , . . * , w ~ } , s ~  = {Wi+l,***,wj}, 

* * * , sk = {. * wM}, and k < M. 

s1 , s2,  * * * , sk are nonoverlapping, i.e., si n si = $ if i # j .  The 
restriction si fl sj = r$ if i # j is not necessary in general. We 

can easily have clusters of overlapping subsets also. This 
approach has been suggested by Kashyap [8] for speaker 
identification in large speaker populations. The clustering 

approach is analogous to the hierarchical classifier approach 
given by Kulkarni in [ 6 ] .  

The second approach is the sequential approach given in 
Fu [9]. The method essentially uses a likelihood ratio test, 
called the generalized sequential probability ratio test. Using 
one feature at a time, the generalized likelihood ratio is 
computed for each class, compared with a threshold (which 

may depend on the particular class), and each class is either 
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retained for further testing at the next stage or rejected from 
further consideration as unlikely. This process is continued 
until only a single class remains. The difference between 
hierarchical and sequential classifiers is that in a hierarchical 

classifier, a particular class is identified or rejected from 

further consideration only after a predetermined number 

of stages (determined by the class in question), whereas in 
a sequential scheme, any class may be identified or rejected 

at any stage. Computational considerations make the sequen- 

tial classifier impractical when the number of classes is large. 

The hierarchical classifier could be implemented as a de- 

cision tree, and the tree could be optimized according to 

some optimality criterion. Various forms of decision trees 

and their optimization procedures can be found in the litera- 

ture [ 6 ] ,  [7]. But the assumption that different classes tend 

to form natural clusters with reference to some features may 

not hold well when the number of classes is very large. Instead, 

a more natural assumption may be that the samples from the 
classes tend to distribute continuously when the number of 

classes is large. When this is the case, it is futile to look for 
clusters. Sequential classifiers do not suffer from this draw- 

back as the feature space is not divided into different regions. 

In this paper we show that a knowledge of the distributions 
of the feature vectors can be utilized for designing a multi- 
stage decision scheme for large number of classes. The de- 

cision scheme could be broadly split into two stages as follows. 

In the first stage, by using a subset of features, a small number 
of classes are picked up with a high degree of accuracy for 
further testing. In the second stage the actual identification 
is carried out by using the remaining features. The whole 

scheme is thus a two-stage decision tree. In Section I1 we 

develop a mathematical basis for the first-stage classification 
and derive an expression for the number of classes that have 

to be picked in this stage for a specified accuracy. Using this 

theory, we develop in Section 111 a two-stage speaker recog- 

nition scheme for 30 speakers. 

11. MULTISTAGE CLASSIFICATION METHODS 

In this section the mathematical basis for a multistage 

classification scheme is developed which is subsequently 

used for the design of a two-stage classifier for identification 

of 30 speakers. The following assumptions are made. 

1) The features X I ,  x2, . . . , X N  are independent. 
2 )  The number of classes M is very large and can be assumed 

3) Only one feature is considered at each step. 

4) The class conditional density of each feature is normal 

to  approach infinity for analytical purposes. 

as given by 

For each feature xi ,  the mean pj i  depends on the particular 
class label wi, but the variance 07 does not depend on wi. 

5) As M tends t o  infinity, the mean takes a continuous 

range of values and will be denoted by the continuous variable 

pj. Further, 52 will denote the set of classes for which the 
mean is in a small interval around and containing a particular 
value p of p j .  

In view of this assumption, as M + w ,  (1) assumes the 
form 

P ( X j  I 52) - &f P ( X j  I % e n )  - N ( p ,  Ui”).  (2)  

Equation (2 )  implies that, for a range of classes wieR, the 

feature xi is distributed normally with mean p and variance 

6) The mixture density of any feature xi over all the classes 

Ui” . 

is assumed to  be either: a) uniform, i.e., 

= 0 otherwise (3 )  

P ( X )  - N a ,  K 2 ) .  (4) 

or b) Gaussian, i.e., 

At this point it is appropriate to discuss the meaning of 

some of the above assumptions, especially assumptions 2 )  

and 3). When one considers a pattern recognition problem 

with a finite number of classes, say w l ,  * - * , w,, in the 

Bayesian analysis one can assign a priori probabilities P(wl) ,  

* . . , P(wM) to  each of these classes which could be assumed 
equal in the case of equally likely classes. But when M +  00, 

one can only talk of an a priori density p(R) where p(52) A p  
gives the a priori probability of having a mean in the interval 
( p  - (Apia) ,  p t (Ap/2)) .  Assumptions l),  3), and 4) are usual 

and need no elaboration. Assumption 6) appears to be reason- 

able as it is and on the basis of experimental evidence to be 
presented later. 

The next step is to establish the forms of the densities 

p(R) and p(RIx). In the subsequent development, the 
subscript j of the feature xi and the corresponding variance 

0; is dropped, as any feature can be considered without loss 

of generality. 
Proposition 1: If p(x1R) - N ( p ,  0’) and p(x) is uniform, 

then p(52) is uniform. On the other hand, if p(x )  is Gaussian, 

then p(n) is Gaussian. 

Pro08 The proof is given in Appendix I. 

Proposition 2: If ~ ( X ~ R ) - N ( ~ , U ~ ) ,  p(x )  is uniform or 

Gaussian, then the a posteriori density p(R Ix) - N(x ,  0’). 

Proof The proof is given in Appendix 11. 

Proposition 2 suggests a way to  proceed sequentially for the 

identification task. A subset could be selected from the total 

set of classes after observing the feature x so that the error of 
rejecting a correct class is as small as we choose. Of course, a 

reduction in the rejection error means that a larger set of 
classes has to  be selected and vice versa. The tradeoff can 

be decided by the final error rate that could be tolerated. 
The theorem below expresses the fraction of the total classes 

that has to  be considered for further testing when the rejec- 
tion error is fixed. 

Theorem: If p(x1a) - N ( p ,  u2) and we fix the probability 
of rejecting a correct class using feature x at a given stage as 
q ,  then the fraction of the total classes as a function of the 
observed feature x is a constant if p(x )  is uniform. On the 

other hand, if p(x)  is Gaussian, the fraction of the total classes 
depends on the observed feature value x in a complex non- 
linear manner. 

Proof We want the fraction of the total classes that have 

to be considered as a function of the observed feature x so 
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that the probability of rejecting a correct class is 4 ,  i.e., If p(S2) is a uniform density, then f(x) is a constant as 

seen from (8). For any other p(S2), f(x) is a function of the 

observed value of the feature x. In particular, when p(x), 
and hence p(S2), is normally distributed as given in (A4), (5) 

1 1 p-CY 
X + A  

where A is the region over which p(S2 Ix) is sufficiently small 

so that ( 5 )  is true. Since p(S2lx) has mean x and a constant 
f(x)= J exp {- 5 ( y y } d P .  

X - A  

variance u2 (as can be seen from AS), the region A is nothing 

but the interval (-m, x - A) U (x t A, -) where h is deter- 

mined from q using the following relation: 

Set ( P  - C Y ) / ~  = y ;  then 

' j"'* exp (- $) d y  f ( x )  = 
Yl [Lc P(S2lX)dP] P(X)dX = 1 - 4 = erf (Y2 1 - erf (Y1)  

where 

X - h - C Y  x + h - a !  
where AC is the complement of A and is equal to the interval 

K '  
[x - A, x + A], i.e., Y 1 =  , Y2 = 

(9) 

-x+A 
1 p - x  We can observe from (9) that the fraction of the total number 

of classes to be considered is a nonlinear function of the 

observed value of the feature x when the feature is normally 

distributed. In addition, in both the above cases it depends 

upon the rejection probability q.  For a given probability of 

rejecting a correct class, h depends upon the variance u2 as 

given in (6), and from (9) we can conclude that f(x), for a 

given probability of rejecting a correct class, depends on the 

ratio between K 2  and u2 (in a nonlinear manner), which is 

C [Sk Jx-A exp {- T ( T ~ }  .] 
*p(x)dx=l-q. 

Set 01 - x)/u = y.  Then the above equation becomes 

J m  I"'" [L exp ($1 dy] p(x)dx. 
- m  -A/" G 

intuitively quite satisfying. 

In a practical system the accepted classes are again tested 

using one more feature to further reduce the classes to be 

The term inside the square brackets is independent of x, 

and hence, the above equation reduces to 

[ erf (h/u) - erf (- A/u)] p (x) dx -!, 
= erf (h/u) - erf (- h/u) = 1 - q 

where 

1 
erf(z)=- j"' exp (-$) dz 

fi - m  

subsequently considered. This procedure is continued until 
only a small number of classes are left in the accepted cate- 

gory. The final identification from these classes is done by 
using the remaining features in the second stage. 

In the first stage, after successively testing I features, the 

fraction of the total number of classes left for further testing 

is given byf(xl) f ( x 2 )  * * - f(xz) if we assume that the features 
are independent. The probability of rejecting a correct class 
after using I features is given by 

(6)  

is the error function. 
From (6) we can conclude that when u is a constant, X is 

determined by the rejection rate 4 alone. For a fixed rejec- 
tion rate, when we observe a particular value x of the feature, 
we can reject all the classes whose mean lies outside the 

interval [x - A, x t h].  Since p(L-2 Ix) has mean x and variance 
u2,  which is independent of x ,  this implies that we have to 

reject all the classes for which p(S2 Ix) < E where 

(7) 

pez= 1 - (1 - s1)(1- q 2 ) .  . - ( 1 -  41) 

where qi is the prescribed rejection probability at the jth 
level of the first stage. 

In the above formulation we have assumed that the number 

of classes M is infinite for analytical purposes. But in all 
practical pattern recognition systems the number of classes 
is always finite, although it may be quite large. But as M is 
very large, we commit little error in assuming that p(x) is 

not multimodal and can be approximated by a uniform or 
Gaussian density function, and f(x;)=(n;/M) where ni is 
the number of classes that have to be considered for further 
testing when feature xi is used as the ith feature. We can use 

are left and the identification task can be done using the 

remaining features. 

Let f(x) denote the fraction Of the number Of 'lasses 
this procedure until a moderate or small number of ,.lasses 

that have to be considered when the observed value of the 

feature is x .  Then 

(8) 111. SPEAKER IDENTIFICATION SYSTEM DESIGN 

In this section the two-stage method developed in Section I1 
is used for designing an identification scheme for 30 speakers. 

region where 
[ P & l X ) >  e l  
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tribution of average pitch for over 30 speakers. 
Fig. 1. (a) Distribution of average pitch for a single speaker. (b) Dis- 

The recognition scheme is based on a single preselected code 

word “MUM.” Average pitch over the vowel portion of the 

utterance is used as a scalar feature at the first stage for pick- 

ing a subset of the speaker population. At the second stage 

the autocorrelation function extracted over the utterance is 

used as a feature. This latter feature and a minimum Euclid- 
ean distance classifier have recently been shown to be quite 

effective in speaker recognition in small (say, 10) population 

Pitch contours over utterances have been employed as 

speaker identifying features for small speaker populations 

[12]. But a recent study by Atkinson [13] suggests that the 
intraspeaker variation in pitch is as much as the interspeaker 
variation. This rules out using pitch alone as a speaker identi- 
fying feature. However, in the present study, we show that it 
can be very conveniently used at the first stage in a two- 

stage classifier to obtain a subset of speakers with a high 
degree of accuracy by applying the method of Section 11. 

To do this, we need the knowledge of density functions 
p(xIwj), p(x), and p ( n )  defined earlier. In view of this, the 

statistical properties of the feature, average pitch, for each 

speaker and for the entire population of thirty speakers for 

the vowel portion of “MUM” have been studied. 
The experimental studies of this paper are conducted on a 

dedicated interactive signal processing facility. The system 

is a Hewlett-Packard 5451B Fourier analyzer built around 

an HP2100S microprogrammable minicomputer with a 16K 
memory of 16 bit words. Short segments of speech could 

be entered directly by speaking into a Schure microphone 
connected to the system’s A/D converter. A sampling rate 
of 10 kHz is used. The beginning of the word is detected 
by using a triggering level for the A/D converter input. The 
duration is of length 2048 samples. This duration is chosen, 
as the operation of the system is in block mode, of block 

length in multiples of 64, and it has been observed that this 

[lo],  D11. 

duration is adequate. The data set consists of 25 utterances 

of the code word recorded in a recording room in a single 

sitting for 30 speakers. Average pitch over the vowel /a/ of 

the word “MUM” is extracted by cepstral technique. 
The density functions p(x I wJ, p(x), andp(Q) for the aver- 

age pitch are estimated using the Parzen window technique. 
The window used is a rectangular one which is equivalent to 

a modified histogram approach [14, p. 1031. In Fig. l(a) 
and (b) the distributions of the average pitch for a typical 
speaker and also over all the 30 speakers are given. For 

comparison, we have also given the theoretical distributions, 
assuming that the form is Gaussian, using the estimated mean 

and variance. It may be observed that the theoretical and 

actual distributions in this case match quite closely. The 
variance of pitch is not the same for all the speakers but we 

have considered the maximum value of the variance to fix 

the threshold h. The speaker subset densities p(Q)  (both 

theoretical and experimental) as defined in Section I1 are 

plotted in Fig. 2. In this case, also, the actual and theoretical 
values match quite closely. 

In the design of the system we fix h = 30  so that the proba- 

bility of rejecting a correct speaker [as computed from (6)] 

in the first stage is 0.3 percent. In Fig. 3 we plot the number 

of speakers that have to be considered as a function of the 
observed pitch x. From (9) we have computed the function 

f(x) for x =a, i.e., for the mean of the pitch where f(x) is 
maximum, and also for x = a  f 2K. The values of f(x) are 
0.38 and 0.06, respectively. This means that the approximate 

number of speakers that have to be considered at x = a  is 
0.38 X 30 = 11.5, and at x = a ?  2Kis 0.06 X 30 = 1.8. From 
the plotted curve for the actual case we get the numbers corre- 
sponding t o x = a  as 1 2 , f o r x = a + 2 K a s 2 , a n d x = a - - 2 K  
as only 1 .  

The two-stage scheme described so far can be interpreted 
as a decision tree, but the decision tree cannot be rigid as is 
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w1 WZ Wm *- f*+m*rrrmtr .. c 
Actual 

100 125 150 175 200 

Mean pitch - 
Fig. 2. Distribution of the speakers as a function of mean pitch. 

L t t12 

Y w~ WI W j y + 1  Hkwl HhWp 

rn> n> p k > l > i > j  

Fig. 5.  A possible rigid decision tree structure. 

The speaker corresponding to the minimum Euclidean dis- 
tance from the test utterance is identified. 

IV. RESULTS AND DISCUSSIONS 

The results obtained by the two-stage recognition scheme 
described in Section I11 are given in the form of the confusion 
matrix in row a) of Table I. For comparison, we have given 
the results obtained for the one-stage minimum Euclidean 
distance classifiers using pitch and autocorrelation together 
in row b), and using only autocorrelation in row c). The zero 
entries in the confusion matrix are omitted as a 30 X 30 con- 
fusion matrix could not be accommodated. While using pitch 

was normalized, with respect to the first autocorrelation co- 
efficient by normalizing the maximum deviation of the pitch 
[14, p. 101. The overall performance of the two-stage classi- 

fiers using both pitch and autocorrelation and autocorrelation 
alone are 69 and 68 percent, respectively. It may be observed 
that there is no significant improvement in performance if 
pitch and autocorrelation are used together in a single-stage 
classifier. In some cases, addition of pitch as one more fea- 
ture in the single stage classifier even reduces the performance 
as can be seen from Table I. The last row of Table I gives 
the total performance, i.e., for case a), out of 450 test pat- 

the case with the conventional decision tree classifiers given terns, 391 are recognized correctly with a overall accuracy 

in [6], [7]. The number of classes that have to be considered of 87 percent, whereas for cases b) and c), the recognition 
at the second stage after observing the average pitch varies score is 312 and 307 (out of 450) with accuracies of 69 and 

with the observed value. The structure of the tree is as shown 68 percent, respectively. 

in Fig. 4. Compared to the single-stage classifier, two-stage classifiers 
A rigid decision tree could easily be obtained if overlapping are computationally less expensive. For the speaker recog- 

subsets are allowed, i.e., a class label can appear more than nition experiment discussed so far, if a single-stage classifier 
once at the terminal modes. This results from a slightly is used, using both pitch and autocorrelation in one stage, 
modified form of the tree structure of Fig. 4. This tree has 30 Euclidean distances have to  be computed and then com- 
the advantage of being rigid though with the disadvantage of pared to get the minimum among these. In the two-stage 
increased computational costs. Such a modified tree is shown classifier scheme, after picking a subset of speakers in the 
in Fig. 5. first stage, Euclidean distances have to be computed and 

The reference patterns for pitch and autocorrelation for compared for speakers in this subset. The number of speakers 
each speaker are obtained by taking the average pitch and in this subset is variable as discussed in Section 111, i.e., the 
autocorrelation of 10 utterances. The remaining 15 utterances maximum is 12 and the minimum is only 1. So, on the 
are used for testing the system. In the first stage of the classi- average, we need to compute only a few distances and then 
fier the average pitch of the test utterance is taken, and using pick up the minimum among these. If only one speaker is 
the decision tree given in Fig. 4, a subset of speakers is selected picked up in stage 1 , then this speaker is identified. 
from the 30 speakers. In the second stage the normalized While the computational advantages of the hierarchical 
32-point autocorrelation of the test utterance as defined in classifier are intuitively obvious, the recognition performance 
[lo] is computed. The Euclidean distance from this test improvement as seen from Table I needs some discussion. 
pattern to the different stored reference patterns is computed. I The performance evaluation of any practical pattern recog- 

L 

z 

100 125 150 175 200 

Observed pitch - 
served pitch x. 

LLL 
Fig. 3. Number of speakers to be picked as a function Of the Ob- and autocorrelation together in a one-stage classifier, the pitch 

w1 w2 

x wi Wi+l WJ 

Wm 

c fier is 87 percent, whereas those of the two single-stage classi- 
PITCY - 

X OBSERVED FEATURE 

Fig. 4. Decision tree for the two-stage classifier. 
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TABLE I 
CONFUSION MATRIX FOR RECOGNITION OF 30 SPEAKERS 

TRCE 
SPEAKEK KECOCNIZED AS PERCENTAGE 

ACCCZACY 

1-17, 6-1, 7-1, 9-1 

1-9, 6-2. 9-1, 25-3 

1-11, 7-2,  6-1 

2- 15 

2-13, 3-2 

2-11, 3-4 

3- 15 

3- 7 ,  a8 

3 - 5 ,  aa, 1-1 

4-14 1 1-1 

4-11, 29-4 

4-10, 29-3, 1-1, 25-1 

5-13, 3-2 

5-10, 3-5 

5-10, 3-5 

6-13, 9-1, 25-1 

6-10, 9-1, 25-4 

6-11, 25-3, 9-1 

7-11, 6-3, 8-1 

7-6,  1-1, 6-3* 9-5 

7-3, 6-5, 3-5, 2-1,  15-1 

9 15 

8-11? 1-3, 7-1 

8-11. 1-3, 7-1 

9-13, 4-1, 7-1 

9-a, 7-2, 24-i, 25-4 

9-99 25-4, 7-1, 24-1 

13- 15 

10-13, 14-2 

15-12, 14-2, 26-1 

11-15 

11- 15 

11-15 

12- 15 

12- 15 

12-14, 17-1 

13-15 

13-15 

14-14, 9-1 

14- 15 

14- 15 

14-15 

15-10, 2-5 

15-9, 2-6 

15-8, 2-7 

16-11, 12-2, 13-1, 17-1 

16-8, 13-4, 17-2, 15-1 

16-10, 12-2, 152, 17-1 

17-9, 25-6 

17-3, 20-8, 23-2, 9-1, 27-1 

17-7, 27-8 

80.5 

60.5 

so.5 

100.5 

86.7 

73.3 

100.3 

46.7 

43.3 

93.3 

73.3 

64.7 

86.7 

66.7 

66.7 

86.7 

66.7 

73.3 

73.3 

43.5 

20 .a 

135.5 

73.3 

73.3 

86.7 

53.3 

63.5 

130.5 

83.3 

w.5 

130.5 

130.3 

100.0 

100.5 

100.0 

93.3 

103.0 

100.0 

93.3 

100.0 

137.5 

100.3 

66.7 

60.0 

53.3 

73.3 

53.3 

66.7 

60 .O 

20.0 

46.7 

18 

19 

20 

21 

22  

23 

24 

25 

26 

27 

28 

29 

30 

a) 18-15 

b) 1815 

C) 1815 

a) 19-15 

b) 19-15 

c )  19-14, 1-1 

a) 20-13, 15-1, 27-1 

b )  20-3, 9-9, 15-2, 7-1 

C )  20-3, 8 9 ,  15-2, 2 8 1  

a) 21-11, 2-2, 9-2 

b) 21-5, 25-5, 9-2, 29-2, 6-1 

c )  21-8, 25-3, 29-3, 2-1 

a) 22-7, 15-7, 2-1 

b )  22-1, 15-11, 2-2, 17-1 

c )  22-3, 15-7, 27-3, 2-1, 20-1 

a) 23-7 ,  27-5, 17-2, 181 

b) 23-19 287, 25-3, 4-2, 27-1 

c )  23-2, 27-5, 285, 17-2, 181 

a) 24-15 

b)  24-11, 25-4 

c )  24-9, 25-5 

a) 25-11, 19-2, 29-2 

b)  25-14, 4-1 

c )  25-9, 19-3, 29-3 

a) 26-15 

b)  26-13, 4-2 

c )  26-14, 14-1 

a) 27-11, 17-3, 23-1 

b)  27-13, 23-2 

c )  27-10, 17-3, 23-2 

a) 28-15 

b )  28-15 

c )  28-15 

a) 23-15 

b )  29-13. 4-2 

c )  29-12, 9-2, 19-1 

a )  30-15 

b)  33-15 

c )  3CL-15 

100.0 

100.0 

100.0 

100.0 

100.0 

93.3 

86.7 

20.0 

20.0 

73.3 

33.3 

53.3 

46.7 

6.7 

20.0 

46.7 

6.7 

13.3 

100.0 

73.3 

60.0 

73.3 

93.3 

60.0 

100.0 

86.7 

93.3 

73.3 

86.7 

66.7 

100.0 

100.0 

100.0 

100.0 

86.7 

80.0 

100.0 

100.0 

100.0 

~~ 

TOTAL a) 391/450 

b) 312/453 

c )  307/450 

PERFORMANCE 

~~~ 

87.0 

63.0 

68.0 

Note: The confusion matrix is to be read in the following way: in 
case a) for the two-stage classifier, when the true speaker is 1, he 
is correctly recognized as speaker 1 twelve times, once as speaker 6, 
once as speaker 7, and once as speaker 9. Hence, the percentage of 
accuracy is (1 2/15) 100 = 80 percent. 
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nition scheme is complicated as many factors enter into 

picture, such as: 1) the finite sample sizes of design and test 

data, 2) the independence (or otherwise) of features used, 

3) the distance criterion chosen, and 4) the number of alter- 

native decisions that are made at a node. 

1) The minimum achievable error is the optimal or Bayes 

probability of error when the class conditional densities are 

known exactly or can be estimated with an infinite number 
of labeled samples. Also, as the number of features is in- 

creased, the achievable accuracy increases with an infinite 
sample size. On the other hand, it is now well known that 

given a fixed training data size, there is tradeoff between 

the information added by one more dimension and the loss 

in accuracies of the estimates of joint conditional densities 

due to  the added “parameters” [15], [16]. This clearly 

explains the fact that the results of case b) in Table I are 

not much better than case c). 

2) The problem of reduction in recognition accuracy as 

the number of classes increases is demonstrated by Kain [ 171. 

In the context of speaker identification, this is noted by 

Doddington as reported in Rosenberg’s review paper [4]. 
On the other hand, a decision tree classifier can be constructed 

from a relatively small number of samples of each class with- 

out running into the “curse of dimensionality” [7]. The 

fact that the performance of case a) is superior to b) and c) 

(in Table I) is directly a result of the finite sample size used 

for design on the one hand and the reduction in the number 

of classes at both stages because of the tree structure. 

3) While it would help considerably if the features used 

at both stages are independent as assumed in the theoretical 
development of Secion 11, the pitch and autocorrelation (as 

used here) are not that much correlated as only the first 32 

samples of autocorrelation function are used as the feature 

in this study. The pitch peak occurs between 50 and 100 
samples in the autocorrelation function (corresponding to 
pitch periods of 5-10 ms). If the features at the two stages 

are independent, the recognition accuracy is almost identical 

to the accuracy of second stage as the first-stage accuracy 

is prescribed to be very high (99.7 percent). It has been ob- 
served in an earlier study that the autocorrelation as a single 

feature in a 10 speaker recognition scheme gives accuracies 

of the order of 95 percent [ lo] ,  while the present two-stage 

scheme has given about 87 percent. This may be attributed 
to the small degree of correlation between the features. 

4) We observed that for an all male population, the pitch 

distribution over the entire population is Gaussian, and in 

the first stage of the classifier, using pitch, a reduction of 

the speaker population by a factor of almost 3 in the worst 

case (12 out of 30) was obtained with 99.7 percent accuracy. 
For a mixed population we expect that pitch distribution 

will be nearer to uniform, and a reduction by a factor of 

5 or 6 may be expected. Thus, the theoretical results of 
Section I1 for the uniform distribution case will be applicable 
in this case. 

5) We have used only 10 samples per class to design the 
system and the remaining 15 samples to test the system. 
Since the design set was small and the test set was indepen- 

dent, the results obtained are very pessimistic. There are 
other more elaborate methods for efficiently making use 

of the available data [18], which may give still better results. 

As our objective here is to demonstrate the use of multistage 

classification technique, this aspect is not pursued in this 

study. 

V. CONCLUDING REMARKS 

This paper suggests a method of designing computationally 

attractive speaker recognition schemes with high accuracy 

for large populations based on the hierarchical classification 

techniques of pattern recognition. While much of pattern 

recognition theory deals with partitioning or clustering type 

of classifiers, for practical realization of recognition schemes 

interactively designed hierarchical schemes appear to be the 

most promising [19]. The problems of optimal allocation 
of features at various nodes of a decision tree and the design 

of optimum classifiers at each node are being presently pur- 

sued by the authors. 

APPENDIX I 
PROOF OF PROPOSITION 1 

We are given that p(xlQ2) is Gaussian with mean p and 

variance u 2 ,  and p ( x )  is either uniform or Gaussian with 

mean CY and variance K 2 .  We have to prove that p ( Q )  is 
uniform when p ( x )  is uniform and p ( Q )  is Gaussian when 
p ( x )  is Gaussian. 

In the finite class case p(x) ,  the mixture density, is given 

by 

M 

i = l  

P ( X )  = C P ( X  Iwi) P(wj). 

When the number of classes M +  m, the summation has to 

be replaced by integration and P(wi) by the density p(Q2). 

so 

p ( x ) = J r n  P(XlWP(Q)dP. 
- m  

This is an integral equation and we solve it by the method 

of substitution. 
1) If p ( x )  is uniform, then 

= 0 otherwise. 

Then 

1 rm 
- - 1 -  p(xIQ)p(Q)dp for A < x < B ,  
B - A  +!., 

i.e., 

. p ( Q ) d p ,  for A < x < B .  (Al l  

From the above equation, it is clear that p ( Q )  is zero for p 
outside the range [ A ,  B ]  . Suppose p ( Q )  is also uniform. Then 
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p ( Q )  = 1/(B - A ) .  This solution is quite satisfactory when x is 
not near the endpoints B or A and (B - A )  >> u, which is 

quite a valid assumption since (B - A )  is the whole range of 

the feature x .  For 

the integral is approximately equal to 1 when x is not near 

the boundary points B or A and when (B - A )  >> u, so 
that (Al) is satisfied. 

2 )  If p(x)  is Gaussian, then substituting the values of p ( x )  

and p(x  ISZ) gives us 

1 x - a  ’ 
& K  { - 2 (7) } 
=!I * exp { - 3 (y)’) p ( Q ) d p .  (A2) 

We assume that p ( n )  is normal with mean po and variance 

p’ . Substituting for p(Q)  in the above equation (A2), 

1 (x - Po)’ =- 
27rup {-?[ u2 t , ’ ] }  

(-43) 

(A3) represents a normal density, and from (A2) and (A3), 

po =a, and u’ +p’ = K 2  

or 

p‘ = K 2  - 0 2 .  

But u2 << K’ since u’ is the class conditional variance of 

a feature, whereas K 2  is the variance of the mixture density. 
So p‘ = K 2 ,  and hence 

P(R) “(a, K’).  (A41 

APPENDIX I1 
PROOF OF PROPOSITION 2 

We have to prove that p(C2lx) - N ( x ,  u’). By Bayes rule, 

= a *p(xlQ) p(R) (A5) 

since p (x)  is a constant for a given x .  
1) When p(x) ,  and hence p ( Q )  is uniform, we get 

P ( Q i x ) - N ( x ,  0”. 

2)  When p ( x )  is Gaussian, p ( Q )  is also Gaussian as given 
in (A4). So 

This is a normal density, and we represent it by N(,uo, D’) 
where 

and 

and p ( n I x )  -N(po ,p ) .  Since K 2  >> u’, po = x ,  and p2 = 
u2, and hence, 

P(QIx)-N(xy 0”. (A81 
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