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Abstract: With the emergence of deep learning, the performance of automatic speech recognition
(ASR) systems has remarkably improved. Especially for resource-rich languages such as English
and Chinese, commercial usage has been made feasible in a wide range of applications. However,
most languages are low-resource languages, presenting three main difficulties for the development
of ASR systems: (1) the scarcity of the data; (2) the uncertainty in the writing and pronunciation;
(3) the individuality of each language. Uyghur, Kazakh, and Kyrgyz as examples are all low-resource
languages, involving clear geographical variation in their pronunciation, and each language possesses
its own unique acoustic properties and phonological rules. On the other hand, they all belong to the
Altaic language family of the Altaic branch, so they share many commonalities. This paper presents
an overview of speech recognition techniques developed for Uyghur, Kazakh, and Kyrgyz, with
the purposes of (1) highlighting the techniques that are specifically effective for each language and
generally effective for all of them and (2) discovering the important factors in promoting the speech
recognition research of low-resource languages, by a comparative study of the development path of
these three neighboring languages.

Keywords: overview; automatic speech recognition; low-resource; Uyghur; Kazakh; Kyrgyz

1. Introduction

According to the statistics of the Ethnologue website (https://www.ethnologue.com/,
accessed on 25 December 2022), there are 7151 known living languages in the world (every
living language has at least one speaker for whom it is his/her first language). Most of
these are low-resource languages, which refers to a language with some (if not all) of the
following aspects [1]: a lack of a unique writing system or a stable orthography, a limited
presence on the web, a lack of linguistic expertise, and/or a lack of electronic resources
for speech and language processing, such as monolingual corpora, bilingual dictionaries,
transcribed speech data, pronunciation dictionaries, vocabularies, etc.

Information-processing technology for low-resource languages is of great significance
to strengthen culture exchanges, promote information fairness, and protect endangered
languages. Automatic speech recognition (ASR) is among the important technologies in
language information processing. After several decades of development, modern ASR
systems, especially for rich-resource languages, have achieved significant performance
improvements and have been deployed in a wide range of practical applications. However,
the performances for low-resource languages are still far from satisfactory.

In general, ASR for low-resource languages encounters three challenges: (1) the data
scarcity of speech and text, leading to difficult model training; (2) a lack of standardization,
a discrepancy in the pronunciation, and linguistic changes, leading to the uncertainty of the
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languages. (3) each language having its own individual properties, reflected in the writing,
linguistic, phonetic, acoustic, and other aspects. If these challenges cannot be solved well,
it would be impossible to achieve reasonable recognition performance. Currently, the vast
majority of research focuses on the data scarcity, while less attention has been paid to the
standardization and uniqueness of the language itself.

Uyghur, Kazakh, and Kyrgyz are all low-resource languages and possess the chal-
lenges mentioned above. However, they all belong to the Altaic branch of the Altaic
language family, and so, they have a large degree of similarity at both the acoustic and
linguistic levels. Especially in China, the three languages are distributed across neighboring
regions, which closely interact with each other, so they are quite similar in their writing,
pronunciation, and syntax [2]. From the perspective of ASR, this means that similar tech-
niques, especially those that can be used to tackle the challenges of low-resource languages,
can be used for all three.

Therefore, this paper investigates these three languages together and summarizes
the modern algorithms/schemes for each language. Our first goal was to highlight the
important techniques that have been broadly verified so that researchers working on
different languages can learn from each other. In addition, by comparing the technical
roadmap of these three neighboring languages, we hope to discover the key factors for
developing low-research language speech recognition research, thereby providing some
suggestions on the “important work” that researchers may focus on.

The rest of this paper is organized as follows: Section 2 presents an overview of
low-resource language speech recognition methods. Section 3 provides a comprehensive
linguistic analysis of Uyghur, Kazakh, and Kyrgyz and summarizes their commonalities
and individualities. A technical review, analysis, and discussion of the speech recognition
techniques for these three languages are reported in Section 4. Section 5 concludes the paper.

2. Low-Resource Language Speech Recognition
2.1. History of Speech Recognition Technology

Speech recognition technology has been developing for half a century. Traditional
speech recognition systems are based on a Gaussian mixture model-hidden Markov model
(GMM-HMM) methodology [3]. This involves a GMM to represent the distribution of a
stationary state and an HMM to represent a state transition. This method is essentially a
generative model, which describes the generation process of the speech signals and resorts
to Bayesian inference to determine the spoken words.

In recent years, deep learning methods have demonstrated significant success in
speech recognition. There are two commonly used methods: the deep neural network-
hidden Markov model (DNN-HMM) and the end-to-end (E2E) model. The former retains
the framework of the generative model, while the latter is purely discriminative.

For the DNN-HMM method, a deep neural network (DNN) replaces the GMM to
determine the likelihood of each frame for each HMM state [4,5]. Compared to the GMM-
HMM, a key advantage of the DNN-HMM is that the DNN can extract the abstract features
from the raw data, leading to better discrimination and generalizability. The initial success
of the DNN motivated more effective neural models, including convolutional neural
networks (CNNs) [6–10] and recurrent neural networks (RNNs) [11–15]. Compared to
the standard fully connected DNN, the CNN and RNN are more effective at utilizing the
temporal invariance of the speech signals.

For the E2E method, it regards speech recognition as a sequence-to-sequence genera-
tion task. Specifically, it uses language information in the acoustic modeling and achieves
the joint learning of the acoustic model and the language model. Since the E2E structure
unifies all the components of speech recognition into one neural network model, it omits
the intermediate manual design processes (e.g., acoustic features, pronunciation units, etc.).
Especially, when the training data are rich enough, a better recognition performance can
be obtained. Two typical E2E structures are based on connectionist temporal classification
(CTC) loss functions [12,16] and sequence-to-sequence modeling [17,18].
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The central idea of the CTC loss function is to maximize the likelihood that the
input speech sequence produces the output text sequence, by marginalizing all possible
alignments. To further strengthen the explicit learning of language models, the recurrent
neural network transducer (RNN-T) method is generally adopted to learn the context
dependencies among output labels to achieve better performance [19]. The sequence-to-
sequence model directly simulates the behavior of human listening and speaking and
describes the recognition process as a language generation process with the input speech as
a reference. Most of these models are based on a mechanism called attention, which focuses
on the speech segments related to the current decoding state in the process of recognition.

In recent years, researchers have proposed the self-attention model. On the one hand,
this model is based on the attention mechanism, so it can automatically discover significant
information in the sequence during the feature extraction process. On the other hand, it
supports long-term sequence modeling in parallel, thus eliminating a major problem for
traditional temporal models such as the RNN. A representative self-attention model is
Transformer [20], which is widely used in natural language processing (NLP) tasks [21–24]
and has been successfully migrated to the speech recognition field [25–27].

In the past two years, speech pre-training models based on self-supervised learning
(SSL) have received considerable attention. By designing a reasonable proxy task, this
approach can utilize a large amount of unannotated speech data to train a base model,
i.e., the pre-training model [28–30]. Considering that there is a strong correlation among
most speech-processing tasks—for instance, speech denoising is necessary for both speech
recognition and speaker recognition and extracting the typical patterns is important for
both keyword spotting and speech coding—the pre-trained model can be applied to various
downstream speech-processing tasks. Wav2Vec [28,29] and HuBERT [30] are the two most-
popular speech pre-training models.

Generally speaking, due to the accumulation of large amounts of training data and
the powerful capacity of deep neural networks, speech recognition for common languages,
e.g., English and Chinese, has achieved practical performance in many applications. For
the traditional and DNN-based speech recognition technologies, please refer to [31,32]
and [3,33–35], respectively, and the latest advances can be found in [5,36,37].

2.2. Methods of Low-Resource Language Speech Recognition

As mentioned above, low-resource language speech recognition encounters three
issues: data scarcity, uncertainty in writing and pronunciation, and the individuality of
each language. Most of the current research focuses on the data scarcity. The intuitive way
to solve this issue is to collect more data. Recently, crowdsourcing has become a popular
way to collect a large volume of data at a low cost [1,38]. Despite the clear importance of
data collection, in this review paper, we focus on technical approaches to the low-resource
language problem and summarize several representative methods, as shown in Table 1.

Table 1. Representative methods of low-resource ASR.

Method Summary

Data augmentation Various data augmentation approaches to simulate com-
plex behavioral and/or environmental variety.

Phoneme mapping

Construct correlations between phonemes of different lan-
guages, so that one language can borrow models from
other languages. This may construct a system for a new
language even without any training data.

Feature sharing

Resorting to the commonality of human pronunciation,
employ multilingual data to train generic acoustic feature
extractor, so that the data required for training the acoustic
model for a new language can be significantly reduced.
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Table 1. Cont.

Method Summary

Unsupervised learning Using semi-supervised or self-supervised learning ap-
proach to utilize unlabelled data.

Completely unsupervised learning No transcribed data at all, employ unparallel speech and
text to train ASR systems.

Massively multilingual modeling
Utilize speech data and lexical knowledge of a large
amount of languages, to train models for ‘any’ language
(nearly).

2.2.1. Data Augmentation

Data augmentation generates diverse data by designing various transformation func-
tions [39,40]. For speech recognition, popular data augmentation methods include adding
noise [39] and reverberation [41], speed perturbation [42], using vocal tract length perturba-
tion to generate warped spectral variants [43], speech synthesis [44–47], SpecAugment [48],
MixSpeech [49], sub-sequence sampling [50], etc. Data augmentation is one of the most-
effective methods for low-resource language speech recognition and has been widely used
in practice [40,51–54].

2.2.2. Phoneme Mapping

There are many similar pronunciation units (e.g., phonemes) among different lan-
guages. If the phonemes of different languages can be unified into a universal phoneme set,
it would be easy to set up a phoneme map between two languages. Based on this mapping,
models of other languages can be used to “synthesize” the model of the target language.
This method is especially suitable for acoustic models based on the GMM, as GMMs corre-
sponding to different phonemes are independent. For example, Schultz et al. [55] used the
International Phonetic Alphabet (IPA) to accomplish the mapping between languages. With
this mapping, they used the acoustic models of seven languages to construct a Swedish
speech recognition system and obtained good results. Lööf et al. [56] adopted the same
method to transfer a Spanish model to a Polish model.

2.2.3. Feature Sharing

With the emergence of deep learning, feature sharing becomes a standard and primary
approach for low-resource language speech recognition. The basic idea of this method
is that human languages are similar in speech production so that the acoustic features
of different languages can be largely shared. Three approaches are commonly used to
share the features in practice [57]: (1) to learn a language-independent feature extraction
network and, then, use the network to extract features for low-resource languages. This
approach is mostly applied in the tandem ASR framework [58], and it firstly trains a DNN
model with rich-resource language monolingual or multilingual data, then it uses this
DNN model to extract language-independent acoustic features, and finally, it trains the
GMM-HMM or DNN-HMM for low-resource languages [59–63]. (2) Multilingual learning:
This approach is mostly based on the hybrid ASR framework [31]. The main architecture
is a multi-head DNN trained with the speech data of multiple languages including the
target language, where the feature extractor is shared and each language maintains its own
phoneme recognition layer [57,64]. (3) Transfer learning: This firstly uses rich-resource
language monolingual or multilingual data to train a neural network, and then, it uses this
to initialize the model for the low-resource language. A fine-tuning step then follows to
adapt the model to the data of the low-resource language [65].

In recent years, end-to-end speech recognition technology has grown popular, and how
to transfer end-to-end models to low-resource language speech recognition has become
a research focus. Dalmia et al. [66] trained a CTC model with the multilingual data in
the BABEL dataset, showing that the multilingual training improved the performance
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for each language. Inaguma et al. [67] built a multilingual attention model. They trained
this attention model using the data from 10 languages in the BABEL dataset and, then,
migrated it to the other five languages in BABEL. Similar to the scheme proposed by [67],
Watanabe et al. [68] constructed a multilingual CTC-attention model. Cho et al. [69] adopted
this multilingual CTC-attention model and reported better results than monolingual models
when experimented on the BABEL dataset. Zhou et al. [70] verified the performance of
multilingual Transformer models. It was based on multilingual character sets and used the
BPE algorithm to generate subword units (https://github.com/rsennrich/subword-nmt,
accessed on 25 December 2022). Experimental results on six languages in the CALLHOME
dataset showed that the Transformer model trained on multilingual data could achieve
better results over monolingual models. Shetty et al. [71] also verified the multilingual
Transformer model, and in particular, they found that involving language information can
further improve the model’s strength. Müller et al. [72] also demonstrated the importance
of language information. They added a learnable language vector to the DNN and found
that the performance on low-resource languages was improved.

The basic assumption of feature sharing is that the different languages are similar in
speech generation. This idea is not new and was also studied in the context of the traditional
GMM-HMM framework. For example, Burget et al. [73] divided the parameters of the
subspace Gaussian mixture models (SGMMs) [74] into two parts: language-independent
global parameters and language-dependent local parameters, and used the multilingual
data to train the global parameters and the monolingual data to train the local parameters,
obtaining significant performance improvement through this multilingual training.

It is worth mentioning that some studies proposed using a universal phoneme set to
train multilingual DNN models, which is essentially a combination of phoneme sharing and
feature sharing. For example, Vu et al. [75] and Tong et al. [76] built a unified annotation
for different languages based on the IPA and, then, trained the DNN-HMM, multilingual
CTC, and lattice-free maximum mutual information (LF-MMI) models [77]. Kim et al. [78]
combined the characters of English, German, and Spanish as a universal character set and
trained the CTC model based on this set. An obvious advantage of this phoneme-sharing
model is that it can be transferred to a zero-resource model. In principle, if the phonemes
of a new language are covered by those of the languages in the training set, the transfer
of the zero-resource model is possible. Even if some phonemes are not covered, similar
phonemes from the training languages can be used as a substitution [79].

2.2.4. Unsupervised Learning

Unsupervised learning is another important method to solve the data scarcity. The
basic idea of this method is to learn the shared representations through a large number of
unlabeled data, thus reducing the data requirement of acoustic modeling.

Semi-supervised training is a typical unsupervised learning approach. In this training
scheme, an initial model is firstly trained with a small amount of annotated data, and the
model is used to decode the unlabeled data. Once completed, the resultant transcripts are
treated as pseudo-labels and used to retrain the model [80]. Billa et al. [81] recently found
that semi-supervised learning can improve the performance of low-resource language
speech recognition even with data from mismatched domains. More aggressively, semi-
supervised training can be conducted in a cross-lingual manner, which decodes unlabeled
data by an off-the-shelf model of a rich-resource language and, then, translates the resultant
transcripts to the target language, e.g., by phoneme mapping [82,83].

Self-supervised training is perhaps the most-popular unsupervised learning approach
currently. For example, Conneau et al. [84] trained a Wav2Vec 2.0 model with 800 h of
speech data in 10 languages. After fine-tuning on the BABEL data, this model achieved
remarkable performance improvement in multilingual tests. Javed et al. [85] reproduced
this result on a database containing 40 Indian languages from a wide variety of domains
including education, news, technology, and finance. Zhang et al. [86] also adopted the
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multilingual self-supervised training scheme in low-resource language settings, though
their model was based on a teacher–student learning scheme.

Besides pre-training, unsupervised learning also can be used as regularization. For
example, Renduchintala et al. [83] proposed a multi-modal data augmentation (MMDA)
method, which feeds text to the encoder of a sequence-to-sequence model and, then, lets
the decoder reconstruct the input text. In this setting, the model is trained with extra text
data. This extra training is unsupervised and plays the role of regularization. Wiesner [87]
improved this approach by passing the text through a pre-processing network before
feeding it to the encoder. Wang et al. [88] proposed a UniSpeech model, which treated the
model training of Wav2Vec 2.0 as an auxiliary task to obtain robust speech representations
at the encoding layers.

2.2.5. Completely Unsupervised Learning

Recently, researchers have been paying attention to speech recognition methods under the
conditions of extreme data scarcity; for example, there are unlabeled speech and independent
text, but no transcribed speech is available. In this case, the training is completely unsupervised.
Liu et al. [89] firstly proposed a completely unsupervised learning method that combines model
pre-training with adversarial learning. This method extracts speech representations based
on Wave2Vec 2.0 and, then, generates phoneme sequences based on a generative adversarial
network (GAN) model, which includes a generator and a discriminator, iteratively learning
from each other. The training objective is to make the distributions of the phoneme sequences
generated by the GAN match the distribution of the real text. This seminal work was followed
by a couple of researchers [90–92]. Completely unsupervised learning is a hotspot at present,
and its latest progress can be found in [93].

2.2.6. Massively Multilingual Modeling

Thanks to the accumulation of data and the development of techniques, researchers
have been able to carry out massively multilingual modeling. In 2019, researchers at Johns
Hopkins University studied the possibility of pre-training speech models using the data
from a huge amount of languages [94]. They trained multilingual models using the Bible
speech data of 100 languages in the CMU multilingual database and used the multilingual
models to initialize the models of other languages [95]. Later, researchers at Facebook
trained a multilingual model using data from 50 languages [96]. Although fewer languages
were used, their data were beyond the Bible data and much more complex. Recently,
researchers at CMU [97] trained speech recognition systems for 1909 languages. They
trained a large-scale acoustic model on English and then mapped the phonemes of other
languages to the phonemes of the English model based on linguistic knowledge (such as
PHOIBLE [98]).

2.2.7. Other Resources

Current databases for low-resource language speech recognition include Global-
phone [99], BABEL [100], the CMU Wild Multilingual Database [95], VoxForge (http://
www.voxforge.org/, accessed on 22 December 2022), Multilingual LibriSpeech (MLS) [101],
Common Voice [102], etc. For low-resource language speech recognition, early approaches
can be found in [1] and recent advances can be found in [103,104].

3. Linguistic Analysis of Uyghur, Kazakh, and Kyrgyz

These three languages are so related that there are usually no barriers to communica-
tion for speakers among each other [105]. Even so, each language also has its individualities.

3.1. Commonalities of the Three Languages

From the writing aspect, the three languages are all written from right to left and the
words are separated by blanks. In history, the three languages all underwent abrupt changes
in their writing systems. For example, Kyrgyz was written in ancient Altaic letters and then

http://www.voxforge.org/
http://www.voxforge.org/
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gradually changed to Persian-Arabic letters. After the establishment of the Soviet Union
(The USSR), Kyrgyz in The USSR began to use Latin letters from 1927 and Cyrillic letters
from 1940. After the collapse of The USSR, people in Kyrgyzstan discussed the possibility
of changing back to Latin letters, but to today, Cyrillic letters still dominate in Kyrgyzstan.
In China, Kyrgyz is relatively stable and is always written in Arabic letters [106]. The other
two languages have also experienced similar changes. In China, all three languages use
Arabic letters, though a slight difference exists. The following discussion will focus on the
three languages in China.

From the linguistic aspect, the syntax rules of the three languages are generally the
same and a large proportion of words look similar. In morphology, they share the same fea-
ture of suffix agglutination, a prominent characteristic of Altaic languages. Specifically, each
word is composed of a stem as a skeleton plus multiple suffixes (additional components),
and some words also contain a prefix. The agglutination is rather flexible, and the number
of suffices could be as large as 10, making the vocabulary very large. Taking Uyghur as
an example, there are about 40,000 common stems and 289 affixes, constructing more than
1.2 million words [107]. Despite the large vocabulary, the letter-to-phone conversion is
rather simple, and in most cases, it is a one-to-one mapping.

From the phonetic aspect, each word consists of several syllables and each syllable
should contain a vowel. All three languages follow strict rules of phonetic harmony when
syllables are combined to form words. There are two types of phonetic harmony: vowel
harmony and consonant harmony. Vowel harmony means that the vowels appearing in
different syllables of the same word are consistent in the articulation position and lip shape,
that is either all are front vowels (or back vowels) or all are rounded vowels (or unrounded
vowels). Consonant harmony means that consonants in successive syllables are either all
voiced or all voiceless [108].

From the acoustic aspect, the three languages are also similar. Experiments have
shown that the patterns of the fundamental frequency (F0) of the three languages are quite
similar for females and males. Besides, the averaged values of the first formant (F1) of
the corresponding vowels in the three languages are substantially the same, while the
difference is mainly in the second formant (F2): the F2 of Kazakh and Kyrgyz is clearly
higher than that of Uyghur [109].

3.2. Individualities of Each Language
3.2.1. Alphabets

Kazakh and Kyrgyz are based on Arabic letters, while Uyghur is slightly different.
Specifically, 20 letters are identical, 2 letters are spelled in different ways, and 2 letters are
unique in Uyghur (see Appendix D).

3.2.2. Phoneme Set

All three languages were developed from the ancient Altaic, and their phoneme sets
are similar. Kyrgyz best preserves the ancient Altaic phonemes, while Uyghur and Kazakh
have developed new phonemes. Table 2 summarizes the vowels used in the three languages,
and the consonants are listed in the Appendix section.

Table 2. Vowel phoneme sets of Uyghur, Kazakh, and Kyrgyz.

Vowels e a ø o u y æ ε i i e

Front (←)/Central (•)/Back (→) ← → ← → → ← ← ← • ← •

Top (↑)/Bottom (↓) ↓ ↓ ↓ ↓ ↑ ↑ ↓ ↑ ↑ ↑ ↑

Rounded (o)/Unrounded (¬o) ¬o ¬o o o o o ¬o ¬o ¬o ¬o ¬o

Uyghur X X X X X X X X

Kazakh X X X X X X X X X

Kyrgyz X X X X X X X X
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Specifically, in Kyrgyz, there are 8 short vowels: a, e, e, o, ø, u, i, and y, and 22 conso-
nants (see Appendix C). The eight short vowels are rooted in the ancient Altaic, and based
on these basic vowels, Kyrgyz extended six long vowels: aa, oo, uu, ee, øø, and yy. These
long vowels may be formed by the consonant assimilation between vowels [110].

Kazakh has nine vowels and 24 consonants (see Appendix B). Apart from the same
vowels as Kyrgyz, Kazakh has an extra front vowel æ, and the front vowel y is replaced by
a central vowel i. Some researchers believe that æ in Kazakh did not appear in the ancient
Altaic, instead gradually emerging in the process of language fusion [111]. Besides the
vowels, Kazakh also has 24 consonants (see Appendix B).

Uyghur is based on eight vowels: a, ε, e, i, o, ø, u, and y, and 24 consonants [110] (see
Appendix A). The Uyghur vowels are very similar to the Kyrgyz vowels, except that the
central vowel ewas substituted with the front vowel ε.

3.2.3. Vowel Harmony

As mentioned above, vowel harmony exists in all three languages, but the degree of
strictness is different. For Kyrgyz, the vowel harmony rule is the most strict. For Kazakh,
the harmony rule may be broken into words involving the vowel æ, perhaps because it is a
new pronunciation in the language. For Uyghur, e and i are relatively neutral, and so can
be combined with either front vowels or back vowels [110].

3.2.4. Vowel Reduction

Vowel reduction refers to the “weakening” effect of vowels when suffixes are added.
With the weakening effect, an open vowel will be changed to a closed vowel (position
from bottom to top). For example, in Uyghur, a weakens to e: ati ← eti (“his horse”)
and ε weakens to e: bεli← beli (“her waist”). The vowel reduction of a and ε is a unique
characteristic of Uyghur.

3.2.5. Other Differences

Besides the individual properties of the three languages mentioned above, other
differences include: (1) the position of each vowel and consonant in word formation;
(2) the harmony rule of consonants and the weakening rules (inspiration of aspirated
phonemes, voiceless of voiced consonants, spirantization of stops and affricate consonants,
spirantization of semivowels, e.g., y[j], etc.); (3) the elision of vowels and consonants; (4) the
impact of foreign words on acoustic and linguistic rules.

4. Advances in Speech Recognition for Uyghur, Kazakh, and Kyrgyz
4.1. Resource Accumulation

Resources comprise the major bottleneck that restricts the research of low-resource
language speech recognition. To solve the resource problem, many previous research insti-
tutions designed various databases and language resources (dictionaries, texts, language
models, etc.). Most of these resources are for internal usage and have poor standardization.
Results based on private data are not convincing enough. Recently, researchers noticed
this problem and have published several open databases, which has greatly promoted the
progress of the research. Table 3 summarizes the datasets available at present.

4.1.1. THUYG-20

THUYG-20 [112] is a Uyghur speech recognition database published by Tsinghua
University and Xinjiang University in 2017. It consists of 20 h of training speech recorded
by 348 speakers (163 males and 185 females) and 2 h of test speech recorded by 23 speakers
(13 males and 10 females). The recording device is a table microphone connected to a
desktop. All the speech data were collected in an office environment, and the speakers
uttered the sentences in the reading style. Besides speech data, the research group also
published dictionaries (phoneme dictionary and morpheme dictionary), language mod-
els, and all the source codes (https://github.com/wangdong99/kaldi/tree/master/egs/

https://github.com/wangdong99/kaldi/tree/master/egs/thuyg20
https://github.com/wangdong99/kaldi/tree/master/egs/thuyg20
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thuyg20, accessed on 25 December 2022). THUYG-20 is the first complete and open-source
Uyghur database.

4.1.2. M2ASR

In 2016, Tsinghua University, Xinjiang University, and Northwest Minzu University
kicked off a joint project called Multilingual Minorlingual Automatic Speech Recognition
(M2ASR). The goal of this project was to conduct research on speech recognition tech-
nologies for five minority languages, including Tibetan, Mongolia, Uyghur, Kazakh, and
Kyrgyz [113]. At the end of this project in 2021, the project team released all the resources
they constructed. The resources included speech databases (277 h in Uyghur, 250 h in
Kazakh, and 166 h in Kyrgyz), text corpora (88 M in Uyghur, 100 M in Kazakh, and 6 M
in Kyrgyz), and pronunciation dictionaries (45,000 in Uyghur, 100,000 in Kazakh, and
15,000 in Kyrgyz). This is the most-comprehensive and -complete resource for Uyghur,
Kazakh, and Kyrgyz speech recognition.

4.1.3. Common Voice

Common Voice is a free and open crowdsourced data collection project initiated by
Mozilla and other companies and research institutes [102]. Volunteers upload speech to
the cloud server, and then, anyone can perform annotation via the same platform. In 2019,
Common Voice 1.0 was released. It contained 1000 h of speech from 19 languages. At
present, Common Voice has been updated to Version 11.0 (21 September 2022), covering
100 languages and containing 16,000 h of speech. In the new release, there are 119 h of
Uyghur speech, 2 h of Kazakh speech, and 47 h of Kyrgyz speech. Common Voice is
the first multilingual data resource constructed by crowdsourcing, and it is continually
accumulating data. For now, the Kyrgyz data in Common Voice is the standard data for
Kyrgyz research.

4.1.4. KSC/KSC2

In 2020, researchers at Nazarbayev University in Kazakhstan published a 330 h Kazakh
speech corpus (KSC) [114], which was the largest Kazakh database at that time. Motivated
by Common Voice, this database was also collected by crowdsourcing. The entire dataset
contains more than 150,000 speech utterances from 1612 devices. In the same year, this
research group published a Kazakh TTS database, called KazakhTTS [115]. It was recorded
by two speakers (one male and one female) and comprises 93 h in total. In 2022, this
group expanded KazakhTTS to five speakers and 271 h of speech, called KazakhTTS2 [116].
Recently, KSC and KazakhTTS2 were put into a larger dataset called KSC2 [117], together
with additional data including: (1) 238 h of crowdsourcing data; (2) 48 h of high-quality
TTS speech; (3) 238 h of speech from TV, self-media, and other sources. Now, KSC2 has
reached 1128 h in total. It is the largest Kazakh database at present.

Table 3. Active resources for Uyghur, Kazakh, and Kyrgyz.

Resource Language Date Contributor Data Size Attributes

THUYG-20 [112] 1 Uyghur 2017 THU & XJU Speech: 20 h Reading, Office, Mic

M2ASR-Uyghur 2 Uyghur 2021 M2ASR Speech: 136 h, Text: 88 M Reading, Mobile

M2ASR-Kazakh [118] 2 Kazakh 2021 M2ASR Speech: 78 h, Text: 100 M Reading, Mobile

M2ASR-Kyrgyz 2 Kyrgyz 2021 M2ASR Speech :166 h, Text: 6 M Reading, Mobile

CommonV-Uyghur [102] 3 Uyghur 2021 Mozilla, etc. Speech: 119 h Crowdsourced

CommonV-Kazakh [102] 3 Kazakh 2021 Mozilla, etc. Speech: 2 h Crowdsourced

CommonV-Kyrgyz [102] 3 Kyrgyz 2021 Mozilla, etc. Speech: 2 h Crowdsourced

IARPA-Kazakh [100] 4 Kazakh 2021 IARPA Speech: 64 h Mic and Telephone

https://github.com/wangdong99/kaldi/tree/master/egs/thuyg20
https://github.com/wangdong99/kaldi/tree/master/egs/thuyg20
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Table 3. Cont.

Resource Language Date Contributor Data Size Attributes

KSC [114] 5 Kazakh 2020 ISSAI Speech: 332 h Crowdsourced

KazakhTTS [115] 6 Kazakh 2021 ISSAI Speech: 93 h 2 Speakers

KazakhTTS2 [116] 6 Kazakh 2022 ISSAI Speech: 271 h 5 Speakers

KSC2 [117] 7 Kazakh 2022 ISSAI Speech: 1128 h Crowdsourced,
Reading

1 http://openslr.org/22 (Free). 2 http://m2asr.cslt.org (Free). 3 https://commonvoice.mozilla.org/en/datasets
(Free). 4 https://catalog.ldc.upenn.edu/LDC2018S13 (Not free). 5 https://issai.nu.edu.kz/kz-speech-corpus
(Free). 6 https://github.com/IS2AI/Kazakh_TTS (Free). 7 https://github.com/IS2AI/Kazakh_ASR (Free). All
the resources were accessed on 25 December 2022.

4.2. Technical Development
4.2.1. Uyghur

Speech recognition in Uyghur started quite early. Wang et al. constructed a Uyghur
database in 1996 [119] and, then, performed an in-depth study of Uyghur speech recognition
techniques. For instance, in 2003, they studied the performance of different recognition
units under the HMM framework and found that syllables were suitable units for acoustic
modeling [120]. Silamu et al. [121] discussed the construction principle of the Uyghur
database in 2009 and also studied the speech recognition approach based on the HMM and
the speech synthesis approach based on unit selection. In 2010, Ablimit et al. [122] compared
two Uyghur speech recognition systems based on morphemes and words, respectively.
Experiments conducted on 150 h of microphone data from 353 speakers showed that the
performance of the word-based system was superior. In the same year, Li et al. [123]
built a large-scale Uyghur speech recognition system based on stem–suffix. Experiments
conducted on 500 h of telephone data from 835 speakers found that the system based on
stem–suffix obtained better performance than the system based on words.

After 2015, deep neural networks began to be applied to Uyghur speech recognition.
For example, Tuerxun et al.[124] trained a DNN-HMM model with 50 h of data collected
by USTC and reported better performance than the GMM-HMM (21.82%–>12.98%). Ba-
texi et al. [125] trained a DNN-HMM model with 4466 utterances collected privately and
reported more significant performance gains over the GMM-HMM (40.18%–>9.09%). In
2020, Ding et al. [126] built a novel end-to-end speech recognition system based on the
Transformer+CTC architecture with the King-ASR450 database. In 2021, Subi et al. [127]
implemented a Conformer system. Since then, the ASR research on Uyghur has kept up
with the technical advance of common languages.

In addition to following state-of-the-art technology, researchers have also made some
special designs according to the individualities of Uyghur.

Firstly, to solve the data scarcity issue, researchers put forward several schemes. In
2017, Yolwas et al. [128] verified the value of transfer learning in Uyghur speech recognition.
They trained a basic BLSTM-HMM model with Chinese data and, then, retrained the
output layer with Uyghur data. Since the volume of Uyghur data was already large, the
contribution of the transfer learning was not clear. However, significant improvement was
soon observed in data sparsity scenarios [129,130].

Another representative work towards data efficiency was conducted by Shi et al. [131]
based on semi-supervised training. They firstly employed the transfer learning method
to convert a Chinese model into a Uyghur model, by fine-tuning with a small amount of
annotated Uyghur data. The obtained model was then used to decode a large amount
of unlabeled Uyghur data, and the decoding results were used to refine the Uyghur
model. They found that, with this method, using only 500 annotated utterances, they could
achieve more competitive performance than the model trained from scratch with 50 h of
annotated data.

Secondly, since the vocabulary of Uyghur is very large, researchers have proposed
to use subword units in language modeling (LM). Ablimit et al. [132] developed a multi-

http://openslr.org/22
http://m2asr.cslt.org
https://commonvoice.mozilla.org/en/datasets
https://catalog.ldc.upenn.edu/LDC2018S13
https://issai.nu.edu.kz/kz-speech-corpus
https://github.com/IS2AI/Kazakh_TTS
https://github.com/IS2AI/Kazakh_ASR
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lingual morpheme analysis tool, which can discover frequent morphemes from a list of
words. This tool supports Uyghur, Kazakh, and Kyrgyz. Rouzi et al. adopted this tool to
build a morpheme-based Uyghur system and found that using morpheme-based LM can
achieve better performance than word-based LMs [112]. In 2018, Hu et al. [133] proposed a
subword-word end-to-end ASR model and reported good performance on a private Uyghur
database involving 1000 h of speech. Further research showed that combining subword
units and BPE encoding usually offered good performance in Uyghur ASR [134,135].

It is worth noting that most of the above studies were based on private data. An
obvious consequence is that the claimed experimental results cannot be reproduced, mak-
ing the research unverifiable. In addition to the inaccessible private database, the lack of
open-source code is another obstacle for research development. This makes it difficult
for readers to reproduce the blend of techniques, thus being unable to verify their effec-
tiveness and innovation. To solve these two problems, a standard benchmark database
and its accompanying baselines are required. In 2017, Tuersun et al. [136] described how
they constructed a database of 1000 h of Uyghur, but neither the source code, nor the
collected data were published. In the same year, Tsinghua University and Xinjiang Uni-
versity published a free Uyghur database, THUYG-20 [112], and also released several
baselines with popular techniques, making technology comparison and discussion possi-
ble. Since then, many researchers have reported substantial progress based on this open
database [127,129,135,137–139]. Table 4 shows the performance of different technologies
reported on THUYG-20, from which we can clearly see the roadmap of technical progress.
In this table, the DNN-HMM is the hybrid DNN system; Chain-TDNN is a variant of the
hybrid system with a 1D temporal dilated CNN employed; BLSTM-CTC/attention is an
end-to-end system, with both the CTC loss and the attention-based sequence-to-sequence
architecture; Transformer-CTC and Conformer-CTC are both based on CTC training with
Transformer and Conformer as the encoder blocks, respectively; and Conformer-CTC-MTL
introduces multi-task learning on the basis of Conformer-CTC.

Table 4. SOTA results tested on THUYG-20 [127].

Models CER (%)

DNN-HMM 24.3

Chain-TDNN 17.6

BLSTM-CTC/Attention 31.5

Transformer-CTC 21.4

Conformer-CTC 11.6

Conformer-CTC-MTL 7.8

4.2.2. Kazakh

Compared to Uyghur, research on Kazakh speech recognition started much later. In
2015, Khomitsevich et al. [140] studied the Kazakh–Russian bilingual speech recognition
system. They built a Kazakh–Russian bilingual keyword recognition system based on
the DNN-HMM structure with 147 h of telephone data. In 2016, Abilhayer et al. [141]
constructed a continuous speech recognition system based on the GMM-HMM. Since 2019,
the Institute of Information and Computational Technology and al-Farabi Kazakh Na-
tional University published several papers on Kazakh speech recognition and verified the
DNN-HMM system [142,143], BLSTM-CTC end-to-end system [144,145], and Transformer
CTC/attention system [146] with their private data. At the same time, Beibut et al. [147]
constructed an LSTM-CTC end-to-end Kazakh ASR system based on transfer learning.
Since these research works were based on private data, their value is limited.

Like Uyghur, researchers have gradually become aware of the importance of open
databases for Kazakh ASR. In 2021, Kuanyshbay et al. [148] reported their crowdsourcing
platform and claimed that 50 h of data had been collected through this platform. However,
they did not publish the platform, nor the data. In 2021 also, researchers from Nazarbayev
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University released the first large-scale Kazakh database, KSC [114], offering the first open
benchmark for Kazakh speech recognition research. Since then, research on Kazakh has
been in the fast lane. For example, Mussakhojayeva et al. [149] conducted a multilingual
study of Kazakh, Russian, and English based on KSC. In 2022, KSC was further expanded
and reached 1128 h [117]. Table 5 presents the performance of different models tested on
KSC, from which we can see the roadmap of technical development. In this paper, the
DNN-HMM is the hybrid system, and the others are two end-to-end systems with LSTM
and Transformer as the encoder blocks, respectively. Valid and Test represent the validation
set and test set, respectively.

Table 5. SOTA results tested on KSC [114]. LM represents the language model; SpeedPerturb and
SpecAug represent speed perturbation and SpecAugment, respectively.

ID Models LM SpeedPerturb SpecAug
Valid Test

CER (%) WER (%) CER (%) WER (%)

1 DNN-HMM Yes Yes No 5.2 14.2 4.6 13.7
2 Yes Yes Yes 5.3 14.9 4.7 13.8

3

E2E-LSTM

No No No 9.9 32.0 8.7 28.8
4 Yes No No 7.9 20.1 7.2 18.5
5 Yes Yes No 5.7 15.9 5.0 14.4
6 Yes Yes Yes 4.6 13.1 4.0 11.7

7

E2E-Transformer

No No No 6.1 22.2 4.9 18.8
8 Yes No No 4.5 13.9 3.7 11.9
9 Yes Yes No 3.9 12.3 3.2 10.5
10 Yes Yes Yes 3.2 10.0 2.8 8.7

4.2.3. Kyrgyz

In contrast, research on Kyrgyz speech recognition started even later. Until 2018,
researchers [150] from Xinjiang University reported their study based on a CNN model.
In this study, they trained an initial CNN model with Uyghur data and, then, adapted
it to a Kyrgyz model using their private data consisting of 5 h of speech recorded from
40 speakers. Again, the value of these studies is limited as they were not based on an
open benchmark.

In 2019, the Common Voice database was published, which contains a small amount of
Kyrgyz data. This public data aroused the interest of researchers, and since then, Kyrgyz has
become the research object of extremely low-resource language speech recognition [151,152].
For example, Riviere et al. [153] in 2020 verified the performance of transfer learning on
these data. They firstly used 360 h of LibriSpeech data to pre-train a contrastive predictive
coding (CPC) model and, then, fine-tuned it with 1 h of Kyrgyz data. The performance of
the fine-tuned model was 41.2% for the CER. In the same year, Conneau et al. [84] trained a
Wav2Vec 2.0 model with 56,000 h of data from 53 languages and, then, fine-tuned it with
1 h of Kyrgyz data, reducing the CER to 6.1%. Furthermore, Baevski et al. [91] proposed a
completely unsupervised learning model, which used 1.8 h of unlabeled Kyrgyz data and
obtained a CER of 14.9%. Table 6 presents the performance on the Common Voice-Kyrgyz
dataset. In this table, CPC and XLSR are “few-shot” systems, where a large amount of extra
data were used to pre-train the model, and then, one hour of Kyrgyz data were used to
perform the fine-tuning. The pre-trained models are CPC and Wave2Vec2.0, respectively.
The last Wav2Vec2.0 system is fully unsupervised, with Wav2Vec2.0 as the feature front-end
and a GAN as the decoder.
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Table 6. SOTA results tested on the Common Voice-Kyrgyz dataset.

Models CER (%)

Pre-training + fine-tuning (1 h)

CPC [153] 41.2
Wave2Vec2.0 (XLSR) [84] 6.1

Completely unsupervised learning (1.8 h)

Wav2Vec2.0 + GAN [91] 14.9

4.3. Analysis and Discussion

We briefly summarized the technical developments of the three languages: Uyghur,
Kazakh, and Kyrgyz. There are several important observations as follows.

4.3.1. The Importance of Open-Source Data

From the development history of speech recognition technology for the three lan-
guages, we can see that, for any language, no matter when the research was started, fast
technical progress is impossible without a standard benchmark including both open-source
data and reproducible source code.

Taking Uyghur as an example, although the studies on Uyghur ASR started as early
as the 1990s, most of the research reported results using private data and without the
source codes, making reproduction and technical comparison very hard. The consequence
is that research on Uyghur is always in a follow-up state and has little contribution to the
mainstream research community.

A standard benchmark is a public platform. On this platform, different technologies
can be compared and verified, so it will be easy to verify which technique is effective and
which one is a spurious innovation. Famous benchmark databases include TIMIT [154]
and WSJ [155] in English and RAS 863 [156] in Chinese. Despite their historical contribu-
tions, most of the early datasets are not free. Recently, the open-data movement made a
further step: researchers started to publish their data for free and also accompanied by the
corresponding source codes for the baselines so that all research groups and individuals
can study, communicate, and compare under the same resources and rules. This has signifi-
cantly promoted technical progress. There are many open-source databases in rich-resource
languages, such as LibriSpeech [157], THCHS30 [158], and AIShell-I/II [159,160], to name
a few.

The contribution of open-source databases for Uyghur, Kazakh, and Kyrgyz ASR
research is even clearer. Especially, we can see that, before the appearance of open-source
data, such as THUYG20, KSC, and Common Voice, research on these three languages
largely was mostly technique migration from the common languages. However, after the
appearance of open-source data, much innovative work emerged. This is the most obvious
for the research progress on Kyrgyz. Kyrgyz ASR research started in 2018, much later than
the studies on Uyghur. However, due to the Common Voice database, the recognition
accuracy has rapidly increased within three years, and Kyrgyz has become one main
language for some cutting-edge technologies such as completely unsupervised learning.

The above observations demonstrate that open-source data are perhaps the first and
crucial step to promote the technical development of a new low-resource language.

4.3.2. The Diversity of Data Sources

Early databases generally contained reading speech recorded by microphones in an
office environment (even high-quality speech recorded in a sound-proof studio [142,143]).
Speech data recorded in this way are characterized by clear pronunciation, small noise
interference, and a single channel. THUYG-20 and a part of M2ASR-UYGHUR were
collected in this way. This type of collection approach is expensive and involves little
diversity in the environment and channel. Recently published databases were collected
in more flexible ways. For example, most of the data in M2ASR were collected through
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mobile apps, which are easy to use and can collect data with more channel and background
diversity. KSC and Common Voice adopted a crowdsourcing approach, which allows
any person to upload his/her speech and conduct annotation. This greatly speeds up the
collection process, reduces the cost, and allows collecting a rich acoustic diversity. Taking
Common Voice as an example, from the first version in 2019 to the latest version in 2022,
the amount of data has increased 16 times and the number of languages has expanded
from 19 to 100. One of the risks of the crowdsourcing scheme is that the annotation may
not be accurate enough. However, studies have indicated that, when the data volume is
large enough, the influence of annotation noise is acceptable for model training [161,162].

Finally, although the speech data of these three languages are much more diverse than
before, they are not truly spontaneous. This is because the speakers will realize that they
are being recorded, so they will tend to choose a relatively quiet place and speak clearly. A
possible way to collect more spontaneous speech data is to utilize the rich data resources of
the Internet. Recently, several public databases are being collected in this way, including
GigaSpeech [163], WenetSpeech [164], VoxCeleb [165], CN-Celeb [166], and so on.

4.3.3. Language Individuality Not Fully Used

From the technical history of the three languages, it can be seen that the most-
significant performance improvement has been due to the evolution of acoustic models
developed in common languages, such as the DNN-HMM, Transformer, etc. Even for
the techniques developed for low-resource language speech recognition, such as transfer
learning and pre-training, they are not specific to Uyghur or Kazakh. At present, we have
not found much improvement being attributed to a “special design” for the three languages
(using morphemes as LM units could be seen as a special treatment for agglutinative
languages, but subword units are also known in English ASR).

This observation should be interpreted from two perspectives. On the positive side,
this indicates that it is indeed possible to implement low-resource language speech recogni-
tion by improving the general speech recognition technology; at least the most-effective
techniques at present can be applied to various languages with no difference. This brings
hope to overcome human language barriers: it is not necessary for us to study 7000+ lan-
guages one by one, and we can only select some representative languages to develop the
general technologies and, then, generalize them to other languages. On the negative side,
this means that the language individualities of Uyghur, Kazakh, and Kyrgyz have not been
seriously considered in the current research. For instance, we know that people write words
in the way that they want to pronounce them, due to a simple letter-to-phoneme mapping.
However, pronunciation may vary significantly due to accents or personal habits, leading
to uncertainty in word forms. This has caused serious problems in language modeling, but
little has been done to resolve it. Other language individualities such as harmony rules,
vowel weakening patterns, and phonological constraints have not been well treated in the
present research.

4.3.4. Language Commonality Not Fully Used

From the technical summary, we can see that the ASR research on Uyghur, Kazakh,
and Kyrgyz has almost been independently developed. However, we know that the three
languages belong to the same language family and that they share many commonalities.
Unfortunately, this commonality is seldom utilized in ASR research. A few exceptions
include: Ablimit et al. [132], who developed a general morpheme analysis method based on
the agglutinative property of Altaic languages; Sun et al. [150], who transferred a Uyghur
model to a Kyrgyz model, assuming that the transfer between languages in the same
language family is easy. In spite of these few exceptions, the commonality of the three
languages has been ignored by most researchers working on each language.

One possible reason for this situation is the lack of “homologous data”. Notice that
THUYG-20, KSC, and Common Voice are the most commonly used databases right now for
the three languages, respectively. These databases come from different sources and possess



Appl. Sci. 2023, 13, 326 15 of 25

different properties in their quantity, quality, and acoustic features. The discrepancy among
the datasets prevents a comparative or collaborative study.

From this point of view, the M2ASR corpus may provide a valuable solution, as the
data of the three languages were collected using similar data collection pipelines, so the
quality and speaking style are similar. Therefore, we expect the M2ASR data to be suitable
for conducting a comparative analysis among the three languages and performing language
collaborative learning.

5. Conclusions and Discussions

Uyghur, Kazakh, and Kyrgyz all belong to the same language family and branch.
Each language has its development path, but they also interact with each other. Especially
in China, these three languages share many commonalities in terms of writing, pronun-
ciation, and syntax [2]. From the perspective of speech recognition, they all belong to
low-resource languages and encounter similar challenges. The purpose of this paper was
to summarize the speech recognition technologies developed for these three languages,
with the hope to identify critical problems and effective methods shared among all three
languages. Meanwhile, by comparing the technical development pathways of the three
languages, we hope to discover important factors for developing low-resource language
speech recognition technology.

We first reviewed the technologies that are commonly used to tackle the low-resource
language ASR problem and, then, discussed the commonalities and individualities of
Uyghur, Kazakh, and Kyrgyz. After that, we summarized the development history and
presented the status of speech recognition technologies for the three languages.

Through the discussion, we firstly found that the technical development of these
three languages is rather unbalanced. The research progress of Uyghur has been going
on for nearly 30 years, while the research on Kyrgyz started only in the last five years.
Importantly, regardless of how much sooner or later the research started, rapid progress is
always accompanied by the emergence of open-source data.

Secondly, we also observed that the current progress in the three languages is largely
attributed to the technology migration from common languages, rather than the “native
research” on the target language. On the one hand, this indicates that human languages are
similar in pronunciation, and this similarity can be utilized to build a strong ASR system
even for languages with very limited resources. On the other hand, this indicates that the
current research has paid little attention to languages’ individualities.

Thirdly, although the performance of speech recognition on the three languages has
greatly improved, we should notice the limitation of the current benchmarks: most of the
datasets are comprised of reading speech with low noise. The next technical breakthrough
should be accompanied by the emergence of more complex and spontaneous datasets.

Fourthly, there is little research on the uncertainty of the language itself. This uncer-
tainty may be caused by many factors, such as the lack of standardization of the language
itself, pronunciation discrepancy in different regions, linguistic changes influenced by word
borrowing and general interference from other languages, and so on. Actually, since our
focus in the paper was the three languages in China, the observations could be different
from those found for the same languages in the middle of Asia. For example, the language
description of Kazakh we presented in Appendix B is quite different from recent accounts
by other authors [167,168], although both were carefully designed and checked by linguists.
Besides, for Uyghur, Kazakh, and Kyrgyz, based on the one-to-one letter-to-phoneme
mapping, uncertainty in pronunciation will be reflected in the writing system, leading to
noise in the vocabularies and language models. It is worth noting that this uncertainty is a
common problem of many low-resource languages, but little research has been conducted
in this direction.

In summary, we think that low-resource language speech recognition has three main
difficulties: data scarcity, uncertainty in pronunciation and writing, and language indi-
viduality. Currently, most studies focus on solving the data scarcity problem, including
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more data collection, transfer learning, pre-training, etc. These techniques are obviously of
great significance. However, research on the uncertainty and uniqueness of languages is
still limited.

For future work, we believe that the following directions are worth exploring: (1) Uyghur,
Kazakh, and Kyrgyz should learn from each other’s latest technical advances, to construct
more powerful ASR systems; (2) research on collaborative modeling methods based on the
commonality of the three languages should be conducted; (3) datasets that can better reflect the
real-life complexity and verify the true performance of practical systems should be constructed;
(4) research on modeling methods for the uncertainty in writing and pronunciation, such as
word normalization methods [132] and language model calibration methods (map language
models from one region to another region), etc., should be conducted; (5) research on how to
utilize language’s individualities to further improve system performance should be conducted.

Finally, we noticed that low resources are a general problem in machine learning, not
solely in speech recognition. There is a wealth of research on this problem in a broad range
of research fields including computer vision, natural language understanding, and robotics.
Due to the space limitation, reviewing novel methods in other fields was out of the scope
of the paper; nevertheless, we highly recommend researchers in speech recognition look
into other fields and, if possible, borrow new ideas and useful tools from them.
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Appendix A. Uyghur Phoneme Table

Figure A1. Uyghur vowels.
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Figure A2. Uyghur consonants.

Appendix B. Kazakh Phoneme Table

Figure A3. Kazakh vowels.

Figure A4. Kazakh consonants.

Appendix C. Kyrgyz Phoneme Table

Figure A5. Kyrgyz Vowels.
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Figure A6. Kyrgyz consonants.

Appendix D. Differences in Arabic Character Sets of the Three Languages

Figure A7. Common characters.

Figure A8. Different characters.
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