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Abstract

Automatic speech recognition (ASR) could potentially improve communication by providing transcriptions of speech in 

real time. ASR is particularly useful for people with progressive disorders that lead to reduced speech intelligibility or dif-

ficulties performing motor tasks. ASR services are usually trained on healthy speech and may not be optimized for impaired 

speech, creating a barrier for accessing augmented assistance devices. We tested the performance of three state-of-the-art 

ASR platforms on two groups of people with neurodegenerative disease and healthy controls. We further examined indi-

vidual differences that may explain errors in ASR services within groups, such as age and sex. Speakers were recorded 

while reading a standard text. Speech was elicited from individuals with multiple sclerosis, Friedreich’s ataxia, and healthy 

controls. Recordings were manually transcribed and compared to ASR transcriptions using Amazon Web Services, Google 

Cloud, and IBM Watson. Accuracy was measured as the proportion of words that were correctly classified. ASR accuracy 

was higher for controls than clinical groups, and higher for multiple sclerosis compared to Friedreich’s ataxia for all ASR 

services. Amazon Web Services and Google Cloud yielded higher accuracy than IBM Watson. ASR accuracy decreased 

with increased disease duration. Age and sex did not significantly affect ASR accuracy. ASR faces challenges for people 

with neuromuscular disorders. Until improvements are made in recognizing less intelligible speech, the true value of ASR 

for people requiring augmented assistance devices and alternative communication remains unrealized. We suggest potential 

methods to improve ASR for those with impaired speech.

Keywords Automatic Speech Recognition · Dysarthria · Neurodegenerative disease · Augmented assistive communication 

technology · Communication

Automatic speech recognition (ASR) systems help digital 

machines interpret spoken speech and automate human 

tasks, such as typing text and web searches. ASR-based 

technologies are ubiquitous with an ever-increasing inven-

tory of applications including smart phones, in-car systems, 

healthcare, intelligent assistive devices, security, banking, 

retail, telephony, computers, education, and smart homes 

(Owens, 2006). At present, however, this technology is not 

optimized for all users. People with neurological disease 

often present with impaired speech (i.e., dysarthria). Dys-

arthria is a speech disorder caused by impaired neurological 

function, motor control, and/or speech articulators. These 

speech impairments can result from acquired brain or spinal 

cord injuries (e.g., stroke) as well as congenital and neuro-

degenerative diseases, and age-related neurological decline 

(Liégeois et al., 2010; Magee, Copland, & Vogel, 2019; 

Noffs et al., 2018; Poole et al., 2017; Rojas, Kefalianos, 

& Vogel, 2020). Commercial ASR services are developed 
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and maintained using large datasets typically acquired from 

people with unimpaired speech. ASR services may, conse-

quently, lose their proficiency with impaired speech due to 

their underrepresentation in training datasets. This leads to 

increased errors in ASR for dysarthric speech (De Russis & 

Corno, 2019; Mengistu & Rudzicz, 2011; Rosen & Yam-

polsky, 2000; Young & Mihailidis, 2010). Therefore, it is 

important to assess the functionality of ASR for populations 

that may exhibit abnormal speech to ensure these groups 

can access voice-assistant technology (e.g., emails, playing 

music, operating a television, using appliances).

Although previous studies inform us of shortcomings 

specific to ASR systems for dysarthric speech, they do not 

provide direct comparisons between commercial offerings of 

ASR nor do they compare performance between dysarthria 

types or causes. For example, some studies have examined 

ASR accuracy using databases of dysarthric speech (e.g., the 

TORGO database) but do not differentiate between causes of 

dysarthria (e.g., cerebral palsy and amyotrophic lateral scle-

rosis) which may produce different speech recognition errors 

(De Russis & Corno, 2019; Mengistu & Rudzicz, 2011). 

Previous studies have generally contained small sample sizes 

(e.g., < 10 per group) and, although qualitative comparisons 

were discussed, do not report quantitative statistical com-

parisons between controls and dysarthric speakers (Blaney 

& Wilson, 2000; De Russis & Corno, 2019; Mengistu & 

Rudzicz, 2011; Raghavendra, Rosengren, & Hunnicutt, 

2001; Thomas-Stonell et al., 1998). As such, studies did not 

have sufficient statistical power to examine potential effects 

of individual differences (e.g., sex and age). The work pre-

sented here focuses on the performance of state-of-the-art 

commercial ASR services (Amazon Web Services Tran-

scribe, Google Cloud Speech, and IBM Watson Speech-

to-Text) for healthy speech and impaired speech from two 

groups with compromised speech systems: multiple sclerosis 

(MS) and Friedreich’s ataxia (FA). We further examine the 

effects of age and sex on ASR accuracy.

An estimated 2.3 million people worldwide have MS 

(Wallin et al., 2019) and many present with dysarthria (Noffs 

et al., 2018). MS is a chronic autoimmune disease that dis-

rupts the communication between the brain and body by 

attacking the myelin sheath of nerve fibers. These dysfunc-

tions can result in weakness and reduced coordination of 

the muscles associated with speech production (tongue, lips, 

mandible, vocal cords, diaphragm), resulting in impaired 

speech. People with MS and dysarthria can present with 

reduced voice quality, imprecise articulation, impaired stress 

patterns, slower speech rate, reduced breath support and 

poor pitch and loudness control (Noffs et al., 2018).

Friedreich’s ataxia (FA) is a neurodegenerative disease 

that is less common than MS; FA affects 1.7–4.7 out of 

100,000 people or 132.6–336.6 thousand people worldwide 

(Delatycki, Williamson, & Forrest, 2000; Klockgether, 

2007) but often has a more debilitating impact on the speech 

(Gibilisco & Vogel, 2013). FA is a multisystem degenera-

tive disease and the most common hereditary ataxia. Symp-

toms typically present in the second decade of life but can 

occur earlier or later depending on genetic profiles. Deficits 

include progressive limb and gait ataxia, optic and auditory 

neuropathy, scoliosis, cardiomyopathy and swallowing and 

speech deficits (Delatycki & Bidichandani, 2019). Speech 

in FA is characterized by reduced pitch variation, reduced 

loudness control, impaired timing, strained voice quality, 

reduced breath support, hypernasality, and imprecise pro-

duction of consonants (Folker et al., 2010; Poole et al., 2015; 

Vogel et al., 2017).

In both MS and FA, speech typically declines as disease 

severity increases (Noffs et al., 2020; Rosen et al., 2012). The 

nature of these diseases and how users interact with technol-

ogy are sometimes different to those of “healthy speakers”. 

In the case of people with dysarthria, there is often a discon-

nect between what ASR aspires to do and what it can offer in 

practice. The typical age of onset for MS is between 20 and 

50 years with an average of 34 years (Stoppler, 2019) and 

before 25 years for FA (Harding, 1983). Therefore, MS and 

FA primarily affect those who could potentially be the most 

active users of ASR technology (Shih, 2020). It is imperative 

that people with impaired speech are not left behind in this 

age of technology. Our objective was to quantify the prob-

lem of poor performance of commercial ASR services in 

people with impaired speech with the aim of guiding future 

design solutions. Here, we examined ASR performance on 

impaired speech using accuracy measures for transcribing 

multiple consecutive words. Potential mediating variables 

of age, disease duration, and sex were also explored. The 

present research has the potential to increase the quality of 

life for people with dysarthria by improving their access 

to technologies that facilitate communication and automate 

manual tasks through voice commands.

1  Methods

To ensure that we could detect differences between groups 

and examine the effects of sex and age, we required a larger 

sample size than those in publicly available databases. 

Moreover, our objective was to examine ASR performance 

for healthy controls and populations with FA and MS per-

forming the same task under comparable conditions; to the 

knowledge of the authors, no such speech database is avail-

able. Therefore, we developed our own speech database 

using the protocols discussed below.
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1.1  Participants

Three groups of participants were recruited: Individuals 

with multiple sclerosis (N = 32), individuals with Friedreich 

ataxia (N = 32), and 32 healthy controls (see demographic 

information in Table 1). All speakers were Australians with 

Australian accents. Participants in the clinical groups had 

confirmed diagnosis of disease according to published diag-

nosis criteria and confirmed by a neurologist. The recruit-

ment of these participants was agnostic to their speech 

quality. Groups contained a subsample of 21 participants 

matched for sex and age, with a maximum age difference 

of 2 years.

1.2  Materials

Speech was recorded via an AKG C520 cardioid head-

mounted condenser microphone (frequency range 

= 20–20,000 Hz; sensitivity  = −43 dB) connected to a 

Roland Quad-Capture recorder sound card at a sample rate 

of 44.1 kHz, quantized at 16 bits. Speech recordings were 

screened prior to automatic speech recognition to manually 

remove speech artefacts and background noise using Audac-

ity (Mazzoni & Dannenberg, 2012).

1.3  Procedure

Participants were seated in a quiet room without acoustic 

isolation to reflect real-world settings. The head-mounted 

microphone was placed approximately 8  cm from their 

mouth at a 45° angle. They performed a reading task where 

a phonetically balanced written passage was read aloud (The 

Grandfather Passage, Van Riper, 1963, see “Appendix”) and 

speech was recorded. No time restrictions were placed on the 

reading and durations ranged from 36 to 183 s. Manual tran-

scriptions of the recordings were performed prior to ASR 

implementation using the written passage as a template.

1.4  Automatic speech recognition implementation

Automatic speech recognition algorithms were implemented 

using custom-made Python scripts (Python3.6; Rossum, 

2019) that used the SpeechRecognition library (Zhang, 

2017). These scripts were merely wrappers to load and 

submit the audio recordings to ASR services and save the 

output transcripts. ASR was implemented by each of the 

three services: AWS, Google Cloud, and IBM Watson. The 

Australian English language model was used for AWS and 

Google Cloud. IBM Watson does not yet provide an Aus-

tralian English language model, so the US English model 

was used instead.1 For AWS and IBM Watson, the full pas-

sage could be transcribed in one instance. Google Cloud 

could only transcribe 60 s of audio per file. Therefore, audio 

passages were analyzed in 50-s frames with 5 s of overlap. 

Google Cloud transcriptions were then aligned by matching 

the last 5 s of the previous frame with the first 5 s of the next 

frame, then visually inspected to ensure alignment occurred 

correctly. Text was analyzed using custom-made MATLAB 

(version R2019a; MathWorks, 2019) scripts that measured 

the percentage of consecutive words (nGrams; one word, 

two words, three words) that were transcribed correctly by 

the ASR services based on the manual transcripts. All capi-

talization and punctuation were removed prior to analyzing 

the text and all numbers were converted to text. The per-

centage of accurately transcribed phrases for each record-

ing served as our measure for evaluating ASR performance. 

Confidence estimates of the ASR transcriptions were also 

extracted to assess the relationship between ASR accuracy 

and self-monitoring.

Table 1  Demographic information for healthy controls (HC), Friedre-

ich’s ataxia (FA), and multiple sclerosis (MS)

Disease severity was measured using the Friedreich’s ataxia rat-

ing scale (FARS; 0 = less severe, 3 = most severe) for FA and the 

expanded disability status scale (EDSS; 0 = no disability, 2.5 = mild 

disability, 5 = impairment to daily activities, 7.5 = unable to take more 

than a few steps and restricted to wheelchair, 9.5 = confined to bed 

and completely dependent) for MS

Variable Statistic Group

HC FA MS

Age (years) Mean 49.22 39.25 44.38

SD 11.85 16.74 11.69

Min–Max 26–67 13–68 24–66

Sex Female (Male) 14 (18) 16 (16) 16 (16)

Disease duration (years) Mean NA 24.16 13.44

SD NA 14.85 8.00

Min–Max NA 3–49 2–32

Disease Sever-

ity (FA = FARS, 

MS = EDSS)

Mean NA 1.41 3.94

SD NA 0.95 1.66

Min–Max NA 0–3 1–7

1 We also implemented the UK English language model. This pro-

duced similar patterns of results but with lower accuracy on average 

than the US English model [F(1, 92) = 28.5, p < .001, Ƞ2
G = .003]. We 

proceeded to report the results of IBM Watson using the US English 

model to provide the best representation of IBM Watson’s capabili-

ties. Similarly, we confirmed that the AU English model performed 

with higher accuracy for the UK and US English models for Amazon 

Web Services and Google Cloud (ps < .001).
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1.5  Statistical analysis

Non-linear mixed effects models (nLMEM) were used due to 

unequal variance between healthy controls, and people with 

FA and MS. nLMEMs were fit to accuracy data with fixed 

factors Group (3; HC, FA, MS; between-subjects), ASR 

service (3; Amazon Web Service, Google Cloud, IBM Wat-

son; within-subjects), and nGram (3; one word, two words, 

three words; within-subjects) with variance allowed to vary 

between levels of Group. We used the maximal random 

effects structure justified by the experimental design (Barr 

et al., 2013), that is, nGram nested within ASR service, and 

ASR service nested within Participant, with Age as a ran-

dom predictor. To assess evidence for the null hypothesis, 

we used Bayes Factor where evidence for the null hypothesis 

(BF01) was interpreted as 1 = no evidence, 3–10 = moderate 

evidence, and 10–30 = strong evidence (Jeffreys, 1998).

Data were analyzed using R software (R Core Team, 

2013). nLMEMs were performed using the lme function 

of the nlme library (Pinheiro et al., 2015) using Satterth-

waite’s method of approximation for degrees of freedom. 

F-statistics, significance values, and effect sizes (general-

ized eta squared; η2
G where .02 = small, .13 = medium, and 

over .26 = large; Bakeman, 2005) are reported. Two-tailed 

pairwise comparisons were computed using generalized 

linear hypothesis testing for Tukey’s Honestly Significant 

Difference contrasts, using the glht function in the multcomp 

library (Hothorn et al., 2008). Bayes factor was calculated 

using the anovaBF function in the BayesFactor library 

(Morey, Rouder, & Jamil, 2018). Partial correlations were 

calculated using the pcorr.test function in the ppcor library 

(Kim & Kim, 2015) and associated Bayes factor partial cor-

relations were calculated using the jzs_partcor function in 

the BayesMed library (Nuijten et al., 2014).

2  Results

To evaluate the performance of ASR services between 

groups, accuracy scores were subjected to the nLMEM. 

There were significant main effects of Group [F(2, 

92) = 44.69, p < 0.001, η2
G = 0.45], ASR service [F(2, 

184) = 66.72, p < 0.001, η2
G = 0.08], and nGram [F(2, 

552) = 3888.11, p < 0.001, η2
G = 0.39]. Two-way interac-

tions were significant between Group and ASR service [F(4, 

184) = 3.91, p = 0.005, η2
G = 0.01], Group and nGram [F(4, 

552) = 37.74, p < 0.001, η2
G = 0.01], and ASR service and 

nGram [F(4, 552) = 2.73, p = 0.03, η2
G = 0.001]. The three-

way interaction between Group, ASR service, and nGram 

was also significant [F(8, 552) = 2.07, p = 0.04, η2
G = 0.002]. 

Planned comparisons for hypothesis testing were performed 

considering all pairwise comparisons of interest.

For all Groups and ASR services, accuracy significantly 

decreased as nGram increased (ps < 0.001; see Fig. 1a). 

These results suggest that the ASR services have greater dif-

ficulty transcribing consecutive words regardless of whether 

speech is impaired. For all nGrams and ASR services, accu-

racy was significantly higher for controls relative to MS 

(ps < 0.03) and FA (ps < 0.001), and for MS relative to FA 

(ps < 0.001). These results support the hypothesis that speech 

recognition accuracy decreased for groups with neurodegen-

erative disease. As speech recognition accuracy was lower 

for FA compared to MS, results also suggest that the severity 

of the disease type influenced accuracy. For all nGrams and 

Groups, Amazon Web Services and Google Cloud outper-

formed IBM Watson (ps < 0.003). Amazon Web Services 

and Google Cloud did not significantly differ except for FA 

one-word accuracy where Google Cloud showed higher 

accuracy than Amazon Web Services (p = 0.01). A Bayes 

factor t-test between accuracy from Amazon Web Services 

and Google Cloud revealed strong evidence for the null 

hypothesis (BF01 = 10.49 ± 0.001%) suggesting that these 

two ASR services performed comparably.

To explore differences in ASR between females and male 

speakers, we performed the same analyses as above with Sex 

as factor. Results revealed a significant two-way interaction 

between ASR service and Sex [F(2, 178) = 3.36, p = 0.04, 

η2
G = 0.004], and a significant three-way interaction between 

Group, ASR service, and Sex [F(4, 178) = 3.25, p = 0.01, 

η2
G = 0.008]. Post hoc comparisons examining the two-way 

interaction between ASR service and Sex revealed that sex 

did not moderate differences between ASR services with 

Amazon Web Services and Google Cloud demonstrating 

higher accuracy than IBM Watson for males (ps < 0.001) 

and females (ps < 0.001; see Fig. 1b). Males and females 

did not significantly differ for any of the ASR services 

(ps > 0.95). Post hoc comparisons examining the three-way 

interaction between Group, ASR service, and Sex revealed 

that accuracy for males was significantly higher than females 

in the HC group for Amazon Web Services (p = 0.03) and 

trended towards significance for the HC group for IBM Wat-

son (p = 0.07). No other sex differences approached signifi-

cance (ps > 0.1). Finally, the same significant differences 

between groups (HC > MS > FA) were observed for both 

males (ps < 0.003) and females (ps < 0.003). Overall, these 

results show that sex did not moderate differences between 

groups or ASR services.

To explore the influences of age and disease dura-

tion, we examined correlations between accuracy and 

age across groups and within each group. As shown in 

Fig. 2, there were moderate significant negative corre-

lations between accuracy and age for FA using all ASR 

services. No other correlations between age and accuracy 

were significant. For disease duration, the FA group dem-

onstrated moderate significant negative correlations with 
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accuracy for all ASR services. No significant correlations 

were observed between ASR accuracy and disease dura-

tion for any ASR service for the MS group (ps > 0.2; see 

Fig. 2c). These results indicate that speech recognition 

accuracy decreases as FA progresses over time, but MS 

did not demonstrate this relationship. Finally, we per-

formed partial correlations between accuracy and age 

controlling for disease duration. No partial correlations 

were significant (ps > 0.3). To assess evidence for the 

null hypothesis we performed Bayes factor partial cor-

relations, which revealed strong evidence for the null 

hypothesis for FA (BF01 = 22.64 ± 0.001%) and moderate 

evidence for MS (BF01 = 8.98 ± 0.001%). Bayes factor cor-

relations between accuracy and age for healthy controls 

also demonstrated strong evidence for the null hypothesis 

(BF01 = 16.93 ± 0.4%). These results suggest that ASR 

accuracy is not influenced by healthy ageing outside of 

the effects of neurodegenerative disease.

To examine the relationship between ASR accuracy and 

confidence, we performed Pearson correlations between 

accuracy at the one-word level and confidence. As shown 

in Table  2, there were significant moderate-to-large 

positive correlations for all ASR services and all groups 

(ps < 0.001). These results suggest that word-level confi-

dence is an indicator of ASR accuracy regardless of ASR 

service or neurodegenerative disease.

3  Discussion

We examined the accuracy of three publicly available 

state-of-the-art automatic speech recognition platforms for 

individuals with impaired speech. Accuracy for was higher 

for healthy controls compared to people with neurodegen-

erative disease, and higher accuracy for people with MS 

compared to FA. Accuracy declined with longer disease 

duration, suggesting that dysarthria severity negatively 

Fig. 1  Mean accuracy for automatic speech recognition methods for groups for a nGrams consisting of one, two, and three consecutive words, 

and b between females and males
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impacts the capability of ASR services to interpret 

speech in neurodegenerative disease. Healthy ageing did 

not appear to affect accuracy. Performance varied across 

the three ASR services with Amazon Web Services and 

Google Cloud yielding higher accuracy than IBM Watson. 

Amazon Web Services provided higher accuracy for males 

than females in the healthy control group. Overall, find-

ings suggest that these ASR services are not yet optimized 

Fig. 2  Scatterplots a between accuracy and age, b between accuracy and disease duration, and c correlation coefficients between ASR accuracy 

and age, ASR accuracy and disease duration, and partial correlations between accuracy and age controlling for disease duration
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for populations with mild (e.g., MS), moderate, or severe 

(e.g., FA) speech impairments associated with neurode-

generative disease.

People with neurodegenerative disease stand to benefit 

significantly from ASR. Tools designed to automate tasks 

and enhance communication may improve quality of life and 

provide access to activities that are inaccessible. ASR has 

been proposed as an alternative mode of communication 

for people with difficulty typing due to fine motor impair-

ment, as they could use ASR to write emails or use instant 

messaging services. ASR would be particularly useful in tel-

ehealth applications where communication may be degraded 

further because of unreliable internet connections or poor 

bandwidth. There are several techniques that could be used 

to optimize ASR for people with neurodegenerative disease 

and other speech impairments. One approach would be to 

train the ASR models on speech data from people with neu-

rodegenerative disease. These models could then either be 

selected as a language variant (e.g., English, Neurodegenera-

tive disease) or be implemented automatically if the ASR 

service is unable to determine words with high confidence. 

Our results demonstrating moderate correlations between 

ASR accuracy and ASR confidence suggest that automati-

cally switching the language variant for low-confidence tran-

scripts could be a viable option to increase the accessibility 

of ASR services. Several projects are underway that aim to 

improve the accuracy and capacity of ASR in speakers with 

compromised speech (e.g., Project Euphonia by Google AI, 

n.d.) with the outcomes pending. Another approach would 

be to continue adapting existing ASR models idiosyncrati-

cally on individuals’ speech by allowing some form of error 

correction either manually or through automatic error esti-

mation. Personalization is more arduous for the user but may 

lead to better ASR accuracy with time and consistent usage 

than static non-adaptive models trained at the population 

level. Several commercially available ASR services train 

models for individuals, such as Dragon (Nuance, 2020), but 

do not appear to have been systematically tested on popula-

tions with impaired speech. A comparison of population- and 

individual-level ASR services would be useful to ascertain 

which produces better ASR accuracy for healthy controls 

and people with impaired speech. It is possible that hybrid 

ASR implementation would produce better results; a base 

model trained on population data which is then optimized 

using individual-level adaptations should, theoretically, out-

perform population- or individual-level ASR approaches.

Some evidence suggests a negative relationship between 

age and ASR accuracy (cf. Young & Mihailidis, 2010). 

In contrast, our results did not demonstrate a relationship 

between age and ASR accuracy for healthy controls. ASR 

accuracy for people with neurodegenerative disease was pri-

marily associated with disease duration, a proxy of disease 

severity. It is possible that previous research did not con-

sider the prevalence of neurodegenerative disease or speech 

impairments in their cohorts and that other factors mediated 

relationships between age and ASR accuracy. Our partial 

correlations between ASR accuracy and age that accounted 

for disease duration were not significant, suggesting that 

healthy ageing does not negatively impact ASR accuracy in 

our cohort. This suggests that ASR remains a useful commu-

nication tool for older populations without impaired speech.

We examined speech from healthy controls, MS, and FA 

to provide coverage across subtle to severe speech impair-

ments, representing a wide spectrum of speech intelligibility. 

It is likely that other conditions with more severe influence 

on speech may produce even lower ASR accuracy. Future 

studies could examine how other neurodegenerative dis-

eases, and speech disorders more generally, affect ASR accu-

racy. It could be the case that certain conditions manifest as 

qualitatively different speech impairments. Understanding 

how different conditions affect ASR accuracy would aid in 

deciding the best strategy for optimizing ASR, and assess-

ing which groups require different models when interpret-

ing speech. In turn, this would increase the accessibility of 

ASR for a broad range of people with speech conditions 

who stand to benefit from communication aids and voice-

activated technologies.

3.1  Limitations and considerations

We examined Australian English speakers and used the AU 

English language models where available, that is, for Ama-

zon Web Services and Google Cloud but not IBM Watson. It 

is possible that an AU English model would produce higher 

accuracy for IBM Watson. Future research could further 

examine the cross-linguistic effects of neurodegenerative 

disease on ASR accuracy in other languages, dialects, and 

accents (cf. Pinto et al., 2017). Neurodegenerative disease 

may affect tonal languages, such as Cantonese, differently 

than non-tonal languages (e.g., Wong & Diehl, 1999). How 

language-specific constraints in dysarthria might influence 

ASR accuracy remains an open question.

We examined the ASR services that were free, able to 

transcribe speech into text, could be implemented in Python, 

and are considered state-of-the-art due to the large corpus 

of data accumulated by these companies. A variety of other 

Table 2  Pearson correlation coefficients between one-word accuracy 

and ASR confidence

All ps < 0.001

Amazon Google Watson

Healthy Controls 0.82 0.88 0.86

Multiple Sclerosis 0.58 0.52 0.62

Friedreich’s Ataxia 0.94 0.64 0.81
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state-of-the-art ASR services are also available, for exam-

ple, Dragon (Nuance, 2020), Siri (Apple, 2020), and Cor-

tana (Microsoft, 2020) but these either required software 

purchases or were bundled with operating systems. Future 

studies could compare ASR accuracy of these ASR services 

in the event the APIs become less constrained by the owning 

companies.

Finally, the lower ASR accuracy shown for people with 

neurodegenerative disease when using current models 

points to alternative uses of ASR, such as useful automatic 

measures for speech intelligibility (e.g., Fontan et al., 2017; 

Mengistu & Rudzicz, 2011; Schädler et al., 2015). These 

measures may be able to identify dysarthria within the 

population and prompt individuals to seek clinical attention 

(Fontan et al., 2017). ASR technology thus has the potential 

to benefit society as a virtue of difficulties with recognizing 

dysarthric speech. It would be prudent to retain legacy ASR 

models to ensure alternative applications of ASR services 

can be utilized.

4  Conclusion

Our work highlights the complexities of ASR technology 

in populations outside of traditional “healthy speaker” 

models. This poses a challenge for voice assistance devices 

and speech transcription services, which hold promise for 

improving access to services for people with physical and/or 

communication impairments. These services could be opti-

mized for people with dysarthria by training ASR classifiers 

on large datasets of impaired speech and creating language 

models that are sensitive to dysarthric speech. Once ASR 

technology has been optimized for speech from people with 

neurodegenerative disease, it will have potential to improve 

communication and benefit society through robust informa-

tion and communication technology infrastructures. With 

the demand for telehealth applications increasing due to the 

recent COVID19 pandemic, optimizing ASR technology 

for at-risk populations (e.g., people with neurodegenerative 

disease) should be considered a high priority. Therefore, we 

advocate that ASR should be improved for people with neu-

rodegenerative disease to facilitate communication.

Appendix

The Grandfather Passage

You wish to know all about my grandfather. Well, he is 

nearly 93 years old, yet he still thinks as swiftly as ever. 

He dresses himself in an old black frock coat, usually sev-

eral buttons missing. A long beard clings to his chin, giving 

those who observe him a pronounced feeling of the utmost 

respect. When he speaks, his voice is just a bit cracked and 

quivers a bit. Twice each day, he plays skillfully and with 

zest upon a small organ. Except in the winter, when the snow 

or ice prevents, he slowly takes a short walk in the open air 

each day. We have often urged him to walk more and smoke 

less, but he always answers, “Banana oil!” Grandfather likes 

to be modern in his language.
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