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There has been growing interest in introducing speech as a new modality into the human-computer interface (HCI). Motivated 
by the multimodal nature of speech, the visual component is considered to yield information that is not always present in the 
acoustic signal and enables improved system performance over acoustic-only methods, especially in noisy environments. In this 
paper, we investigate the usefulness of visual speech information in HCI related applications. We first introduce a new algorithm 
for automatically locating the mouth region by using color and motion information and segmenting the lip region by making use 
of both color and edge information based on Markov random fields. We then derive a relevant set of visual speech parameters 
and incorporate them into a recognition engine. We present various visual feature performance comparisons to explore their 
impact on the recognition accuracy, including the lip inner contour and the visibility of the tongue and teeth. By using a common 
visual feature set, we demonstrate two applications that exploit speechreading in a joint audio-visual speech signal processing 
task: speech recognition and speaker verification. The experimental results based on two databases demonstrate that the visual 
information is highly effective for improving recognition performance over a variety of acoustic noise levels. 

Keywords and phrases: automatic speechreading, visual feature extraction, Markov random fields, hidden Markov models, poly
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1. INTRODUCTION 

In recent years there has been growing interest in introduc
ing new modalities into human-computer interfaces (HCIs). 
Natural means of communicating between humans and 
computers using speech instead of a mouse and keyboard 
provide an attractive alternative for HCI. 

With  this motivation much research has  been  carried  out  
in automatic speech recognition (ASR). Mainstream speech 
recognition has focused almost exclusively on the acoustic 
signal. Although purely acoustic-based ASR systems yield ex
cellent results in the laboratory environment, the recogni
tion error can increase dramatically in the real world in the 

presence of noise such as in a typical office environment with 
ringing telephones and noise from fans and human conver
sations. Noise robust methods using feature-normalization 
algorithms, microphone arrays, representations based on hu
man hearing, and other approaches [1, 2, 3] have limited 
success. Besides, multiple speakers are very hard to separate 
acoustically [4]. 

To overcome this limitation, automatic speechreading 
systems, through their use of visual information to augment 
acoustic information, have been considered. This is moti
vated by the ability of hearing-impaired people to lipread. 
Most human listeners who are not hearing impaired also 
make use of visual information to improve speech perception 
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especially in acoustically hostile environments. In human 
speechreading, many of the sounds that tend to be difficult 
for people to distinguish orally are easier to see (e.g., /p/, /t/, 
/k/), and those sounds that are more difficult to distinguish 
visually are easier to hear (e.g., /p/, /b/, /m/). Therefore, vi
sual and audio information can be considered to be comple
mentary to each other [5, 6]. 

The first automatic speechreading system was developed 
by Petajan in 1984 [7]. He showed that an audio-visual sys
tem outperforms either modality alone. During the follow
ing years various automatic speechreading systems were de
veloped [8, 9] that demonstrated that visual speech yields 
information that is not always present in the acoustic sig
nal and enables improved recognition accuracy over audio-
only ASR systems, especially in environments corrupted by 
acoustic noise and multiple talkers. The two modalities serve 
complementary functions in speechreading. While the audio 
speech signal is represented by the acoustic waveform, the 
visual speech signal usually refers to the accompanying lip 
movement, tongue and teeth visibility, and other relevant fa
cial features. 

An area related to HCI is personal authentication. The 
traditional way of using a password and PIN is cumbersome 
since they are difficult to remember, must be changed fre
quently, and are subject to “tampering.” One solution is the 
use of biometrics, such as voice, which have the advantage of 
requiring little custom hardware and are nonintrusive. How
ever, there are two significant problems in current generation 
speaker verification systems using speech. One is the diffi
culty in acquiring clean audio signals in an unconstrained 
environment. The other is that unimodal biometric models 
do not always work well for a certain group of the popula
tion. To combat these issues, systems incorporating the visual 
modality are being investigated to improve system robustness 
to environmental conditions, as well as to improve overall 
accuracy across the population. Face recognition has been 
an active research area during the past few years [10, 11]. 
However, face recognition is often based on static face im
ages assuming a neutral facial expression and requires that 
the speaker does not have significant appearance changes. Lip 
movement is a natural by-product of speech production, and 
it does not only reflect speaker-dependent static and dynamic 
features, but also provides “liveness” testing (in case an im
poster attempts to fool the system by using the photograph 
of a client or pre-recorded speech). Previous work on speaker 
recognition using visual lip features includes the studies in 
[12, 13]. 

To  summarize, speech is an attractive means  for a user
friendly human-computer interface. Speech not only con
veys the linguistic information, but also characterizes the 
talker’s identity. Therefore, it can be used for both speech and 
speaker recognition tasks. While most of the speech informa
tion is contained in the acoustic channel, the lip movement 
during speech production also provides useful information. 
These two modalities have different strengths and weaknesses 
and to a large extent they complement each other. By incor
porating visual speech information we can improve a purely 
acoustic-based system. 

To enable a computer to perform speechreading or 
speaker identification, two issues need to be addressed. First, 
an accurate and robust visual speech feature extraction al
gorithm needs to be designed. Second, effective strategies to 
integrate the two separate information sources need to be de
veloped. In this paper, we will examine both these aspects. 

We report an algorithm developed to extract visual 
speech features. The algorithm consists of two stages of visual 
analysis: lip region detection and lip segmentation. In the lip 
region detection stage, the speaker’s mouth in the video se
quence is located based on color and motion information. 
The lip segmentation phase segments the lip region from its 
surroundings by making use of both color and edge informa
tion, combined within a Markov random field framework. 
The key locations that define the lip position are detected 
and a relevant set of visual speech parameters are derived. By 
enabling extraction of an expanded set of visual speech fea
tures, including the lip inner contour and the visibility of the 
tongue and teeth, this visual front end achieves an increased 
accuracy in an ASR task when compared with previous ap
proaches. Besides ASR, it is also demonstrated that the visual 
speech information is highly effective over acoustic informa
tion alone in a speaker verification task. 

This paper is organized as follows. Section 2 gives a re
view of previous work on extraction of visual speech features. 
We point out advantages and drawbacks of the various ap
proaches and illuminate the direction of our work. Section 3 
presents our visual front end for lip feature extraction. The 
problems of speech and speaker recognition using visual and 
audio speech features are examined in Sections 4 and 5, re
spectively. Finally, Section 6 offers our conclusions. 

2.	 PREVIOUS WORK ON VISUAL FEATURE 
EXTRACTION 

It is generally agreed that most visual speech information is 
contained in the lips. Thus, visual analysis mainly focuses on 
lip feature extraction. The choice for a visual representation 
of lip movement has led to different approaches. At one ex
treme, the entire image of the talker’s mouth is used as a fea
ture. With other approaches, only a small set of parameters 
describing the relevant information of the lip movement is 
used. 

In the image-based approach, the whole image contain
ing the mouth area is used as a feature either directly [14, 15], 
or after some preprocessing such as a principal components 
analysis [16] or vector quantization [17]. Recently, more so
phisticated data preprocessing has been used, such as a linear 
discriminant analysis projection and maximum likelihood 
linear transform feature rotation [18]. The advantage of the 
image-based approach is that no information is lost, but it is 
left to the recognition engine to determine the relevant fea
tures in the image. A common criticism of this approach is 
that it tends to be very sensitive to changes in illumination, 
position, camera distance, rotation, and speaker [17]. 

Contrary to the image-based approach, others aim at ex
plicitly extracting relevant visual speech features. For exam
ple in [19], descriptors of the mouth derived from optical 
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flow data were used as visual features. In [20], oral cavity 
features including width, height, area, perimeter, and their 
ratios and derivatives were used as inputs for the recognizer. 

In more standard approaches, model-based methods are 
considered, where a geometric model of the lip contour is 
applied. The typical examples are deformable templates [21], 
“snakes” [22], and active shape models [23]. Either the model 
parameters or the geometric features derived from the shape 
such as the height and width of the mouth are used as fea
tures for recognition. For all three approaches, an image 
search is performed by fitting a model to the edges of the 
lips, where intensity values are commonly used. The diffi
culty with these approaches usually arises when the contrast 
is poor along the lip contours, which occurs quite often un
der normal lighting conditions. In particular, edges on the 
lower lip are hard to distinguish because of shading and re
flection. The algorithm is usually hard to extend to various 
lighting conditions, people with different skin colors, or peo
ple with facial hair. In addition, the teeth and tongue are not 
easy to detect using intensity-only information. The skin-lip 
and lip-teeth edges are highly confusable. 

An obvious way of overcoming the inherent limitations 
of the intensity-based approach is to use color, which can 
greatly simplify lip identification and extraction. Lip fea
ture extraction using color information has gained interest 
with the increasing processing power and storage of hard
ware making color image analysis more affordable. However, 
certain restrictions and assumptions are required in existing 
systems. They either require individual chromaticity mod
els [24], or manually determined lookup tables [25]. More 
importantly, most of the methods only extract outer lip con
tours [26, 27]. No methods have been able to explicitly detect 
the visibility of the tongue and teeth so far. 

Human perceptual studies [28, 29] show that more visual 
speech information is contained within the inner lip con
tours. The visibility of the teeth and tongue inside the mouth 
is also important to human lipreaders [30, 31, 32]. We, there
fore, aim to extract both outer and inner lip parameters, as 
well as to detect the presence/absence of the teeth and tongue. 

One of the major challenges of any lip tracking system 
is its robustness over a large sample of the population. We 
include two databases in our study. One is the audio-visual 
database from Carnegie Mellon University [33, 34] including 
ten test subjects, the other is the XM2VTS database [35, 36], 
which includes 295 test subjects. In the next section, we 
present an approach that extracts geometric lip features us
ing color video sequences. 

3. VISUAL SPEECH FEATURE EXTRACTION 

3.1. Lip region/feature detection 

3.1.1 Color analysis 

The RGB color model is most widely used in computer vision 
because color CRTs use red, green, and blue phosphors to 
create the desired color. However, its inability to separate the 
luminance and chromatic components of a color hinders the 
effectiveness of color in image recognition. Previous studies 

(a) (b) 

Figure 1: (a) Original image. (b) Manually extracted lip ROI. 

[37, 38] have shown that even though different people have 
different skin colors, the major difference lies in the intensity 
rather than the color itself. To separate the chromatic and 
luminance components, various transformed color spaces 
can be employed, such as the normalized RGB space (which 
we denote as rgb in the following), YCbCr, and HSV. Many 
transformations from RGB to HSV are presented in the 
literature. Here the transformation is implemented after 
[39]. 

The choice of an appropriate color space is of great im
portance for successful feature extraction. To analyze the 
statistics of each color model, we build histograms of the 
three color components in each color space by discretizing 
the image colors and counting the number of times each dis
crete color occurs in the image. We construct histograms for 
the entire image and for the manually extracted lip regions 
of interest (ROI) bounded within the contour, as shown in 
Figure 1. 

Typical histograms of the color components in the RGB, 
rgb, HSV, and YCbCr color spaces are shown in Figures 2, 3, 
4, and 5, where two cases are given: (a) those for the entire 
image and (b) those for the extracted lip region only. 

Based on the histograms obtained from video sequences 
taken under various test conditions and for different test sub
jects, we can make the following observations. (i) The color 
components (r, g, b), (Cb, Cr), and (H) exhibit peaks in the 
histograms of the lip region. This indicates that the color dis
tribution of the lip region is narrow and implies that the color 
for the lip region is fairly uniform. On the other hand, color 
distributions of the R/G/B components (Figure 2) are wide 
spread since they contain luminance components. The RGB 
color space is therefore not suitable for object identification 
and is discarded in the following analysis. (ii) The color his
togram of (r, g, b) and (Cb, Cr) in the lip region more or less 
overlaps with that of the whole image (Figures 3 and 5), while 
the hue component has the least similarity between the entire 
image and the isolated lip region (Figure 4). This shows that 
hue has high discriminative power. (iii) The distributions of 
(r, g, b) and (Cb, Cr) vary for different test subjects, while 
hue is relatively constant under varying lighting conditions, 
and for different speakers. We therefore conclude that hue is 
an appropriate measure for our application. 
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Figure 2: Histograms of R/G/B components. (a) Entire image. (b) Lip ROI. 
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Figure 3: Histograms of r/g/b components. (a) Entire image. (b) Lip ROI. 
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Figure 4: Histograms of H/S/V components. (a) Entire image. (b) Lip ROI. 
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Figure 5: Histograms of Y/Cb/Cr components. (a) Entire image. (b) Lip ROI. 
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(a) 

(b) (c) 

(f) (g) 

(d) (e) 

Figure 6: Lip region detection. (a) Gray level representation of the original RGB color image. (b) Hue image. (c) Binary image after H/S 
thresholding. (d) Accumulated difference image. (e) Binary image (d) after thresholding. (f) Result from AND operation on (c) and (e). (g) 
Original image with the identified lip region. 

The first figure in Figure 4b shows the histogram of hue 
for the lip region. We observe that the red hue falls into two 
separate subsets at the low and high ends of the whole color 
range, as a result of the wrap-around nature of hue (hue 
is defined on a ring). For easy use of the hue component, 
we rotate the hue to the left, so that the red color falls in a 
connected region that lies at the high end of the hue range 
close to 1 (we scale the hue by a factor of 360 so that it is 
defined over the range [0, 1]). The modified RGB to HSV 
conversion is shown in the following: 

M = max(R, G,B)
 
m = min(R, G,B)
 
d = M − m
 
Value calculation: V = M
 
Saturation calculation: S = (M == 0)?0 : d/M
 
Hue calculation:
 
if (S == 0)
 

H = 0 
else 

if (d == 0) d = 1 
H = (R == M)?((G−B)/d) : (G  == M)?(2+(B−R)/d) :  

(4 + (R − G)/d) 
H− =  .2 
H/ = 6 
if (H <  0) H+ = 1 

3.1.2 Lip region detection 

The problem of visual feature extraction consists of two 
parts: lip region detection and lip feature extraction. In the 
first stage of the visual analysis, the speaker’s mouth in the 
video sequence is located. We utilize hue for this purpose. 
Given an RGB image of the frontal view of a talker, as shown 
in Figure 6a, a modified hue color image can be derived 
(Figure 6b). Since the modified red hue value lies at the high 
end, the lips appear to be the brightest region, but there is 

considerable noise in the hue image. Part of the noise is re
lated to the unfortunate singularity property of RGB to HSV 
conversion, which occurs when R = G = B (saturation  = 0) 
[40]. To remove this type of noise, we require that S exceed a 
certain preset value. For segmenting the lips, we label a pixel 
as a lip pixel if and only if H(i, j) > H0, S(i, j) > S0, where  
H0 = 0.8, S0 = 0.25 for H, S ∈ [0, 1]. The accuracies of those 
two values are not very critical, and they proved to generalize 
well for other talkers. The resulting binary image is shown in 
Figure 6c. 

Another component of the noise is caused by the non-lip 
red blobs in the image, for example when there are distract
ing red blobs in the clothing, or if the person has a ruddy 
complexion, as is the case for the person shown in Figure 6. 
In this case, we exploit motion cues to increase the robust
ness of detecting the lips. In this approach, we search for the 
moving lips in the image if an audio signal is present in the 
acoustic channel. To detect the moving object, we build dif
ference images between subsequent frames and sum over a 
series of frames. The accumulated difference image (ADI) is 
defined as follows: 

ADI0(i, j) = 0, 
(1) 

ADIk(i, j) = ADIk−1(i, j) +  ΔRk(i, j), k  ∈ 1, . . . , T,  

where the difference image ΔRk(i, j) is calculated by  
pixel-wise absolute subtraction between adjacent frames 
ΔRk(i, j) = |Rk(i, j)−Rk−1(i, j)|. Note that we use the R com
ponent for our lip detection. T is set to 100 in our work, that 
is, we sum the difference images over 100 frames. An example 
of an accumulated difference image is shown in Figure 6d. 
To separate the moving lips from the background, we use 
two subsequent thresholding operations. The first threshold 
is applied to the entire image, where threshold t1 is derived 
by using Otsu’s method [41]. This operation separates the 
speaker from the background. A subsequent threshold is then 
applied to the image with all pixel values > t1, and  t2 > t1 is 
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(a) (b) (c) 

Figure 7: (a) Configuration of lip sites (◦) and edge sites (—). (b) Neighborhood system for lip sites. The filled circle represents the site, and 
unfilled circles represent the neighbors of the site. (c) Neighborhood system for horizontal edge sites. The thick line represents the site, and 
thin lines represent the neighbors of the site. 

derived. The binary image based on t2 is shown in Figure 6e 
with moving mouth being highlighted. When this is com
bined with the binary image from the hue/saturation thresh
olding, shown in Figure 6c, the binary image, Figure 6f, is 
obtained by combining the two binary images using an AND 
operation. Based on the resulting image, we extract the lip re
gion from its surroundings by finding the largest connected 
region. The identified lip area is shown as a white bounding 
box in Figure 6g. 

There exist many other sophisticated classifiers in the lit
erature such as in [42, 43]. The effectiveness of this rather 
simple algorithm lies in the fact that the hue color is very 
efficient in identifying the lips due to its color constancy 
and high discriminative power. It should be noted, however, 
that it is assumed here that the video sequence contains the 
frontal view of a speaker without significant head motion. 

The lip location algorithm described above needs to be 
done only once for the first image of the sequence. For the 
succeeding frames, we estimate the lip region from the de
tected lip features of the previous frame based on the as
sumption that the mouth does not move abruptly from 
frame to frame. Subsequent processing is restricted to the 
identified lip region. 

3.1.3 MRF-based lip segmentation 

Since hue in [39] is defined on a ring (see Section 3.1.1) 
rather than on an interval R, standard arithmetic operations 
do not work well with it. In [44] another hue definition was 
suggested, H = R/(R + G), where R, G denote the red and 
green components. It is defined on R, and achieves nearly as 
good a reduction of intensity dependence as the conventional 
hue definition. 

In addition to the color information, edges characterize 
object boundaries and provide additional useful informa
tion. We perform edge detection by using a Canny detection 
on the hue image. In the Canny detector, the input image H 
is convolved with the first derivative of a Gaussian function 

−(i2+ j2)/2σ2
G(i, j) = σ2e (we set σ to 1.0 in our implementa
tion) to obtain an image with enhanced edges. The convo
lution with the two-dimensional Gaussian can be separated 
into two convolutions with one-dimensional Gaussians in di
rections i and j. The magnitude of the result is computed at 

each pixel (i, j) as  

e(i, j) = c1Hi
j(i, j)2 + c2H

j
j (i, j)2 , (2) 

where Hj and Hj are results of the convolutions between i j 
the first derivatives of the Gaussian and the image H in the 
two separate directions. Based on this magnitude, a non-
maximum suppression and double thresholding algorithm 
are performed and the edge map is derived. In expression 
(2), c1 and c2 are normally set to be equal. Since the lips con
tain mainly horizontal edges, we assign c1 = 10c2 to accen
tuate the importance of horizontal edges. This modification 
results in an improved edge map for lip images. 

To combine the edge and hue color information, we have 
chosen to use the machinery of the Markov random field 
(MRF), which has been shown to be suitable for the prob
lem of image segmentation. An MRF is a probabilistic model 
defined over a lattice of sites. The sites are related to each 
other through a neighborhood system. In MRFs, only neigh
boring sites have direct interaction with each other. Due to 
the Hammersley-Clifford theorem, the joint distribution of 
an MRF is equivalent to a Gibbs distribution, which takes 
the form 

  
1 1 

p(x) = exp − U(x) , (3)
Z T 

where Z is the normalizing constant, T the temperature con
stant, and U(x) the Gibbs potential 

 
U(x) = Vc(x), (4) 

c∈C 

which is the sum of clique potentials Vc(x) over all possible 
cliques C. 

In our problem, each site s = (i, j) is assigned a label 
l ex = 1 (for lips) or 0 (for non-lips), and x = 1 (for edge)  or  0  s s 

(for non-edge). Figure 7a shows configuration of lip sites and 
edge sites. Figures 7b and 7c show neighborhood systems for 
lip and horizontal edge sites, respectively. Here we use a first-
order neighborhood system. A very similar two-label scheme 
can be found in [45]. The maximum a posteriori (MAP) cri
terion is used to formulate what the best labeling should be. 
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The MAP estimate is equivalent to that found by minimizing 
the posterior energy term 

( )
x ∗ = arg min U x|y , (5) 

x 

where x = {xl , xe} denotes the configuration of the labeling, 
and y the observed image data. 

Using Bayes’ rule, the posterior probability is expressed 
as 

( ) (
l
) ( )

ep x|y ∝ p y|x p y|x p(x), (6) 

where p(y|xl) and  p(y|xe) represent the conditional proba
bility distribution of the observed image color and edge data 

lgiven the true interpretation of the images x and xe. They 
are modeled as follows: 

( )2 (
l
) ys − μxl s p y|x ∝ exp − , (7) 

s 2σx
2 
l 
s 

where μxsl and σxsl are the mean and variance of all pixels in 
lthe image with the lip label x . They are obtained by using s

Otsu’s methods [41] based on the histogram. The observed 
color data is represented by the hue color ys = R/(R + G) at 
site s = (i, j). 

In addition, 

( ) ( )
e ep y|x ∝ exp − es 1 − x , (8)s 

s 

where es represents the strength of the edge at site s and is 
the magnitude derived from the Canny detector described in 

e(2). The label x is the edge label at site s. It is 1 if there  is  s 
an edge, and 0 otherwise. Since the edge map is defined for 
each pixel, we shift the edge map by 1/2 pixel downwards 

eagainst the original image, so that x at s = (i, j) indicates s 
the edge between pixels (i, j) and  (i, j + 1). For simplicity, we 
only consider horizontal edges. 

By combining the above equations, it is clear that the 
MAP solution is equivalent to minimizing the following en
ergy function: 

( )2 ( ) ys − μxl ( ) 
U x|y = Vc(x)+λ1 

s +λ2 es 1−xe . (9)s2σx
2 
lc∈C s s s 

In (9), the first term expresses the prior expectation and 
the second and third terms bind the solution to the color and 
edge data, respectively. We use λ1 = 2 and  λ2 = 1. The Vc 

are the clique potentials describing the interactions between 
neighbors. They encode a priori knowledge about the spa
tial dependence of labels at neighboring sites. They are com
posed of three parts 

+ k3V
leVc = k1V

l + k2V
e , (10)c c c 

where k1 = 10, k2 = 1, and k3 = 1. The first term in (10), Vl ,c 
imposes smoothness and continuity of color regions over an 

entire image, the second term, Ve, is responsible for bound-c 
ary organization for the edges, and the third term, Vle, is the 
coupling term between the color and edge labels. There has 
been some work on applying statistical methods to estimate 
parameters for the clique potentials, such as in [46, 47]. How
ever, choosing the clique potentials on an ad hoc basis has 
been reported to produce promising results [48, 49]. In this 
paper, we define these terms as follows: 

⎧ ⎨−1 if  xl(i, j) = xl(i + 1, j),
V l(i, j; i + 1, j) = c ⎩+1 otherwise; ⎧ ⎨−1 if  xl(i, j) = xl(i, j + 1),
V l(i, j; i, j + 1)  = c ⎩+1 otherwise; ⎧ ⎨−1 if  xe(i, j) = xe(i + 1, j),
Ve(i, j; i + 1, j) = c ⎩+1 otherwise; 

⎧ ⎪−1 if  xl(i, j)  xl(i, j + 1), xe(i, j)=1,=⎪ ⎨ 
Vle 
c (i, j; i, j + 1)  = −1 if  xl(i, j)=xl(i, j + 1), xe(i, j)=0, ⎪ ⎪ ⎩+1 otherwise. 

(11) 

For the optimization strategy, a stochastic relaxation 
technique, such as simulated annealing, can be used to find 
the globally optimal interpretation for the image [45]. How
ever, an exhaustive search for a global optimum imposes a 
large computational burden because the labels for all pix
els need to be estimated simultaneously. Therefore, alterna
tive estimates have been suggested, including using a Monte 
Carlo method [50], mean field technique [51], iterated con
ditional modes (ICM) [52], and high confidence first (HCF) 
algorithm [53]. We chose to use the HCF, because it is deter
ministic, computationally attractive, and achieves good per
formance. HCF differs from the other methods in the order 
of sites which are visited. Instead of updating the pixels se
quentially, HCF requires that the site that is visited next be 
the one that causes the largest energy reduction. This pro
cedure converges to a local minimum of the Gibbs potential 
within a relatively small number of cycles. The current lip 
feature extraction algorithm runs at a speed of 5 seconds per 
frame with an original image resolution of 720 × 480. The 
algorithm is designed to be scalable and can work in near-
real time at lower image resolution with decreased tracking 
accuracy. 

3.2. Visual speech features 

Segmentation results with different persons and different lip 
opening situations are demonstrated in Figure 8. We ob
serve that the highlighted pixels fairly well match the true lip 
area. Based on the segmented lip image, we are able to ex
tract the key feature points on the lips [54]. We detect four 
feature points along the vertical lip line—the upper/lower 
outer/inner lip. To increase the accuracy of the identified fea
ture points, we incorporate intensity gradient information. 
If the gradient of the detected point is below a preset value, 
we start searching for the largest gradient in its vicinity, and 
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Figure 8: Segmented lips overlayed on the original image. 

Figure 9: Measured feature points on the lips. 

w2 

w1 

h3 

h2 

h1 
h4 

Figure 10: Illustration of the extracted geometric features of the 
lips. 

replace the old one with it. Finally, given the constraints of 
the outer corners and the upper/lower inner lip, we locate 
the inner lip corners. Examples of extracted feature points 
are shown in Figure 9. 

Based on the extracted key feature points, we can derive 
the geometric dimensions of the lips. The following features 
are used in our  study:  mouth width (w2), upper/lower lip 
width (h1, h3), lip opening height/width (h2, w1), and the dis
tance between the horizontal lip line and the upper lip (h4). 
An illustration of the geometry is shown in Figure 10. 

Besides the geometric dimensions of the lips, we also 
detect the visibility of the tongue and teeth. For detecting 
the tongue, we search for the “lip” labels within the inner 
lip region. Two cases need to be differentiated, as shown in 
Figure 11. In the first case, the tongue is separated from the 
lips by the teeth. Tongue detection is trivial in this case. In the 
second case however, the tongue merges with the lips. From 
the segmented image, we have a lip closure case. Here, we use 
the gradient of the intensity to detect the inner upper/lower 

(a) (b) 

Figure 11: (a) Tongue is separated from the lips. (b) Tongue merges 
with the lips. 

lip. In the case that h2 = 0, we search for intensity gradi
ent values along the vertical lip line. If the gradients of two 
points exceeding a preset value are found, they are identi
fied as upper/lower inner lip. The parameter for the tongue 
is represented by the total number of lip-color pixels within 
the inner lip contour. 

The teeth are also easy to detect since their H values are 
distinctly different from the hue of the lips. This is a big 
advantage compared with gray-level-based approaches that 
may confuse skin-lip and lip-teeth edges. Teeth are detected 
by forming a bounding box around the inner mouth area and 
testing pixels for white teeth color: S < S0, where  S0 = 0.35. 
The parameter of the teeth is the total number of white pixels 
within the bounding box. 

We applied the feature extraction algorithm on the 
Carnegie Mellon University database [33] with ten test sub
jects and the XM2VTS database [35] including 295 subjects. 
These two databases include head-shoulder full frontal face 
color video sequences of a person talking. Test subjects have 
various skin complexions with no particular lipstick. The 
first database was provided on DV tapes. We captured the 
sequences as AVI files with a resolution of 640 × 480 pixels 
and a frame rate of 30 frame/second. The second database 
was stored in DV encoded AVI format. The pixel resolution is 
720 × 576 with a frame rate of 25 frame/second. The feature 
extraction algorithm works well for most of the sequences 
in the two data sets, which cover approximately seven hours 
and more than 300 individuals. In a few cases, a few pix
els of inaccuracy are observed. The limitation of the color-
based feature extraction occurs when the lip color and its 
surrounding skin color are very close to each other, which 
exists in a small percentage of the population. In these cases, 
the extraction of the key points on the upper and lower lips 
becomes unstable. We therefore attempt to control the er
rors by using the geometric constraint and time constraint 
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Figure 12: Examples of detected feature points. 

methods. In the geometric constraint method the ratio be
tween the lip opening height and the mouth width is less than 
a threshold, and in the time constraint method the variation 
of the measures between successive frames is within a limited 
range. Figure 12 shows examples of feature extraction results. 
Since the evaluation of feature extraction methods is often 
subjective, it is common that the direct evaluation is omit
ted at the visual feature level, and performance is evaluated 
based only on the final results of the system, which could be 
a speech recognition or speaker verification system. In our 
experiment, we evaluate the accuracy of the derived visual 
features for the tongue and teeth by randomly selecting a set 
of test sequences. These sequences are typically hundreds of 
frames long. We verify the computed results by visual inspec
tion of the original images. The results show that the com
puted feature sets have an accuracy of 93% for the teeth and 
91% for tongue detection, approximately. 

4. AUTOMATIC SPEECH RECOGNITION 

4.1. Visual speech recognition 

In this section, we describe the modeling of the extracted lip 
features for speech recognition using hidden Markov models. 
HMMs [55] have been successfully used by the speech recog
nition community for many years. These models provide a 
mathematically convenient way of describing the evolution 
of time sequential data. 

In speech recognition, we model the speech sequence by 
a first-order Markov state machine. The Markov property 
is encoded by a set of transition probabilities with ai j  = 
P(qt = j|qt−1 = i), the probability of moving to state j 
at time t given the state i at time t − 1. The state at any 
given time is unknown or hidden. It can, however, be proba
bilistically inferred through the observations sequence O = 
{o1,o2, . . . ,oT}, where  ot is the feature vector extracted at 
time frame t and T is the total number of observation vec
tors. The observation probabilities are commonly modeled 
as mixtures of Gaussian distributions 

M ( )
bj(o) = cjkN o; μjk,Σ jk , (12) 

k=1 

 Mwhere k=1 cjk = 1 and  M is the total number of mixture 
components, μjk and Σ jk are the mean vector and covari
ance matrix, respectively, for the kth mixture component in 
state j. 

An HMM representing a particular word class is defined 
by a parameter set λ = (A,B, π), where π is the vector of 

initial state probabilities, A = {ai j} the matrix of state tran
sition probabilities, and B = {bi(ot)} the vector of state-
dependent observation probabilities. Given a set of training 
data (segmented and labeled examples of speech sequences), 
the HMM parameters for each word class are estimated using 
a standard EM algorithm [56]. Recognition requires evalu
ating the probability that a given HMM would generate an 
observed input sequence. This can be approximated by using 
the Viterbi algorithm. For isolated word recognition consid
ered in this paper, given a test token O, we calculate  P(O|λi) 
for each HMM, and select λc where c = arg maxi P(O|λi). 

We perform the speech recognition task using the audio
visual database from Carnegie Mellon University [33]. This 
database includes ten test subjects (three females, seven 
males) speaking 78 isolated words repeated ten times. These 
words include numbers, days of the week, months, and oth
ers that are commonly used for scheduling applications. 
Figure 13 shows a snapshot of the database. 

We conducted tests for both speaker-dependent and in
dependent tasks using visual parameters only. The eight vi
sual features used are: w1, w2, h1, h2, h3, h4 corresponding to 
Figure 10, and the parameters for the teeth/tongue. The vi
sual feature vectors are preprocessed by normalizing against 
the average mouth width w2 of each speaker to account for 
the difference in scale between different speakers and differ
ent record settings for the same person. For comparison, we 
also provide test results on partial feature sets. In particular, 
we limited the features to the geometric dimensions of the 
inner contour (w1, h2), and outer contour (w2, h1 + h2 + h3). 
The role of the use of the tongue and teeth parameters was 
also evaluated. For the HMM, we use a left-right model and 
consider continuous density HMMs with diagonal observa
tion covariance matrices, as is customary in acoustic ASR. 
We use ten states for each of the 78 HMM words and due to 
the training set size model the observation vectors using only 
two Gaussian mixtures for the speaker-independent task. Be
cause of an even more limited training data available, we use 
only one Gaussian mixture in the speaker-dependent case. 
The recognition system was implemented using the Hidden 
Markov Model Toolkit (HTK) [57]. 

For the speaker-dependent task, the test was set up by us
ing a leave-one-out procedure, that is, for each person, nine 
repetitions were used for training and the tenth for testing. 
This was repeated ten times. The recognition rate was aver
aged over the ten tests and again over all ten speakers. For 
the speaker-independent task, we use different speakers for 
training and testing, that is, nine subjects for training and 
the tenth for testing. The whole procedure was repeated ten 
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Table 1: Recognition rates for visual speech recognition using database [33]. The numbers represent the percentage of correct recognition. 

Features SD (static) SD (static + Δ) SI (static) SI (static + Δ) 

All (8) 45.51 45.59 18.17 21.08 

All excl. tongue/teeth (6) 40.26 40.60 12.78 16.70 

Outer/inner contour (4) 39.90 43.45 14.85 20.97 

Outer contour (2) 28.72 35.16 7.9 12.55 

Inner contour (2) 29.5 31.88 11.91 15.63 

Anne Betty Chris Gavin Jay
 

Figure 13: Examples of extracted lip ROI from the audio-visual database from Carnegie Mellon University [33].
 

times, each time leaving a different subject out for testing. 
The recognition rate was averaged over all ten speakers. 

The experimental results for the two modes are shown in 
Table 1. Rows correspond to various combinations of visual 
features used. The numbers in brackets give the total num
ber of features used in each test. The Δ refers to the delta 
features which are obtained by using a regression formula 
drawing in a few number of frames before and after the cur
rent frame. The second/third and forth/fifth columns give the 
average results in the speaker-dependent (SD) and speaker-
independent (SI) mode, respectively. All recognition rates are 
given in percent. 

We observe that the geometric dimensions of the lip 
outer contour, as used in many previous approaches [58, 59, 
60], are not adequate for recovering the speech information. 
Comparing the case with a total of eight features, the rate 
drops by 16.79 percentage points for the SD and 10.27 per
centage points for the SI case. While the use of the lip inner 
contour features achieves almost the same recognition rate 
as that of the lip outer contour in the SD mode, it outper
forms the former by four percentage points in the SI task, and 
suggests it provides a better speaker-independent character
istic. The contribution of the use of tongue/teeth is about five 
percentage points in both tasks. The delta features yield ad
ditional improved accuracy by providing extra dynamic in
formation. It is noted that while the contribution of the dy
namic features in the eight features case is rather marginal 
for the speaker-dependent task, they are very important for 
the speaker-independent case. This suggests that the dynamic 
features are more robust across different talkers. Overall best 
results are obtained by using all relevant features, achieving 

45.59% for the speaker-dependent case and 21.08% for the 
speaker-independent case. 

4.2. Audio-visual integration 

We consider speaker-dependent tasks in the following audio
visual speech recognition experiments. In our acoustic 
sub-system, we use 12 mel frequency cepstral coefficients 
(MFCCs) and their corresponding delta parameters as the 
features—a 24-dimensional feature vector. MFCCs are de
rived from FFT-based log spectra with a frame period of 
11 milliseconds and a window size of 25 milliseconds. We 
employ a continuous HMM, where eight states and one mix
ture are used. The recognition system was implemented us
ing the HTK Toolkit. 

In the following, we examine three audio-visual inte
gration models within the HMM based speech classifica
tion framework: early integration, late integration and mul
tistream modeling [58, 60, 61, 62, 63]. The early integration 
model is based on a traditional HMM classifier on the con
catenated vector of the audio and visual features 

  TT TA V= o , o , (13)ot t t 

A Vwhere ot and ot denote the audio- and visual-only feature 
vectors at time instant t. The video has a frame rate of 33 
milliseconds. To match the audio frame rate of 11 ms, linear 
interpolation was used on the visual features to fit the data 
values between the existing feature data points. 

The late integration model is built by applying separate 
acoustic and visual HMMs, and the combined scores take the 
following form: log Pav = λ log Pa + (1  − λ) log  Pv, where  λ is 
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Figure 14: Performance comparison for various audio-visual 
speaker-dependent speech recognition systems under mismatched 
conditions. Recognition in speaker-dependent mode. 

improves with increasing SNRs, the benefit of the addition 
of the visual component becomes less visible because there is 
less room for improvement. In total, when the best AV inte
gration model is used, we obtain a performance gain of 27.97 
percentage points at 0 dB and 8.05 percentage points at 30 dB 
over audio-only. 

The CMU database [33] has been studied by several other 
groups [34, 67] for audio-visual speech recognition. How
ever, only partial vocabulary and test subjects were used. To 
our knowledge, the results presented here are the first ones 
that evaluated the entire database. 

5. SPEAKER VERIFICATION 

The speaker verification task corresponds to an open test 
set scenario where persons who are unknown to the system 
might claim access. The world population is divided into 
two categories—a client who is known to the system, and 
imposters who falsely claim to have the identity of a client. 
Speaker verification is to validate a claimed identity: either to 
accept or reject an identity claim. Two types of error are pos
sible: false acceptance of an imposter (FA), and false rejection 
of a client (FR). 

For the speaker verification task, we use the polynomial-
based approach [68]. Polynomial-based classification re
quires low computation while maintaining high accuracy. 
Because of the Weierstrass approximation theorem, poly
nomials are universal approximators for the Bayes classifier 
[69]. 

The classifier consists of several parts as shown in 
Figure 15. The extracted feature vectors o1, . . . ,oN are in
troduced to the classifier. For each feature vector oi, a  
score is produced by using the polynomial discriminant 

the weighting factor (0.7 in our experiments), and Pa and 
Pv are the probability scores of the audio and visual compo
nents. 

In the expression of (13), early integration does not ex
plicitly model the contribution and reliability of the audio 
and visual sources of information. To address this issue, 
we employ a multistream HMM model by introducing two 
stream exponents γA and γV in the formulation of the out
put distribution 

  γAM1
 

AV A
( ) (= c1 jkN
k=1 

)
bj ; μ1 jk,Σ1 jko ot t 

(14)  γV M2 ( )
V· c2 jkN ot ; μ2 jk,Σ2 jk , 

k=1 

where M1 and M2 are the numbers of mixture components 
in audio and video streams. The exponents γA and γV are 
the weighting factors for each stream. We set γA = 0.7 and  
γV = 0.3 in our experiments, as was used in other similar 
implementations, such as in [62]. 

In the following, we present our experimental results on 
audio-visual speech recognition over a range of noise levels 
using these three models. We used the same database and 
data partition for the training and test as described in the 
last section for the visual speech recognition. Artificial white 
Gaussian noise was added to simulate various noise condi
tions. The experiment was conducted for speaker-dependent 
tasks under mismatched condition—the recognizers were 
trained at 30 dB SNR, and tested from 30 dB down to 0 dB 
in steps of 5 dB. 

Figure 14 summarizes the performance of various recog
nizers. As can be seen, while the visual-only recognizer re
mains unaffected by acoustic noise, as must be the case since 
the signals were the same, the performance of the audio-only 
recognizer drops dramatically at high noise levels. A real-life 
experiment with actual noise might show variations in the 
visual only performance due to the Lombard effect [64, 65], 
but this aspect was not investigated (the Lombard effect was 
examined for example in study [66]). 

In the speaker-dependent speech recognition, the multi-
stream model performs the best among the three AV models 
at high SNR. Compared with the early integration model, the 
multistream model better explains the relations between the 
audio and video channels in this SNR range by emphasizing 
the reliability of the acoustic channel more. However at low 
SNR, the weighting factors of γA = 0.7 and  γV = 0.3 are  not  
appropriate any more, since the visual source of information 
becomes relatively more reliable. 

Apart from the exception at high SNR for the late inte
gration, all integrated models demonstrate improved recog
nition accuracy over audio-only results. However, the per
formance of the integrated systems drops below the perfor
mance of the visual-only system at very low SNRs, because 
the bad acoustic recognizer pulls down the total result. It 
is observed that the visual contribution is most distinct at 
low SNR. When the performance of the acoustic recognizer 
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Figure 15: Structure of a polynomial classifier. 

function d(o,w) = wTp(o), where p(o) is the polynomial 
basis vector constructed from the input vector o, p(o) = 

2 2[1 o1 o2 o o1o2 o ]T for a two-dimensional feature vec1 2

tor o = [o1 o2]T and for polynomial order two, and w is 
the class model. The polynomial discriminant function ap
proximates the a posteriori probability of the client/impostor 
identity given the observation [69]. In [70, 71], a statistical 
interpretation of scoring was developed. The final score is 
computed by averaging over all feature vectors 

N1 ( )
TScore = w p oi . (15)

N 
i=1 

The accept/reject decision is performed by comparing the 
output score to a threshold. If Score < T , then reject the 
claim, otherwise, accept the claim. 

The verification system requires discriminative training 
in order to maximize its accuracy. For a speaker’s features, 
an output value of 1 is desired. For impostors’ features, an 
output of 0 is desired. The optimization problem can be for
mulated using a mean-squared error criterion 

 Nspk
1  

T
( )  2 

wspk = arg min  w p oi − 1 

w Nspk
 i=1

(16)
Nimp 

 
1  ( ) 2 wT  +	 p oi ,

Nimp i=1

where o1, . . . ,oNspk contain all training data for the user and 
o1, . . . ,oNimp are the data for the impostors. The reason to 
incorporate the weighting factors in (16) is to balance the 
number of vectors in the two classes, since normally there is 
a large amount of data for impostors and only a few values 
for the user. This equalization prevents overtraining on the 
impostor data set. 

When expressed in matrix form, (16) can be rewritten 
as 

wspk = arg min iDMw − Dui2, (17) 
w 

where D is a diagonal matrix, u is the vector consisting of 
Nspk ones followed by Nimp zeros, and 

⎛ ⎞ 
Mspk ⎝ ⎠M = (18)
Mimp 

with ⎛ ⎞ ( )T 
p o1⎜ ⎟ ( )T⎜ ⎟ ⎜ p o2 ⎟ ⎜ ⎟Mspk = . , ⎜ ⎟ ⎜ . ⎟ . ⎝ ⎠ ( )T 

p oNspk 

(19) ⎛ ⎞ ( )T 
p o1⎜ ⎟ ( )T⎜ ⎟ ⎜ p o2 ⎟ ⎜ ⎟Mimp = ⎜ . ⎟ . ⎜ . ⎟. ⎝ ⎠ ( )T 

p oNimp 

It can be shown that (17) can be solved [72] by using 

Nspk
Rspk + Rimp wspk = MT (20)spk1,

Nimp 

where 1 is the vector of Nspk ones, Rspk ≡ MT 
spkMspk and 

Rimp impMimp. Note that both matrices Rspk and Rimp≡ MT 

are of fixed size and Rimp can be precomputed and stored in 
advance. 

We perform the speaker verification test on the XM2VTS 
database [35]. This database includes four recordings of 295 
subjects taken at one month intervals. (However we were able 
to use only 261 of the 295 speakers because of corrupted au
dio or video sequences [73].) Each sequence is approximately 
5 seconds long and contains the subject speaking the sen
tence “Joe took father’s green shoe bench out.” The database 
covers a large population variation from various ethnic ori
gins and with various appearances. The same person might 
attend the four sessions with a different appearance, in
cluding hairstyles, with/without glasses, with/without beard, 
with/without lipstick. A snapshot of one person attending 
four sessions is shown in Figure 16. 

To evaluate the performance of the person authentication 
systems on the XM2VTS database, we adopt the protocol de
fined in [74]. We chose configuration II due to the audio
visual data we are using. For the data partition defined in the 
protocol, each subject appears only in one set. This ensures 
realistic evaluation of the imposter claims whose identity is 
unknown to the system. 

The verification performance is characterized by two er
ror rates computed during the tests: the false acceptance rate 
(FAR) and the false rejection rate (FRR). The FAR is the 
percentage of the trials that the system falsely accepts an 
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Figure 16: Snapshot of the XM2VTS database [35]. 
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Figure 17: Performance of audio-visual speaker verification in 
noisy conditions. Speaker verification FRR and FAR at EER in vary
ing noise conditions 

imposter, and the FRR is the percentage of times access is de
nied to a valid claimant. The pooled equal error rate (EER) 
threshold at which FAR = FRR is determined from the eval
uation set and used against the test population to determine 
the system performance. Both FAR and FRR are reported for 
this operating point. The test results for a visual-only speaker 
verification system are shown in Table 2. 

In our experiment, polynomial orders two and three are 
used. The visual features included are the eight parameters 
derived in Section 3. Extra features are the corresponding 
delta features and the normalized time index i/M, where  i is 
the current frame index, and M is the total number of frames. 
Since the score in a polynomial-based classifier (15) is an av
erage of all feature vectors, the time index carries temporal 
information within the spoken sentence. As can be seen, by 
incorporating extra features, a lower error rate is achieved. 
At the same time, increasing the polynomial order also con
tributes to improved verification results. 

To our knowledge, there were no other published 
results on using visual speech features for the speaker 
verification experiments based on the XM2VTS database 

Table 2: Performance for the speaker verification tasks using 
database [35]. 

Features Poly. order FRR% FAR% 

All (8) 2 8.8 9.7 

All + Δ (16) 2 6.1 9.3 

All (8) 3 5.0 9.0 

All + Δ (16) 3 4.4 8.2 

All + time (9) 2 8.3 9.2 

All + time (9) 3 4.8 8.5 

(Studies [13, 75] performed speaker verification experiments 
on a smaller set of the M2VTS database). However, the 
XM2VTS database has been extensively used by the face 
recognition community. A face verification contest was orga
nized at the International Conference on Pattern Recognition, 
2000 to promote a competition for the best face verification 
algorithm. The tests were carried out using the static image 
shots of the XM2VTS database. All research groups partic
ipated in the contest used the same database and the same 
protocol for training and evaluation. A total of fourteen face 
verification methods were tested and compared [76]. For the 
same configuration as carried out in our speaker verification 
experiments, the published results of FAR/FRR range from 
1.2/1.0 to 13.0/12.3. This suggests that our speaker verifica
tion approach that uses the lip modality is comparable to the 
state-of-the-art face-based personal authentication methods. 

In the audio modality, each feature vector is composed of 
12 cepstral coefficients and one normalized time index [68]. 
A third-order polynomial classifier is used. To fuse the two 
modalities, we use a late integration strategy. We combine 
the classifier outputs from the audio and visual modalities by 
averaging the class scores, s = αsA + (1  − α)sV , where  sA,V are 
computed from (15) for the audio and visual channels. For 
the following experiments, the audio and visual modalities 
are weighted equally (i.e., α = 0.5). 

The performance of the bimodal speaker verification sys
tem is shown in Figure 17. Artificial white noise was added to 
clean speech to simulate various noise conditions. The per
formance was measured from 0 dB to 25 dB in steps of 5 dB. 
This figure shows the FRR and the FAR for each modality in
dependently, as well as for the fused system. Both curves are 
of interest since the threshold is determined with an evalu
ation population separated from the test population. As can 
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be seen, the contribution of the visual modality is most dis
tinct at low SNR. We observe an error rate drop of 36 per
centage points for FRR and 32 percentage points for FAR at 
0 dB over audio-only when visual modality is incorporated. 
As illustrated in the figure, the audio-visual fusion is shown 
to outperform both modalities at high signal-to-noise ratios. 
However, error rates over the low range of signal-to-noise ra
tios (SNR) are worse than the visual-only results and it indi
cates that a dynamic fusion strategy, for example, adjusting 
the weighting of the modalities as SNR degrades, may im
prove the overall system performance. 

6.	 SUMMARY 

In this paper, we described a method of automatic lip feature 
extraction and its applications to speech and speaker recog
nition. Our algorithm first reliably locates the mouth re
gion by using hue/saturation and motion information from 
a color video sequence of a speaker’s frontal view. The algo
rithm subsequently segments the lip from its surroundings 
by making use of both color and edge information, combined 
within a Markov random field framework. The lip key points 
that define the lip position are detected and the relevant vi
sual speech parameters are derived and form the input to the 
recognition engine. We then demonstrated two applications 
by exploring these visual parameters. Experiments for auto
matic speech recognition involve discrimination of a set of 78 
isolated words spoken by ten subjects [33]. It was found that 
by enabling extraction of an expanded set of visual speech 
features including the lip inner contour and the visibility of 
the tongue and teeth, the proposed visual front end achieves 
an increased accuracy when compared with previous stud
ies that use only lip outer contour features. Three popular 
audio-visual integration schemes were considered and the 
visual information is shown to improve recognition perfor
mance over a variety of acoustic noise levels. In the speaker 
verification task, we employed a polynomial based approach. 
The speaker verification experiments on the database with 
261 speakers achieve an FRR of 4.4% and an FAR of 8.2% 
with polynomial order 3, and suggest that visual information 
is highly effective in reducing both false acceptance and false 
rejection rates in such tasks. 
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