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Abstract
Stress is now thought to be a major cause to a wide range of human health issues. However, many people may ignore their

stress feelings and disregard to take action before serious physiological and mental disorders take place. The heart rate

(HR) and blood pressure (BP) are the most physiological markers used in various studies to detect mental stress for a

human, and because they are captured non-invasively using wearable sensors, these markers are recommended to provide

information on a person’s mental state. Most stress assessment studies have been undertaken in a laboratory-based

controlled environment. This paper proposes an approach to identify the mental stress of automotive drivers based on

selected biosignals, namely, ECG, EMG, GSR, and respiration rate. In this study, six different machine learning models

(KNN, SVM, DT, LR, RF, and MLP) have been used to classify between the stressed and relaxation states. Such system

can be integrated with a Driver Assistance System (DAS). The proposed stress detection technique (SDT) consists of three

main phases: (1) Biosignal Pre-processing, in which the signal is segmented and filtered. (2) Feature Extraction, in which

some discriminate features are extracted from each biosignal to describe the mental state of the driver. (3) Classification.

The results show that the RF classifier outperforms other techniques with a classification accuracy of 98.2%, sensitivity

97%, and specificity 100% using the drivedb dataset.

Keywords Stress detection � Heart rate variability � Physiological signals � Machine learning

1 Introduction

As per declared reports by the World Health Organization

(WHO), around 1.3 million individuals lose their lives each

year as a result of traffic accidents, which are the primary

cause of death for children and young adults (5–29 years

old) worldwide, causing a loss of about 3% of the gross

domestic product (GDP) of most countries [1]. Addition-

ally, according to the WHO, by 2030, road traffic accidents

are expected to overtake all other causes of death to

become the fifth leading cause of death [2, 3]. Stress is

intimately linked to driving safety, especially in driving

circumstances. For example, stress can cause road acci-

dents by lowering a driver’s ability to make judgments in

risky situations or compromising driving performance. As

a result, various studies have been conducted to address the

problem of identifying stress early in order to lower the risk

of traffic accidents [4–6].

Over the last few decades, an increase in traffic acci-

dents and fatalities has been attributed to an increase in

driver drowsiness, exhaustion, and mental stress. To reduce

human faults, some physiological parameters such as

electrocardiogram (ECG), electromyogram (EMG), skin

conductance (SC), also known as galvanic skin response

(GSR), and respiration rate (RR) can be continuously

measured in order to monitor the stress and alertness while

driving [7, 8]. Skin conductivity and heart rate indicators
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are more directly associated with a driver’s stress level in

the majority of cases.

Numerous measurements, which can be divided into

three categories: physiological measurements, measure-

ments of facial behavior, and measurements of vehicle

motion, have been used to assess drivers’ levels of stress

[9]. The most frequent vehicle motion-related attributes

include acceleration, braking, lane position, steering angle,

and handling movement patterns. These characteristics are

straightforward to calculate, although they are influenced

by the type of vehicle, driving habits, and road conditions.

Facial activities, such as head movement, pupil dilation,

blink rate, and eye gazing, can be measured without

affecting driving [10–13]. These measures, however, may

be unreliable in some scenarios, such as low illumination,

severe weather, at night, or when a driver is wearing

eyeglasses.

Physiological data, however, not usually affected by

contextual factors unrelated to stress, such as lighting or

driving technique. In addition, physiological signals

obtained through body-worn technology can offer helpful

details about a driver’s internal state, which can be utilized

to identify stress [14, 15]. GSR signals linked to sweat

gland activity associated with heart activity are frequently

utilized as accurate stress indicators because the stress

response is related to autonomic nervous system activity. In

stress recognition, the focus is detecting and utilizing a

variety of physiological signals from inexpensive and

readily accessible sensors.

In driving scenarios, short-term monitoring is critical for

driving safety. However, various stress detection studies

relied on relatively long-term physiological signals, usually

lasting several minutes [16, 17]. In some recent studies,

short-term ECG signals with high sampling frequencies

under stressful settings were frequently used [18, 19].

Although the use of short-term GSR signals is becoming

more common, knowledge-based feature building in con-

junction with traditional machine learning classifiers still

takes a significant amount of time and human effort.

The aim of this paper is to develop a solution to detect

mental stress for automotive drivers based on selected

biosignals by using different machine learning (ML)

techniques. Such system can be integrated with a Driver

Assistance System (DAS), which can continuously probe

the mental state of the driver. Also, it may provide a

warning or take an action (e.g., playing relaxing music or

turning on the favorite program) to relieve the stress state

in order to increase safety. This work investigates the use

of physiological signs: ECG, EMG, GSR, and respiration,

to classify between the stressed and non-stressed states.

The proposed stress detection approach consists of three

main phases. The first phase involves biosignal pre-pro-

cessing, in which the signal is segmented and filtered. The

second phase is the feature extraction phase, in which some

discriminate features are extracted from each biosignal to

describe the mental state of the driver. The third phase is

stress detection. This work uses the k-nearest neighbor

(KNN), support vector machines (SVM), random forest

(RF), multilayer perceptron (MLP), decision tree (DT), and

logistic regression (LR) classifiers to detect and classify the

stress level.

The main contributions of this paper are summarized as

follows:

• An artificial intelligence-based Driver Assistance Sys-

tem (AI-DAS) is proposed to identify mental stress in

automotive drivers using a group of physiological

signals, which are easily captured from the driver.

These signals are ECG, EMG, hand GSR, foot GSR,

and respiration rate.

Table 1 Physiological parameters implicated in stress detection

References Used dataset Physiological parameters Used methodology

Singh

et al.

[25]

Stress recognition

in automobile

drivers

GSR and PPG The cascade forward neural network (CASFNN) was used to

identify four stress classes, which had low intra- and inter-subject

variability and performed consistently

Rigas

et al.

[26]

Stress recognition

in automobile

drivers

ECG and GSR A method for determining the stress that particular driving events

create in drivers of cars based on a dynamic Bayesian network

Zhai and

Barreto

[27]

Stress recognition

in automobile

drivers

BVP (blood volume pressure), GSR,

PD (pupil dilation), and ST (skin

temperature)

A support vector machine is used for the supervised classification

of emotional states into ‘‘stressed’’ and ‘‘relaxed.’’

Healey

and

Picard

[28]

Stress recognition

in automobile

drivers

BVP, ECG, respiration rate, and EMG Calculating the continuous correlations between the stress level and

the mentioned used physiological parameters
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• The proposed system employs three phases: pre-

processing, feature extraction, and classification.

• Ten statistical features are extracted from each 1-min

segment of the involved signals and fed to the classi-

fiers for identification.

• Different ML classifiers are adopted to differentiate

between stressed and relaxed states, including KNN,

SVM, RF, MLP, DT, and LR. These classifiers showed

the ability to detect the driver’s stress effectively with

short training periods.

• Grid-search technique was used to find the optimal

hyperparameters of the classifiers.

• The evaluation experiments have been performed, and

the classification accuracy for the model is 98.2,

sensitivity 97, and specificity 100% using the drivedb

dataset.

The rest of the paper is organized as follows. After this

introductory section, Sect. 2 is dedicated to the related

work. Section 3 introduces the proposed strategy for

identifying the stress state in car drivers. Section 4 presents

the experimental results of the method on real-world

driving experiences. Finally, Sect. 5 presents a conclusion

of the study.

Fig. 1 Overview of the

proposed stress detection

technique (SDT)

Fig. 2 Signal segmentation
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2 Related work

This section discusses a number of studies that have been

conducted by researchers in the literature. The researchers

used a combination of detection systems to capture mental

and behavioral reactions in a social situation. Lin et al. [20]

proposed a fuzzy-assisted Petri net technique for stress

detection using HR and BP monitoring. They monitor the

HR by the duration between two successive QRS complex

in the ECG signal. BP is tracked by monitoring the tran-

sient time of each pulse. The method is based on the

variance of HR and BP in the case of stress/non-stress

states using time and frequency analysis. The fuzzy-as-

sisted Petri net assessed the stress evaluation process. The

accuracy, precision, and recall are 93.55, 89.01, and

89.50%, respectively.

Hu et al. [21] presented a heart rate variability (HRV)

analysis to detect mental stress for automotive drivers. The

study demonstrates a synchronization between the HRV,

which identifies the rhythm pattern change of heart pulses,

with the driver mental state. KNN algorithm is employed to

distinguish HRV characteristics to detect the mental con-

dition. They revealed that an accuracy of 93.7% was

achieved with this technique.

Lee et al. [16] suggested a method to detect stress during

driving using short-time physiological signals and convo-

lutional neural networks (CNNs). HR and the GSR signals

from the hand and foot are used to identify mental stress in

drivers. CNNs are employed to extract discriminant fea-

tures from the signals and identify the stressed and normal

states. They applied the method and recorded its perfor-

mance on 10 and 30 s signals. The classification accuracy

reported was 92.33 and 95.67%, respectively.

Tang et al. [22] presented a study on the effect of dif-

ferent activities on the stress state. They measured the GSR

signal and taken as an indication of the mental stress of a

Table 2 Different stress levels for different driving periods

No. Driving period Stress level

1 Rest1 No stress

2 City1 Stress

3 HWY1 Stress

4 HWY2 Stress

5 City2 Stress

6 Rest2 No stress

Table 3 The end samples of

each driving period for different

drivers

No. Driver # Start Rest1 City1 Hwy1 Return Hwy2 City2 Rest2

1 5 515 14,586 29,468 36,666 42,306 49,337 63,246 77,922

2 6 1502 15,498 28,977 35,786 41,862 48,965 60,399 74,394

3 7 1513 15,502 30,592 40,781 49,922 57,026 66,466 80,440

4 8 528 14,480 25,930 32,654 41,495 48,601 61,091 75,108

5 9 892 15,456 33,319 41,199 46,038 52,607 64,895 –

6 10 2410 16,395 30,626 38,676 43,575 50,126 61,340 75,093

7 11 1489 15,454 30,159 37,070 43,715 50,192 61,091 75,033

8 12 4825 18,787 31,260 38,288 44,330 51,830 62,693 76,648

9 15 345 14,296 25,957 32,688 38,260 44,598 55,866 69,815

10 16 792 14,750 29,739 36,380 41,145 47,476 60,418 –

Table 4 Time intervals, in

minutes, for the driving periods
No. Driver # Start Rest1 City1 Hwy1 Return Hwy2 City2 Rest2

1 5 0.55 15.68 31.69 39.43 45.49 53.05 68.01 83.79

2 6 1.62 16.66 31.16 38.48 45.01 52.65 64.95 79.99

3 7 1.63 16.67 32.89 43.85 53.68 61.32 71.47 86.49

4 8 0.57 15.57 27.88 35.11 44.62 52.26 65.69 80.76

5 9 0.96 16.62 35.83 44.3 49.5 56.57 69.78 –

6 10 2.59 17.63 32.93 41.59 46.85 53.9 65.96 80.75

7 11 1.6 16.62 32.43 39.86 47.01 53.97 65.69 80.68

8 12 5.19 20.2 33.61 41.17 47.67 55.73 67.41 82.42

9 15 0.37 15.37 27.91 35.15 41.14 47.95 60.07 75.07

10 16 0.85 15.86 31.98 39.12 44.24 51.05 64.97 –
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person. They also showed how activity data could enhance

the sensitivity of stress detection in seated and standing

positions. An accuracy of 94.7% from this system is

achieved.

Mozos et al. [23] combined two sensor systems that

record physiological and social reactions to provide a

machine learning strategy for automatically detecting stress

in humans in social situations. They used various classi-

fiers, such as the SVM, AdaBoost, and KNN, to classify the

stress state. The results show that when the signals from

both sensors are combined, they can distinguish between

stress and neutral situations. They also provided an

Fig. 3 An ECG signal in time and frequency domains before and after filtering

Table 5 Description of features used to classify the stress state

Feature Signal Feature name Description

Feature#1 ECG Peaks_ECG The number of peaks (R wave) in 1 min

Feature#2 Mean RR interval The average of time intervals between successive R waves in 1 min

Feature#3 fGSR Peaks_fGSR The number of peaks in foot GSR signal in 1 min

Feature#4 Mean peaks_interval The average of time intervals between successive peaks in 1 min

feature#5 Mean peaks_difference The average of peak values differences in 1 min

Feature#6 hGSR Peaks_hGSR The number of peaks in hand GSR signal in 1 min

Feature#7 Mean peaks_interval The average of time intervals between successive peaks in 1 min

Feature#8 Mean peaks_difference The average of peak values differences in 1 min

Feature#9 EMG rms EMG The root mean square of the EMG signal in 1 min

Feature#10 Respiration Mean RR The average of respiration rate in 1 min
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assessment of each sensor separately for suitability for

stress detection in real time.

To improve instant stress tracking, Giakoumis et al. [24]

introduced behavioral parameters that are related to the

operation and can be accessed instantaneously through a

computer network. The proposed features are based on

video and accelerometer data from the tracked subject

areas. A stress-inducing approach based on Stroop color

word test was used. Nineteen participants participated in

the study, and biosignals (ECG and GSR) were collected

from them, besides video and accelerometer data. Spatial–

temporal features are extracted from video sequences, and

an exploratory methodological investigation was con-

ducted. They examined various activity-related behavioral

features, potentially helpful for automatic stress detection.

Results reveal that most of these features directly correlate

with self-reported stress.

Numerous physiological markers have been investigated

in the literature to detect stress. Table 1 summarizes the

physiological signals involved with stress detection in

previous studies.

3 The proposed stress detection technique
(SDT)

This paper aims to develop an approach to detect mental

stress for automotive drivers based on selected biosignals

using different ML techniques. Such system can be inte-

grated with a Driver Assistance System (DAS), which can

continuously probe the mental state of the driver, and may

provide a warning or take an action (e.g., playing relaxing

music or turning on the favorite program) to relieve the

stress state in order to increase safety [26, 29].

This work investigates the use of physiological signs:

ECG, EMG, GSR, and respiration, to identify the stress and

relaxation states. The proposed stress detection technique

(SDT) consists of three main phases, which are: (1)

Biosignal Pre-Processing: In which the signal is segmented

and filtered. (2) Feature Extraction: In which some dis-

criminate features are extracted from each biosignal to

describe the mental state of the driver. (3) Classification:

This work uses the KNN, SVM, DT, LR, RF, and MLP

classifiers to detect and classify the stress level. Figure 1

shows the flow diagram of the proposed method for stress

detection.

Table 6 The optimal hyperparameters of the classifiers used in the

current study

Classifier Hyperparameters

KNN n_neighbors: 5

leaf_size: 30

metric: ‘‘minkowski’’

weights: ‘‘uniform’’

SVM C: 2

kernel: ‘‘rbf’’

cache_size: 200

tol: 0.001

DT criterion: ‘‘gini’’

min_samples_leaf: 1

min_samples_split: 2

splitter: ‘‘best’’

LR C: 1

solver: ‘‘lbfgs’’

tol: 0.0001

RF n_estimators: 110

criterion: ‘‘entropy’’

random_state: 1

MLP hidden_layer_sizes: 50

activation: ‘‘relu’’

momentum: 0.9

solver: ‘‘adam’’

Fig. 4 An ECG signal in time and frequency domains before and after

filtering

Table 7 List of biosignals used in the study

No. Signal Description

1 ECG Electrocardiogram

2 EMG Electromyogram

3 fGSR Foot galvanic skin response

4 hGSR Hand galvanic skin response

5 Resp Respiration
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3.1 Biosignal pre-processing

In pre-processing phase, the biosignals pass through three

main steps, which are: (1) signal segmentation, (2) segment

partitioning, and (3) filtering.

3.1.1 Signal segmentation

The first step of the SDT is to separate the driving periods

which have different stressful events. In this step, each

biosignal is subdivided into a number of time intervals.

Each interval corresponds to a different driving condition.

The marker signal, accompanied with each driver record,

determines the time intervals of the periods of each driver.

This marking signal is used to identify the start, end, and

duration of each period. First, the peaks of the marker

signals and their locations are identified. Then, these

locations are used to divide the different signals of the

driver into subintervals, each with a different stressful

event. Figure 2 shows the marker signal of one driver,

annotating peaks, and a sample of involved biosignals,

which will be divided. Each driving period will be assigned

a different stress level, as shown in Table 2.

After identifying each driving period, we can separate

the biosignal segments corresponding to each period. This

process is repeated for the five involved signals: ECG,

EMG, fGSR, hGSR, and respiration. Table 3 displays the

end samples of each driving period for different drivers.

Also, we can determine the time intervals (in minutes)

for each driving period, from which we can identify the

start and end times for each period. These time intervals

can be computed (in minutes) by dividing the values of

samples in the previous table by the sampling frequency

(15.5 Hz) multiplied by 60. Table 4 shows the time inter-

vals, in minutes, for the driving periods. The displayed

values correspond to the end times for each period.

3.1.2 Segment partitioning

In this step, each driving segment (period) will be divided

into small partitions, each with 1-min duration. The time

points are taken 2 min after the start of each segment. This

produces 555 partitions, each with 1-min duration, and

each partition is either relaxed or stressed. These signal

partitions will then be filtered and analyzed for the

extraction of discriminant features that will subsequently

be used to train and test the ML classifiers.

3.1.3 Filtering

The main objective of the filtering step is to remove noise

and artifacts from the biosignals. Each biosignal in the

dataset is subjected to a different type of noise. Therefore,

each biosignal will be processed separately, as follows:

3.1.3.1 ECG filtering Baseline wander is one of the main

types of noise that may exist in an ECG signal [30]. It is a

low-frequency artifact resulting from the movement and

respiration of the subject [31, 32]. This noise can be

removed by suppressing the low-frequency components

(B 0.5 Hz) in the signal. In the proposed approach, the

signal is firstly transformed from the time to the frequency

domain using the fast Fourier transform (FFT). Then, we

set the target frequency to 0.5 Hz, below which all fre-

quency components will be removed by setting the range of

values between 0 and 0.5 Hz to zero in the spectrum of the

signal. After that, the processed signal is transformed back

into the time domain using the inverse FFT (IFFT).

A signal in the time domain, xn ¼ x0; x1; x2; . . .; xN�1f g,

can be converted to the frequency domain,

Xk ¼ X0;X1;X2; . . .;XN�1f g, using the formula in Eq. (1).

The filtering process, which involves suppressing the fre-

quency components below 0.5 Hz, is illustrated by Eq. (2).

Xk ¼
XN�1

n¼0

xne
�i2pkn=N ; k ¼ 0; . . .;N � 1 ð1Þ

X fð Þ ¼ 0; f � 0:5
X fð Þ; f [ 0:5

�
ð2Þ

where N is the number of samples.

Figure 3 displays the time and frequency domains for a

sample of ECG signal before and after removing the

baseline wander noise.

3.1.3.2 fGSR and hGSR filtering The GSR signals from

the foot (fGSR) and hand (hGSR) are filtered by removing

Table 8 The overall results of

training and testing each

classifier

Classifier Classification accuracy Sensitivity Specificity Precision F1-score Training time (sec)

KNN 91.02% 90.1% 92.4% 0.91 0.91 0.04

LR 91.02% 92.1% 89.4% 0.91 0.91 0.05

MLP 92.8% 94.1% 90.9% 0.93 0.93 1.08

DT 94.01% 96% 90.9% 0.93 0.92 0.01

SVM 95.2% 94.1% 97% 0.95 0.95 0.01

RF 98.2% 97% 100% 0.98 0.98 0.69
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the DC component (the component with 0 Hz) from the

signal [33]. Similar to the ECG signal, the fGSR and hGSR

signals are converted to the frequency domain using FFT;

then, the frequency component at 0 Hz is set to zero. After

that, the signals are converted back to the time domain.

3.2 Feature extraction

This step involves the extraction of some discriminant

features from each 1-min signal partition on which the ML

models will be trained. In total, for every partition, ten

statistical features are extracted, which are distributed over

the five involved signals, such that two for ECG, three for

Fig. 5 The confusion matrix for each classifier
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Fig. 6 a Accuracy vs. training

size and b accuracy vs. training

time, for each classifier
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fGSR, three for hGSR, one for EMG, and one for respi-

ration. The description of extracted features is depicted in

Table 5. The peak detection algorithm is applied to the

filtered ECG, fGSR, and hGSR signals with the width

between two consecutive peaks is set to 5, and prominence

is set to 0.1.

This feature extraction procedure is repeated for all 555

signal partitions. Then, a standardization process from sci-

kit-learn toolkit is applied on the features. Standardization

involves removing the mean value of each feature, then

scaling it by dividing features by their standard deviation

[34]. After that, the data were further split into training and

testing portions with a 70:30 ratio split. This results in

producing 388 partitions for training and 167 partitions for

testing. The training and testing portions are used to train

and verify the performance of the models, respectively.

3.3 Classification

Some common machine learning algorithms are employed to

classify the stressful state of automotive drivers based on the

extracted features from their biosignals. The employed algo-

rithms are KNN, SVM, DT, LR, RF, and MLP. The models in

this study are implemented using the scikit-learn toolkit. The

best structure and hyperparameters for classifiers are found

using grid-search [35] in order to achieve the best performance

from the models. Additionally, the trial-and-error method is

used to calculate the optimum combinations of hyperparam-

eters to avoid overfitting. Table 6 displays the optimal

hyperparameters obtained for each model.

4 Experimental results

This section presents the evaluation results of the proposed

system for stress detection. All the experiments of pre-

processing, feature extraction, and classification are

implemented with Python programming language and

executed in a PC with Intel Core i3 (1.80 GHz) and 8 GB

RAM.

4.1 Dataset description

This study uses the drivedb dataset acquired by Healey and

Picard [28]. This dataset was collected for the purpose of

determining a driver’s relative stress level using four

physiological signals: ECG, EMG, skin conductivity

(known as GSR), and respiration. The authors acquired the

Fig. 7 Comparison of ROC curves of classifiers

Fig. 8 Permutation importance for each classifier, indicating the

importance of each feature
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four signals during three periods of driving activity: rest,

driving along a highway, and driving inside a city that were

assumed to produce low, medium, and high levels of stress,

respectively. The dataset, publicly available on PhysioNet

[36, 37], contains data from 17 drivers. However, only the

data of ten drivers are complete.

The records have durations of 65–93 min, split over

driving periods with different stress events, as shown in

Fig. 4. The start and end of each period are identified by

the marker signal, provided along with the driver’s data.

The sampling frequency of all signals is 15.5 Hz.

In this study, the following signals, listed in Table 7, are

used to classify the stress level of the drivers.

4.2 Evaluation metrics

The following metrics are used to evaluate the performance

of the proposed SDT:

• Classification Accuracy: It is the percentage of cor-

rectly identified instances as stressed/relaxed to the total

number of instances.

Classification Accuracy ¼ TP þ TN

TP þ TN þ FP þ FN
ð3Þ

• Sensitivity (recall): It is the probability that all positive

(stressed) instances are identified as positive.

Sensitivity ¼ TP

TP þ FN
ð4Þ

• Specificity: It is the probability that all negative

(relaxed) instances are identified as negative.

Specificity ¼ TN

TN þ FP
ð5Þ

• Precision: It is the ratio of actual positive (stressed)

instances to the total number of instances identified as

positive by the model.

Precision ¼ TP

TP þ FP
ð6Þ

• F1-Score: It combines the two metrics, precision and

recall, into a single metric by taking the harmonic

mean.

F1 � Score ¼ 2
Precision � Recall

Precision þ Recall
ð7Þ

• Training Time: It is the amount of time (in seconds)

each model takes to be trained using the same amount

of data.

• Permutation Importance: It is a measure of the impor-

tance of each feature in the classification process. It is

computed as the difference between the evaluation

score of the baseline model and the evaluation score

when changing (permuting) each feature column, one at

a time [38].

where TP (true positive) is the ratio of positive (stressed)

instances identified as positive, FP (false positive) is the

ratio of negative (relaxed) instances falsely identified as

positive, TN (true negative) is the ratio of negative (re-

laxed) instances identified as negative, and FN (false

negative) is the ratio of positive (stressed) instances falsely

identified as negative by the classifier.

Fig. 8 continued
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4.3 Evaluation results

This work employs the KNN, SVM, DT, LR, RF, and MLP

models to identify the stress level and test the impact of

applying each classifier. The overall results of training and

testing each classifier based on the aforementioned evalu-

ation metrics are shown in Table 8. In addition, Fig. 5

displays the confusion matrix for each classifier. The

learning curves, which show the training and validation

scores of a model with varying training sizes, and the

progress of model accuracy with training time, with cross-

validation (no. of splits = 5), are shown in Fig. 6a and b,

respectively. Moreover, a comparison of ROC curves of

adopted ML models is depicted in Fig. 7.

From the results in Table 8 and Figs. 5, 6, and 7, it is

clear that the RF model performs better than other classi-

fiers using the drivedb dataset with a classification accu-

racy of 98.2, sensitivity 97, and specificity 100%.

Figure 8 displays the permutation importance scores of

each model, which explains the importance level of each

feature. In this graph, the features appear in descending

order, from top to bottom, based on their importance in the

classification process. From these graphs, it is clear that

feature_3 (Peaks_fGSR) and feature_9 (rms_EMG) are the

most important features for all classification models, which

contribute more in the classification process.

Table 9 shows a comparison of the proposed and some

related works in the literature for stress detection using the

drivedb database. This comparison shows the superiority of

the proposed system compared with other systems in the

literature.

5 Conclusion

In this paper, we presented an AI-based Driver Assistance

System (AI-DAS) that can automatically detect stress in

automotive drivers. In the proposed method, the physio-

logical signals ECG, EMG, fGSR, hGSR, and RR, which

are easily captured using wearable sensors, are analyzed

and processed. Such application requires fast processing to

be able to track stress in car drivers. So, in order to

maintain fast processing in the proposed solution, the fil-

tering and feature extraction processes are performed over

short periods (1 min) to ensure that the proposed solution is

reliable in actual processing. Therefore, in real scenarios, a

1-min recording from signals is captured, filtered, and then,

only ten statistical features are extracted from all the sig-

nals. Consequently, any stress states will be detected the

minute after it is encountered. Different ML classifiers are

adopted to differentiate between stressed and relaxed states

using the publicly available drivedb dataset. The classifiers

used in this study are KNN, SVM, DT, LR, RF, and MLP,

which showed the ability to detect the driver’s stress

effectively with short training times. Grid-search was used

to find the optimal hyperparameters of the classifiers. The

experimental results reveal that the RF classifier outper-

forms other techniques with a classification accuracy of

98.2%, which also has superior performance than other

methods presented in earlier studies.
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Table 9 Comparison of the current and some related works for stress detection using the drivedb database

Reference Signals Technique Classification accuracy (%)

Wang et al. 2013 [39] HRV and ECG KNN 97.8

Hwang et al. 2018 [40] ECG CNN 87.39

Martinez et al. 2019 [41] HR, hGSR, and fGSR SVM 93

Wang et al. 2019 [42] hGSR, HR, HRV, and RR CNN 92

Dalmeida et al. 2021 [14] HRV and ECG KNN, SVM, MLP, RF, and GB 85

Lin et al. 2021 [20] HR and BP Fuzzy-assisted Petri nets 93.55

Lee et al. 2021 [16] fGSR, hGSR, and HR CNN 95.67

Healy et al. 2022 [28] ECG KNN 93.7

Hu et al. 2022 [21] HRV and ECG KNN 93.7

Proposed ECG, EMG, fGSR, hGSR, and RR KNN, SVM, DT, LR, RF, and MLP KNN: 91.02

LR: 91.02

MLP: 92.8

DT: 94.01

SVM: 95.2

RF: 98.2

Bold values indicate the highest score obtained

12902 Neural Computing and Applications (2023) 35:12891–12904

123



Data availability Data will be made available on reasonable request.

Declarations

Conflict of interest The authors declare no competing interests.

Open Access This article is licensed under a Creative Commons

Attribution 4.0 International License, which permits use, sharing,

adaptation, distribution and reproduction in any medium or format, as

long as you give appropriate credit to the original author(s) and the

source, provide a link to the Creative Commons licence, and indicate

if changes were made. The images or other third party material in this

article are included in the article’s Creative Commons licence, unless

indicated otherwise in a credit line to the material. If material is not

included in the article’s Creative Commons licence and your intended

use is not permitted by statutory regulation or exceeds the permitted

use, you will need to obtain permission directly from the copyright

holder. To view a copy of this licence, visit http://creativecommons.

org/licenses/by/4.0/.

References

1. World Health Organization Road traffic injuries. https://www.

who.int/news-room/fact-sheets/detail/road-traffic-injuries.

Accessed 11 Jul 2022

2. World Health Organization (2015) Global status report on road

safety 2015. World Health Organization

3. World Health Organization, Others (2020) European regional

status report on road safety 2019. World Health Organization

Regional Office for Europe

4. Gedam S, Paul S (2021) A review on mental stress detection

using wearable sensors and machine learning techniques. IEEE

Access 9:84045–84066. https://doi.org/10.1109/ACCESS.2021.

3085502

5. Chung W-Y, Chong T-W, Lee B-G (2019) Methods to detect and

reduce driver stress: a review. Int J Automot Technol

20:1051–1063. https://doi.org/10.1007/s12239-019-0099-3

6. Giannakakis G, Grigoriadis D, Giannakaki K et al (2022) Review

on psychological stress detection using biosignals. IEEE Trans

Affect Comput 13:440–460. https://doi.org/10.1109/TAFFC.

2019.2927337

7. Siam AI, Almaiah MA, Al-Zahrani A et al (2021) Secure health

monitoring communication systems based on iot and cloud

computing for medical emergency applications. Comput Intell

Neurosci 2021:1–23. https://doi.org/10.1155/2021/8016525

8. Siam AI, Sedik A, El-Shafai W et al (2021) Biosignal classifi-

cation for human identification based on convolutional neural

networks. Int J Commun Syst. https://doi.org/10.1002/dac.4685

9. Alharbey R, Dessouky MM, Sedik A et al (2022) Fatigue state

detection for tired persons in presence of driving periods. IEEE

Access. https://doi.org/10.1109/ACCESS.2022.3185251

10. Bergasa LM, Nuevo J, Sotelo MA et al (2006) Real-time system

for monitoring driver vigilance. IEEE Trans Intell Transp Syst

7:63–77. https://doi.org/10.1109/TITS.2006.869598

11. Faure V, Lobjois R, Benguigui N (2016) The effects of driving

environment complexity and dual tasking on drivers’ mental

workload and eye blink behavior. Transport Res F: Traffic Psy-

chol Behav 40:78–90. https://doi.org/10.1016/j.trf.2016.04.007

12. Siam AI, Soliman NF, Algarni AD et al (2022) Deploying

machine learning techniques for human emotion detection.

Comput Intell Neurosci 2022:1–16. https://doi.org/10.1155/2022/

8032673

13. Siam AI, El-Affendi MA, Elazm AA et al (2022) Portable and

real-time IoT-based healthcare monitoring system for daily

medical applications. IEEE Trans Comput Soc Syst. https://doi.

org/10.1109/TCSS.2022.3207562

14. Dalmeida KM, Masala GL (2021) HRV features as viable

physiological markers for stress detection using wearable devi-

ces. Sensors 21:2873. https://doi.org/10.3390/s21082873

15. Khan MQ, Lee S (2019) A comprehensive survey of driving

monitoring and assistance systems. Sensors 19:2574. https://doi.

org/10.3390/s19112574

16. Lee J, Lee H, Shin M (2021) Driving stress detection using

multimodal convolutional neural networks with nonlinear repre-

sentation of short-term physiological signals. Sensors 21:2381.

https://doi.org/10.3390/s21072381

17. Jimenez-Limas MA, Ramirez-Fuentes CA, Tovar-Corona B,

Garay-Jimenez LI (2018) Feature selection for stress level clas-

sification into a physiologycal signals set. In: 2018 15th Inter-

national Conference on Electrical Engineering, Computing

Science and Automatic Control (CCE). IEEE, pp 1–5

18. Zalabarria U, Irigoyen E, Martinez R et al (2020) A low-cost,

portable solution for stress and relaxation estimation based on a

real-time fuzzy algorithm. IEEE Access 8:74118–74128. https://

doi.org/10.1109/ACCESS.2020.2988348

19. Chen L, Zhao Y, Ye P et al (2017) Detecting driving stress in

physiological signals based on multimodal feature analysis and

kernel classifiers. Expert Syst Appl 85:279–291. https://doi.org/

10.1016/j.eswa.2017.01.040

20. Lin Q, Li T, Shakeel PM, Samuel RDJ (2021) Advanced artificial

intelligence in heart rate and blood pressure monitoring for stress

management. J Ambient Intell Humaniz Comput 12:3329–3340.

https://doi.org/10.1007/s12652-020-02650-3

21. Hu D, Gao L (2022) Psychological stress level detection based on

heartbeat mode. Appl Sci 12:1409. https://doi.org/10.3390/

app12031409

22. Tang TB, Yeo LW, Lau DJH (2014) Activity awareness can

improve continuous stress detection in galvanic skin response. In:

IEEE SENSORS 2014 Proceedings. IEEE, pp 1980–1983

23. Mozos OM, Sandulescu V, Andrews S et al (2017) Stress

detection using wearable physiological and sociometric sensors.

Int J Neural Syst 27:1650041. https://doi.org/10.1142/

S0129065716500416

24. Giakoumis D, Drosou A, Cipresso P et al (2012) Using activity-

related behavioural features towards more effective automatic

stress detection. PLoS ONE 7:e43571. https://doi.org/10.1371/

journal.pone.0043571

25. Singh RR, Conjeti S, Banerjee R (2014) Assessment of driver

stress from physiological signals collected under real-time semi-

urban driving scenarios. Int J Comput Intell Syst 7:909. https://

doi.org/10.1080/18756891.2013.864478

26. Rigas G, Katsis CD, Bougia P, Fotiadis DI (2008) A reasoning-

based framework for car driver’s stress prediction. In: 2008 16th

Mediterranean Conference on Control and Automation. IEEE,

pp 627–632

27. Zhai J, Barreto A (2006) Stress detection in computer users based

on digital signal processing of noninvasive physiological vari-

ables. In: 2006 International Conference of the IEEE Engineering

in Medicine and Biology Society. IEEE, pp 1355–1358

28. Healey JA, Picard RW (2005) Detecting stress during real-world

driving tasks using physiological sensors. IEEE Trans Intell

Transp Syst 6:156–166. https://doi.org/10.1109/TITS.2005.

848368

29. Han HJ, Labbaf S, Borelli JL et al (2020) Objective stress

monitoring based on wearable sensors in everyday settings. J Med

Eng Technol 44:177–189. https://doi.org/10.1080/03091902.

2020.1759707

Neural Computing and Applications (2023) 35:12891–12904 12903

123

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.who.int/news-room/fact-sheets/detail/road-traffic-injuries
https://www.who.int/news-room/fact-sheets/detail/road-traffic-injuries
https://doi.org/10.1109/ACCESS.2021.3085502
https://doi.org/10.1109/ACCESS.2021.3085502
https://doi.org/10.1007/s12239-019-0099-3
https://doi.org/10.1109/TAFFC.2019.2927337
https://doi.org/10.1109/TAFFC.2019.2927337
https://doi.org/10.1155/2021/8016525
https://doi.org/10.1002/dac.4685
https://doi.org/10.1109/ACCESS.2022.3185251
https://doi.org/10.1109/TITS.2006.869598
https://doi.org/10.1016/j.trf.2016.04.007
https://doi.org/10.1155/2022/8032673
https://doi.org/10.1155/2022/8032673
https://doi.org/10.1109/TCSS.2022.3207562
https://doi.org/10.1109/TCSS.2022.3207562
https://doi.org/10.3390/s21082873
https://doi.org/10.3390/s19112574
https://doi.org/10.3390/s19112574
https://doi.org/10.3390/s21072381
https://doi.org/10.1109/ACCESS.2020.2988348
https://doi.org/10.1109/ACCESS.2020.2988348
https://doi.org/10.1016/j.eswa.2017.01.040
https://doi.org/10.1016/j.eswa.2017.01.040
https://doi.org/10.1007/s12652-020-02650-3
https://doi.org/10.3390/app12031409
https://doi.org/10.3390/app12031409
https://doi.org/10.1142/S0129065716500416
https://doi.org/10.1142/S0129065716500416
https://doi.org/10.1371/journal.pone.0043571
https://doi.org/10.1371/journal.pone.0043571
https://doi.org/10.1080/18756891.2013.864478
https://doi.org/10.1080/18756891.2013.864478
https://doi.org/10.1109/TITS.2005.848368
https://doi.org/10.1109/TITS.2005.848368
https://doi.org/10.1080/03091902.2020.1759707
https://doi.org/10.1080/03091902.2020.1759707


30. Blanco-Velasco M, Weng B, Barner KE (2008) ECG signal

denoising and baseline wander correction based on the empirical

mode decomposition. Comput Biol Med 38:1–13. https://doi.org/

10.1016/j.compbiomed.2007.06.003

31. Gupta P, Sharma KK, Joshi SD (2015) Baseline wander removal

of electrocardiogram signals using multivariate empirical mode

decomposition. Healthc Technol Lett 2:164–166. https://doi.org/

10.1049/htl.2015.0029

32. Singhal A, Singh P, Fatimah B, Pachori RB (2020) An efficient

removal of power-line interference and baseline wander from

ECG signals by employing Fourier decomposition technique.

Biomed Signal Process Control 57:101741. https://doi.org/10.

1016/j.bspc.2019.101741

33. Siam AI, El-khobby HA, Abdelnaby MM et al (2019) A novel

speech enhancement method using fourier series decomposition

and spectral subtraction for robust speaker identification. Wire-

less Pers Commun 108:1055–1068. https://doi.org/10.1007/

s11277-019-06453-4

34. Pedregosa F, Varoquaux G, Gramfort A et al (2011) Scikit-learn:

machine learning in Python. J Mach Learn Res 12:2825–2830

35. Li L, Jamieson K, DeSalvo G et al (2017) Hyperband: a novel

bandit-based approach to hyperparameter optimization. J Mach

Learn Res 18:6765–6816

36. Goldberger AL, Amaral LAN, Glass L, et al (2000) PhysioBank,

PhysioToolkit, and PhysioNet. Circulation 101 https://doi.org/10.

1161/01.CIR.101.23.e215

37. Stress Recognition in Automobile Drivers v1.0.0. https://physi

onet.org/content/drivedb/1.0.0/. Accessed 12 Jul 2022
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