
Automatic Structuring of Knowledge Bases by Conceptual Clustering
(Final version appeared in IEEE Transactions on Knowledge and Data Engineering, 1995, 7(5), 824-828.)

Guy William MINEAU1, Robert GODIN2

ABSTRACT3

An important structuring mechanism for knowledge bases is building an inheritance hierarchy of classes based on the content

of their knowledge objects. This hierarchy facilitates group-related processing tasks such as answering set queries,

discriminating between objects, finding similarities among objects, etc. Building this hierarchy is a difficult task for the

knowledge engineer. Conceptual clustering may be used to automate or assist the engineer in the creation of such a

classification structure. This article introduces a new conceptual clustering method which addresses the problem of clustering

large amounts of structured objects. The conditions under which the method is applicable are discussed.

indexed terms: conceptual clustering, data structures, knowledge bases, knowledge indexing, machine learning

1. Introduction

A classification structure is a set of hierarchically related classes, where hierarchically higher classes subsume their lower

counter-parts. It can be viewed as an index. Its utility is obvious from an efficiency point of view. Building such a structure is

a difficult task for the knowledge engineer. Conceptual clustering methods may be used to automate or assist the engineer in

this process [1]. The conceptual clustering method that we propose has attractive distinguishing characteristics with respect to

other methods. The next section describes the better known methods and highlights the major differences of our proposal.

2. Background

The method we propose has three main objectives: it has to be applicable on structured objects (graph-described objects), on

large-sized knowledge bases, and it has to be incremental (as knowledge bases may require frequent updates and revision). The

inherent combinatorial complexity of classifying arbitrary graphs necessitates the introduction of simplifying assumptions

and the use of heuristics in order to reach a certain degree of feasibility. Consequently, we highlight the assumptions each

method makes in order to cope with the complexity issue.

A large number of methods has been considered in the litterature. From them, less recent methods such as EPAM

[2], COBWEB [3], UNIMEM [4], CLUSTER/2 [5], and concept analysis [6] are limited to unstructured descriptions such as

2

attribute-value pairs, and are therefore inadequate for richer knowledge representations such as needed with structured objects.

More recent methods have been proposed to address richer representations.

The CLUSTER/S system [7] was designed to handle structural descriptions based on a typed predicate calculus

description language. CLUSTER/S pre-analyzes the objects it has to process, transforming their structural description into

attribute-value pairs, introducing the important clustering-related attributes. Then CLUSTER/2 can be used. In order to

proceed as such, the user must know in advance which attributes are clustering-relevant, and which are not. Background

knowledge on the clustering criterias is essential. Generally, such conditions are not satisfied.

Lebowitz's RESEARCHER [4] system claims to deal with complex structural descriptions, but very little details are

given. All the examples found in the litterature are based on structured objects which share a strong structural similarity (as

with frame systems). Lebowitz does point to the difficulty of the matching process with complex objects. However no claim

of handling large amounts of knowledge objects could be made until a detailed complexity analysis is available, or until

extensive experimentation with real data is accomplished.

The CLASSIT system [8] improves on COBWEB by dealing with numeric attributes and by allowing richer

descriptions of instances (defined as sets of elements). However, every element in a set must have the same structure which is

used to simplify the matching process. Thus, the representational capabilities of this system are too limited for our purposes.

Thompson and Langley's LABYRINTH system is also based on COBWEB [9]. It addresses the problem of

classifying composite objects, i.e., objects having other objects as parts. Because a description of an object follows a tree-like

pattern, COBWEB can be applied recursively on all the different parts composing the object. Eventhough this attempt is one

of the closest ones to our goal of applying conceptual clustering methods to structured objects, representational

expressiveness is still limited, though improved over the preceding methods.

Formal concept analysis is introduced in [10]. It is based on generating the Galois lattice of a binary relation R

between a set of instances I and a set of features F. A Galois lattice can be considered as a concept hierarchy where each node

of the lattice corresponds to a concept. The concept is defined by a pair (X,X') where X, the extension of the concept, is a

subset of I, and X', the intension, is a subset of F, both satisfying the following: 1) X' is the set of features common to all

the instances of X, 2) X is the set of instances having at least the features in X'. The resulting structure does not depend on

any particular order of introduction of new instances. Another important distinguishing feature is that the hierarchy is not a

tree as in the preceding methods (useful for multiple inheritance systems).

The work presented in this paper may be viewed as an extention and refinement of concept analysis for dealing with a

richer representation language. The instances are represented by conceptual graphs4 [11], which is a well-defined and

3

established knowledge representation formalism. The hierarchy generated, called a knowledge space (KS), is not necessarily a

tree and not necessarily a lattice (as opposed to concept analysis). This difference is due to the fact that only a subset of the

Galois lattice is generated to cope with the added complexity of dealing with a richer description language.

Section 3 below introduces our approach and illustrates the principles of the method on a small example, gives a

formal definition of a KS and presents and analyzes the algorithms which build the KS. Section 4 gives some experimental

results. Section 5 discusses the shortcomings of the method.

3. Conceptual Clustering of Structured Objects: our Solution

Automatic classification of graphs introduces complexity problems related to the graph matching headache. Hence, we

propose a method that will classify graphs using their common subgraphs. Classes will be formed according to these extracted

common subgraphs. The derivation of complete characteristic descriptions for these classes will be postponed to a later stage,

only when the application will need them. This is done to alleviate the classification process which can be restricted to the

detection of common subgraphs, a much simpler problem. To be effective, this method is based on the following hypothesis:

similar semantics will be encoded using similar syntactical forms. When that hypothesis holds, the graphs are said to share

structural similarity. The problems associated with this heuristic are discussed in section 5, and ways of improving it are

presented in [12,13].

Subsection 3.1 presents a simple example aiming at giving an intuitive idea of the method and of the resulting

classification structure called knowledge space. Subsection 3.2 formally defines a knowledge space. Subsection 3.3 sketches

the algorithms needed to construct the knowledge space.

3.1. A Small Illustrative Example

Our knowledge objects are described using the conceptual graph formalism of Sowa [11]. Conceptual graphs represent basic

concepts using labeled boxes; relations between these concepts are expressed by labeled circles. Arcs exist only between

concept and relation nodes. For example, let us consider three graphs, each describing the visual content of different

documents in an image database (see Figure 1)5. These graphs constitute knowledge on the documents, and are called

knowledge objects (KO). Furthermore, the concepts appearing in a graph are hierarchically related to other concepts, in a

class/subclass hierarchy, called type hierarchy [11]. Part of our type hierarchy is represented in Figure 2. From the three

graphs of Figure 1, a hierarchy corresponding to the full power set of the set of objects is illustrated in Figure 3. The contents

4

of the nodes of this structure represent the characteristic descriptions for the graphs describing the class. To infer these

descriptions, Figure 2 was used so that non-matching concepts could be replaced by their common minimal supertypes.

elephant part

color

qtysleg 4

grey

KO1: description of image #1

alligator part

color

qtysleg 4

brown

KO2: description of image #2

kangaroo part

color

qtysleg 2

brown

KO3: description of image #3

Figure 1: The description of three visual documents using conceptual graphs.

T

animal some_color small_integer

zoo_animal mammal grey brown 0..9

 elephant alligator kangaroo grey-brown

T

Figure 2: The type hierarchy for our small example.

animal part sleg

qty

brown

color

mammal part sleg

qtycolor

zoo_animal part sleg

qty

4

color

kangaroo part sleg

qty

2brown

color

alligator part sleg

qty

4brown

color

elephant part sleg

qty

4grey

color

 animal part sleg

qty

small_integersome_color

color

(1,2,3):

(1,2): (1,3): (2,3):

(1): (2): (3):

some_color some_color small_integer small_integer

Figure 3: A full power set hierarchy produced with the graphs of Figure 1.

A knowledge space is a specialization of a full power set under the following three restrictions. First, only identical

concepts and relations in all graphs forming a class will be kept in the corresponding node of the description of the class.

5

Those that are not identical will be replaced by a wildcard value "?" (R1). Secondly, any subgraph will appear only in the

most general class containing it, producing an inheritance hierarchy (R2). After this, all nodes having an empty description

will be deleted from the hierarchy (R3). Figure 4 shows the content of node (2,3) where "?" have been introduced because the

concept types "alligator" and "kangaroo" did not match, and neither did "4" and "2". Figure 5 shows the content of node (2,3)

after R2 was applied. Part of the description was deleted because it already appears in node (1,2,3). Figure 6 shows the

corresponding knowledge space (including some information needed for the generation of characteristic descriptions).

 ? part

color

qtysleg ?

brown

Figure 4: The content of node (2,3) after R1.

 ?

color

brown

Figure 5: The content of node (2,3) after R1 and R2.

part

color

qtysleg ?

 ?

(1,2,3):

qtysleg 4

(1,2):

 ?

color brown

(2,3):

elephant
part

color

sleg

grey

(1):

alligator
part

sleg

brown

(2):

kangaroo

part qty

sleg

2

(3):

color

brown

 ?

color

(alligator,
kangaroo)

(grey,brown,brown)

(4,4,2)(elephant,
alligator,
kangaroo)

Figure 6: The knowledge space built from the example of Figure 1.

3.2. Formal Definitions

A knowledge space is a data structure which we define more formally in this subsection. Let O be the set of objects to be

described; let D be the set of all descriptors in the description language. The description of all objects can be represented as a

relation between D and O. Let us call this relation R, and let us define it over D x O (i.e., R ⊆ D x O). Naturally, not all

objects may be described at a certain point in time, and not all descriptors may be used. Let OB(R) = {o | o ∈ O and ∃ d such

6

that d ∈ D and <d,o> ∈ R}. In other words, OB(R) is the set of objects of O described by elements of D through the relation

R. Similarly, we can state that DE(R) = {d | d ∈ D and ∃ o such that o ∈ O and <d,o> ∈ R}. DE(R) is the set of descriptors

used to describe objects of O through the relation R. OB(R) ⊆ Ο and DE(R) ⊆ D. Since not all objects are described using all

the descriptors, R is a subrelation of DE(R) x OB(R), i.e., R ⊆ DE(R) x OB(R) ⊆ D x O.

Furthermore, letting o belong to O, we can define ds(o) = {d | d ∈ D and <d,o> ∈ R}. The function ds(o) is the

descriptor set of o. Similarly, letting d belong to D, we can define os(d) = {o | o ∈ O and <d,o> ∈ R}. The function os(d) is

called the object set of d. It is obvious that ds(o) ⊆ DE(R) ⊆ D, and that os(d) ⊆ OB(R) ⊆ O, ∀ο ∈ O and ∀ d ∈ D.

Of course, similar objects will be described using sets of descriptors whose intersection will not be empty. This will

be the criteria chosen to detect similarity among objects and to form clusters. However, the method we propose will form a

cluster with the largest intersection set of the descriptors describing the objects of the cluster. This is done in order to keep

memory and processing requirements as low as possible. The formal definition of a cluster is given below.

First, let us define a group. A subset G of R is a group iff ∀ d,d' ∈ DE(G) then os(d) = os(d'). As a corollary of that,

if G1 and G2 are two groups, if G1 ≠ G2 and if OB(G1) = OB(G2), then ∃ G3, a group, such that G3 = G1 ∪ G2. G3 is said

to be an extension of G1 and of G2, that is, G1 ⊂ G3 and G2 ⊂ G3. Since G3 is a group, G3 ⊆ R, and more generally,

G ⊆ G3 ⊆ R, where G = G1 or G = G2.

Some groups may not be extended. They are called maximally extended groups. When it is impossible to find G2 in

order to extend G1 such that G1 ≠ G2, then G1 is said to be maximally extended. If G1 and G2 are two different maximally

extended groups, then G1 ∩ G2 = ∅ . Letting G* be a maximally extended group associated with G, then, G ⊆ G* ⊆ R.

Consequently, every tuple of the relation R, <d,o>, belongs to only one maximally extended group. In effect, since

every maximally extended group is pairwise disjoint of any other maximally extended group, a tuple must belong to a

maximum of only one of such groups. Further, it must belong to some group. In effect, let G be a maximally extended

group. A tuple, <d,o>, will belong to G iff OB(G) = os(d). If no existing maximally extended group satisfying this condition

exists, then {<d,o>} will be de facto a maximally extended group.

Because each tuple of R belongs to exactly one maximally extended group, R can be decomposed into a partition P

of such groups. A knowledge space (KS) is a classification structure which represents this partionning P. Each node of a KS

represents a different maximally extended group of R. Let G be such a group. There will be a node in the KS representing G.

This node will represent the cluster identified by OB(G)6, and will contain DE(G).

All nodes of a KS are hierarchically related through the use of links. These links represent the partial order of

inclusion defined over the sets of objects that each cluster represents. That is, let N1, N2 and N3 be three nodes representing

7

respectively three maximally extended groups G1, G2 and G3 in P. N1 will be connected downward to N2, written

down_link(N1,N2) and up_link(N2,N1), iff OB(G2) ⊂ OB(G1) and there is no other node N3 representing G3 in P such that

OB(G2) ⊂ OB(G3) ⊂ OB(G1).

3.3. The Algorithms

This subsection gives implementation details on how a knowledge space can be constructed. It outlines the algorithms used to

create a KS from knowledge objects, and presents the data structures needed to reach that goal. The algorithms are characterized

by worst-case complexity analyses of their memory and processing requirements.

3.3.1. Constructing R

Using binary relations only, all knowledge objects can be described using triplets of the form <concept1,relation,concept2>,

where relation is a directed binary relation between concept1 and concept2. Each triplet will be generalized using the "?"

symbol. That is, each component of each triplet will be replaced alternatively by the "?" symbol. Consequently, the

generalization of a triplet will produce 8 generalized triplets called generalization patterns, including the original triplet. Under

the assumption that each object is described by a bounded number of triplets, kmax, the generalization process produces a

descriptor set for this object whose cardinality is bounded by 8 kmax. All generalization patterns generated from all descriptor

sets constitute D. The cardinality of D is then bounded by 8 kmax n, i.e., is O(n), where n is the cardinality of O.

R will be built incrementally while scanning the objects in O. In the implementation, R is called intersection matrix

(IM), and will be internally represented by a sequential list of associations between a descriptor and a set of knowledge object

identifiers. For instance, if descriptor d1 is found in the descriptor sets of O1 and O2, the following association will be part of

the sequential list describing R: <d1,{O1,O2}>. In fact, the asssociation will be: <d1,os(d1)>, where os(d1) only takes into

account the objects scanned so far. For simplicity, the sequential list structure was first adopted. An indexed data structure

could improve significantly the performance of our algorithms. Here is the algorithm that builds R.

For all o in O do: (* the number of objects in O is n *)

For all d in ds(o) do: (* the number of descriptors in ds(o) is bounded by 8 kmax *)

Update <d,os(d)> or Add <d,{o}> to R if absent.

8

The innermost instruction is done O(n) times. Each time it is executed, a sequential search of R is done over the total number

of descriptors, which is O(n), the cardinality of D. Adding a new association or updating an old one is done in O(1). The

processing time for this first algorithm is thus O(n2). However, because general descriptors, those having one or two "?"

symbols as components, will appear in different descriptor sets, the overlap that this creates will help the search for the

association <d,os(d)>. In effect, this search, though sequential, will stop earlier in the association list since general descriptors

may have been already introduced into the list by the scanning of previous objects. This will reduce the complexity associated

with the search of R. The space requirements for R are O(n): it is proportional to each addition to R.

3.3.2. Finding the Nodes of the KS

As stated in subsection 3.2, each node of a KS represents a maximally extended group of R. Each of these groups will be

computed incrementally as we scan R. In effect, we know that each element of R belongs to only one maximally extended

group G, i.e., to only one node. We also know that this node is identified by OB(G), which is identical to os(d) for

∀ d ∈ DE(G) by definition. Thus we only have to add d to DE(G). Here is the algorithm that produces the nodes of the KS.

For all d in DE(R) do: (* sequential scan of the intersection matrix *)

Find the node N labeled by os(d); (* using a tri where all labels are incrementally inserted *)

If N does not exist then: create it; Set DE(G) to ∅ ;

Construct DE(G) = DE(G) ∪ {d}.

Since each object can only be described by 8 kmax descriptors, the identifier of one object can only be found in 8 kmax object

sets, i.e., in 8 kmax labels, and thus can only appear in 8 kmax associations. So, the summation of the cardinality of the

right side of all associations <d,os(d)> is O(n). That is, Σd ∈ DE(R) os(d) ≤ 8 kmax n. Finding a node N requires that a tri be

searched for each os(d), the label of the node representing the maximally extended group to which d belongs to. Consequently,

finding each node associated with each d in DE(R) can be done in O(n) steps. The size of the tri is also bounded by 8 kmax n

for the same reasons. The last instruction is executed only O(n) times, the cardinality of DE(R), so the total processing time

for this algorithm is O(n). Since each descriptor is transferred to one node of the KS, the total size of these nodes is O(n)7.

3.3.3. Linking the Nodes of the KS

9

Nodes will be inserted into the KS one by one; the KS will be constructed incrementally. A breath-first search of the tri will

help scan the nodes in increasing order of their label size8. This scan will permit to consider the insertion of a new node only

in relation to its potential children. This simplifies the task.

In order to find the children of a node N, the label of N will be scanned. Let G be the maximally extended group

represented by N. Let L = OB(G), the label of N. The children of N will be found by searching through the KS starting with

the nodes whose label is exactly one component of L. These nodes are called base nodes of L, and represent potential children

of N. They must not be connected to N if one of their parents is a potential child of N, as seen in subsection 3.2. Starting

with these base nodes, we will look for parents of these nodes which could be children of N. If we do not find such parent

nodes, then we can link the corresponding base node to N, otherwise we start recursively with the parent of a base node.

For all node N in the tri do: (* sequential breath-first scan of the tri, a O(n) process *)

For all o in L do: (* where L is the label of N *)

Find the base node whose label is {o}, called Nb; (* done in O(1) time, special case *)

Connect(Nb,N).

 Procedure Connect(N 0 ,N):

Set indirect_link to FALSE;

For all node Ni such that up_link(N0,Ni) exists do: (* i ≤ 8 kmax *)

If Li ⊂ L then: (* where Li is the label of Ni *) Set indirect_link to TRUE;

Connect(Ni,N);
If not indirect_link then:

If up_link(N0,N) does not exist then:create it;

create down_link(N,N0).

Connect(N0,N) is a recursive procedure which will connect directly two nodes iff there should not be an indirect

link between them. In any case, when Connect finishes, there is a bidirectional path between N0 and N.

This algorithm takes O(n2) steps in the worst case. Since any object can not be part of more than 8 kmax labels,

scanning every node's label is a O(n) process altogether. Consequently, Connect(Nb,N) is executed a total of O(n) times. Each

execution of Connect(Nb,N) is a search for potential children of N, starting at node Nb. Even if all ancestor nodes of Nb are

visited, the number of visited nodes is O(1) with respect to n, the number of objects. At each visit though, a label inclusion

test needs to be done (Li ⊂ L). In the worst case, since the labels are kept sorted, inclusion may be determined by a O(n)

10

process. Consequently, each call to Connect(Nb,N) may take O(n) steps in the worst case. Since Connect(Nb,N) is called

O(n) times, this third algorithm is O(n2) in the worst case.

The additionnal size of the KS for storing the links between nodes is O(n), giving a total space requirement of O(n).

Since the number of parent nodes of one node is bounded by 8 kmax, the total number of uplinks is O(n). Because, there is

one downlink for every uplink, the upper bound on space requirements remains O(n).

Section 4 below gives empirical results about time and memory requirements as evaluated by the implementation

of the method on a particular application, and compares these findings with the complexity analyses of this present section.

4. Implementation

This section describes a prototype implementation of the method and an experimental application on an image database. The

implementation was realized in C on an Amiga 2500 platform. It is based on the formal model of section 3.2 and on the

algorithms described in section 3.3.

4.1. Test Database

The database used is a collection of 100 images of artifacts from the National Gallery of Arts of Washington. Each image is

described by a conceptual graph. One part of the graph encodes a description of the subject itself and another part encodes

bibliographic information related to the artwork, such as the name of the author, date of the work, materials used, etc. The

total conceptual vocabulary is composed of 400 concepts, 80 relations and 300 individuals. Individuals are instantiated

concepts represented by proper nouns. The concepts and relations are organized in two separate taxonomic hierarchies.

Graphs were first decomposed into a set of triplets. In our test database, the mean number of triplets per object is

only 29.82, with a standard deviation of 8.79. The largest graph has 53 triplets, and the smallest, 16 triplets. This was very

surprising and added faith to the restriction that the size of each graph should be bounded by a constant.

4.2. The Results

Figure 7 shows the evolution of space requirements observed versus the number of objects. For 100 objects, we needed

494,070 bytes. The data is consistent with the linear worst-case analysis of section 3. The resulting KS had 571 nodes with

an evolution proportional to n, the number of objects.

11

0 20 40 60 80 100
n

0

100

200

300

400

500

S
iz

e
of

 K
S

 (
10

00
 b

yt
es

)

y = 4.979x + 8.949, R-squared: .999

Figure 7: Evolution of the size of both the KS and matrix in bytes vs n, the number of objects.

The total processing time was 13.6 minutes, the major part of which was needed to build the matrix (11.54 minutes). The

major complexity factor is the lookup of a particular GP entry in the matrix (sequential search for simplicity reasons). The

observed time grows roughly as O(n1.29), which is less than the quadratic worst-case analysis. This was predictable because

of the overlapping between GPs which speeds up the matrix lookup process. We could significantly improve our

implementation by using an index on the matrix. Observed data reveals a growth proportional to n for node generation, and to

n2 for the linking process, as expected. Figure 8 shows the evolution of the total processing time, which is sub-quadratic,

i.e., proportional to O(n1.36), because our main factor depends on the building of the intersection matrix which is O(n1.29).

0

100

200

300

400

500

600

700

800

900

0 50 100 150 200 250 300 350 400 450 500 550 600

n^1.36

T
ot

al
 ti

m
e

(s
ec

s)

y = 1.647x - 30.185, R-squared: .995

Figure 8: Total processing time for the creation of a KS vs n1.36, where n is the number of objects.

5. Main Shortcomings of the Method

As mentioned before, the proposed method is well-adapted for applications where partial class descriptions are sufficient for

characterizing the class. As this partial information is based on common subgraphs, applications which will be candidate for

the method are those whose knowledge objects show some structural similarity9. This structural similarity, though

12

improvable through controlled acquisition environments [12,13], is highly dependent upon the nature of the application

domain itself. So, the proposed method is not universal, but when applicable, it can be used on large-sized knowledge bases.

Also, the generalization phase of the method generalizes each object independently of each other. This creates

overgeneralizations which may result in the production of more nodes in the knowledge space than useful. In effect, some

nodes will represent common subgraphs from which no useful class description may be inferred since they represent either

overgeneralizations or syntactical similarities which do not correspond to any semantical similarity. These classes are useless.

6. Conclusion

A conceptual clustering approach was proposed in order to organize the content of a knowledge base. This method aimed at

providing such an organization under the following conditions: when knowledge objects contain descriptive and factual

knowledge, when these objects encode knowledge with a rich formalism allowing the representation of structured objects,

when a large number of objects is to be considered, when the application domain implies dynamic evolution of the knowledge

base. The classification structure resulting from the application of our method, called knowledge space, contains classes of

objects which share common subgraphs. When these objects encode a similar semantics using similar syntactical structures,

they are said to share structural similarity. Based on this structural similarity criteria, common subgraphs are extracted and

represent the content of the classes. The description of a class can be inferred from these common subgraphs used as anchor

points for the matching process.

Extensive experimentations were conducted on a sample image database of 100 documents described by conceptual

graphs (each of average size of 30 relations). Extrapolation from these experimentations showed that the method is

realistically applicable on large-sized knowledge bases.

7. References

[1] G. Mineau, J. Gecsei, and R. Godin, "Improving Consistency within Knowledge Bases", Knowledge, Data and

Computer-Assisted Decisions, M. Schader & W. Gaul, Eds. Springer -Verlag, 49-65, 1989.

[2] E.A. Feigenbaum, and H. Simon, "EPAM-like Models of Recognition and Learning", Cognitive Science, 8. 1984.

[3] D. Fisher, "Knowledge Acquisition via Incremental Conceptual Clustering", Machine Learning, 2, 139-172, 1987.

[4] M. Lebowitz, "Concept Learning in a Rich Input Domain: Generalization Based Memory", R. Michalski, J. Carbonell,

and T. Mitchell, Eds., Machine Learning: An A.I. Approach, Morgan Kaufmann, 193-214, 1986.

13

[5] R.S. Michalski, R. Stepp, and E. Diday, "A Recent Advance in Data Analysis: Clustering Objects into Classes

Characterized by Conjunctive Concepts", Kanal and Rosenfeld, Progress in Pattern Recognition, North-Holland, 1981.

[6] R. Wille, "Knowledge Acquisition by Methods of Formal Concept Analysis", E. Diday, Ed., Data Analysis, Learning

Symbolic and Numeric Knowledge, New York: Nova Science Pub., 365-380, 1989.

[7] R.E. Stepp, and R.S. Michalski, "Conceptual Clustering: Inventing Goal-Oriented Classifications of Structured

Objects", R. Michalski, J. Carbonell, and T. Mitchell, Eds., Machine Learning: An A.I. Approach, Kaufmann, 1986.

[8] J.H. Gennari, P. Langley, and D. Fisher, "Models of Incremental Concept Formation", J. Carbonell, Ed., Machine

Learning: Paradigms and Methods, Amsterdam, The Netherlands: MIT Press, 11-62, 1990.

[9] K. Thompson, and P. Langley, "Incremental Concept Formation with Composite Objects". Proceedings of the 6th

Int.Workshop on Machine Learning, Cornell University. Morgan Kaufmann, 1989.

[10] R. Wille, "Restructuring Lattice Theory: an Approach Based on Hierarchies of Concepts". I. Rival, Ed., Ordered Sets,

Dordrecht-Boston: Reidel, 445-470, 1982.

[11] J.F. Sowa, "Conceptual Structures: Information Processing in Mind and Machine", Addison-Wesley, 1984.

[12] G.W. Mineau, "Normalizing Conceptual Graphs. Proceedings of the Fifth Annual Workshop on Conceptual Structures,

AAAI-90, P. Eklund and L. Gerholz, Eds., Boston, 1990.

[13] G.W. Mineau, "Acquisition d'objets structurés destinés à la classification symbolique", Proceedings of the seventh

Journées Francophones sur l'Apprentissage et l'Explicitation des Connaissances (JFA-92), Dourdan, France, 1992

 Footnotes:
1. Département d'Informatique, Faculté des Sciences et de Génie, Université Laval, Ste-Foy, Québec, Canada, G1K 7P4.

Tel: (418) 656-5189, e-mail: mineau@ift.ulaval.ca.
2. Département de Mathématiques et d'Informatique, Université du Québec à Montréal, C.P.8888, Succ.A, Montréal,

Québec, Canada, H3C 3P8. Tel: (514) 987-3088, e-mail: godin@info.uqam.ca.
3. This work is supported by the Natural Sciences and Engineering Research Council of Canada (NSERC), under grants

#OPG0105365, #OGP0041899 and #OGP0009184.
4. In fact, they are represented by first-order conceptual graphs, i.e., those having a mapping to a first-order logic formula.
5. In this example, the concept type "sleg" stands for "supporting_leg", that is, legs allowing mobility for a particular

legged animal.
6. In fact, OB(G) will become the label of the node.
7. In fact, only specific descriptors will be transferred to the KS, those carrying new information. Consequently, the size of

the KS, though O(n) since DE(R) is O(n), will be much lower than the cardinality of DE(R).
8. Since the tri is O(n) big, its scan will take O(n) steps.
9. Structural similarity among knowledge objects is said to be present when objects encoding similar semantics use similar

syntactical structures.

