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Abstract 

This study investigates misregistration issues between Landsat-8/OLI and 

Sentinel-2A/MSI at 30 m resolution, and between multi-temporal Sentinel-2A 

images at 10 m resolution using a phase correlation approach and multiple 

transformation functions. Co-registration of 45 Landsat-8 to Sentinel-2A pairs 

and 37 Sentinel-2A to Sentinel-2A pairs were analyzed. Phase correlation proved 

to be a robust approach that allowed us to identify hundreds and thousands of 

control points on images acquired more than 100 days apart. Overall, 

misregistration of up to 1.6 pixels at 30 m resolution between Landsat-8 and 

Sentinel-2A images, and 1.2 pixels and 2.8 pixels at 10 m resolution between 

multi-temporal Sentinel-2A images from the same and different orbits, 

respectively, were observed. The non-linear Random Forest regression used for 

constructing the mapping function showed best results in terms of root mean 

square error (RMSE), yielding an average RMSE error of 0.07±0.02 pixels at 30 

m resolution, and 0.09±0.05 and 0.15±0.06 pixels at 10 m resolution for the same 

and adjacent Sentinel-2A orbits, respectively, for multiple tiles and multiple 

conditions. A simpler 1
st
 order polynomial function (affine transformation) 

yielded RMSE of 0.08±0.02 pixels at 30 m resolution and 0.12±0.06 (same 

Sentinel-2A orbits) and 0.20±0.09 (adjacent orbits) pixels at 10 m resolution. 

Keywords: sub-pixel co-registration; phase correlation; misregistration; Landsat-

8; Sentinel-2; machine learning; random forest 

1. Introduction 

Many applications in climate change and environmental and agricultural monitoring 

rely heavily on the exploitation of multi-temporal satellite imagery. Multi-temporal 

satellite images can help to identify and analyze changes in land cover land use 

(LCLUC) (Justice et al. 2015), to capture significant trends in land surface properties, 

e.g. greenness (Ju and Masek 2016), or to discriminate specific crop types (Shelestov et 

al. 2017, Skakun et al. 2016), that cannot be identified with a single date image. In order 

to solve these problems more efficiently at high spatial resolutions (30 m), combined 

use of freely available Landsat-8 and Sentinel-2 images can offer high temporal 



 

 

frequency of about 1 image every 3-5 days globally. 

Landsat-8 was launched in 2013 within the Landsat Program, a joint effort 

between the U.S. Geological Survey (USGS) and NASA (Roy et al. 2014). The 

Operational Land Imager (OLI) and Thermal Infrared Sensor (TIRS) instruments 

onboard the Landsat-8 satellite capture images of the Earth’s surface in eleven spectral 

bands of the electromagnetic spectrum at 30 m spatial resolution (15 m for 

panchromatic band and 100 m for thermal infrared). The swath of Landsat-8 scene is 

approximately 185 km, allowing global coverage of the Earth’s surface every 16 days. 

To refine image geolocation, the Landsat-8 processing uses ground control points 

(GCPs) automatically derived from the Global Land Survey (GLS) Landsat images 

(Gutman et al. 2013). The Sentinel-2A satellite was launched in 2015 within the 

European Copernicus program (Drusch et al. 2012). Sentinel-2A has a Multi-Spectral 

Instrument (MSI) that acquires images of the Earth’s surface in thirteen spectral bands 

at 10 m, 20 m and 60 m spatial resolution. The swath of a Sentinel-2A scene is 

approximately 290 km, allowing global coverage of the Earth’s surface every 10 days. 

The launch of an identical Sentinel-2B satellite will further reduce revisit time to 5 days 

globally. Both Sentinel-2A/B satellites will use a Global Reference Image (GRI) 

derived from orthorectified Sentinel-2 cloud-free images to improve geolocation 

accuracy and repeatability to meet the requirements of multi-temporal registration of 3m 

for 10 m bands (Déchoz et al. 2015). The GRI dataset is currently under development 

and is expected to be completed in 2018 (Storey et al. 2016). 

Recent studies are focusing on the combined use of Landsat-8 and Sentinel-2A 

images to increase temporal coverage; however misregistration issues between Landsat-

8 and Sentinel-2A have already been identified (Storey et al. 2016). It has been found 

that the OLI and MSI misregistration can exceed one 30-meter pixel and, therefore, it is 



 

 

recommended to exploit image registration approaches to further improve alignment 

between Landsat-8 and Sentinel-2A images (Storey et al. 2016). These approaches 

should be automatic and computationally efficient in order to perform alignment on a 

global basis, have sub-pixel accuracy and effectively deal with temporal changes, so 

these approaches can be further applied with GLS and GRI. 

There have been many studies carried out to develop automatic satellite image 

registration methods (e.g. Gao et al. 2009, Le Moigne et al. 2011, Zitova and Flusser, 

2003). The general image-to-image registration workflow consists of automatic 

generation of control points (CPs) between the reference (or master) and sensed (or 

slave) images, building and evaluating a spatial transformation (mapping function) that 

aligns the reference and sensed images, and warping the sensed image with radiometric 

transformation. Area-based and feature-based approaches are used to automatically 

derive CPs. Area-based methods, also referred to as correlation-like or template 

matching, find correspondence between reference and sensed images through a 

similarity measure, for example cross-correlation (in spatial or frequency domain) or 

mutual information. These measures are usually applied on a sliding window basis to 

derive a dense set of CPs. Feature-based methods aim to find distinctive features on 

images, for example edges, contours, line intersections, closed boundary regions, and 

then match the derived features to find correspondences between reference and sensed 

images. The derived CPs are used to construct and evaluate a mapping function that 

maps points from the reference image to points in the sensed image. Examples of the 

mapping function include translation, affine transformation, high-order polynomials, 

radial basis functions (RBFs), and elastic registration. And finally, radiometric 

transformation (nearest neighbor, bilinear, splines) should be specified to warp the 

sensed image to the reference one. 



 

 

The problem of Landsat-8/OLI and Sentinel-2A/MSI misregistration has already 

been addressed in several previous studies (Barazzetti et al. 2016, Yan et al. 2016). Yan 

et al. (2016) used a hierarchical feature-based matching approach to find CPs through 

construction of image pyramids at various spatial resolutions and an area-based 

matching approach to further refine and reject non-reliable CPs. Translation, affine 

transformation and second order polynomial functions were evaluated in the study for 

three pairs of Landsat-8 and Sentinel-2A images with affine transformation giving the 

best results in terms of root mean square error (RMSE) of 0.3 pixels at 10 m resolution. 

Barazzetti et al. (2016) utilized standard software packages to study misregistration 

between Landsat-8 and Sentinal-2A, and achieved RMSE of up to 1.2 pixels at 15 m 

spatial resolution. 

In this paper, we explore a phase correlation approach to automatically generate 

a dense grid of CPs when registering Landsat-8 to Sentinel-2A images, as well as 

multiple mapping functions including those based on machine learning approaches. We 

also address the issue of multi-temporal misregistration between Sentinel-2A images. 

(For assessment of registration accuracy of multi-temporal Landsat-8 images, we refer 

readers to Storey et al. (2014)). Our analysis shows misregistration magnitudes of up to 

3 pixels at 10 m resolution can be observed. This issue has not been reported in previous 

studies to our knowledge (except Sentinel-2 Data Quality Reports, see ESA (2016a), 

and reports delivered at the Land Cover Land Use Change (LCLUC) Multi-Source Land 

Imaging (MuSLI) Science Team 2016, http://lcluc.umd.edu/meetings/2016-lcluc-

spring-science-team-meeting-18-19-april-and-musli-science-team-meeting-20-21), and 

should be further addressed especially for users dealing with Sentinel-2A time-series at 

10 m spatial resolution. As in Yan et al. (2016), we use near-infrared (NIR) bands from 

Landsat-8 (band 5, 0.85 - 0.88 um) and Sentinel-2A (band 08, 0.842 um) to find CPs on 



 

 

reference and sensed images, since the NIR provides a wide dynamic range of values 

for multiple land cover types and is less sensitive to atmospheric effects. Co-registration 

of Landsat-8 to Sentinel-2A was performed at 30 m spatial resolution while co-

registration between Sentinel-2A images was undertaken at 10 m spatial resolution. 

2. Data description 

2.1. Landsat-8 and Sentinel-2A products description 

We used a standard Landsat-8 Level-1 terrain corrected (L1T) product distributed by 

USGS through the EarthExplorer system (Roy et al. 2014). The product is provided in 

the World-wide Reference System (WRS-2) of path and row coordinates. The size of 

the Landsat-8 scene is approximately 185 km × 180 km. The product is provided with 

the corresponding metafile to convert digital numbers (DNs) into the top-of-atmosphere 

reflectance (TOA) values. For Sentinel-2, we used a standard Level-1C (L1C) product 

which is radiometrically and geometrically corrected with ortho-rectification, and 

provided with the TOA reflectance values (ESA 2016b). The product is delivered in 

tiles, or granules, of approximately 110 km × 110 km size. Both Landsat-8 L1T and 

Sentinel-2A L1C products are provided in the Universal Transverse Mercator (UTM) 

projection with the World Geodetic System 1984 (WGS84) datum. Each Sentinel-2 tile 

is assigned a UTM zone, and overlapping tiles covering the same geographic region 

might have different UTM zones assigned. The Sentinel-2 tiling grid is referenced to the 

U.S. Military Grid Reference System (MGRS). A tile identifier consists of five signs: 

two numbers and three letters, e.g. 20HNH. The first two numbers in the tile identifier 

correspond to the UTM zone while the remaining three letters correspond to the tile 

position. ESA provides a kml file with tile coverage and their identifiers 

(https://sentinel.esa.int/documents/247904/1955685/S2A_OPER_GIP_TILPAR_MPC_



 

 

_20151209T095117_V20150622T000000_21000101T000000_B00.kml). 

It should be also noted that pixel value is for the center of the pixel for the 

Landsat-8 L1T product, while it is for the upper left corner of the pixel for the Sentinel-

2A L1C product. In this work, we used Sentinel-2 tile system as a reference, i.e. 

Landsat-8 data were subset for the corresponding Sentinel-2 tile with the nearest 

neighborhood resampling and co-registered to the reference Sentinel-2 scene using the 

proposed approach. Depending on the application and user needs other reference 

systems can be specified, for example Web Enabled Landsat Data (WELD) (Roy et al. 

2010) and this proposed approach can be easily adapted to it. 

2.2. Landsat-8 and Sentinel-2A test data description 

This study was carried out for five Sentinel-2 tiles in three countries: Argentina 

(Sentinel-2 tile grid numbers 20HNH and 20HPH), US (14SKF) and Ukraine (36UUU, 

34UFU) (see Figure 1 for examples). The selected tiles cover intensive agriculture 

regions, where changes are rapid due to seasonal crop development, and a mountain 

region in the Carpathians (tile 34UFU) where surface elevation varies approximately 

from 100 m to 1000 m. All selected regions feature considerable difference in Landsat-8 

and Sentinel-2A image acquisition dates ranging from July 4, 2015 to July 25, 2016, as 

well as variable cloud conditions.  

Overall co-registration of 45 Landsat-8 to Sentinel-2A pairs and 37 Sentinel-2A 

to Sentinel-2A pairs were analyzed. Table 1 gives details on the Landsat-8 and Sentinel-

2A imagery used in the study. 

 

 



 

 

Table 1. Description of data used in the study. Acquisition dates are given in the format 

YYYYDOY (where DOY is the day of the year). 

Country Tile 

number 

Acquisition date 

of Sentinel-2A 

reference image 

Acquisition dates of Landsat-

8 co-registered images 

Acquisition dates of Sentinel-2A 

co-registered images 

Argentina 20HNH 2015358 2015354, 2015185, 2015201, 

2015242, 2015249, 2015258, 

2015290, 2015306, 2015329, 

2015338, 2015345, 2015361, 

2016021, 2016037, 2016053 

2015341, 2016006, 2016013, 

2016016, 2016023, 2016026, 

2016036, 2016043, 2016046, 

2016063, 2016065, 2016073, 

2016083, 2016093, 2016096 

Argentina 20HPH 2015358 2015242, 2015258, 2015290, 

2015306, 2015338, 2015354, 

2016021, 2016037, 2016053 

2016003, 2016013, 2016023, 

2016043, 2016063, 2016073, 

2016083, 2016093 

US (Texas) 14SKF 2016012 2015245, 2015261, 2015293, 

2015309, 2015325, 2015341, 

2015357, 2016024, 2016040, 

2016056, 2016072, 2016088, 

2016104 

2016042, 2016072, 2016132 

Ukraine 36UUU 2016169 2016076, 2016092, 2016108, 

2016156, 2016172, 2016188 

2016096, 2016109, 2016119, 

2016156, 2016166, 2016179, 

2016196, 2016199, 2016206 

Ukraine 34UFU 2016198 2016063, 2016182 2016048, 2016208 

(A) 



 

 

(B) 

(C) 

(D) 



 

 

(E) 

Figure 1. Examples of TOA true color images acquired by Sentinel-2A/MSI (left) and 

Landsat-8/OLI (right): (A) tile 20HNH over Argentina, dates of Sentinel-2A/MSI and 

Landsat-8/OLI acquisitions are 2015358 and 2015361 respectively; (B) tile 20HPH over 

Argentina, acquisitions dates are 2015358 and 2015258; (C) tile 14SKF over Texas, US, 

dates of acquisitions are 2016012 and 2016104; (D) tile T36UUU over Ukraine, 

acquisition dates are 2016169 and 2016108; (E) tile T34UFU over the Carpathian 

Mountains, Ukraine, acquisitions dates are 2016198 and 2016063. 

3. Methodology 

3.1. General overview 

The proposed approach follows the general concept of automatic image-to-image 

registration outlined in (Zitova and Flusser 2003). It has the following steps (Figure 2): 

image pre-processing; automatic identification of CPs; filtering of CPs; building and 

evaluating a transformation, and image warping. 



 

 

 

Figure 2. General workflow of Landsat-8 and Sentinel-2A image co-registration. 

3.2. Image pre-processing 

Landsat-8 images were converted from DNs to TOA reflectance values using 

calibration coefficients in the metadata file, so both Landsat-8 and Sentinel-2A images 

were generated with TOA reflectance values. The steps outlined in this and following 

subsections will also be valid, should co-registration be applied for atmospherically 

corrected products (Vermote et al. 2016). 

For Landsat-8 to Sentinel-2A co-registration, Sentinel-2A band 08 (NIR) was 

resampled from 10 m to 30 m using averaging, and Landsat-8 data were subset to the 

corresponding Sentinel-2A tile using the nearest neighborhood resampling technique. 



 

 

Sentinel-2A to Sentinel-2A co-registration was performed at the original 10 m spatial 

resolution without further resampling. 

3.3. Automatic generation of CPs 

In this study, we exploited a phase-only correlation image matching method introduced 

by Guizar-Sicairos et al. (2008). It uses a cross-correlation approach in the frequency 

domain by means of the Fourier transform and exploits a computationally efficient 

procedure based on nonlinear optimization and Discrete Fourier Transforms (DFTs) to 

detect sub-pixel shifts between reference and sensed images. For the detailed 

description of the algorithm, we refer readers to Guizar-Sicairos et al. (2008). 

The phase-correlation algorithm allows detection of translation between 

reference and sensed images, and therefore is routinely applied using a moving square 

window. The size of the window and the step are selected empirically. Window size 

should be large enough to capture similarities on the reference and sensed images, and 

small enough to have a dense grid of CPs to accurately construct a transform function. 

In this study, window size and step were selected 100 and 50 pixels, respectively when 

co-registering Landsat-8 to Sentinel-2A, and 64 and 32 when co-registering multi-

temporal Sentinel-2A images. 

Compared to other area-based methods (e.g. cross-correlation in the spatial 

domain), the phase-correlation image usually contains a sharp peak corresponding to the 

dominant shift between images, and is usually more robust to temporal changes between 

reference and sensed images (Kravchenko et al. 2014). Compared to feature-based 

methods, the phase-correlation approach with a moving window allows detection of a 

dense grid of CPs, especially in cases where features cannot be reliably identified and 

detected, including at the 30 m spatial resolution imagery. 



 

 

No matter what method is applied for automatic generation of CPs, filtering is 

necessary to remove unreliable CPs. First, a peak cross-correlation normalized 

magnitude is used for initial rejection of CPs. In our study, this value was set to 0.5. 

After that, a RANdom SAmple Consensus (RANSAC) algorithm (Fischler and Bolles 

1981) is run for the linear transformation model to detect inliers and outliers. The 

RANSAC is a widely used algorithm in computer vision and image processing to detect 

strong outliers with large deviations (Brown and Lowe 2007). However, one should be 

careful to not aggressively remove outliers that can be actually inliers. In our study, we 

ran a conservative approach for removing outliers, i.e. the RANSAC parameters were 

set in such a way to remove only outliers with a high confidence level. In our particular 

case, the number of RANSAC trials was set to 100, and a confidence level for selecting 

outliers was set to 0.99. The detected inlier CPs are further used to construct and 

evaluate a transformation function. 

3.4. Transformation function 

The goal of constructing a transformation function F() is to find correspondence 

between points in the reference image xr = (xr, yr) and points in the sensed image xs = 

(xs, ys): 

 (xs, ys) = F(xr, yr). (1) 

Function F() is constructed using the set of CPs identified in the previous steps.  

In this study we compared three different approaches to creating the transformation 

function: polynomial models, radial basis functions, and random forest regression trees 

(see below for details). Regardless of transformation approach, all available CPs were 

randomly split into a training (calibration) set (80%) and a testing set (20%). The 

training set was used to build the model and identify its parameters, while the testing set 



 

 

was used to evaluate the model on independent data. We will denote CPs from the 

testing set with 𝑥!,! ,𝑦!,!  and 𝑥!,! ,𝑦!,!  where 𝑙 = 1, 𝐿 and L is the number of points 

with corresponding shifts: 

 ∆!,!= 𝑥!,! − 𝑥!,! ,∆!,!= 𝑦!,! − 𝑦!,! (2) 

The quality of the transformation is evaluated using a root mean square error 

(RMSE) between reference values 𝑥!,! ,𝑦!,!  and estimated values 𝑥!,! ,𝑦!,!  by 

transformation function F() using the testing set: 

 𝑥!,! ,𝑦!,! = 𝐹 𝑥!,! ,𝑦!,! , (3) 

 𝑅𝑀𝑆𝐸 =
!

!
𝑥!,! − 𝑥!,!

!

+ 𝑦!,! − 𝑦!,!
!

!

!!!
. (4) 

3.4.1. Polynomial models 

Selection of the type of the transformation function depends on a-priori knowledge of 

expected geometric deformations and distortions between reference and sensed images, 

and required registration accuracy (Zitova and Flusser 2003). Polynomial functions of 

the n-th degree have the following form: 

 𝑥! = 𝑃!,! 𝑥! ,𝑦! = 𝑎!!𝑥!
!𝑦
!

!
!!!!!

!

!!! , (5) 

 𝑦! = 𝑃!,! 𝑥! ,𝑦! = 𝑏!"𝑥!
!𝑦
!

!
!!!!!

!

!!! . (6) 

In the case of n=0, the models (5)-(6) are simple translation models where the 

same values of shift, namely 𝑎!! and 𝑏!!, are applied in x and y directions, respectively: 

 𝑥! = 𝑃!,! 𝑥! ,𝑦! = 𝑎!!, (7) 



 

 

 𝑦! = 𝑃!,! 𝑥! ,𝑦! = 𝑏!!. (8) 

A linear model, also referred to as affine, can be reduced to the following form: 

 𝑥! = 𝑃!,! 𝑥! ,𝑦! = 𝑎!! + 𝑎!"𝑥! + 𝑎!"𝑦!, (9) 

 𝑦! = 𝑃!,! 𝑥! ,𝑦! = 𝑏!! + 𝑏!"𝑥! + 𝑏!"𝑦!. (10) 

Model parameters 𝑎!" and 𝑏!" are estimated through the ordinary least square 

(OLS) method, by minimizing the sum of the squares of the differences between 

predicted values of the model and reference values. 

3.4.2. Radial Basis Functions (RBFs) 

The transformation function based on Radial Basis Functions (RBFs) has the following 

form (Zitova and Flusser 2003): 

 𝑥! = 𝑎! + 𝑎!𝑥! + 𝑎!𝑦! + 𝑤!𝐾 𝐱𝒓, 𝐱!
!

!!! , (11) 

 𝑦! = 𝑏! + 𝑏!𝑥! + 𝑏!𝑦! + 𝑤!𝐾 𝐱𝒓, 𝐱!
!

!!! , (12) 

where 𝐾 ∙,∙  is the kernel function with parameters (centers) 𝐱! and 𝐱! and weights 𝑤! 

and 𝑤!. 

In this study, we used two types of kernels, namely Gaussian and thin-plate 

splines (TPS): 

 Gaussian: 𝐾 𝐱, 𝐱! = exp − 𝐱− 𝐱!
! , (13) 

 TPS: 𝐾 𝐱, 𝐱! = 𝐱− 𝐱!
!
ln 𝐱− 𝐱! . (14) 

There are several ways of selecting a set of centers 𝐱!: randomly, on a regular 

grid, or adaptively through clustering. We used the k-means clustering approach (Lloyd 



 

 

1982, Forgy 1965) to adaptively select centers in the models (11)-(12). We varied 

number of clusters K and found values from 1 to 10 producing best results. Increasing 

the number over 10 did not improve results. 

And finally, weights 𝑤! and 𝑤! in models (11)-(12) were estimated from 

training data using the RANSAC algorithm (Fischler and Bolles 1981). 

As with polynomial models, RBF models are the global mapping functions, 

however, they are able to account for local non-linear distortions (Zitova and Flusser 

2003). 

3.4.3. Random forest (RF) regression 

Random forest (RF) is a machine learning algorithm that represents an ensemble of 

decision trees (DTs) (Breiman 2001). A DT classifier or regression model is built from 

a set of data using the concept of information entropy. At each node of the tree, one 

attribute of the data, that most effectively splits its set of samples into subsets enriched 

in one class or the other, is selected. Its criterion is the normalized information gain that 

results from choosing an attribute for splitting the data. The attribute with the highest 

normalized information gain is chosen to make the decision. The algorithm then recurs 

on the smaller sublists. One disadvantage of the DT classifier is the considerable 

sensitivity to the input dataset, so that a small change to the training data can result in a 

very different set of subsets (Bishop 2006). In order to overcome disadvantages of a 

single DT, an ensemble of DTs is used to form a random forest. Each DT represents an 

independent expert (or weak classifier) in the RF that is trained based on different input 

datasets that are generated through a bagging procedure (Bishop 2006). RF can be used 

for building classification and regression models. 

In this study, the RF regression was used to build a transformation function. We 

used points from the reference image xr = (xr, yr) as inputs to the RF regression model 



 

 

with a polynomial preprocessing. For example, in case of the 2
nd

 degree polynomial 

function, the following features were input to the RF model: 𝑥! ,𝑦! , 𝑥!
!,𝑦!

!, 𝑥!𝑦!. The RF 

model was further trained to predict points in the sensed image xs = (xs, ys). In this 

study, the number of DTs in the RF models was kept low (about 5) to avoid overfitting. 

The optimal number of DTs in the RF model in terms of RMSE error was identified 

through the cross-validation procedure. 

As with RBFs based mapping functions, RF belongs to the class of global 

mapping models that can account for local non-linear distortions.  

4. Results 

The use of phase correlation allowed us to generate hundreds and thousands of CPs 

when co-registering Landsat-8 to Sentinel-2A at 30 m spatial resolution (hereafter 

referred as LandSen30), and when co-registering multi-temporal Sentinel-2A images at 

10 m spatial resolution (hereafter referred as SenSen10) (Figure 3). The average 

misregistration between Landsat-8 and Sentinel-2A calculated on a tile basis, using 

identified CPs, varied from 0.11 pixels to 1.35 pixels among tiles considered in the 

study with the maximum misregistration value varying from 0.25 to 1.59 pixels (per 

tile). Misregistration between Landsat-8 and Sentinel-2A was stable in time over the 

same tile (Table 2, Figure 4) with average standard deviation of the misregistration 

through the time varying from 0.03 pixels to 0.16 pixels with average of 0.10 pixels (at 

30 m resolution). 

In the SenSen10 case, performance depended on whether the reference and 

sensed Sentinel-2A images were acquired from the same or different (adjacent) orbits. 

In case of the same orbits, the average misregistration calculated on a tile basis varied 

from 0.05 pixels to 0.46 pixels among tiles (with the maximum misregistration up to 

1.21 pixels) with average 0.23±0.12 pixels at 10 m resolution. In case of different 



 

 

Sentinel-2 orbits over the same tile, the average misregistration calculated on a tile basis 

varied from 0.14 pixels to 1.45 pixels among tiles (with the maximum misregistration 

up to 2.83 pixels) with average 0.61±0.42 pixels at 10 m resolution (Table 3, Figure 5). 

This might be the result of the satellite yaw bias that was corrected within the recent 

baseline processing version 02.04 (ESA, 2016a). Overall, our estimates of the multi-

temporal misregistration in the Sentinel-2A imagery were consistent with the Sentinel-2 

Data Quality Reports (ESA, 2016a). 

 

Figure 3. Location of CPs shown in the form of vectors outlining the direction and 

magnitude of shifts (∆! and ∆! (Eq. 2)) found between Landsat-8 image acquired on 

2016021 (21-Jan-2016), and Sentinel-2A image acquired on 2015358 (24-Dec-2015) 

and used as a reference image, over the study area in Argentina, tile T20HNH. Vector 

lengths were multiplied by 100 for visual clarity. Overall, 1634 CPs were found using 

the phase correlation approach in this case. The background is a Landsat-8 TOA NIR 

(band 5) image with TOA reflectance values scaled from 0.05 to 0.65. 



 

 

 

Table 2. Results of identifying CPs on the sensed (Landsat-8) and reference (Sentinel-

2A) images using phase correlation approach at 30 m spatial resolution. Values for 

shifts ∆! and ∆! (Eq. 2) are shown in pixel units. 

   ∆! ∆! 

Tile Date of sensed 

image acquisition 

Number 

of CPs 

mean std min max mean std min max 

20HNH 2015185 694 1.15 0.08 0.96 1.34 0.24 0.06 0.12 0.35 

 2015201 652 1.18 0.11 0.85 1.46 0.22 0.08 0 0.45 

 2015242 718 0.91 0.09 0.74 1.07 0.04 0.05 -0.07 0.13 

 2015249 512 1.14 0.11 0.88 1.34 0.13 0.06 -0.03 0.25 

 2015258 679 0.97 0.13 0.63 1.31 0.03 0.05 -0.1 0.16 

 2015290 939 0.98 0.09 0.72 1.23 -0.01 0.08 -0.24 0.17 

 2015306 810 0.99 0.08 0.8 1.17 0.02 0.05 -0.1 0.19 

 2015329 454 1.34 0.11 1.02 1.59 0.05 0.09 -0.16 0.28 

 2015338 1854 1 0.09 0.76 1.25 -0.03 0.11 -0.31 0.2 

 2015345 866 1.22 0.05 1.1 1.35 0.14 0.02 0.08 0.19 

 2015354 2338 0.96 0.13 0.59 1.32 -0.03 0.07 -0.24 0.13 

 2015361 1268 1.22 0.06 1.08 1.36 0.07 0.04 -0.03 0.16 

 2016021 1419 0.96 0.11 0.69 1.27 0.01 0.06 -0.17 0.18 

 2016037 1017 0.95 0.12 0.6 1.29 0.12 0.07 -0.06 0.29 

 2016053 876 0.81 0.15 0.41 1.19 0.08 0.06 -0.07 0.21 

20HPH 2015242 726 0.88 0.11 0.53 1.14 -0.06 0.07 -0.27 0.1 

 2015258 652 0.93 0.13 0.54 1.19 -0.01 0.05 -0.13 0.09 

 2015290 848 0.89 0.1 0.56 1.13 -0.08 0.07 -0.27 0.06 



 

 

   ∆! ∆! 

Tile Date of sensed 

image acquisition 

Number 

of CPs 

mean std min max mean std min max 

 2015306 709 0.98 0.07 0.73 1.16 -0.03 0.04 -0.17 0.06 

 2015338 2637 0.79 0.12 0.46 1.08 -0.09 0.07 -0.28 0.07 

 2015354 2912 0.82 0.11 0.53 1.08 -0.13 0.07 -0.3 0.04 

 2016021 1634 0.77 0.1 0.5 1 -0.08 0.07 -0.28 0.09 

 2016037 1070 0.82 0.1 0.54 1.05 0.02 0.07 -0.18 0.18 

 2016053 574 0.71 0.11 0.41 0.91 0 0.07 -0.21 0.16 

36UUU 2016076 770 0.28 0.08 0.08 0.47 0.6 0.07 0.44 0.76 

 2016092 695 0.33 0.1 0.08 0.62 0.58 0.06 0.41 0.73 

 2016108 856 0.29 0.09 0.1 0.55 0.6 0.06 0.45 0.79 

 2016156 796 0.27 0.09 0.08 0.51 0.57 0.06 0.38 0.72 

 2016172 2379 0.31 0.08 0.14 0.5 0.6 0.05 0.46 0.73 

 2016188 818 0.37 0.07 0.2 0.55 0.61 0.06 0.39 0.75 

14SKF 2015245 721 -0.45 0.14 -0.75 -0.12 0.13 0.1 -0.09 0.39 

 2015261 472 -0.43 0.18 -0.89 0.01 0.05 0.11 -0.22 0.37 

 2015293 721 -0.48 0.14 -0.76 -0.06 -0.24 0.11 -0.53 0.12 

 2015309 1195 -0.38 0.13 -0.65 -0.05 0.36 0.08 0.18 0.55 

 2015325 1095 -0.38 0.14 -0.67 -0.04 -0.12 0.12 -0.49 0.19 

 2015341 703 -0.03 0.08 -0.21 0.22 0.06 0.06 -0.06 0.18 

 2015357 1100 -0.36 0.14 -0.65 0 -0.16 0.1 -0.42 0.12 

 2016024 729 -0.05 0.11 -0.28 0.26 0.11 0.09 -0.11 0.32 

 2016040 1258 -0.05 0.09 -0.23 0.19 -0.08 0.07 -0.29 0.11 

 2016056 1117 -0.39 0.12 -0.66 -0.08 0.33 0.09 0.12 0.6 



 

 

   ∆! ∆! 

Tile Date of sensed 

image acquisition 

Number 

of CPs 

mean std min max mean std min max 

 2016072 752 -0.05 0.08 -0.24 0.18 0.19 0.06 0.02 0.34 

 2016088 1085 -0.37 0.1 -0.59 -0.08 0.14 0.08 -0.04 0.36 

 2016104 992 -0.06 0.08 -0.22 0.16 0.19 0.07 0.01 0.4 

34UFU 2016063 636 0.61 0.07 0.46 0.78 0.15 0.1 -0.16 0.46 

 2016182 1498 0.76 0.04 0.66 0.87 0.14 0.05 0.05 0.29 

 

Table 3. Results of identifying CPs on the sensed (Sentinel-2A) and reference (Sentinel-

2A) images using phase correlation approach at 10 m spatial resolution. Values for 

shifts ∆! and ∆! (Eq. 2) are shown in pixel units. 

   ∆! ∆! 

Tile Date of sensed image 

acquisition (baseline 

processing version, orbit 

relative to the orbit of 

reference image) 

Number 

of CPs 

mean std min max mean std min max 

20HNH 2016013 (v02.01, same) 20622 -0.03 0.04 -0.16 0.08 0.04 0.04 -0.04 0.15 

 2016023 (v02.01, same) 21934 0.06 0.04 -0.04 0.16 0.05 0.04 -0.06 0.15 

 2016043 (v02.01, same) 15453 -0.03 0.06 -0.17 0.1 0.02 0.06 -0.13 0.18 

 2016063 (v02.01, same) 6133 0.12 0.11 -0.37 0.41 0.19 0.12 -0.14 0.45 

 2016073 (v02.01, same) 12919 -0.11 0.07 -0.23 0.03 0.21 0.1 -0.03 0.48 

 2016083 (v02.01, same) 13439 -0.27 0.11 -0.6 0.03 0.11 0.1 -0.18 0.42 

 2016093 (v02.01, same) 4160 -0.16 0.17 -0.61 0.31 0.35 0.31 -0.54 1.09 

 2015341 (v02.00, adjacent) 15056 0.22 0.09 0 0.43 -0.42 0.19 -0.93 0.12 

 2016006 (v02.01, adjacent) 17858 0.08 0.04 -0.01 0.16 -0.76 0.18 -1.2 -0.3 



 

 

   ∆! ∆! 

Tile Date of sensed image 

acquisition (baseline 

processing version, orbit 

relative to the orbit of 

reference image) 

Number 

of CPs 

mean std min max mean std min max 

 2016016 (v02.01, adjacent) 18265 0.24 0.08 0.05 0.44 -0.6 0.3 -1.3 0.15 

 2016026 (v02.01, adjacent) 16795 0.41 0.18 -0.12 0.92 -0.53 0.24 -1.15 0.1 

 2016036 (v02.01, adjacent) 2281 -0.04 0.12 -0.34 0.28 -0.05 0.16 -0.42 0.34 

 2016046 (v02.01, adjacent) 8566 0.3 0.14 -0.08 0.68 -0.34 0.15 -0.69 0 

 2016065 (v02.01, adjacent) 9997 0.23 0.12 -0.01 0.49 -0.36 0.23 -1.04 0.33 

 2016096 (v02.01, adjacent) 1060 -0.02 0.17 -0.47 0.47 0.02 0.16 -0.35 0.4 

20HPH 2016003 (v02.01, same) 2286 0.01 0.15 -0.35 0.38 0 0.14 -0.42 0.47 

 2016013 (v02.01, same) 29887 0 0.04 -0.08 0.08 0.01 0.04 -0.08 0.11 

 2016023 (v02.01, same) 20264 0.07 0.05 -0.05 0.19 0 0.06 -0.18 0.15 

 2016043 (v02.01, same) 10197 -0.04 0.07 -0.24 0.19 -0.01 0.07 -0.19 0.21 

 2016063 (v02.01, same) 7065 0.24 0.12 -0.02 0.51 0.15 0.11 -0.18 0.45 

 2016073 (v02.01, same) 7492 -0.09 0.07 -0.27 0.12 0.03 0.07 -0.12 0.17 

 2016083 (v02.01, same) 9020 -0.24 0.08 -0.43 -0.05 -0.07 0.11 -0.35 0.22 

 2016093 (v02.01, same) 1981 -0.06 0.15 -0.39 0.25 0.05 0.17 -0.38 0.47 

36UUU 2016109 (v02.01, same) 18989 0.18 0.12 -0.16 0.47 0.2 0.24 -0.5 0.93 

 2016119 (v02.01, same) 21363 0.08 0.11 -0.26 0.45 -0.17 0.29 -1.16 0.61 

 2016179 (v02.04, same) 19300 0 0.04 -0.08 0.08 0.21 0.05 0.08 0.33 

 2016199 (v02.04, same) 16647 -0.07 0.06 -0.24 0.08 0.14 0.06 -0.03 0.3 

 2016096 (v02.01, adjacent) 10046 -0.1 0.13 -0.47 0.29 1.44 0.51 -0.13 2.82 

 2016156 (v02.02, adjacent) 8145 -0.32 0.13 -0.68 0.1 1.19 0.4 -0.04 2.02 



 

 

   ∆! ∆! 

Tile Date of sensed image 

acquisition (baseline 

processing version, orbit 

relative to the orbit of 

reference image) 

Number 

of CPs 

mean std min max mean std min max 

 2016166 (v02.02, adjacent) 10436 0.01 0.04 -0.09 0.14 0.13 0.05 -0.02 0.24 

 2016196 (v02.04, adjacent) 8530 -0.06 0.07 -0.22 0.08 0.25 0.08 0.01 0.47 

 2016206 (v02.04, adjacent) 4905 -0.17 0.09 -0.38 0.07 0 0.08 -0.23 0.2 

14SKF 2016042 (v02.01, same) 28459 -0.17 0.04 -0.27 -0.05 0.1 0.06 -0.02 0.22 

 2016072 (v02.01, same) 19183 -0.37 0.09 -0.56 -0.13 0.21 0.09 -0.08 0.45 

 2016132 (v02.01, same) 18091 -0.26 0.1 -0.58 0.05 0.35 0.17 -0.22 0.94 

34UFU 2016048 (v02.01, same) 16528 0.28 0.08 0.06 0.55 0.05 0.18 -0.37 0.61 

 2016208 (v02.04, same) 26453 0.16 0.03 0.06 0.25 0.22 0.04 0.08 0.33 

 



 

 

 

Figure 4. Distribution of misregistration values ∆! and ∆! (Eq. 2) when co-registering 

Landsat-8 to Sentinel-2A images for different tiles used in the study. Units are shown in 

pixel values at 30 m spatial resolution. 



 

 

 

Figure 5. Distribution of misregistration values ∆! and ∆! when co-registering multi-

temporal Sentinel-2A images from the same orbits for different tiles used in the study. 

Units are shown in pixel values at 10 m spatial resolution. 



 

 

 

Figure 6. Distribution of misregistration values ∆! and ∆! when co-registering multi-

temporal Sentinel-2A images from the adjacent orbits for different tiles used in the 

study. Units are shown in pixel values at 10 m spatial resolution. 

 

When building a transformation function, all considered approaches showed a 

similar performance (Table 4 and Table 5) with the complex non-linear RF regression 

slightly outperforming other methods, namely, a simple translation (Eq. 7-8), 1
st
 order 

polynomial (Eq. 9-10), Gaussian RBFs (Eq. 11-12, 13) and TPS (Eq. 11-12, 14). For the 

RF regression, RMSE values varied from 0.02 to 0.12 pixels for the LandSen30 case at 

30 m resolution, and from 0.025 to 0.22 pixels for the SenSen10 case at 10 m resolution 

for the same orbits and from 0.05 to 0.26 pixels for adjacent orbits. The RF model was 

built using a 1
st
 order polynomial function for input CP coordinates. Increasing the 

order of the polynomial function did not improve performance of the RF model. It 

means that the RF was able to capture non-linearity when building a transformation 

function between CPs on the reference and sensed images. 

Our results obtained for the 1
st
 order polynomial function were comparable to 

previous studies by Barazzetti et al. (2016) and Yan et al. (2016). 

 



 

 

Table 4. Average and standard deviation of the RMSE error (Eq. 4) calculated for 

different transformation functions using CPs from testing set when co-registering 

Landsat-8 and Sentinel-2A images. RMSE values are shown in pixel units at 30 m 

spatial resolution. 

 Translation (Eq. 7-

8) 

1
st
 order 

polynomial (Eq. 9-

10) 

Gaussian RBFs 

(Eq. 11-12, 13) 

RF regression TPS 

(Eq. 11-12, 14) 

Tile Mean Standard 

deviation 

Mean Standard 

deviation 

Mean Standard 

deviation 

Mean Standard 

deviation 

Mean Standard 

deviation 

20HNH 0.119 0.031 0.091 0.026 0.093 0.027 0.084 0.024 0.090 0.025 

20HPH 0.123 0.014 0.078 0.016 0.081 0.017 0.073 0.018 0.079 0.018 

36UUU 0.108 0.011 0.072 0.015 0.074 0.015 0.059 0.014 0.073 0.015 

14SKF 0.145 0.037 0.094 0.018 0.095 0.018 0.074 0.018 0.094 0.017 

34UFU 0.095 0.045 0.056 0.034 0.060 0.038 0.044 0.030 0.054 0.033 

 

Table 5. Average and standard deviation of the RMSE error (Eq. 4) calculated for 

different transformation functions using CPs from testing set when co-registering multi-

temporal Sentinel-2A images from the same orbit. RMSE values are shown in pixel 

units at 10 m spatial resolution. 

 Translation (Eq. 

7-8) 

1
st
 order polynomial 

(Eq. 9-10) 

Gaussian RBFs 

(Eq. 11-12, 13) 

RF regression TPS 

(Eq. 11-12, 14) 

Tile Mean Standard 

deviation 

Mean Standard 

deviation 

Mean Standard 

deviation 

Mean Standard 

deviation 

Mean Standard 

deviation 

20HNH 0.141 0.104 0.125 0.076 0.125 0.076 0.105 0.060 0.126 0.074 

20HPH 0.133 0.064 0.128 0.062 0.127 0.062 0.114 0.059 0.129 0.064 

36UUU 0.181 0.126 0.114 0.046 0.114 0.046 0.088 0.035 0.112 0.048 

14SKF 0.133 0.066 0.123 0.050 0.118 0.046 0.089 0.036 0.123 0.051 

34UFU 0.122 0.101 0.092 0.086 0.091 0.084 0.066 0.059 0.093 0.088 

 



 

 

Table 6. The same as Table 5, but for adjacent Sentinel-2A orbits. 

 Translation (Eq. 

7-8) 

1
st
 order 

polynomial (Eq. 9-

10) 

Gaussian RBFs 

(Eq. 11-12, 13) 

RF regression TPS 

(Eq. 11-12, 14) 

Tile Mean Standard 

deviation 

Mean Standard 

deviation 

Mean Standard 

deviation 

Mean Standard 

deviation 

Mean Standard 

deviation 

20HNH 0.239 0.048 0.207 0.031 0.202 0.028 0.164 0.032 0.205 0.031 

36UUU 0.248 0.212 0.191 0.139 0.189 0.138 0.138 0.087 0.193 0.142 

 

Temporal fluctuations of the RMSE error were analysed to explore temporal 

stability of the constructed transformation functions for multi-temporal Sentinel-2A 

images co-registration. Figure 7 shows dependence of the RMSE error with time for the 

1
st
 degree polynomial function for different Sentinel-2A orbits. For the case of the same 

orbits, there are not too many variations in time, except three cases with RMSE values 

over 0.2 pixels. These are due to heavy cloud contamination presented in the sensed 

imagery. As to the adjacent orbits, the tile T20HNH shows a trend which is due to the 

difference between the sensed and reference images: the difference is up to 103 days. 

For the T36UUU case, high RMSE error can be attributed to the 70 day difference 

between the reference and sensed images acquired over highly intensive agriculture 

region that features a lot of changes within this time period (Figure 1, D). Also, 

reduction of the RMSE error for 36UUU tile comparing to the 20HNH tile can be 

related to the improvements made in the baseline processing version 02.04 (ESA, 

2016a). 

 



 

 

 

Figure 7. Changes of RMSE error of building a 1
st
 degree polynomial 

transformation function when registering multi-temporal Sentinel-2A images over the 

time for different tiles and different Sentinel-2A orbits: (A) same orbits; (B) adjacent 

orbits. 

 

Results on correcting misregistration between Landsat-8 and Sentinel-2A are 

shown in Figure 8. 



 

 

 

Figure 8. A 30 m “chessboard” composed of alternating Landsat-8 (acquired on 20-Dec-

2015) and Sentinel-2A (24-Dec-2015) images before (left panel) and after co-

registration (right panel). Near infrared images from band 5 (Landsat-8) and band 8 

(Sentinel-2A) were used to produce these “chessboard”. TOA reflectance values were 

scaled from 0.05 to 0.55. This subset covers the area in the south-east part of the tile 

20HNH over Argentina (Figure 1, A). Misregistrations between satellite images can be 

seen in the irrigated fields (circles, middle left image) and in the bridge over the lake 

(bottom left image) with corrections applied and misregistration disappearing in the 

right images (middle and bottom). Middle and bottom subset images are shown in 

corresponding boxes on the top images. 



 

 

 

The proposed workflow was implemented in Python programming language 

using the Geospatial Data Abstraction Library (GDAL) for managing geospatial 

datasets, the ‘skimage package’ for phase correlation implementation, and the ‘sklearn 

package’ for the RF regression and RANSAC implementations, and was 

computationally efficient. Typical processing times on the Dell Laptop with processor 

Inter® Core™ i7-4810MQ CPU @ 2.80GHz with 16 Gb RAM are presented in Table 

7. 

Table 7. Typical processing times (in s) for the main steps of the proposed approach. 

Processing step SenSen10 LandSen30 

CPs identification 135 22 

Precomputing shifts with 1
st
 order polynomial 

function 

5 0.5 

Precomputing shifts with the RF regression 220 8 

Warping (single scene)  210 25 

5. Conclusions 

Since many applications involving satellite imagery require the use of multi-temporal 

datasets, misregistration issues can lead to incorrect results. This study investigated 

misregistration issues between Landsat-8/OLI and Sentinel-2A/MSI at 30 m resolution, 

and between multi-temporal Sentinel-2A images at 10 m resolution using a phase 

correlation approach and multiple transformation functions. Phase correlation proved to 

be a robust approach that allowed us to identify hundreds and thousands of control 

points on images acquired more than 100 days apart. Overall, misregistration of up to 

1.6 pixels at 30 m resolution between Landsat-8 and Sentinel-2A images, and 1.2 pixels 

(for the same orbit) and 2.8 pixels (for different orbits) at 10 m resolution between 



 

 

multi-temporal Sentinel-2A images were observed. The non-linear RF regression used 

for constructing the mapping function showed best results in terms of error, yielding the 

average RMSE error of 0.07±0.02 pixels at 30 m resolution and 0.09±0.05 and 

0.15±0.06 pixels at 10 m resolution for the same and adjacent Sentinel-2A orbits, 

respectively, for multiple tiles and multiple conditions. On the other hand, a simple 

linear model such as 1
st
 order polynomial function can provide an error of up to 

0.08±0.02 pixels at 30 m resolution and 0.12±0.06 (same Sentinel-2A orbits) and 

0.20±0.09 (adjacent orbits) pixels at 10 m resolution. 
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